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A Self Organizing Bin Packing Heuristic 21 IntroductionIn the classical one-dimensional bin packing problem, one is given a list L = fa1; :::; ang ofitems, with a size s(ai) 2 [0; 1] for each item in the list. One desires to �nd a packing ofthe items into a minimum number of unit-capacity bins, i.e, a partition of the items into aminimum number of subsets such that the sum of the sizes of the items in each subset isone or less. This problem is NP-hard, so much research has concentrated on designing andanalyzing polynomial-time approximation algorithms for it, i.e., algorithms that constructpackings that use relatively few bins, although not necessarily the smallest possible number.Of special interest have been on-line algorithms, i.e., ones that must permanently assign eachitem in turn to a bin without knowing anything about the sizes or numbers of additionalitems, a requirement in many applications.In this paper we concentrate on the average-case behavior of such algorithms. The keymetrics with which we are concerned can be de�ned using the following notation. For agiven algorithm A and list L, let A(L) be the number of bins used when A packs L, lets(L) = Pa2L s(a), and let OPT (L) � s(L) be the optimal number of bins. For a givenprobability distribution F on item sizes, let Ln(F ) be a random n-item list with item sizeschosen independently according to distribution F . Then the asymptotic expected performanceratio for A on F is ER1A (F ) � lim supn!1 �E � A(Ln(F ))OPT (Ln(F ))��and the expected waste rate for A on D isEWnA(F ) � E [A(Ln(F ))� s(Ln(F ))]Note that because of the low variance of s(Ln(F )) for any �xed F , EWnA(F ) = o(n) impliesER1A (F ) = 1 (although not necessarily vice versa). When the context is clear, we will oftenomit the \(F )" in the above notation.To date, the most broadly e�ective practical on-line bin packing algorithm has been BestFit (BF ), in which each item is placed in the fullest bin that currently has room for it. BestFit has been studied under a signi�cant range of distributions. The classical results concernthe continuous uniform distributions U [0; b], where item sizes are uniformly distributed overthe real interval [0; b]. For b = 1 we have EWnA = �(n1=2(logn)3=4) [Sho86, LS89], and forb < 1 experiments reported in [BJLM83, CCG91] suggest that ERnA > 1, with a maximumvalue of approximately 1.014, attained for b � 0:79.More recently, the behavior of BF has been studied in [CCG91, CJSW93, KRS98] forthe discrete uniform distributions Ufj; kg, 1 � j < k, in which the allowed item sizes are1=k; 2=k; :::; j=k, all equally likely. For k � 3 and j = k�1,BF 's behavior for Ufj; kg approxi-mately mimics that for U [0; 1], and we have EWnA = �(n1=2(log k)3=4) [CJSW]. Moreover, forj = k�2 or j < p2k + 2:25�1:5, much better performance occurs and we have EWnA = O(1)[CCG91, KRS98]. However, there appears to exist a constant c such that for k su�cientlylarge and cpk < j � k � 3 ERnA > 1, with the behavior for Ufj; kg roughly mimicking thatfor U [0; j=k].If running time is no object, algorithms with signi�cantly better expected behavior arepossible. Rhee and Talagrand [RT93a] have shown that for any �xed distribution F , thereis an algorithm XF such that ER1XF (F ) = 1 and such that if EWnOPT(F ) = o(n), then



A Self Organizing Bin Packing Heuristic 3EWnXF (F ) = O(n1=2(logn)3=4). Moreover, if one is willing to repeatedly solve instances of astrongly NP-hard partitioning problem as part of the algorithm, this level of asymptotic per-formance can be attained without knowing the distribution F in advance, simply by obtainingbetter and better estimates of it as one goes along, i.e., by learning F on-line [RT93b].If one restricts attention to discrete distributions, i.e., ones in which the item sizes areall members of a �xed �nite set of rational numbers, even better performance is possible forthose distributions F with EWnOPT = o(n). For discrete distributions F , the only possiblevalues of EWnOPT(F ) are �(n), pn, and O(1), as shown in [CCG91, CCG98], and for any�xed discrete distribution F there is a linear time on-line algorithm YF that has EWnYF (F ) =O(EWnOPT(F )). As was the case with the algorithms XF , the performance of the algorithmsYF can also be obtained by a single distribution-free algorithm that learns the distributionas