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Abstract

This paper reports experiments with a new and surprisingly robust on-line heuristic
for one-dimensional bin packing. This new Sum of Squares algorithm (S.S) is restricted
to the class of “discrete” distributions, i.e., ones in which the bin capacity and all item
sizes are rational, as is common in practice. One begins by scaling up the item sizes (and
the original unit bin capacity) so as to obtain an equivalent “integral” distribution. One
then repeatedly applies the following packing rule: Suppose B is the bin capacity and
n(g) is the number of bins in the current packing whose contents total B—g, 1 < ¢ < B,
i.e., which have a “gap” of size g. Place the next item so as to minimize Zl§i<B n(g)?.

For all the discrete distributions we have tested, SS appears to produce sublinear
expected waste whenever the optimal expected waste is sublinear, something that previ-
ously known simple algorithms such as Best Fit are unable to do. More precisely, 1t is
known from [CCG91, CCGI8] that the optimal expected waste for any such distribution
is either ©(n), ©(y/n), or O(1), and SS appears to distinguish appropriately between
these three cases, although the expected waste for the algorithm may grow as ©(logn)
in the third case. The algorithm appears to accomplish this feat by a self-organizing
process that eventually favors only those bins that are intermediate steps on the way to
the production of perfectly packed bins.

The above claims are supported by extensive experimentation, as well as a newly-
discovered approach that enables us to determine the expected behavior of optimal pack-
ings for any given discrete distribution. This task was previously observed to be NP-hard
in [CCGI1, CCGI8], but we show how it can be accomplished in time polynomial in
the bin capacity B by solving a sequence of linear programs and applying results of
[CW90, CCGI1, CCGI8]. This is technically pseudo-polynomial time, but is quite feasi-
ble for bin capacities of 200 or more.

Although SS appears to be essentially optimal when the expected optimal waste is
sublinear, it is less impressive when the expected optimal waste is linear. Whereas the
expected ratio of the number of bins used by SS to the optimal number appears to go
to 1 asymptotically in the first case, we have observed it go as high as 1.5 in the second.
Adding special “thresholding” rules to the algorithm can reduce this, but, even better, it
appears that a slight tailoring of S'S' to the distribution in question, based on the variable
values in the above LP’s; may well suffice to make the ratio go to 1 in all cases.
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1 Introduction

In the classical one-dimensional bin packing problem, one is given a list L = {ay,...,a,} of
items, with a size s(a;) € [0, 1] for each item in the list. One desires to find a packing of
the items into a minimum number of unit-capacity bins, i.e, a partition of the items into a
minimum number of subsets such that the sum of the sizes of the items in each subset is
one or less. This problem is NP-hard, so much research has concentrated on designing and
analyzing polynomial-time approximation algorithms for it, i.e., algorithms that construct
packings that use relatively few bins, although not necessarily the smallest possible number.
Of special interest have been on-line algorithms, i.e., ones that must permanently assign each
item in turn to a bin without knowing anything about the sizes or numbers of additional
items, a requirement in many applications.

In this paper we concentrate on the average-case behavior of such algorithms. The key
metrics with which we are concerned can be defined using the following notation. For a
given algorithm A and list L, let A(L) be the number of bins used when A packs L, let
s(L) = > ,er s(a), and let OPT(L) > s(L) be the optimal number of bins. For a given
probability distribution I on item sizes, let L, (F) be a random n-item list with item sizes
chosen independently according to distribution F. Then the asymptotic expected performance

e =g (< [ ohs )

ratio for A on F is

and the expected waste rate for A on D is
EWR(F) = E[A(Ln(F)) = s(Ln(F))]

Note that because of the low variance of s(L, (£)) for any fixed I, EW}(F) = o(n) implies
ERY(F) =1 (although not necessarily vice versa). When the context is clear, we will often
omit the “(F)” in the above notation.

To date, the most broadly effective practical on-line bin packing algorithm has been Best
Fit (BF), in which each item is placed in the fullest bin that currently has room for it. Best
Fit has been studied under a significant range of distributions. The classical results concern
the continuous uniform distributions U[0, b], where item sizes are uniformly distributed over
the real interval [0,6]. For b = 1 we have EW?% = ©(n'/?(logn)>/*) [Sho86, 1.S89], and for
b < 1 experiments reported in [BJLM83, CCG91] suggest that /R > 1, with a maximum
value of approximately 1.014, attained for b ~ 0.79.

