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Abstract 

Pet,ri-Nets with fiiiitely iimiiy transitions and places a.re consid- 
ered. A transition process is associated with each transition that 
describes the production and coiisuinptioii of tolteiis wheii the 
transition is fired. Under certain assumptions about the fluctua- 
t,ioii of the above processes and for various models of the under- 
lying Petri-Net, we derive conditions for the existence of firing 
policies under which the number of tokens in tlie net satisfies 
some stability conditions. 

1. Petri-Nets with fluctuating transition 
processes 

Petri-Nets (PN's) have been widely used to modcl systems 
involving coordinatioii aiiioiig various components like multi- 
processor systems and niaiiufacturing facilities. In t,his 1iq)er nv 
consider the usual specification of a PIU, consisting of i i i  t m i i s i -  

t ions and 7 1  places, each with enough space to hold a n  arliit,rarj. 
number of toke im In this paper we speak of running the net in 
a certaiii mode. We suppose that ruiiiiiiig the net for one period 
in mode k is equivalent to performing traaisitioii k once, a.ntl 
changes the inventory level in place i by Sk,; tokens. It is a key 
idea i n  this paper that S k , ;  may be a randoin variable. For exa1Ti- 
ple. when modelling a manufacturing system this corresponds to 
t1iei.e Ixing unpredictable va,riations in tlie processes of demand 
aiitl production. Let x ; ( t )  denote the number of tokens ill place i 
at tiiiic t .  Allowing x,( t  j to assume negative values corrcspontls 
to allowing a backlog of tokens in place i. This models situat.ions 
in wliich borrowing lokeiis of a certain type is possible provided 
there is a c.onipensa,ting production of tokens a t  a later time. I-\ 
negative value of ,Sk,i indica.t,es that traiisition k coiisuines toltens 
from place i and, iu  the case that .ri(t) is negative, it increases 
t l i c  bd i log  of tolteiis in thal pla.ce. 

Iniagiiic that i1.t cacii discrete tiine t ,  ( t  = 0, 1 , .  . . ), onc mode 
of ~i~aii~ii,ioii iniist lie selected and the net run in that inode 
Jor tlic i i c 7 s t  time period. The central notion of the paper is 
f l ia t  iI tlic, cost  ol' cili.t.yiiig iiiventor>~ of tolielis is to lie fi1iit.c 
thei> t l ic t,ot,iil J i ~ i l l l ~ ~ ( ' ~  o l  t o l i (~~ is  p r e s ( ~ t  shoultl not reiiiiiiii large 
for long pcriorls ol (,iiiic. We aliall clisc,uss t.wo criteria t.Iiat 
should IJC sat.islio(l. ' r l ie first, crit,rrion is thc reqiiireiiic.nt, tliat 
P( 1 I:ri(i)I -+ 'xi j = 0. If (.liis c u i  br a.cliievetl 1)y soiiie 01)- 
ei.at,iiig policy. \\T- siLy t l i c  system is ,toecikly - . s tc ib t l i i r rh l t .  Il' 
t lie invcii t,ory proc(*ss c,onvcrgc.s 1.0 st.a tionwy rcgi I i i e  i . l i r i i  tli is 
implics tliat . r ( t )  Iiils a. \ \ d - t l o f i i i c d  distributioii. A strongcr coii- 
ditioii is t,o ask t,luit. the espect.~cl value o l  I.x;(i)1 be Iioiiiidc~I 
by a. constant, uiiiforinly il l  2 .  I f  this is possible we sa!. t.liat t.li(> 

system is stabilizuble. Our a.im is to give easily verifiable condi- 
tioiis under which the above model of a PN is weakly-stahilizable 
or stabilizable. 

We liegin with a description of the traiisition processes. Sup- 
pose t h a t  011 the t'th occasion t h a t  the system is operated in 
iiiotle b. tlie change in  the inventory of tokens of type i is S k , $ ( i j .  