it goes along and repeatedly solves NP-hard problems.Neither of these generic approaches seems practical, and even the distribution-speci�calgorithms XF and YF are far too complicated to consider using, requiring the constructionof detailed multi-bin packing models that contain slots into which the incoming items mustbe matched. In this paper we shall present a new and quite simple algorithm Sum of Squares(SS) that we conjecture approximately attains the same level of performance as the YF for anydiscrete distribution F , without knowing or attempting to learn F . (We say \approximately"because in some cases where EWnOPT = O(1), the new algorithm can be shown to yieldEWnSS = 
(logn).) Moreover, although SS like the YF 's can have ER1SS(F ) > 1 whenEWnOPT = �(n), there is a simple-to-construct variant SSF for each such distribution F thatwe conjecture does yield ER1SSF (F ) = 1.For simplicity in what follows, we shall assume that all discrete distributions have beenscaled up by an appropriate multiplier B to obtain an equivalent distribution where itemsizes are all integers (and for which the bin capacity is B). For example, the scaled Ufj; kgdistributions have item sizes 1; 2; :::; j and bin capacity k. In Section 2, we describe SS andits motivation, and present experimental results comparing it and BF for the distributionsUfj; kg, 1 � j < k = 100. It was these results that �rst suggested to us SS's surprisinge�ectiveness, and led us to an intuitive explanation of its behavior that views the action ofthe algorithm as a self-organizing process.For the Ufj; kg distributions, the needed comparison values of ER1OPT and EWnOPT arealready known from theoretical results in [CCG91, CCG98]. For more general classes ofdiscrete distributions, determining these values can be NP-hard. However, as we show inSection 3, the determination can be made by solving a small number of linear programs withO(B2) variables and O(B) constraints, a process that is feasible for B as large as 200 or more.We use this LP-based approach in Section 4, where we study a generalization of the Ufj; kgto what we call the interval distributions Ufh:j; kg, 1 � h � j < k, in which the item sizes,all equally likely, are the integers s, h � s � j, and the bin capacity is k. We �rst determinethe values of ER1OPT and EWnOPT for all such distributions with k = 19 or k = 100. Then,based on simulations with 105, 106 and 107 items, we estimate the corresponding values forSS. For k = 19 we do this for all relevant values of h and j; for k = 100 we do this for achallenging subset of the relevant values. In all cases tested our data is consistent with thehypothesis that EWnSS = O(maxflogn;EWnOPTg), as claimed. The need for the logn optionis illustrated by tests of the interval distribution Uf2:3; 9g, and we describe the conditionsunder which EWnSS can be proved to grow at least at this rate even though EWnOPT = O(1).



A Self Organizing Bin Packing Heuristic 4Finally, in Section 5, we report on various modi�cation of SS aimed at reducing the valueof ER1SS when EWnOPT = �(n). Although some success can be obtained using generic \binclosing" rules, the most impressive results come when we let ourselves use a small amount ofinformation about the distribution F . In particular, we show how we can use the results ofthe LP computation we performed to determine the value of EWnOPT (F ) to devise a simplevariant SSF that appears to have ER1SSF = 1. This approach can in turn be incorporatedinto a single \learning" algorithm SS� that we conjecture yields ER1SS� = 1 for all discretedistributions F in time polynomial in n and B.2 The Sum of Squares Algorithm and Ufj; kgThe sum of squares algorithm works as follows. Assume that our instance has been scaledso that it consists of integer-size items with an integral bin capacity B. De�ne n(g) to bethe number of bins in the current packing whose contents total B � g, 1 � g < B. Initiallyn(g) = 0, 1 � g < B. To pack the next item ai, we place it in a bin (either a currently emptyone or a partially full bin with total contents no more than B � s(ai)) that will yield theminimum updated value ofP1�g<B n(g)2. If there is a tie, we break it in favor of a candidatebin with the largest current total contents.In proposing this algorithm, our original thought was that it might be good for uniformdistributions, since it would tend