More recently, the behavior of BF has been studied in [CCG91, CJSW93, KRS98] for
the discrete uniform distributions U{j, k}, 1 < j < k, in which the allowed item sizes are
1/k,2/k, ..., j/k,all equally likely. For k > 3 and j = k—1, BF’s behavior for U{j, k} approxi-
mately mimics that for U[0, 1], and we have EW?% = O(n'/?(log k)*/*) [CJSW]. Moreover, for
Jj=k—2orj <+2k+225-1.5, much better performance occurs and we have KW} = O(1)
[CCGI1, KRS98]. However, there appears to exist a constant ¢ such that for & sufficiently
large and evk < j <k —3 ER7 > 1, with the behavior for U{j, k} roughly mimicking that
for U[0, j/k].

If running time is no object, algorithms with significantly better expected behavior are
possible. Rhee and Talagrand [RT93a] have shown that for any fixed distribution F, there
is an algorithm Xp such that FRY (F) = 1 and such that if EW5pr(F) = o(n), then
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EWy (F) = O(n'/?(log n)/*). Moreover, if one is willing to repeatedly solve instances of a
strongly NP-hard partitioning problem as part of the algorithm, this level of asymptotic per-
formance can be attained without knowing the distribution Fin advance, simply by obtaining
better and better estimates of it as one goes along, i.e., by learning F’ on-line [RT93b].

If one restricts attention to discrete distributions, i.e., ones in which the item sizes are
all members of a fixed finite set of rational numbers, even better performance is possible for
those distributions F' with EW§gpy = o(n). For discrete distributions F’, the only possible
values of EWSpr(F) are O(n), /n, and O(1), as shown in [CCGI1, CCGI8], and for any
fixed discrete distribution F there is a linear time on-line algorithm Yz that has EWy (F) =
O(EW5pp(F)). As was the case with the algorithms X, the performance of the algorithms
Yr can also be obtained by a single distribution-free algorithm that learns the distribution
as it goes along and repeatedly solves NP-hard problems.

Neither of these generic approaches seems practical, and even the distribution-specific
algorithms Xy and Yy are far too complicated to consider using, requiring the construction
of detailed multi-bin packing models that contain slots into which the incoming items must
be matched. In this paper we shall present a new and quite simple algorithm Sum of Squares
(55) that we conjecture approximately attains the same level of performance as the Yz for any
discrete distribution F', without knowing or attempting to learn F'. (We say “approximately”
because in some cases where EWgpr = O(1), the new algorithm can be shown to yield
EWgg = Qlogn).) Moreover, although S5 like the Yp’s can have RZG(F) > 1 when
EW5pp = O(n), there is a simple-to-construct variant S S for each such distribution /' that
we conjecture does yield Ry (F) = 1.

For simplicity in what follows, we shall assume that all discrete distributions have been
scaled up by an appropriate multiplier B to obtain an equivalent distribution where item
sizes are all integers (and for which the bin capacity is B). For example, the scaled U{j, k}
distributions have item sizes 1,2, ...,5 and bin capacity k. In Section 2, we describe S5 and
its motivation, and present experimental results comparing it and BF for the distributions
U{j,k}, 1 < j < k = 100. It was these results that first suggested to us SS’s surprising
effectiveness, and led us to an intuitive explanation of its behavior that views the action of
the algorithm as a self-organizing process.

