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Chapter 1. Introduction to Examples and the G~neral Formulation 

Optimal stopping problems are concerned with the control 

of random sequences in gambling and statistical decision. Often 

one desires to know the op·timal instant to bx•eak off playing a 

game or t~ stop sampling in an inference problem~ 

A general theory that could give some insight to such 

problems was not seriously investigated until the last decade, 

beginning with E.Bo Dynkin (1960)~ However eeveral optimal stopping 

problems are quite famous for both their long history and 

attractive form. As an ~ntroduction to a subject which is firmly 

rooted in intuition we describe three problems~ The first is an 

example in decision theory, the second in statistical sequential 

inference, and the third in the statistical design of experiments. 

The chapter concludes with a formulation of the general optimal 

stopping problem on random sequences. 

1.1 Three Problems of Optimal Stopping 

1.1.1 The Secretary Problem 

The Secretary, or Doury, Problem·has a long history, first 

appearing as a subject for discussion in a "Scientific American" 

article of 1960. Its solution was suggested there and then proved 

optimal by Dynkin in 1963. 

The problem concerns that of an employer who must hire a 

secretary from among a group of n girls. At each interview he is 

only able to discern how the girl being interviewed compares with 

those whom he has seen pr~viously. At the intervietor he must 

dec~de to hire ~he girl or reject her without any possibility of 

recaJJ.. His objec·tive is to maximize, by some choice policy, 
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the probability that he uill select the best of the n girl.se 

1 .1 .2 The Sequential Probabil.i ty Ra·tio Test 

In 1947 A. Wald investigated the problem of hypothesis 

testing by sequential sampling. Suppose that x
1

,x2, ••• are 

independent, identicall.y distributed samples from a distribution .. 
with density f. We wish to test the simple alternatives, 

Ho: f = f 0 against H1: f = f 1• Costs are incurred for taking each 

sample as well as for ultimately taking an incorrect decision. 

The desire is to taka as few samples as possible while 

choosing between H0 and H1 witl1 the best confidence possible. 

The search is essentially for a time, t, which teL1s us when to 

stop sampl.ing and a decision rule, 6, which ·then tells us how to 

choose. Such a pair, (o~ t), is ca.lled a aequential. decision 

procedure. The calculation of 6 given t is only a standard hypothesis 

test. It is the choice of the stopping time t, which may depend 

on x1 , ••• ,xt, that is an optimal stopping problem. 

1.1.3 The Two-Armed Bandit Problem 

Beyond considering the control of just ons stochastic 

sequence, one might hope to control several simultaneously. The 

two arms, (1,2), of a two-a~med bandit produce prizes or not 

when pulled. Arm i wi11 produce a prize with probability pi and 

wil.l return nothing with probabilty 1- pi' i = 1,2. 

The interesting problema arise when one or· both of p1 ,p2 
are unknown and so must be infered fl""om sampling on the arms. 

We are faced with trying to decide when to stop playing on one arm 

and pl.ay the other. Of course the desire is to maximise the 

total number of prizes obtained, either as e.n average number per 

play or as a total number when discounting operates with time. 

The problem was first discussed by H. Robbins in 1952, but 
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the form of the optimal rule for the case of unkno~m p
1 

and p
2 

was only described a.s recently as 1972 by J.Co Gittins and D.l·!. Jones. 

These three problems will be discussed in the course of this 

essay as applications of the theory developed. We begin now by 

setting fort~ the general context and notation for optimal stopping 

problems. 

1.2 General Formulation 

We give definitions for random sequences, stopping times, 

and their associated rewards as considered in the essay. 

1 .2.1 Definition 

A stochastic sequence {zn,Fn} is defined by: 

(i) (t.t,F,P) is a probability space. 

(ii) {Fn}1 is an increasing sequence of sub a- algebras. 

(iii) {zn}1 is a sequence of ~andom variables where zn is Fn 

measurable, and takes values lll (- ~, ~ ]o 

(iv) Ez- <~ for all n. 
n 

1.2.2 Definition 

The non-negative, integer-valued random ,,ariable t is said 

to be an extended stopping time (variable or rule) if the event 

[t = n] is in F all no It is said to be a stopping time (variable n 
or rule) if in addition P(t <~) = 1 9 ie. t takes the extended 

integer value co with probabilty zero. 

Given a stochastic sequence {zn,Fn}' for the stopping problem 

on this sequence define: 

0 = { stopping times t : Ezt <~} 
0 = { extended stopping times t : Ezt <oo} 

Ezt = E(zt: t <co) + E(lim z : t = ~) 
n-co n 

-lfhere E is defj.ned by 
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Note that the restriction to tlmcs such ·that Ezt <co is onl.y 

for convenience. For if t is any time 1 by letting t• = { ; as 

E(zt JF1) ~ z1 then Ezt, ~ Ez:j < oo and Ezt, ~ Ezt• So 

there is a t '&0 for "'hich the expected value of the stopped 

sequence is at leas·b ltS large as that stopped by t. 

-That E is the appropriate operator within 0 will become clear 

in Chapter 3. But l:f {z } lorere. -1 , -1 , -1 , • • • clearly ve don't 
n 

want to take Z
00
= 0 for then su]E(zt+ 2) = 1 does not equal 

~ _ teO 
a~~zt + 2 = 2. In fact E ia precisely the operator ·that keeps 
teeN N 

BU,RE(zt + a) = SUJiEzt + a. 
t&C te:C 

1G2.3 Definition 

Given a stochastic sequence .{z ,F } its value over 0 or 0 , n n 
is defined by a = supEzt or a = su~Ezt· respectively. 

t~c te:c -- ~ ~ A time t& C or C satisfying Ezt= a or Ezt= s respectively 

:ts called a (Ots) or (O,s)-optimal rule. 

A time te:O is called ( e:; s) -optimal if Ezt :;;,. a - e. 

Observe that l'ri·thout loss of generality the reward for 

stopping {z ,F } at n is taken as z • If it were actually some n n n 
function, f (z1, ••• ,z ), then a simple redefinition of z would n n n 
cast the problem in the appropriate form. 

1.3 General Problems of Optimal Stopping 

Under the above formulation of the stopping problem on a 

stochastic sequence, the purpose of this essay will be to answer 

the following questions: 

(a) What is a (8) ? Can it be computed given {zn,Fn} ? 

(b) Do (O,s), (o,sL (e:_,s) or (e:,s)-optimal. times 'exist ? 

(c) What is the form of an optimal stopping rule when it exists ? 

We will answer these questions in two restricted contexts 
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before stating the general resuJ.·ts. Thereby i·t; is hoped to 

make clear the way in l'Thich in·liui tion might gui:le to deveJ.op 

· the general theory from scratch. 

. ... 
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Chapter 2. The Op·timal Bounded Stopping of Random Sequences 

In this chapter we formulate and solve the optimal stopping 

problem within the class of stoppir~ times which are bounded by 

a fixed integer N. This inroad to the general problem proves to 
. 

be a fruitful begi:nning.. Not only does the bounded problem have 

a complete solution of interest in itself, but also, as wo shall 

see in Chapter 3, its limiting form as N - ~ does in a sense 

describe the behavior of the general problem. 

~mny problems are of the bounded type in their own right. 

The Secretary problem of 1.1.1 ia one such and its solution is 

derived. 