to maintain an inventory of bins with gaps of all sizes,thus making it likely that a new item would �nd a bin that it could completely �ll. We �rsttested it on Ufj; kg distributions, which had been well-studied in the case of Best Fit, and forwhich the values of EWnOPT were known from [CCG91, CCG98]. For instance, when k = 100,the value we chose for our main tests, EWnOPT = O(1) for 1 � j � 98 and EWnOPT = pnfor j = 99. For each distribution and each n 2 f105; 106; 107g we computed the average ofSS(L)� s(L) and BF (L) � s(L) over a set of random n-item instances to obtain estimatesof EWnSS and EWnBF . Instances were generated using the \shift register" random numbergenerator described in [Knu81, pages 171{172]. Previous experiments have shown that forbin packing simulations, this choice is unlikely to introduce signi�cant biases.The results surprised us: EWnSS appeared to be O(1) for 1 � j � 98, the same rangefor which EWnOPT = O(1), and the results for j = 99 were consistent with EWnSS = O(pn),again the same value as for EWnOPT . Table 1 shows our results for j 2 f24; 25; 60; 97; 98; 99g.The �rst two values of j were chosen as these represent the critical region for Best Fit, whereEWnBF makes a transition from O(1) to �(n). The results for j = 60 are typical (except inprecise values) of the broad range of j between 25 and 96. The results for 97; 98; 99 display acritical region for both algorithms, as EWnSS goes from O(1) to �(pn) and EWnBF goes from�(n) to O(1) to �(pn). Our experiments for these last three values of j were extended toinclude instances with n = 109, as the rate of convergence is much slower when j is close tok. Indeed, the variance is still su�ciently large for j = 98 that we would need substantiallymore samples if we wanted to get good estimates of the constant to which the expected wasterates are converging.As suggested by the results in the table, for �xed n the average waste for SS increasesmonotonically and fairly smoothly with j, but follows a much more adventuresome path forBF . More details on the behavior of BF are reported in [CCG91]. For now it is interesting



A Self Organizing Bin Packing Heuristic 5Alg n Samples j = 24 25 60 97 98 99SS 105 100 223 223 884 23,350 28,510 34,286106 32 233 249 894 48,896 70,453 105,277107 10 212 217 797 64,997 150,291 343,958108 3 267 213 779 82,378 321,068 1,232,118109 3 68,719 187,061 3,512,397BF 105 100 78 167 16,088 22,669 24,736 25,532106 32 76 831 154,460 59,015 77,831 88,258107 10 102 7,737 1,536,747 213,447 185,870 277,278108 3 67 75,546 15,340,879 1,800,011 254,235 1,081,251109 3 17,607,786 187,061 2,757,530Table 1: Measured waste rates for SS and BF under distributions Ufj; 100g.to note on behalf of Best Fit that although the average waste for BF is enormously largerthat that for SS when 25 � j � 97 and EWnBF = �(n), the situation is di�erent when EWnBFis sublinear, as it is for 1 � j � 24 and for j 2 f98; 99g. In these cases its value for �xed n istypically signi�cantly lower than that for EWnSS , even though the latter has the same growthrate to within a constant factor.So why does SS do so well in those cases where BF doesn't? Clearly our original idea thatit was simply making sure bins were available into which new items would �t exactly doesnot su�ce. For instance, for Uf25; 100g, there are no items available that will �t exactlyinto gaps of size exceeding 25, even though the algorithm will tend to produce bins withthose gaps if none exist. What we now believe is going on is the following. Because ofthe sum of squares criterion, the creation of bins with a given gap will be inhibited unlessthere is some way for bins with that gap size to continually disappear. One way for a binto disappear is for it to have its gap exactly �lled; it then no longer contributes to any ofthe n(g)'s. Another way for a bin to disappear, however, is for it to have its gap reduced toone that already disappears for another reason, for instance if the next two items it receiveswill result in exactly �lling its gap, or the next three, etc. Thus the algorithm will be drivento favor the creation of precisely those gaps that can (eventually) lead to perfectly packedbins, and the sum of squares criterion is possibly providing a subtle feedback mechanism tomaintain the production of the various gaps at the appropriate rates. In other words, it canbe thought of as organizing itself for a maximum rate of production of perfectly packed bins.And apparently as long as there exists a scheme that can be expected to pack all but o(n) ofits bins perfectly, the algorithm will �nd it.3 How to Determine EW nOPTIn order to test the conjectures made in the previous section, we need a way of determiningwhether a given discrete distribution F has sublinear EWnOPT (F ). It turns out that thiscan be formulated as a surprisingly simple linear program based on a network 