For the U{j, k} distributions, the needed comparison values of ERZpy and EWSpy are
already known from theoretical results in [CCG91, CCGI8]. For more general classes of
discrete distributions, determining these values can be NP-hard. However, as we show in
Section 3, the determination can be made by solving a small number of linear programs with
O(B?) variables and O(B) constraints, a process that is feasible for B as large as 200 or more.
We use this LP-based approach in Section 4, where we study a generalization of the U{j, k}
to what we call the interval distributions U{h:j,k}, 1 < h < j < k, in which the item sizes,
all equally likely, are the integers s, h < s < j, and the bin capacity is k. We first determine
the values of ERFpy and EWjpy for all such distributions with £ = 19 or £ = 100. Then,
based on simulations with 10°, 10 and 107 items, we estimate the corresponding values for
SS. For k = 19 we do this for all relevant values of h and j; for £ = 100 we do this for a
challenging subset of the relevant values. In all cases tested our data is consistent with the
hypothesis that EW s = O(max{logn, EWjpr}), as claimed. The need for the logn option
is illustrated by tests of the interval distribution U{2:3,9}, and we describe the conditions
under which EWZg can be proved to grow at least at this rate even though EWjpr = O(1).
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Finally, in Section 5, we report on various modification of §5 aimed at reducing the value
of FRZs when EWj5pr = ©(n). Although some success can be obtained using generic “bin
closing” rules, the most impressive results come when we let ourselves use a small amount of
information about the distribution F. In particular, we show how we can use the results of
the LP computation we performed to determine the value of EWjp(F) to devise a simple
variant SSp that appears to have ERFy = 1. This approach can in turn be incorporated
into a single “learning” algorithm 55™ that we conjecture yields FRZTs« = 1 for all discrete
distributions F in time polynomial in n and B.

2 The Sum of Squares Algorithm and U{j, k}

The sum of squares algorithm works as follows. Assume that our instance has been scaled
so that it consists of integer-size items with an integral bin capacity B. Define n(g) to be
the number of bins in the current packing whose contents total B — g, 1 < g < B. Initially
n(g) = 0,1 < g < B. To pack the next item a;, we place it in a bin (either a currently empty
one or a partially full bin with total contents no more than B — s(a;)) that will yield the
minimum updated value of <, n(g)?. If there is a tie, we break it in favor of a candidate
bin with the largest current total contents.

In proposing this algorithm, our original thought was that it might be good for uniform
distributions, since it would tend to maintain an inventory of bins with gaps of all sizes,
thus making it likely that a new item would find a bin that it could completely fill. We first
tested it on U{j, k} distributions, which had been well-studied in the case of Best Fit, and for
which the values of EWjpp were known from [CCG91, CCG98]. For instance, when k& = 100,
the value we chose for our main tests, EW5pr = O(1) for 1 < j < 98 and EWjpp = /1
for j = 99. For each distribution and each n € {10°,10°% 107} we computed the average of
SS(L)— s(L) and BF(L) — s(L) over a set of random n-item instances to obtain estimates
of EWgg and EWgp. Instances were generated using the “shift register” random number
generator described in [Knu81, pages 171-172]. Previous experiments have shown that for
bin packing simulations, this choice is unlikely to introduce significant biases.

The results surprised us: EWgg appeared to be O(1) for 1 < j < 98, the same range
for which EWjpp = O(1), and the results for j = 99 were consistent with EWZs = O(y/n),
again the same value as for KWjpp. Table 1 shows our results for j € {24,25,60,97,98,99}.
The first two values of j were chosen as these represent the critical region for Best Fit, where
EWEr makes a transition from O(1) to ©(n). The results for j = 60 are typical (except in
precise values) of the broad range of j between 25 and 96. The results for 97,98, 99 display a
critical region for both algorithms, as EWZ4 goes from O(1) to ©(y/n) and EW g goes from
O(n) to O(1) to O(y/n). Our experiments for these last three values of j were extended to
include instances with n = 10?, as the rate of convergence is much slower when j is close to
k. Indeed, the variance is still sufficiently large for j = 98 that we would need substantially
more samples if we wanted to get good estimates of the constant to which the expected waste
rates are converging.