2.1 Solution of the Bounded Problem 

2.,1.1 Definitions 

Consider stopping times restricted to an interval and let 

CN = {teO: n< t < N} n 

write: ON= C~ and aU= 

SN = 
n 

S
N 
1 • 

For convenience 

Clearly the only stopping time in C~ is t = N. An 
£1 N intuitively likely construction of t
11 

optimal in On would take 

t! = n unless the expected reward of taking another step and 

applying the rule t~+1 were greater than the present reward, zn. 

\'le show that this 11 backvrard construction" does produce the 

optimal rule •. 

2.1.2 Theorem [ ref. Chow, et al. p. 50 ] 

Define: Y~ = zN and Y! = max{ .zn , E(Y!+1 IFn) } 

N N } Let tn = min { i : i ~ n and z i = Y i •. 
N N N N Then tn is optimal in On and sn = EY11 = Ezt! • 

_,.~ 
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proof: ( by bacb~ard induction on n ) 

T h N A ·N rue wen n = . ssur~e t~1e for nand let tECn_1, AeFn_
1

, 

t' = max(n,t). [ we omit dP in the following integrals ] 

A zt = JAn( t=n-1) zn-1 + J A..,( t ;;. n) zt 1 

= J An(t=n-1)zn-1 + J Al-\(t ~ n).E(E(zt,IFn)IFn-1) 

.;; J a,..( +.=n-1) zn-1 + J An( t ;;. n)E(Y!IFn-1) 

~ I yN 1 A n-

while J z N -
A tn-1 -

J .An(zn-1 ;;.. E(Y!IFn-1) )n-1 
+ I E(YNIF ) 

An(z < E(Y~TIF ) ) n n-1 
n-1 n n-1 

= J max { z 1 , E ( yN IF 1 ) } A n- n n-
- y J N· 
- . A n-1 

Unfortunately the computations Y~ = max{ zn , E(Y~+1 lFn) } 

are net going to be easy to carry out. We can make a simplification 

when Y~ is a random variable depending only on zn, rather than 

on all the past history Fn. The optimal t! will then choose to 

stop or not on the basis of only looking at the current state. 

Such memoryless or Markov nature is a feature of very many optimal 

stopping problems. 

2.2 Solution of the Bounded Problem: l~rkov Case 

2.2.1 Definitions 

The stochastic 1-Jequence {zn,Fn} io said to have a 

sta~ionary Markov representation if there exists a ~~rkov sequence 

{xn} with state space E and transition probabilities P such that 

Fn = B(xn) and zn = g{xn) 'l'There g is Fn- measurable, all n. 

We wri·te: Exg(x1) = J Eg(x1 ) dP(x,x1 ) = I l(x1 ) dPx • 
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Consider functions f mapping E .... R and define: 

L = { Borel-measurable f : - oo < f(x) ~ oo and :Bxf-(xn) < oo 

for all n and xeE } 

To restrict attention to only those g l·Thich are in L does no 

more than simply ensure that the stopping time t = n is in c. 
With this formulation Theorem 2.1.2 can be neatly restated. 

2.2.2 Lemma 

. ... 

Define an operator Q:L- L by Qf(x) =max{ g{x) , Exf{x
1

) } 

If zn = g{xn) in a I•!a.rkov representation and gEL, then with ·the 
N -N-n ) notation of 2.1.2, Yn = Q g{xn. 

proof: direct from the definitions 

2.2.3 Lemma [ ref. Shiryaev p. 23 ] 

Define an operator Q:L- L by Qf(x) =max{ f(z) , Exf(x1) } 

Then ~g(x) = Qng(x) for all n and xEE. 

proof: 

True for n = 1. Proceed by induction: ExQf(x1) ~ Exf(x1) hence 

Q2g(x) = max{ Qg(x) 1 ExQg(x) } ~ max{ g(x) , ExQg(x) } ~ Q2g(x) etc. 

2.2.4 Theorem 

Suppose x1 ,x2, •••. is a i-!arkov random seqt,_ence and ge:L. 

Then sN{x) = ~~bN Exg(xt) = Qlrg{x) =max{ g(x) , ExsN-1(x1) } 

and tN = min{ i : i ~ N and sN-n(xn} = g(xn) } 

proof: a consequence of the lemmas and definitons 

This is just the statement that starting in state x and 

restricted to not more than N steps the optimal rule ldll 

choose the better of the tl'ro options: 

(i) Stop now - receive e(x) 

N-1 { ) (ii) Take another si;ep - recei·ve on avera.ge Exs x1 • 
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2.3 Solution of the Secretary Problem 

Consider n objects indexed by 1,2, ••• ,n permutated randomly 

with all permutations equally likely. Although observation of 

the objects does not reveal their true indices, comparison between 

two will disclpse l'Thich is better. Examining the objects one by 

one we wish to stop at at such that P(tth object examined has index 1) 

is maximized. 

2.3.1 Theorem [ re:f. Shiryaev pp. 46-48; Cho'" et al. pp. 51-52; 

Dynkin (1963) pp. 628-629 ] 

The optimal rule for chooGing the maximum of n objects as 

described above is to pass over the first k(n}-1 objects and then 

to choose the first to appear ~hich is better than all the previous 

objects, where: 1 + + 1 -- 1 < _.L + '+ 1 n-1 • · • k(n) ;:::::- n-1 • "• k(n)-1. 

and so k(n)~n/e 

proof: 

Let x
0
= 1 and x1+1= the position in the obserred sequence of the 

first object which is better than the object in position xi. 

(eg. if we were to see 10 objects as: 2,6,4,1,7,3,10,9,5,8, ·then 

x
0

=1 x1=2 x2=5 x3=7.) 

Clearly the sequence xi terminates at some i'~ n, so let x1=0 

for all i > i'. (eg. x4=x5= ••• = 0 in the above) 

Now suppose xi= bi. Then the first bi-1 objects are simply 

arranged in one of the equa1.ly-likely random permutations of 

bi-1 ordered objects. So we can deduce that they will have no 

effect on the distribution of xi+1 and can wri·be: 

p·( xi+1= bi+11 xi= bi, xi-1= bi-1' ••• , x1= b1 ) = 
P( xi+1= bi+1 I xi= bi ) = ~xi+1= bi+1 a.nd xi:: bi ) 

P( x1= b1 ) 
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( th th . 
= P bl+1 and bi ObJects are the 1st and 2nd best of the first bi+

1 
) 

P( b~h object is ·the best of the first b
1 

) 

= 

This shows that x
0

, x .. t 
I 

• • is a 1\iarkov chain '\-Ti th transition 

probabilities: P(O,O) = 1 P(x~y) = 0 when x ';;!::- y 

P(x,O) = ~ P(x,y) X 
~ yly-1) when :x:<y 

[ note: P{x,O) 
n 

-1-~ x __ ~ 
- ~1 y(y-1) - n 

x+ 
] 

Then P( xt is the position of the best object ) · 
n . 