ow model.Suppose our discrete distribution, scaled up to integers, consists of item sizes si, 1 � i � J ,



A Self Organizing Bin Packing Heuristic 6with the probably of si occurring being pi, and let B be the bin size. Our program will haveJ(B + 1) variables v(i; g), 1 � i � J and 0 � g � B, where v(i; g) represents the rate atwhich items of size si go into bins with gap g. The constraints are:v(i; g) = 0, si > gBXg=1 v(i; g) = pi, 1 � i � JJXi=1 v(i; g) � JXi=1 Xh=g�si v(i; h), 1 � g � B � 1The �rst set of constraints say that no item can go into a gap that is smaller than it. Thesecond set says that all items must be packed. The third says that bins with a given gap arecreated at least as fast as they disappear. The goal is to minimizeB�1Xg=1 0@g0@ JXi=1 Xh=g�si v(i; h)� JXi=1 v(i; g)1A1ALet c(F ) be the optimal solution value for the above LP, and let s(F ) =PJi=1 sipi be theaverage item size under F . Then it can be shown based on results in [CCG91, CW90] thatEWnOPT = nc(F )=s(F ) and if c(F ) = 0, then EWnOPT is either �(pn) or O(1). In the lattercase, the determination of which growth rate applies can be made by solving J additionalLP's, one for each item size: In the LP for item size si, we add an additional variable x � 0,replace the constraint PBg=1 v(i; g) = pi by PBg=1 v(i; g) = pi + x, add a constraint settingthe original objective function to 0, and attempt to maximize x. If the optimal value for xis 0 in any of these LP's, then EWnOPT = �(pn), otherwise it is O(1), again by results in[CCG91, CW90].Using the software packages AMPL and CPLEX, we have created an easy-to-use system forgenerating, solving, and analyzing the solutions of these LP's, given B and a listing of thesi's and pi's, or given the parameters h; j; k of an interval distribution. In the next sectionwe describe our results for such distributions.4 Experiments with General Interval DistributionsIn order to test our hypotheses about the performance of SS, we investigated interval distri-butions Ufh:j; kg for two speci�c values of k, k = 19 and k = 100.For k = 19, we considered tested all pairs h � j < k with h � 9 using the techniquesof the previous section to determine ER1OPT and EWnOPT , and then testing SS and BF oncollections of randomly generated instances for the given distribution with n 2 f105; 106; 107g.Pairs h; j with h � 10 were omitted since for these distribution BF , SS, and OPT all simplyplace one item per bin and unavoidably have a �(n) expected waste growth. Results aresummarized in Table 2.Note that the \expected" waste rates for OPT in the table are theorems, whereas thosefor SS and BF are for the most part conjectures with which the data is consistent. (We do



A Self Organizing Bin Packing Heuristic 7j Alg h = 1 2 3 4 5 6 7 8 918 OPT pn n n n n n n n nSS pn n n n n n n n nBF pn n n n n n n n n17 OPT 1 pn n n n n n n nSS 1 pn n n n n n n nBF 1 pn n n n n n n n16 OPT 1 n pn n n n n n nSS 1 n pn n n n n n nBF n n pn n n n n n n15 OPT 1 1 n pn n n n n nSS 1 logn n pn n n n n nBF n n n pn n n n n n14 OPT 1 1 pn n pn n n n nSS 1 logn pn n pn n n n nBF n n n n pn n n n n13 OPT 1 1 1 n n pn n n nSS 1 logn logn n n pn n n nBF n n n n n pn n n n12 OPT 1 1 1 n n n pn n nSS 1 logn logn n n n pn n nBF n n n n n n pn n n11 OPT 1 1 1 1 n n n pn nSS 1 logn logn logn n n n pn nBF n n n n n n n pn n10 OPT 1 1 1 1 n n n n pnSS 1 logn logn logn n n n n pnBF 1 n n n n n n n pn9 OPT 1 1 1 n n n n n nSS 1 logn logn n n n n n nBF 1 n n n n n n n n8 OPT 1 1 1 1 n n n nSS 1 logn logn logn n n n nBF 1 n n n n n n n7 OPT 1 1 1 1 n n nSS 1 logn logn logn n n nBF 1 n n n n n n6 OPT 1 1 1 n n nSS 1 logn logn n n nBF 1 n n n n n5 OPT 1 1 1 n nSS 1 logn logn n nBF 1 n n n n4 OPT 1 1 1 nSS 1 logn logn nBF 1 n n n3 OPT 1 1 nSS 1 logn nBF 1 n n2 OPT 1 nSS 1 nBF 1 nTable 2: Orders of magnitude of the measured waste rates under distributions Ufh:j; 19g.