Let. 
f 

- v k , t ( t )  = c & ; ( U )  
lGl 

tleiiote tlie cumulative change in the inventory of tokens of type i 
due to the first t periods ofopera.tion in mode k .  Let i1rk.t) be the 
vect.or ( ! V k , l ( t j j . .  . , N k , , t t ( t j ) .  Let Fk(b) be the a-field generated 
b ~ ,  the entire history of the system LIP bo the time mode kis a.bout 
to lie used for the s'th time. Throughout the rest of the papcr 
M'C shall make the following assumption regarding the processes 
iYk,, ( t 1. 
Assumption A. For all k ,  i ,  s a.iid t 

l i Y ( ! V k i ( S  + t )  - N k , i ( S )  - t Q k , t l ( F k ( . 3 ) )  I y ( t )  

\rliei.c g ( /  j / t  i 0 as t -+ CO. 

1 his ~ v c a k  assumplion simply sta.tes t1ia.t the change to the in- 
v(7ntory occasioned by t prriods of opera.tioii in inode k will have 
an  ahsolute deviation froin i ts  mean whose expected \-alae grows 
1111)rc slo\~ly t,haii linearly in t .  One special ca.se in which assump- 
tioii .-\ sci l isf ied is wheii Sk, ; ( f )  is aii ergodic Markov process for 
each k .  i .  Another i y  ~ l i e i i  , S k . , ( t j  is a second order stationary 
proccss. \;arious kitids ol renewal process also satisfy the as- 
sainption. . \s \\'<! will shoiv i n  the nest sectioiis, the above con- 
dition i s  Iisetl for ol2tainiiig iveali st,abilizability. For obtaining 
stahilizal~ility \VC will iisr the following condition on the second 
iiioinciit s. Let 

I /  

r* , , ( t )  = > S k , i ( t )  - .k: [sk, t ( t ) ] .  

Assuinpt ion B. I'licre cxisls a ( '  > 0 such that for all 
A . .  l . . s , , . s 2 .  I , .  I,. 

. \ss i t i i i i ) (  i o i i  I3 Iiol(ls if t h r  variance of , S k . L ( t j  is uniforinly 
l ~ ) i i i i d ( ~ I  a i i d  t Iic' co\.ariaticc (or autocova.riance when k = I )  
1)t.t \wci1 .SA.,;(.i) a i i t l  Si,,j( t )  teiids to zero sufficiently fa.st ab 
I /  - Y (  i ,x. The asuinpt.ioii holcls. for example. when tlie 
SA.,i( t j 's  arc' iiitlepencleiit, irreclucilile, aperiodic marl to\^ chains. 
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Tlie present paper develops some new theory, which for the 
PN inoclc~l allows oiie to make quibe general assumptions about, 
fluct~~atioiis of t.he t.raiisit,ion processes. Under the conditions 
A and B we drrive necessa,ry and sufficient conditions for sta- 
bility and give simple policies to acliieve it. In previous work, 
descrihc.:cI i n  section 5 ,  the policies tllat, ha,w been used to obtain 
stability of related systems have required the use of artificially 
complicated information about the state of the system and have 
been randomizing. The present paper presents simpler policies. 
In section 2 we present an algorithm for stabilizing our model 
when a backlog of tokens is allowed. In section 3 we consider the 
case in which bacltlogs are not allowed a.nd the transitions of the 
net have a particular structure. In section 4 we prove that the 
conditions obtained for stabilizability are also necessary. Section 
5 discusses related work a.nd sect,ion 6 describes an algorithm for 
checking the sufficient conditions. 

2. Stability of a PN with backlogging 

In this section we consider a PN in which x ( t )  can assume nega- 
tive values, i.e. borrowing, or ba.cl;logging, of tokens is allowed. 

Theorem 1 Co~rt.sidcr the m.odel described in, section 1. Suppose 
that t o h a s  cart. be backlogged, assnniption A holds, und the con- 
vex cone generated b y  U,. . . . , On, i s  the whole of 'R". 7'he.n the 
system is  tota8121-stci6ili-a61~. 