= ~ Y.. P( x = y I x = 1 ) ~ E 1 xt 
y=1 n t o n 

So in the formulation of the optimal stopping problem for 

a Markov random sequence, l'1e are trying to maximize E1 g(xt) 

where g(x) = x/n [ EL]. Since xi= 0 for all i > n the op·timal 

rule l':ill lie in Cu. Hence Theorem 2. 2. 4 applies and 
1 X n X ·1r }. X X 1 1 

s {x) = max{ -n , 2:: ( iT "'- = max{ - ~[- + • • • + -] } y=x+1 Y y-1 n n ' n x n-1 

= x/n if x· ~ k(n) 

> x/n if x < k(n) 
vThere k(n) is defined as above. 

Continuing the construction it is clear that si(x) ; x/n a.s x ~ k(n) 

i = 1 1 2,3... and the optim~l stopping time is: 

't= min{ i : sn-i(xi) = x1/n } = min{ i : xi~ k(n) } 

1 1 ·In-1 
n-1 

Note: 1 ~ n-1 + •. • + k{'ii) - k(n) 1 /x dx = loge (kln)) 

so k(n}-n/e and ·the probability of success is 

E .!.t = 1 ..g.. !£i n)-:1 1 j = !s.lul::.t -c;:..~ _j_ _ ili.l 1 ( n-1 ) 
n n k~} j-1 j n ~) j-1 n og k(n)-1 

- 1 ~ 0.368 e 
Hence we have the rather remarkable fact tha·t no matter how 

large the total number of objects it is all'rays possible to choose 

the best l'Tith a probability greater than o. 368 

·t 
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Observe fur·ther that the probability the.t "1e are forced to 

take the last object unsuccessfully is P( best object is among the 

first k(n)-1 examined ) = k(n)-1 - 1 . So that if we were 
n e 

interested in say choo~ing -the best wife, our chances of doing so .. 
would be about the same as our chances of never marrying. 

Suppose that .. Potential mates appear uniformly between the 

ages of 18 and 40. Then n= 22 and k(22)= 9. So we should marry 

when, for the first tJ.me after our 26th bil·~hday, we meet a girl who 

is better than any other we have met before. [ ref. Gilbert 

and Mosteller (1969) for tabulations of k(n) ] 

Of course it j.s unrealistic to assume that choosing the 

second best has no value '\'Thatsoever~ If instead, the re'\'rard 

for choosing the object with order indax i is n-i, then by a 

similar treatment to th~ preceding, the expected reward under 

optimal choice - n - 3.8695 for large n. [ ref. Chow, Mortigu:tit 

Robbins and Samuels (1964) ] 
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Chapter ;. The Optimal Stopping of l-!arkov Random Sequences 

The optimal stopping problem has been solved for stopping 

times in ·the class eN. In the Markov case it has been observed 

that the value, eN (x) : has the simple constn1.ction QNg(x). In 

this chapter we no~ exploit this form by examining its limit as 

N - ~ to deduce results for the optimal stopping of Markov random 
..... 

sequences in 0 and c. Theorems are proved to show under what 

conditions sN(x) - s(x) and tN- a (O,s)-optimal t. 

The main ·technical lemma 3.1. 5 appears in Shiryaev ( pp. 29-31 ) , 

as do the most of the proofs in this chapter. But I have 

rearranged the arguement leading up to the fundamental theorem 3.2.1 

so as to use the results of Chapter 2. Not only does this 

treatment obtain 3.2~1 ~rith substantially leas bother, but it also 

demonstrates the signific~ce of first treating boUI1ded stopping 

in ON. Having discarded many of Shiryaev's lemmas, I am forced 

to an independent proof of theorem 3.3.3. 

The chapter conclud3s in showing that the Sequential 

Probability Ratio Test has a Uarkov representation and its 

optimal character is proved. 

3.1 Excessive Functions 

;.1.1 Properties of Lim aN(x) 
N-co 

We begin with an example: 

Suppose x
1

,x2 , ••• is a syrometric random walk on the integers 

0,1, ••• ,8, w'here 0 and 8 are absorbing. With g(x) as shmm, 

s 1(x), s 2(x) are constructed as: 



__ __,.~ ___ , 
0 1 2 5 7 8 

N It Hould appear that an N .... oo , s (x) ~· the smallest coucav-e 

function lieing above g (ereen line ). :r.1ore pre cisely ·1·1e note 

the follm'Ting : 

( ) N+1 ( ) N ( , i Q g x ,;:::. Q g XJ monotonic increasing . 

exists and equals, say, f?'~·( x ) ::; lim sN(x ). 
N-oo 

( ii) QNg ( x ) ~ -g-(x ) and QNg(x) ~ ExQN-i g(x
1 
L 

geL, Exg-(x1) < oo, by monot one convergen~e: 

s*( x ) ~Exs*(x1 ) ar.d s* (x) ~g(x). 

So lim QNg(x ) 
N'7"'1X> 

Assuming that 

(iii) Suppose fr.L, f(x ) ~ e;(x) and f (z ) ~Exf (x 1 ) for all xeE, 

Then Qf (:x ) = max{ f ( x ) , E f(x
1

) } == f(:'{ ) so that 
X 

f (x) = QNf (x ) ;:?.:. QNg (x ) -"' fJ~· (x ) ie . f ( x ) ~ s~~ ( x ) . 

J.IT 
The existence of lim n ' (x) and its properties ( ii ) and ( iii ) 

N-oo 
motivate the defini.tj.ons giYen belm·r. 

3. 1 • 2 Defi nitions 

f is said to he an GXCt~GSiVe function ( \vrite f£ e ) if 

fEL and f ( x ) ~ Exf (x1 ) for all xEE . 

Given a function g , the funt ion f is said to be an. excessive 

ma jorant of g if f Ef_; and f >g. 

(n. b. The excessi~re nB.ture of a function is clE'dined. in terms of 

a particul ar ~Iarkov chain' and transition probt'l.b:Llities . It is 

a li·rays asswned that thj.s i s the chain of the optimal stopping 

problem. ) 
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From 3. 1. 1 ( ii) and (iii) it is clear tho.t s* is an 

excessive majorant of g and that if f is any other excessive 

majorant of g then f ~ s*. \ie call s* the smallP.s·t excessj.ve 

majorant of g (s.e.m.). 

The basic properties of excessive funtions are included in 

the following lemmas. [ ref. Dynkin (1963) p. 627 ; Shiryaev 'J>p. 22,29 J.~ 

3.1.3 Lemma 

Let f ,g e e, ~ Then: 

(i) constant funtions are excessive functions. 

(ii) af + ~g is excessive for all a,~ ~0. 

(iii) Ex(f(xn+1 )1xn) ~ f(xn) ie. {f(xn),B(xn)} is e super-martingale. 

(iv) the exa.ct lm·mr bound of non-negative excessive functions 

is a non-negative excessive function. 

(v) if supExf-(xn) <~ then lim f(xn) exists Px- a.s. (possibly~). 
n n-~ 

proof: 

(i) - (iv) are imraedia·ce consequences of the definitions. 

( v) is the super-martint;ale convergence theorem. 

3.1.4 Lemma 

Suppose t,s e 0~1 '1ith t > s Px- a.s.; then Exf(xs) ~ Exf(xt). 

proof: 

To begin, suppose t-s is just 0 or 1. Then: 

Ex[ f(xs)- f(xt)] = ~ J (f(xn)- f(xn+1)) dPx 
0 (s=n)n(t > n) 

super-martingale. lfow lett= min(t,s+n) for n = 1,2, ••• ,N. n . 
The tn is a valid stopping time and tn+1- tn is just 0 or 1. 