A Self Organizing Bin Packing Heuristic 8n 104 105 106 107 108 109 1010# Samples 10000 3162 1000 316 100 32 10Average Waste 7.6 8.6 10.1 10.8 12.1 12.6 14.595% Conf. Int. �0:1 �0:1 �0:2 �0:4 �0:8 �1:0 �1:9Table 3: Measured average waste for SS under distributions Uf2:3; 9g.have proofs for some of the h = 1 entries for BF , in particular those for j 2 f2; 3; 4; 17; 18g[CCG91, KRS98].) Overall the data is consistent with our conjecture that EWnSS tracksEWnOPT when the latter is sublinear. The values of n tested were not su�ciently large forour measurements to make a convincing case for the logn growth rates reported for SS inthe table; in many cases one might just as well have conjectured EWnSS = O(1). However,the fact that these rates are 
(logn) is a theorem.The intuition behind this theorem is the following. For all the corresponding distributions,there are no items of size 1 but there is at least one item size s that divides k� 1 = 18. Thusa sequence of M items of size s, M very large, is likely to create �(M) bins with gap 1which will never be �lled. Such sequences are unlikely for large M , but if one considers asequence of (j � h+ 1)M items, one can expect such a sequence to occur at least once. Thisimplies that the expected waste must be 
(logn). Typically, the constant of proportionalitymay be quite small. We can however see this behavior clearly if we consider Uf2:3; 9g, asimple distribution with EWnOPT = O(1). The results for runs of SS on samples of thisdistribution with n ranging from 104 to 1010 are summarized in Table 3, and indeed suggestthat EWnSS � �(log n).For the case of the distributions Ufh:j; 100g, Figure 1 displays a graphical representationof the values for EWnOPT , where an entry of \�" represents O(1), an entry of \+" represents�(pn), and an entry of \�" represents �(n). Note that this picture appears to be a re�nementof the structure apparent in Table 2. Moreover, if one ignores the distinction between �'s and+'s, it is a fairly accurate discretization of the results for the continuous uniform distributionsU [a; b], 0 � a � b � 1, depicted in Figure 5.2 of [CL91], which partitions the unit square intoregions depending on whether ER1OPT(U [a; b]) is equal to or greater than 1.There are far too many Ufh:j; 100g distributions for us to test SS and BF on them all.We therefore have settled for testing isolated examples plus what looks like a challenging slicethrough Figure 1 { the distributions with h = 18, a particularly interesting value because ofthe large number of transitions that EWnOPT makes as j goes from h up to k�h. In all cases,our experimental results were consistent with the conjecture that EWnSS = �(pn) wheneverEWnOPT = �(pn), and EWnSS = O(logn) whenever EWnOPT = O(1).5 Improving the Performance of SS when EW nOPT = �(n)Although ER1SS = 1 whenever EWnOPT = o(n), this is not the case when EWnOPT = �(n).For instance, if F = Uf34:34; 100g, i.e., all items have size 34 and B = 100, an optimalpacking places two items in each bin for a total of dn=2e bins, whereas SS will create a bin
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Figure 1: EWnOPT (Ufh:j; 100g): \�" means O(1), \+" means �(pn), and \�" means �(n).with a single item in it for every two bins that contain two, yielding ER1SS = 1:2.For any bin packing algorithm A, let us de�nemaxER1A � sup fER1A (F ) : F is a discrete distributiongThen we have maxER1SS � 1:2. In fact, SS can be signi�cantly worse; the performance ofSS on the sequence of distributions Uf2:2; 2m+ 1g, m!1, implies maxER1SS � 1:5. It isthus natural to search for variants on SS that retain its good behavior when EWnOPT = o(n),while yielding smaller values of maxER1A . One idea is to add an additional \bin closing"rule to SS. By closing a bin we mean declaring it o� limits for further items and removing itfrom the n(g) counts. In SS, the closing rule is simply to close a bin with gap 0, i.e., one thatis completely full, as soon as it is created. When EWnOPT = �(n), even the optimal packingends up with �(n) incompletely-packed bins, so it might make sense for our algorithm toclose some such incompletely-packed bins as well.We have investigated several closing rules. One fairly e�ective one is the following twopart rule (neither part of which is as good on its own): After one places an item in a bin,