As suggested by the results in the table, for fixed n the average waste for S5 increases
monotonically and fairly smoothly with j, but follows a much more adventuresome path for
BF'. More details on the behavior of BF' are reported in [CCG91]. For now it is interesting
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Alg | n | Samples | j =24 25 60 97 98 99

SS | 10° 100 223 223 884 23,350 | 28,510 34,286
108 32 233 249 894 48,896 | 70,453 105,277
107 10 212 217 797 64,997 | 150,291 343,958
108 3 267 213 779 82,378 | 321,068 | 1,232,118
10° 3 68,719 | 187,061 | 3,512,397

BF | 10° 100 78 167 16,088 22,669 | 24,736 25,532
106 32 76 831 154,460 59,015 | 77,831 88,258
107 10 102 | 7,737 | 1,536,747 213,447 | 185,870 277,278
108 3 67 | 75,546 | 15,340,879 | 1,800,011 | 254,235 | 1,081,251
10° 3 17,607,786 | 187,061 | 2,757,530

Table 1: Measured waste rates for S.S and BF under distributions U{j, 100}.

to note on behalf of Best Fit that although the average waste for BF is enormously larger
that that for S5 when 25 < j < 97 and EWg, = O(n), the situation is different when EFWE
is sublinear, as it is for 1 < j < 24 and for j € {98,99}. In these cases its value for fixed n is
typically significantly lower than that for FW gy, even though the latter has the same growth
rate to within a constant factor.

So why does S'S do so well in those cases where BF doesn’t? Clearly our original idea that
it was simply making sure bins were available into which new items would fit exactly does
not suffice. For instance, for U{25,100}, there are no items available that will fit exactly
into gaps of size exceeding 25, even though the algorithm will tend to produce bins with
those gaps if none exist. What we now believe is going on is the following. Because of
the sum of squares criterion, the creation of bins with a given gap will be inhibited unless
there is some way for bins with that gap size to continually disappear. One way for a bin
to disappear is for it to have its gap exactly filled; it then no longer contributes to any of
the n(g)’s. Another way for a bin to disappear, however, is for it to have its gap reduced to
one that already disappears for another reason, for instance if the next two items it receives
will result in exactly filling its gap, or the next three, etc. Thus the algorithm will be driven
to favor the creation of precisely those gaps that can (eventually) lead to perfectly packed
bins, and the sum of squares criterion is possibly providing a subtle feedback mechanism to
maintain the production of the various gaps at the appropriate rates. In other words, it can
be thought of as organizing itself for a maximum rate of production of perfectly packed bins.
And apparently as long as there exists a scheme that can be expected to pack all but o(n) of
its bins perfectly, the algorithm will find it.

3 How to Determine EW/

In order to test the conjectures made in the previous section, we need a way of determining
whether a given discrete distribution F' has sublinear EWjpp(F). It turns out that this
can be formulated as a surprisingly simple linear program based on a network flow model.
Suppose our discrete distribution, scaled up to integers, consists of item sizes s;, 1 < ¢ < J,
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with the probably of s; occurring being p;, and let B be the bin size. Our program will have
J(B + 1) variables v(i,g), 1 < i < .J and 0 < g < B, where v(i, g) represents the rate at
which items of size s; go into bins with gap g. The constraints are:

U(7’7g) = 07 S; > g
B
Y vli,g) = pi 1<i<J
g=1
J
dowlig) < YL > w(ih), 1<g<B-1
=1 1=1 h=g—s;

The first set of constraints say that no item can go into a gap that is smaller than it. The
second set says that all items must be packed. The third says that bins with a given gap are
created at least as fast as they disappear. The goal is to minimize

BZ_I (g (ZJ: > v(ivh)—zv(iyg)))

g=1 1=1 h=g—s; 1=1

Let ¢(F) be the optimal solution value for the above LP, and let s(F) = Y7_, s;p: be the
average item size under F'. Then it can be shown based on results in [CCG91, CW90] that
EWgpr = ne(F)/s(F) and if ¢(F) = 0, then EWjpy is either ©(y/n) or O(1). In the latter
case, the determination of which growth rate applies can be made by solving .J additional
LP’s, one for each item size: In the LP for item size s;, we add an additional variable z > 0,
replace the constraint Zle v(i,g) = p; by Zle v(i,g9) = p; + z, add a constraint setting
the original objective function to 0, and attempt to maximize z. If the optimal value for z
is 0 in any of these LP’s, then EWjpp = ©(y/n), otherwise it is O(1), again by results in
[CCGI1, CWIO].