·So E f(x ) ? E f(xt ) ~ • • • ~ Bxf(xt ) ~ Exf(xt) • 
X S X 1 ~I 
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As a summary of "lih0 state of knowledge so far, we know tha-t 

sN(x) - s*(x) = s.a .. mo of g and that sN(x) ~ s(x) ( this j_s 

the key use of the link to Chapter 2 ). Therefore 

s*(x) E; s(x) E; s(x). 

also, s(x) = f?UP-. Ex~<xt) ~ SU2 E s*(xt). So if it ,.,ere 
· ,; f::C t eC x 

possible to sholr that s*{x) :> su~ E s*(xt) then we would have 
tee x 

that s*(x) = s(x) = s(x)~ This follows from a final lemma. 

3.1.5 Lemma [ ref~ Shiryaev pp. 29-31 ] 

Let fee such that Ex[supf·-cx ) ] <co • 
n n 

-Let t,s e C uith 

t ~ s. Then Exf(xs) > Exf(xt). 

So in particular, if Ex[s~pg-{xn)] < oo, then s*(x) ? Exs*(xt) 
~ 

for all teo. 

proof: 

By 3.1.3 (v): lim f(x ) =lim f(x ). 
n""'bo n il""'bo n 

and let an= min(s,n); tn= min(t,n). 

by 3. 1. 4 : J :f' ( x8 ) ~ . 1 f ( xt ) 
n n 

1 f(x ) + J f(x ) ~ 
(s < n) s (s ~ n) n 

so: 

J f(x
8

) + 
(s <co) 

J f(xt) + 
(t <co) 

Assume ·that f ~ K ( f bounded. ) 

Omitting dPx throughout, 

or 

J f ( xt) + J f { x ) 
(t<n) (t~n) n 

but since f is bounded the 3rd term on both sides - 0 as n - oo, and so 

J(s <~)f(xe) ~ J(t <~Jf(~) +lim J(t =~),(a =~Jf(xn) 
~ J f(xt) + J lim f(x ) 

(t < oo) ' {t = co),(s =co) n 

by Fatou's lemm~ and the remark that J.lm f(x:n) =lim f(xn). 

This last line is just llxf(xs) ~ .. Exf(xt). 

For a general f, let ~= min(f,m) which is clearly excessive. 
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tn(x) - f'(x) and J.j_m(1:Lm:fll(x )) =lim f(x ) since if 
L'l~> u-'t.v n n'""oo n 

lim f'(xn) =a <co then for large m lim(min(m,f(x )) = cc, and if nootco n-w n 
lim f(x ) =co then lim(min(m,f(x )) = m. Look at: 
n~ n n-w n 

1 (s < .. {<xs) > J (·~ < ... /n<xt) + J (t = co)'-(s =co)~~ :f"'(xn) 

and let m - c:o to compJ.cte the proof. 
-'V ,y 

In the particular case of s = 1, f(x) ? Exf(x1) ~ Exf(xt). 

3.2 The Characterization of Value 

The fundamental theorem about the value of the optimal 

stopping problem on a l•Tarkov random sequence may no't-r be stated. 

3.2.1 Theorem 

If' Ex[sup g-(x
11

)] <co then s*(x) =· s(x) = s(x). 

p~oof: the direct consequence of lemma 3.1.5. 

~he result is that there ·is no reduction in the v·alue of 

the sequence when attention is restricted from extended stopping 

rules in c to those in 0 or e"~"rcn u ali. 
1 

Some comment should be made abou·t the condition 

Ex[sup g-(xn)] <co ( which i·Tc shall write henceforth as g e L(A-) ) • 

It was used in the proof of 3.1.5 to ensure the conditions of 

3.1.3 (v), Fatou's lflmraa a.nd J f-(xn) bounded so that with 

f+ ~ K we could get J . [f(x ) - f(xt)] - 0. 
ln ~ t <co) n 

An example shows that i.t cannot be dropped. For let {x
11

} 

be a symmetric random walk on the inteBers \'lith g{x) = x. Then 

the martingale theory o:f gambling systems or s.imply t~e 

recurrence sN(x) = min{ x., 1[sl-f-1 (x+1) + ~N-1 (x···1)] } glves 

sN(x) = x. \•/hiie i:f t(N)= m:ln{ n: xn= N }, then t(N)e: C and 

Exg(xt(N)) = N. Hence ~ = s(x) ~ s*(x) = x. 
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At best we might hope for 3.2.1 to hold when 3.1~5 is true. 

To ma.lce this precise one can cook up the follm-ring definition. 

3.2.2 Definition 

A function. f is said to be a regular exceesive majorant 

of g if f > g and f(x) :;::. Exf(xt) for all xeE and teO ( ie .. fo_~ 

all t such that Exg-{xt) < oo ). 

Lemma 3. 1. 5 established that j.f ge L(A -), then the excessive 

majorants of g are regular. Let s~ be the smallest regular 

excessive majorant of g. Then argueing as before from the 

definitions: s~(x) ~ ~~~ Exs;<xt> ~ ~~~ Exg(xt> = s(x). 

The reverse inequality is also true even though it can no longer 

be obtained by appGaling to lim sN(x) = s*(x), since in general 

s*(x) < s~(x). 

The actual proof is lengthy. So for completenP.a~ we 

conclude this section by simply stating ·the resu.J.t. 

3.2.3 Theorem ( ref. Shiryaev pp. 50-56 ] 

eg. 

If ( as always ) gEL then s~(x) = s(x) = s(x). 

In ·the example above, s~ > a = oo • So s* = s. r 

3.3 The Characterization of Optimal Times 

Thus far we have been concerned with determining the value 

of a Markov random sequence, essen·tially through looking at 

the limit of sN(x) as N- oo • To do this, the neat recurrence 

construction of Theorem 2.2.4 was exploited~ 

Hol'lever, 2 ~ 2 ~ 4 also gave an explicit construction for ·the 

optimal times, tN. It is natural to ask whether there aro. 
N 

stopping rules inC or C which actually attain the value, s(x), 

and whether these can be related to the 11-mit of tN. 
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It will now be shmrn that ld. thin C this is the case. 

3.3.1 Lemma [ ref. Shiryaev p. 34 ] 

Suppose that the value, s{x), is such that s{x) <~ for 

all xeE. Define t
0 

=min{ n : g(x ) = s(x ) }. Then, 
n n 

s(x) = J · s(xt ) dPx + J s(xN) dPx for al.l ~. 
(t0< N) o (t~ N) 

proof: 

Clearly, s(x) = ~B Exs(xt) = Exs(x1 ) since s(x) is the 

smallest regular excessive majorant of itself. Hence: 

s(x) = J s(x1 ) dPx + J s(x1 ) dPx. 
(t0 = 1) (t6> 1) 

But on the set (t? 1), s(x1 ) >.. g(x1 ), so that s(x1 ) = Ex
1
s(x2). 

Thus, s(x) = J s(xt ) dPx + J s(x2 ) dP 
. (t

0
= 1) o (t~ 2) x 

(etc.) - J s(xt ) dPx + J a(xN) dPx 
(t

0
< 11) o (t~ N) . 

