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1 Introduction

In recent years, overlay networks have proven an effective
way of disseminating a file from a single source to a group of
end users via the Internet. A number of algorithms and pro-
tocols have been suggested, implemented and studied. In par-
ticular, much attention has been given to peer-to-peer (P2P)
systems such as BitTorrent [2], Slurpie [10], SplitStream [1]
and Bullet [5]. The key idea is that the file is divided into M
parts of equal size and that a given user may download any
one of these either from the server or from a peer who has
previously downloaded it. More recently, a scheme based on
network coding [3] has been suggested. Here, users down-
load linear combinations of file parts rather than individual
file parts.

Performance evaluation of such systems has typically been
limited to comparing one system relative to another. Our re-
sults give the minimal time required to fully disseminate a file
of M parts from a server to N end users. In the scheduling
literature this completion time is referred to as makespan. We
thus provide a lower bound which can be used as a perfor-
mance benchmark for any P2P file dissemination system.

In [7] we analyzed a model of P2P file dissemination and
found the minimal makespan when users have equal upload
capacities. Now in this paper, we suppose user’s upload ca-
pacities may differ. Other related work can be found in [6],
[9] and [11].

2 The Uplink-Sharing Model

The uplink-sharing model of [7] is an abstract model focus-
ing on the important features of P2P file dissemination. Each
user can connect to every other user, i.e. the network topol-
ogy is a complete graph. The server S has upload capacity
Cs and the N users have upload capacities C, . . . , Cy, mea-
sured in megabytes per second (MBps). We suppose that, in
principle, any number of users can simultaneously connect to
the server or another peer, the available upload capacity be-
ing shared equally amongst the open connections. However,
Lemma 2.1 below, taken from [7], shows that it suffices to re-
strict the server and all peers to carry out only a single upload
at a time. We permit a user to download more than one file
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part simultaneously, but these must be from different sources.
We ignore more complicated interactions and suppose that the
upload capacities impose the only constraints on the rates at
which file parts can be transfered between peers, which is a
reasonable assumption if the underlying network is not over-
loaded. We also suppose that uploads and downloads do not
constrain one another. We have shown in [7] that if the up-
load capacities are equal then additional download capacity
constraints do not increase the minimum possible makespan,
as long as these download capacities are at least as big. This is
usually the case in practice. Lemma 2.1 and Lemma 2.2 from
[7] dramatically simplify finding the minimal makespan. We
also use them in this paper.

Lemma 2.1 In the uplink-sharing model the minimal make-
span is not increased by restricting the server and all peers to
carry out only a single upload at a time.

Lemma 2.2 In the uplink-sharing model the minimal make-
span is not increased by restricting uploads to start only at
times that other uploads finish.

3 Results

Essentially, we have an unusual precedence-constrained
scheduling problem. It can be formulated as a so-called mixed
integer linear program (MILP), by the following lemma,
which says that time can be discretized suitably.

Lemma 3.1 Suppose that all upload capacities are integer
multiples of a common time unit. Then there exists a time T
and an optimal schedule such that all uploads start and finish
at integer multiples of .

The MILP is based on connection, exclusivity, continuity,
stopping, source availability and link constraints. Some of
these need to be linearized by means of introducing auxiliary
variables and linearization constraints.

Theorem 3.2 The general problem can be solved via a MILP
formulation.

MILPs are well understood theoretically and there exist ef-
ficient computational methods and program codes. As the
numbers of variables and constraints grows exponentially in
N and M, this approach is not practical when these are large,
but we can also use our MILP formulation to obtain a bounded
approximation to the solution.

We provide further insight into the solution by investigating a
number of special cases.



For very large M, the problem can be approximated by a fluid
limit problem, in which the file is infinitely divisible. We ob-
tain two surprisingly simple results.

Theorem 3.3 The minimal makespan is

T* = ma ! N
=max{ —, ————— ¢ -
Cs’ Cs+ > Cj
and this can be achieved with a two-hop strategy, i.e. , one in

which user i’s file is uploaded to user j, either directly from
user i, or via at most one intermediate user.

In a still more general scenario each user 7 may have a file
of size F; > 0 to disseminate to all other users. As there is
no longer a special distinguished server, we change notation
so that there are N > 2 users in all. With F' = Ei F; and
C =Y, C;, we find the following.

Theorem 3.4 The minimal makespan is

T* = max AR Ey ——(N-I)F}
B Ci’Cy’ " 'Cn’ O

and this can still be achieved with a two-hop strategy.

The proof is straight forward for N = 2, since the minimal
makespan is then max{F1/C1, F2/C>} and this is exactly the
value of T* in Theorem 3.4. Now suppose N > 3. Itis easy
to see that each of the N + 1 terms within the braces on the
right hand side is a lower bound on the makespan, because
each user has to upload each part of his file to at least one
other user, which takes time F;/C;. Also observe that the
total volume of files to be uploaded is (/N — 1) F' and the total
available capacity is C. Thus the makespan can be no less
than (N — 1)F/C. It remains to show that a makespan of
T* can be achieved. In the proof of Theorem 3.4 we give a
strategy with that property.

We conclude by discussing whether T is a good estimate for
the minimal makespan if files are not infinitely divisible, but
may only be divided into M parts. Often, M >> log(N) in
practice (cf. [8]) and it turns out that this is sufficient for T to
be a good approximation. Thus, we have provided an MILP
formulation that is suitable for small values of M as well as
a fluid limit solution that is suitable for typical and for large
values of M.

4 Further Work

It would now be interesting to compare the makespan that can
be achieved with various overlay networks directly to the min-
imal makespan. A mathematical analysis of the protocols is
rarely tractable. However simulation or measurements can be
used, for example, measurements for the BitTorrent protocol
are reported in [4] and [8].

In practice, splitting the file and passing on extra information
has an overhead cost. This is small (less than 0.1% according
to [2]). Still, if there is one it will not be optimal to increase
M beyond a certain value. This could be investigated.

In Internet applications users often connect for relatively short
times. One could consider a dynamic setting in which peers
arrive, and then leave when they have downloaded the file.
Work in this direction, using a fluid model to study the steady-
state performance, is pursued in [9] and there is other relevant
work in [6] and [11]. Also of interest would be some consid-
eration of free-riders. For example, BitTorrent implements a
choking algorithm to limit free-riding.
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