Using the software packages AMPL and CPLEX, we have created an easy-to-use system for
generating, solving, and analyzing the solutions of these LP’s, given B and a listing of the
s;’s and p;’s, or given the parameters h, j, k of an interval distribution. In the next section
we describe our results for such distributions.

4 Experiments with General Interval Distributions

In order to test our hypotheses about the performance of 5.5, we investigated interval distri-
butions U{h:j, k} for two specific values of k, k = 19 and k = 100.

For k = 19, we considered tested all pairs h < 7 < k with h < 9 using the techniques
of the previous section to determine FRgp; and EWSpy, and then testing S5 and BF on
collections of randomly generated instances for the given distribution with n € {10°,10°,107}.
Pairs h, j with h > 10 were omitted since for these distribution BF, S5, and OPT all simply
place one item per bin and unavoidably have a ©(n) expected waste growth. Results are
summarized in Table 2.

Note that the “expected” waste rates for OPT in the table are theorems, whereas those
for S.S and BF are for the most part conjectures with which the data is consistent. (We do
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Table 2: Orders of magnitude of the measured waste rates under distributions U{h:j, 19}.
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n | 10 10° 106 107 10® 10? 1010

# Samples || 10000 | 3162 1000 316 100 32 10
Average Waste 7.6 8.6 10.1 10.8 12.1 12.6 14.5
95% Conf. Int. || £0.1 +0.1 +0.2 +0.4 +0.8 +1.0 +1.9

Table 3: Measured average waste for S5 under distributions U{2:3;9}.

have proofs for some of the h = 1 entries for BF, in particular those for j € {2,3,4,17, 18}
[CCGI1, KRS98].) Overall the data is consistent with our conjecture that EWZg tracks
EW{ pp when the latter is sublinear. The values of n tested were not sufficiently large for
our measurements to make a convincing case for the logn growth rates reported for S.S in
the table; in many cases one might just as well have conjectured EWZs = O(1). However,
the fact that these rates are Q(logn) is a theorem.

The intuition behind this theorem is the following. For all the corresponding distributions,
there are no items of size 1 but there is at least one item size s that divides k —1 = 18. Thus
a sequence of M items of size s, M very large, is likely to create ©(M) bins with gap 1
which will never be filled. Such sequences are unlikely for large M, but if one considers a
sequence of (j —h + 1)M items, one can expect such a sequence to occur at least once. This
implies that the expected waste must be Q(logn). Typically, the constant of proportionality
may be quite small. We can however see this behavior clearly if we consider U{2:3,9}, a
simple distribution with EWj5pp = O(1). The results for runs of S5 on samples of this
distribution with n ranging from 10 to 10'° are summarized in Table 3, and indeed suggest
that EWZg ~ O(logn).

For the case of the distributions U{h:j, 100}, Figure 1 displays a graphical representation
of the values for EWjpp, where an entry of “—” represents O(1), an entry of “+” represents
©(y/n), and an entry of “” represents ©(n). Note that this picture appears to be a refinement
of the structure apparent in Table 2. Moreover, if one ignores the distinction between —’s and
+’s, it is a fairly accurate discretization of the results for the continuous uniform distributions
Ula,b],0 < a <b<1,depicted in Figure 5.2 of [CL91], which partitions the unit square into
regions depending on whether ERZp(Ula, b]) is equal to or greater than 1.

There are far too many U{h:j, 100} distributions for us to test S.S and BF on them all.
We therefore have settled for testing isolated examples plus what looks like a challenging slice
through Figure 1 — the distributions with h = 18, a particularly interesting value because of
the large number of transitions that W[ pp makes as j goes from A up to & —h. In all cases,
our experimental results were consistent with the conjecture that EWZs = ©(y/n) whenever

EWEpr = 0(v/n), and EWgg = O(logn) whenever EWgpr = O(1).