The stopping rule t
0 

seems to be the obvious candidate for 

the limit of tN as given in theorem 2.2.4. Note that in fact, 

tlT+1 ~ tN. So lim tN = t*, say, exists. 

As previously, define the conditions 

geL(A-) to mean Ex[sup g-:"(xn)] < ~ for all xeE, and 
n 

geL(A+) to mean E [sup g"1x ) ] < ~ for all xcll. 
x n n 

The next theorem relates t* and t
0 

to the optimal rule. 

3.3.2 Theorem ( ref. Shiryaev pp. 57,58,62 ] 

{i) if geL(A+), then t
0 

is (0,8)-optimal. 

{ii) if geL(A+)" L(A-), then t
0 

= t* = lim tN. 
N-co 

proof: 

By ;. ;.1 s(x) = I s(xt ) dPx 
( t < N) o (i) 0 

:5; J g(xt ) dPx 
(t

0
< !IT) o 
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from the definitions of t and s(x"T). Uow apply lim to the 
0 J.'l • lf-oo 

above using Fatou's lemroa and the condition ge:L(.A.+) to deduce: 

s(x) ~ J g(xt ) dPx + J lim g(x ) dP 
( t < oo) o ( t = 00 ) n-oo n X 

0 0 . ,.,. 
= Exg(xt ) • 

0 

(ii) For the first inequality "re stlJ.J. only assume ge:L(A~·). 

t* < t
0

: If t*= n then there exists an .U such that tN= n. 

g(x1 ) < sN-i(xi) fori= 1, ••• ,n-1. This then implies that 

g(x1 ) < s(xi) fori= 1, ••• ,n-1, and hence that t
0 
~n. 

So 

If t*= c:o then for a given k there ex:l.sts an N such that 

g(x1 ) < sN-i(xi) for i ::.s 1,. u ,k. But s~f-i(xi) ~ s(x
1

) then gives 

g(xi) < s(x1 ) for i = 1, ••• ,k. True all k. ·so t
0 

must equal 00 • 

To prove the reverse inequality we need ge:L(A-). 

t* > t 0 : If t
0
= n then B(xi) < s(x1 ) fori= 1, ••• ,n-1. Under 

geL(A-) sN- sand so g(x1) < sN-i(xi) for 1 = 1,3 •• ,n-1 and 

large anough N. Hence tN ~ n .and so t* ~ n. 

If t
0
= oo then g(xi) < s(x1 ) for all i = 1, ••• Therefore, 

given an n, tN ~ n for large enough N. Hence t*= oo • 

3.3.3 Corollary [ ref. Shiryaev p. 58 ] 

If ge:L(A+) and lim g(xn) =- oo P- a.s., then 
n~ x 

t
0 

is (O,s)-optimal. 

proof: 

If P (t = oo ) > 0 then s(x) = - oo • But a(x) ~ g(x) > - oo • 
X 0 · 

So P (t = oo ) = 0 and we have the existence of a (O,s)-optimal rule. 
X 0 

In general., a (O,s)-optimal rule may not exist. For 

example, if E = { 0,1,2, ••• }, P(xn= i+1 lxn_1= i) = 1, and . 
g{x) = x/(1+x), then s(x) = 1. The timet*= oo is (O,s)- optimal, 

but there is clearly no (O,s)-optimal rule. 
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The best that CQu be achieved in a is often just a rule 

arbitrarily close to o. ( 0, s) ·-optimal one. The :following theorem 

states the conditions for a (e,s)-optimal rule. 

3.3.4 Theorem 

If geL(A+) "'L(A-), then the otopping time defined as 

te =min{ n: g(xn) ?,>:~(xn)- e} is (e,s)-optimal. 

proof: 

Clearly t
0 
~ te, Bo that by 3.1.5: 

Exg(xt ) ~ Exs<xt ) - E ~ E s(xt ) - E ~ Exg(xt ) - E = s(x) 
£ E X 0 0 

This shows that te is (e;s)-optimal. Also, s(x) ~Exs(xt ) ~ 
0 

gives: 

t<oo] 
0 

t<CXI] 
0 

+ E [ lim g(:x: ) x n 
+ Ex[ lim s(xn) 

• . 
• • 

to = 00 ] -
to = 00 ]. 

Here the first terms on either side are equal and certainly 

lim s(xn) ~ITiii g(xn).. Tile conditions imply that 

Px(lim s(xn) = ± oo ) = o. Hence "te deduce that 

P:x:( t
0
= oo and lim s(:cn) > lim g(xn) ) = 0. 

·~. 

Now te= oo implies that t
0

= co and that g(xn) < s(xn) - e 

for all n, ie. that lim g(xn) < IIm s(xn). Therefore, 

Px( te= oo ) = 0 and te j_s .(e,s)-optirnalo 

- e. 

Note that in the line above sho,-ring te to be (e,s)-optimal, 

we coul.d deduce Exs(xt ) - e = s(x) - e \-Tithout assun1ing geL(A-). 
E 

This can be done by proving lemma 3.3.1 and. theorem 3.3.2 (i} 

for te in exactly the same way as they were proved for t
0

• 

This now concludes the characterization of the solution 

of the optimal stopping problem on a I•Ia.rkov random sequence .. 
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3.4 The Optimal CharactGr of the Sequential Probability 

Ratio Test 

Assume that x1 ,x2 , ••• are independent, identically 

distributed samples from some density f. We wish to decide 

between the hypotheses, H0 : f = fo and H
1

: f = f
1

, using a 

sequential decision procedure as outlined in 1.2.2. The cost of 

taking each sample is 1 and the cost of an incorrest decision is: 

a when H0 is true and ~re choose H
1 

and 

b when H1 is true and we choose H0• 

Using the procedure (6,t), let ai(6,t) =Pi( reject Hi) i = 0,1. 

Assume further that we know H0 to be true with prior 

probability ~ so ~hat r(~,6,t) = ~[aa0 + E0t] + (1~)[ba 1 + E1t] 

is the expected loss which we desire to minimj.ze .. 

3.4.1 Theorem ( ref .. Cholr pp. 46-49,105; Shiryaev pp. 124,125 ] 

~ = nt0 (x1 ) ••• f 0 (xn) 
n nf0 (x1) ••• f 0 (xn) + (1-~}f1 (x 1 ) ••• f 1 (xn) 

Let = 

the posterior prob~bility of H0 given x1 ,x2 , ..... ,xn. Then the 

sequential decision procedure (o,t) which minimizes the risk, 

r(n,6,t) is describe4 by: 

t = min{ 

accept H0 if nta ~ { 1-7tt )b 
6 = 

accept H1 if nta < (1-nt)b. 

'"rhare and 

The procedure is to conttnue sampling until the posterior 

probability of H0 is sufficiently close to 0 or 1 and then to 

choose the hypothesis l'rhose rejection risks the greater loss 

under this probability. 

proof: 

For fixed t the form of 6 is easily fo\md. The part of 

the loss depending on 6 is naao + (1-~)ba1 = 
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( omit a.x1 • • • dxn in the follmring integrals ) 

= i; { 1ta J f 0 ( x1 ) • oo f ( xn) · -t· ( 1 -1t) b J ~ 1 ( x .
1 

) • · •• f 1 ( xn) · 1 
n=1 {t = n; accept H1} {t = n; accept H0 } J 

> -E 1 min{'naf0 (x1 ) ••• f 0(x), (1-1t}bf
1

(:x:
1

) ••• f
1
(x) J 

n=1 {t = n} n n 

= i: J [min{ 1tna, ("l-1tn)b l](1tf0 (x1 ).· •• f 0 (x) + (1-7t)f
1
(x

1
) ••• f

1
(x )] 

n=1 { t = n} . n n .. / 
H = 1taa0 + (1-1t)ba1 for the o which accepts HO as 

1 

Now 1t = n 
1tn-1fo(xn) 

~ti-1fO(xn) + <1-1tn-1)f1(xn) 
, 

~ . 