A Self Organizing Bin Packing Heuristic 10close that bin if both (1) the current gap is smaller than the current average gap (over allnon-empty bins, open or closed) and (2) the current bin does not have room for a secondcopy of the item just added to it. Let SS 0 denote the algorithm that modi�es SS by addingthis closing rule. This algorithm does substantially better on the distributions that thwartedSS, and the worst distributions we know for it only imply maxER1SS0 � 1:1. Still one wouldlike to do better.Based on preliminary experiments, it appears that one can indeed do much better, as-suming one knows the distribution in advance. It appears that for each discrete distributionF there is a variant SSF such that ER1SSF (F ) = O(1). The modi�cations to SS involve onlythe use of a specialized and still fairly simple closing rule.Suppose we solve the linear program for F presented in Section 3, and let v�(i; g) be thevalue of the variable v(i; g) in the optimal solution, 1 � i � j and 0 � g � B. For 0 � g < B,de�ne rg � JXi=1 Xh=g�si v�(i; h)� JXi=1 v�(i; g)Note that the rg are non-negative due to the constraints of the LP, and they can be interpretedas the rate at which bins with �nal gap g are produced in an optimal packing. Our closingrule is the following: When a bin with gap g is created, check to see if the current number ofclosed bins with gap g is less than nrg, where n is the number of items in the current packing.If so, close the bin.Note that when the solution value for the LP is 0 (and hence EWnOPT = o(n)), the only rgthat is positive is r0, so this rule in a sense generalizes the standard closing rule for SS. Thegeneralization is not exact, however, since when EWnOPT(F ) = o(n), SSF can occasionallyfail to close a bin with gap 0. We should also point out that there are distributions F suchthat SSF leaves a signi�cant proportion of the bins with gap 0 open. As an example, considerthe distribution with item sizes 25 and 37, where the former appears with probability 1=3and the latter with probability 2=3. Here an optimal packing will consist almost entirely ofbins with two 37's and one 25, and although a bin with gap 0 can be created by putting four25's together, this will de�nitely be counterproductive. To inhibit the production of suchbins, we must never close them.Finally, we observe that, assuming that the algorithms SSF work as well as we claim,there is a pseudopolynomial time distribution-free algorithm SS� with ER1SS�F = 1 for alldiscrete distributions F . The algorithm works by obtaining better and better estimates of F ,based on the items seen so far, and repeatedly re-solving the corresponding LP's to obtainbetter estimates for the rg's.6 Directions of Ongoing ResearchAt present we are investigating possible ways of obtaining the same behavior claimed for SS�without actually solving the LP's, as well as investigating some promising approaches towardactually proving the conjectures made in the paper, at least for important special cases. Wealso are analyzing the worst-case behavior of SS and attempting to obtain tighter boundson maxER1A for A = SS, SS 0, and other promising variants. Finally, we note that the Sumof Squares approach should be equally e�ective for the bin covering problem, in which one
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