5 Improving the Performance of SS when EW/pp = O(n)

Although ERYy = 1 whenever EWjpp = o(n), this is not the case when EWjpr = O(n).
For instance, if F' = U{34:34,100}, i.e., all items have size 34 and B = 100, an optimal
packing places two items in each bin for a total of [n/2] bins, whereas S5 will create a bin
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Figure 1: EW};pp(U{h:j,100}): “=” means O(1), “+” means ©(y/n), and “-” means O(n).

with a single item in it for every two bins that contain two, yielding FRTg = 1.2.
For any bin packing algorithm A, let us define

max KR} =sup{FRY(F) : I' is a discrete distribution }

Then we have max FRZg > 1.2. In fact, SS can be significantly worse; the performance of
5SS on the sequence of distributions U{2:2,2m + 1}, m — oo, implies max FRTy > 1.5. It is
thus natural to search for variants on S5 that retain its good behavior when EW§pr = o(n),
while yielding smaller values of max FR%. One idea is to add an additional “bin closing”
rule to S.5. By closing a bin we mean declaring it off limits for further items and removing it
from the n(g) counts. In SS, the closing rule is simply to close a bin with gap 0, i.e., one that
is completely full, as soon as it is created. When EWJpr = ©(n), even the optimal packing
ends up with ©(n) incompletely-packed bins, so it might make sense for our algorithm to
close some such incompletely-packed bins as well.

We have investigated several closing rules. One fairly effective one is the following two
part rule (neither part of which is as good on its own): After one places an item in a bin,
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close that bin if both (1) the current gap is smaller than the current average gap (over all
non-empty bins, open or closed) and (2) the current bin does not have room for a second
copy of the item just added to it. Let S5’ denote the algorithm that modifies S.S by adding
this closing rule. This algorithm does substantially better on the distributions that thwarted
5SS, and the worst distributions we know for it only imply max FRgg, > 1.1. Still one would
like to do better.

Based on preliminary experiments, it appears that one can indeed do much better, as-
suming one knows the distribution in advance. It appears that for each discrete distribution
F' there is a variant SSp such that FRSy (F) = O(1). The modifications to S\ involve only
the use of a specialized and still fairly simple closing rule.

Suppose we solve the linear program for I presented in Section 3, and let v*(¢, g) be the
value of the variable v(7, g) in the optimal solution, 1 <7 < jand 0 < g < B. For 0 < g < B,

define
J J

ry = Z Z v*(i,h) — Zv*(i,g)
i=1 h=g—s; i=1
Note that the r, are non-negative due to the constraints of the LP, and they can be interpreted
as the rate at which bins with final gap g are produced in an optimal packing. Our closing
rule is the following: When a bin with gap g is created, check to see if the current number of
closed bins with gap g is less than nr,, where n is the number of items in the current packing.
If so, close the bin.

Note that when the solution value for the LP is 0 (and hence EWjpp = o(n)), the only ry
that is positive is rg, so this rule in a sense generalizes the standard closing rule for S.S. The
generalization is not exact, however, since when EWSpp(F) = o(n), SSF can occasionally
fail to close a bin with gap 0. We should also point out that there are distributions F such
that S5 leaves a significant proportion of the bins with gap 0 open. As an example, consider
the distribution with item sizes 25 and 37, where the former appears with probability 1/3
and the latter with probability 2/3. Here an optimal packing will consist almost entirely of
bins with two 37’s and one 25, and although a bin with gap 0 can be created by putting four
25’s together, this will definitely be counterproductive. To inhibit the production of such
bins, we must never close them.

Finally, we observe that, assuming that the algorithms SSr work as well as we claim,
there is a pseudopolynomial time distribution-free algorithm SS* with ERSs.F = 1 for all
discrete distributions F'. The algorithm works by obtaining better and better estimates of F,
based on the items seen so far, and repeatedly re-solving the corresponding LP’s to obtain
better estimates for the r,’s.

6 Directions of Ongoing Research

At present we are investigating possible ways of obtaining the same behavior claimed for 55*
without actually solving the LP’s, as well as investigating some promising approaches toward
actually proving the conjectures made in the paper, at least for important special cases. We
also are analyzing the worst-case behavior of S5 and attempting to obtain tighter bounds
on max FRY for A= 55,55, and other promising variants. Finally, we note that the Sum
of Squares approach should be equally effective for the bin covering problem, in which one
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attempts to maximize the number of bins containing items of total size at least B, and we

are pursuing this topic, as well as the question of what happens when we are required by our

application to keep only a bounded number of bins open.
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