TCta < ( 1-1tt )b. 

so 1t,1t1 ,1t2 , ••• is a stat~onary l·1a~"kov sequence; Fn~ B(x1,.. ,xn). 

The loss is E1t[min{ a1tt , (1-1tt)b} - t] and so in the nota·tion 

of the chapter we ca~ take: 

( 1t, 0), ( 1t1 , 1 } , { n2 , 2) 1 •• • a stationary liJark.ov seq.uence with state 

space E = { (n,n) : 0 < 1t < 1 and n = 0,1, ••• }. ~hen, 

g(1t,n) = -h{1t)- n \~There h(1t) =min{ an, (1-n)b}.. And 1-re are 

interested in finding sup E(
1
t O)g(nn,n) = s(n,O). ( note 

te:C I 

that lim g(nn,n) =- ~ precludes t which take the value~.] 

Since ge:L(A+), theorem 3.3.2 states that a (O,s)-op~imal 

t exists and is given by t =min{ n : g(1tn 1 n) = s(1tn 1 n) }. This 

optimal t is the least n such that: 

•h(nn) - n ~sup E(1t n'g(nn+t'n+t) = 
te:C n' 1 

sup sup [ -1t (o:0a + E0 ( t+ll)) - ( 1-nn ){o:1 b + E1 ( t+n))], or 
te:C 6 n · 
the least n such that: 

h(n ) ~ inf inf [n (o:0a + E0t) + (1-1tn)(o:1 b + E1t)] = r(-;cn), say. 
n te:c· 6 n 

Not surprisingly, this is just to say that the optimal t 

stops sampling when £or ~he first time the expected loss of 

stopping now is. less than the expected loss of e.ll procedux·es 

which contim.te. 
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The quantities, a01 a 1,E0t,E1t, are determined for fixed 

o,t, and are therefore :independent of 1t. \le deduce that 

r(1t) is the infimt~ of linear functions of ~ and hence is 

concave on [0,1]. Concave functions are continuous~ The 

graphs of h(1t) and r(n) appear as: 

1 

~---11:-------'-----~------
n 1t 1t 1 

Clearly, t = min{ n : h(nn) ~ r(nn) } ~a· equivalent to 

t = min{ n : 1tne [0,~] u ['ii, 1] }. 
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Chapter 4. The 0Ilt:lmal Stopptng of Random Sequences 

Having characterized che solution to the optimal stopping 

problem on Markov random sequences, we have a good idea of the type 

of theorems which are likely to prove true when considering the 

problem on general stochastic sequences. 

Given ~ .. stochastic sequence, {zn,Fn}, '\·le might define 

xn= (z1,z2, •• ,zn) and g(xn) = zn. So that in a sense, every 

stochastic sequence has a Markov representation, even though 

the state space and transition probabilities may be far too complex 

for direct treatment. Thj.s thought suegests that the resuJ.ts of 

Chapter 3, such as " s = ~" or " a (O,fi)-optimo.l time exists ", 

should carry acros~ to general sequence results, for they 

contain no statements about the form of the Markov sequence 

involved. This chapter deocribes the form taken by the theorems 

of Chapter 3 when extended to the general context. 

The Two-armed Bandit Problem of 1.1 .3 is an example in the 

sequential design of experiments which can be solV"ed through 

the use of optimal stopping times. As in many of the more complex 

problems, general theory lends only the first insights, while 

deeper investigation prqoeeds with reference to the specific 

features of the problem. The solution to the Bandit Problem is 

a nice example of the 'ray stopping times feature in one area of 

contemporary research. 

4.1 The Characterj.zation of Value 

4.1.1 Properties of Lim YnN 
. N--oo 

Just as in 3.1 l'te examined the limj.t of sN(x) as N - co, 
N so here '\te look at the limit of the random variable, Y n, defined 
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in Theorem 2.1.2. \•le note the following: 

(i) r! is the poi.~twise supremum of the se·c o:f random variables, 

{ E(zt IFn) : te;C~ } , except possibly for a set of poin~ ,.,i~h 
probability zero. This is contaj.ned in the proof of 2.1. 2. \·le 

write: YnN = ess supN E(ztiF ) [ essential supremum ]. 
te;C n 

n 
(ii) Y~?Y!-1 monotonic incresing. So lim r! exists and 

N-+oo 
equals, say, Y~. 

{iii) r! = max{ zn 

Y* = max{ z ·n 

a supermartingale. 

, E(Y~+1 IFn) ~ so that by monotone co~vergence, 
, Jo1( Y~+ 1 1Fn) } , ie. r; ? z

11 
and {Y~ ,F

11
} is 

(iv) Sl.!-ppose that {pn,Fn} is a supermartingale such that p ? z . . n n 
N { . · N1 } for all n. Then, PN ~ ~N YN_1 =:: max zN-·t , E(YN,FN_1) ~ 

max{ ~N-1 , E(~~I:PN_1 ) } = PN_1• Continuing the induc·tion, 1-1e 
N 

find Yn ~ ~n for all N. So .Y~ ~ ~n· 

It is now clear '\'That should take the place o:f excessive 

functions considered in Chapter 3. 

4.1. 2 Defini·tion 

The super martingale (~11 ,F11 } is said to dominate the 

f!~tochastic sequence {zn,Fn} if Pn;;:. zn a.s. ~or all n. If all 

other f!Upermartingal~s "rhich domlnate {zn,Fn} also dominate 

{~11 ,Fn}' then {(3n~Fn} is said to be the smallest supermartingale 

dominating {zn,Fn}. 

By (iii) and (iv) above, Y~ is the Elmallest supermartingale 

dominating z
11

• We also define: 

Y = ess sup E(ztiF ) and Y = ess au~ E(ztiF ) where it 
n te;C n n tee n 

n · n 
is assumed that zt takes the value lim zn on the set (t = oo). 

n-oo 
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,..J -Clearly Y*n ~ Y ~ Y • If' E(sup z ] < oo then lfe will sholr that n n n n 

Yn ~ ess au~ E(Y*t ID' ) ~ Y* where the last inequality follOliS 
tee n n 

n . 
from the lemma below, exac-tly paralleling 3.1.5. 

4.1.3 Lemma 

Let {~ ,F } be a supe1~martingale satisfying the condition· . . n n 
A-: E[sup ~-] <co • 

n n 
E(~tiFn) ~ E(~8 1Fn)• 

#"J 

then Yii ~ E(Yf, IFn) 

proof: 

-Let t,s eOn -c.rith t ~ s. Then 

So in particular, if E[s~p z~] <co 
,... 

for o.ll teen. 

Lemma 3.1o4 becomes: if t,s eC~ with t ~a, then 

E(~tiFN) <E(~8 IFN) by an exactly analogous proof. 

Assume ~n is a.s. bou..Ylded above. The supermartingale 

convergence theorem shows that lim ~n ex~sts a.so if supE~; <co, 
n-oo 

which is implied by A-. 

Let AeFn. Then as in 3.185 we can get: 

I (s < co)nls ;;.. I (t < co)M~t 
+ J (N ~ t < oo),..ifJN - f3t) 

+ J((t :-;oo)"-(S =cCI))nA~li 
- I (N.;; a < oo)nA (~N - ps) 

Apply lim to both sides. Look at the integrals on the right hand side. 
N-oooo 

The second is ~l!m J.. BN ~ J lim f3N since 
. ( ]"A ( )oA .~: 

A- implies (f3N) tmiformly integrable, which implies Fatou's lemma. 

The third is ~ -lim J ~N - lim J Pt • Both limits 
( )"A ( )nA 

- + here are zero since Pu and f3t are both bounded by variables wi·th 

finite expectation (ie. pN- <sup f3-) and P(N ~ t <~)- 0. 
n n 

1 The fourth is ~ -lim J f3; - lim ~- • Again both 
( )nA ( )nA 8 

· 
limits are zero .. 

....., ~ 

As these results hold for all AeFn' E(f3s lFn) ~ E(~t IFI;L) • 

The boundedness assumption is relaxed just as in 3.1.5. 
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The result to parallel 3.2.1 follm-rs immediately: if. 

E[sup z-] <~ then Y*= Y = Y and hence s n n n n n 
Note that for t,s &On the lemma may be 

weaker condition lim J ~N = O. 
( t ;;,. N) ~ 

N 
== s. 

p1•oved under the 

In order. to include all stocastic sequences in one theorem 

the appropria~e class of supermartingales is defined. The general 

characterization of value then follows. 

4.1.4 Definition 

The supermartingale {~ ,F } is said to be regular if for all n n 
t&C ~~t exists and E(~tiFn) ~~non the set (t ~n)o 

4.1.5 Theorem ( ref. Chow pp. 66,75-76,81 ] 

If Ez; <co all n (as assumed) then: 

(i) 

(ii) 

(iii) 

proof: 

.... 
Y = Y = the smallest regular supermartingale 

n n 

Yn= max{zn, E(Yn+1 lFn)} 

s=!=EY1 

r· 
(i) see Chow pg. 81 (Theorem 4.7) 

dominating zn. 

(ii) Let t&Cn. By definition E(zt1Fn+1 ) ~yn+1 on (t >n). So 

E(ztlFn) ~ .E(Yn+1 1Fn) on (t >·n) 

= zn on (t = n). Thus Yn ~max{zn,E(Yn+1 lFn)} 

Conversely, Yn ~ E(ztlFn) for all te:Cn+1 • Take t 1 such that 

E(ztil~n+1 ).;wYn+1 • Then Yn ~E(E(zt1 1Fn+1 )1Fn)/E(Yn+1 1Fn) by 

monotone convergence. Clearly Yn? zn. 

(iii) immediate 

4.2 The Characterization of Optimal Times 

The two conditions which again play an important role are: 

A+: E[sup z+] <·co and A-: E[sup zn-J <co. The results which 
n n n 
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can be proved mimic 3.3.2 and 3.3.3. In summary: 

(i) 

(ii) 

Theorem ( ref. Chow p. 82 ) 

Let t
0
= min{ n : zn ~ Yn } then 

if A+. holds then t
0 

is (O,s)-optimal 

+ - N { N·} if A and A hold then t = min n : z ~ Y 
n n 

proof: 

- t a.s .. 
0 

N If t*= n thell there exists N such that t = n. z.i< Y 
1 

i = 1 .... n-1 

so z1 < Y 1 i = 1 ••• n-1. Thus ·t0~ n. (similarly t*= co implies t
0
= co) 

If t
0
= n ·then zi< Y 1 i = 1 ••• n-1. By A- there exists large N so 

N zi< Yi 1 = 1u .n-1. Thus t~n. (similarly t
0

:::,oo implies t'~t-= oo) 

4.2.2 Corollary 

If A+ holds and lim zn = - co then t
0 

is (O,s)-optimal. 

As a parallel to 3~3·4 we state a theorem on (e,s)-optimal 

times. For va.riety it can be put. in a form l'There the condi t·· ons 

do not explicitly me!ltion A+ or A-. 

4.2.3 Theorem 

It t
0 

is (O,a)-optimal and a < 00 then te= min{ n 

is (&,a)-optimal. 

proof: 

EY 1 ~ 1 ( z 1 + & ) 
(t&= 1) 

+ J y1 ~ 
(t > 1) 

g 

: z > y - & } n n 
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I (z1+ e) f- I E(Y2j:c•1) ~ 
( te< 1 ) ( t~~ 2) 

E=· •• • ~ J (zt + e) + J YN 
(te<~T) · e (\::;;.N) .&: 

r (z + e) + 1 y 
J(t<1) 1 (t>-:2) 2 

e e"" 

~ E(zt : t <~) + eP(t <~) + E(Iim YN : t = ~) Putting e: = 0 
e: e e N-'bo e 

N N ) - ,... 
we get EY 1 ~ EY t as zt = Y t on ( t < ~ • But EY 1 ~ EY t since 

o ·o o 0 o ·· 
{Yn} is i.ts mm smallest domina·ting regular supermartingale. ./ 

,.., ,.., 
Hence Ezt = EY1= EYt <~. This implies that IIm Yn > IIm zn only 

0 0 
on a set of probability zero. However t

0
= ~whenever te:= ~ and 

z < Y - e: all n implies iim z < Iir!i Y • Thus te:= ~ w·i th n n - n n 

probability zero nnd the above line gives s = ·Ey 1 .;::: Ezt + E. 
e: 

The characterization of the solution to ·the optj.mal stopping 

problem on general stochastic sequences ls now complete~ The 

problem differs on tt!arkov sequences and general sequences only 

in that the latter requires knowledge of ·the entire ·past, We 

summarize the anm'lers to the ques-tions posed in 1 • 3: 

(a) s always satiGfies s = max,{ z1 , sup Ezt } a21d under 
te:C2 

the limit of the value on the E(supz-] < ~ can be computed as 
n n N 

bounded problem, s • 

(b) (O,s) and (e~s) times _exist l'the~ s < ~ and E(s~pz:] <co 

and a (O,s)-optimal ·time exists if in addition zn ~ - ~ • 

(c) The nature of (O,s)-optimal rules are always n stop when 

for the first time the reward attained by stopping is greater 

than the best that cotlld be expected to be obtained from goiz~ 

on "• 

4.3 Solution of the Two-A1~ed Bandit Problem 

Suppose we have the option of playing one of two bandit 

arms at each time instant. Arms 1 and 2 pay 1 unit with 
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probabilities p1 an(1 p2 or 0 units with probabili tes 1-p
1 

and 

1-p2 respectively. 

In order to keep the expected payoff finite we discount at 

a rate a where 0 < o: < 1 • This raay be thought as equivalent to the 

situation where there is a probability 1- a ·that an arm will 
. 

at any time instant become inoperable~ 11ever again available for 

play. The expected re"t-Tard we desire to maximize is then 
co i 1 

E{ ~a - x1}, where x
1 

is the rei'Tard received from the arm that 
1 

is chosen and played at time i. 

Of interest is tho optimal design of play when one or both 

of p1,p2 are only knolrn to have been chosen from some prior 

distribution. '\•le examine the t"t-to cases in turn. 

4.3.1 Theorem 

If p2 is knoi'm and p
1 

has prior density f
0 

on [0,1] -then 

(i) There is an e~tended stopping time t* such that the optimal 

play is: pull arm 1 for 1, ••• P ·t;*-1 and then pull arm 2 at all 

times t* and beyond. 
t~1 . 1 t* 1 (ii) The expected reward is E{ 2.i ~l.- xi + a - P2} • 

1 1- a 
(iii) tu- can be written as t* = min{ n : v(fn) ~ ..!L } where fn 

1-· a 
is the posterior density of p1 af·ber n plays on arm 1 and is 

t 
a function satisfying :v(f) = sup. Ef{ lJa1

-
1 xi + at V(f)}. 

te:c 1 
proof: 

(i),(ii) As in the discussion of the sequential probability ratio 

test it is easily seen that {fn} is a l•Iarkov chain. If the 

optimal policy ever recommends playing arm 2 it must continue to 

do so ever after since that decision is taken by looking at fn 

and play of arm 2 leaves f fixed. Henc~ we wish to maximize 
t-1 ~ n t-1 i 1 t 1 N 

E { :E ai-1 x
1 

+ ~ a1- 1 p } = E { ;£:! a - x + a - p} in C. 
1 t 2 1 i 1-a: 

Theorem 4.2.1 (i) applies so that an optimal t* does exist. 

--
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t 111 t . 1" 
(iii) Let sp(f) = Sl.lp Ef{ ;;_::a - xi + _fL_p}, where the xi 'a 

tee 1 1- a . 
are taken from play on arm 1 (with prior density f for p

1
)o As 

the supremum of lin~ar increasing function1-1 of p, a (f) is 
p 

convex, continuous o.nd inc~"easing in p on fO, 1]. Clearly 

a0 (f) = Ef{i:a1- 1x .. } = .P·J where !>1=: I u f(u) du· Also, 
1 l. 1- a o 

s 1(f) = _!_. Pictorially this looks like= 
1-a 

1 r:a 

( 1-a)v(f) p 1 

expected reward achieved 
by play on an arm with 
success probabj.lity P• 

expectad·reward achieved 
by play which playa at 
least once on arm 1 (p 
has prior density f), 1 

and then optimally goes 
to play on an arm l'Ti th 

·success probability p. 

Hence there is a unique (f) such that s(1-a)v(f)(f) = 
t i-1 1 t . 

sup Ef{ :E a xi + a (f)} == :v(f). It is ~lao clear fvom 4.2.1 
t&C 1 
and the picture tha~ it is optimal in the two-armed bandit 

problem to stop :play on arm 1 if P2 ~ :V(f
0

) and to go on for 
1- " 

at least one more ple.y on 1 if ...E?..... < lJ(f
0

).. Then 
1- a 

t*= min{n: 'l)(fn) ~ 22._} is (O,s)- optimal. 
1- a 

4.3.2 Definition 

The function clefined by being the unique solution of 
t* i 1 t·~<' . } 

v (f
0

) = Efo {fa - xi + " v(f0 )} and t*= min{n:'V(fn) ~ v(f
0

) , 

is called the dynamic allocation index (DAI) of the bandit arm 

(from \'Thich the x. are obtalned). The DAI, u(f), of an arm 
l. 

whose success probability has prior density f may be thought to 

be the success probability of a second arm against which. optimal 

play 1·rould give no preference as to which of the two arms to play. 
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It is ra·ther an amazing fact ·hho. t the optimal policy for 

playing two arms for wh).ch neither p
1 

or p
2 

is known can also 

be described in terms of the DAis of the arms. 

4.3.3 Theorem [ raf. Gittins and Jones; Gittins and Nash ] 

Suppose that p1 and p2 are knmm to have prior densities ... 

f~ and f~ respectively. Let f! be the posterior density of pi 

after n plays have been made on arm i. Let lJ! = v<t!>. If 

then at time n thare have n1 and n2 plays on arms 1 and 2 

respectively (where n1+ n2= n-1), then it is unquely optimal to 

make the nth p1lll on the arm for which v 1 is greatest. 
ni 

proof: 

We will refer to the above described playing policy as 

the "DAI strategy". The proof follows several stages: 

(1) Given e > 0 N
0 

such that for all N ~ N
0 

. (reward of the strategy that plays according to th~ DAI strategy) 
E for n= N+1, .... and optimally subject to this constra1~rt for . 

n = 1, ••• ,N. 

> E(relsTard of any other strategy) - e. This is because 
00 • . 

.Z: al.-1 < e for lo.rge enough N
0 

• 

No 

( 2) Let t= min { n > 1 : " < }"-} then by 4. 3. 1 .IN 
< t i-1 ·t n S. 
5 E f { ~ a xi + a p. } . as }J-> v0 • 

0 1 

(3) Let p.= m~x{v~} and let_ ti= min{n> O; v! <JAo}. Let E1 j be 

the expected reward of the strategy which playa a1~ i for times 

1, ••• ,ti, then arm j for times t 1+1, ••• ,t1+tj, and the DAI strategy 

thereafter. Call this strategy s1j. Than: 
t 1 1 t 2 

E
12 

= E{ :E ar-1x1 ·1- at ~ as-1x2 } + E(reward beyond t 1+ ~ 2+1) 
1 r 1 s 
t 2 2 t 1 

E21 = E{ 2'J a8-1 x~ + at ~ ar-1 x~} + E{reward beyond t 2+ t 1
+1) 

1· 1 
1 2 1 2 Since the values of v and :a> at ·t + t are the same l"then s12 has 
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been played as l·Then S21 has been played, the final terms in 

the two expressions above are equal. Hence E
12

- E
21 

= 
2 t 1 1 t 2 

E { ( 1 -a: t ) ~ a:r-1 x 1 } _ E { ( 1_a t ) ~ a;a-1 x2} < 
1 r 1 a < 

2 1 1 2 
E{(1-a:t )(1-a:t )~} - E{(1-at )(1-a:t )~} = 0 as 

1 = > 2 
1J0 <f4~ v 0 by {2) above. 

(4) When 1J~ = ·JJ~, s12 o.nd s21 are both simply the DAI stra·tegy. 

Hence (3) implies that it'doesn't matter which arm is played first. 

Otherwise, interpretation of s12 and s21 tells us that the 

strategy which plays the arm with smaller DAI once and then the 

DAI strategy thereafter is strictly bettered by the strategy 

which plays the arm with larger DAI first until its DAI is less 

than its intial value, then the other arm once, and the DAI strate£r/ 

thereafter. 

From not more than N
0 

applications of this obse~tion 

linked one after a!l.other in the obvious :fashion we deduce tha·t 

E{reward of :the DAI strategy) > E(rel'tard of any other strategy) - e. 

The DAI strategy is optimal because e is arbitrary. I·~ is 

tUliquely optimal because the inequalities which hold in tho 

above arguement are al'\':ays strict. 

Note that the proof is easily generalized to the case of 

finitely many arms (the Multi-Armed Bandit Problem). 
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