Proof. Suppose that a.t time s the system has been opera.ted 
in mode k for sk periods, s1 + . . . + s,, = s. The inventory level 
is x ( s )  = C N k ( s k ) .  Consider the L2 norm, [lx(s)ll. We shall 
prove the system is weakly-stabilizable by showing tha,t there 
exists an increasing sequence of random times, {a,}, tending to 
infinity, such that both E ( o ; + ~  - ai) a i d  E(llx((~j)ll) are uni- 
formly bounded for all i. Clearly, the second of these ensures 
that P ( I I r ( t ) \ ]  -+ 03) = 0. 

Let H Le the convex hull in 'R" of the points $1,. . . ,U,,,. The 
origin must be in the interior of H .  since as O1,. . . ,Om are geii- 
erators for ' R  there must be points in H in every direction from 
tlie origin. Choose an integer t > 0 a,nd probal~ilities al.. . . .cy,,, 

NI; = 1 ,  such t1ia.t 

1 

x ( s )  + t a k O k  = 0. (1) 
k=1 

This is can he done since for large eiiough t the vector - x ( s ) / t  
lies in t.he interior of H .  Now for each k choose integers t l ,  . . . , t,, 
such that It& - taL.1 < 1 and t = t l  + . . . + t,,,. Note that t,liis 
implies, 

m 

I 

where we me as a bound 62 = En-., IOk, ; ( .  

The nest. step is to bound t in terms of 11:r(s)11. Note that 
H lies withiii tlie ball of radius &. Consider a ball of radius 

6,  > 0 that lies entirely within H .  If 11x(s)ll is sufficiently large 
then inax{Iz;(s)I} will be large and we can choose the integer 

t such that 61 < inas{lxj(s)l}/t < 62 .  Since l l ~ ( s ) l \ / f i  5 
max{Iz:;(s)l} 5 IIz(s)II, we have that for all ~ ( s )  sufficiently large 
we can arrange to choose the a;'s and t to satisfy (1) and also 
so that 

IKtk - t Q k ) h l l  5 62, 
k 1  

l l ~ ( s ) l l / ( m 2 )  < t < l l 4 S ) l I / ~ l .  (2) 

Let D = {x : 11:z(s)11 5 L } ,  for L chosen sufficiently large that 
we ca.n ensure that (1) a.nd (2) hold for integer t where x is not in 
U .  Next we define tlie sequence of observation times {ao, a1,. . .}, 
with a" = 0. If x(ai) is in D run tlie system for one period in 
any mode and let U C + ~  = CT, + 1. If  ai) is not in D run the 
system for r; = t periods with tk of these periods of transitions 
in mode k, where t is chosen to satisfy (1) and (2) when s = 0; 
and the t k ' s  are as described above. In this c a ~ e  let oj+l = 0; +q 
and note the for s = U; and t = r; we have that at time s + t ,  
conditional on all the liistory up to time s, 

II k=1 II 

where since each t k .  is less tliaii t it follows that < ( t )  is o ( t ) .  
It follows from the left hand imcluality in (2) that when 11z(s)ll 

is sufficiently la.rge t will be large enough to imply C(t)/ t  5 &/2; 
suppose L is large eiiough to eiisure this. Using the right hand 
inequality in (2) we have ~ ~ x ( s ) ~ ~ / ( t S l )  2 1 and thus 

E(lI.r(t + s)II) I 62 + C(t)llx(s)Il/(t~1) 

5 62 + (1/2)I l4~)11 I PllZ(S)ll (3) 

for some p < 1. The final inequality holds for all Ilz(s)II suffi- 
ciently large; aga,in, assunie L has been chosen large enough. 

From the above discussion we have that if .(U;) is not in D 
theu E([Ix(ai+l)l[)  < p11x(a;)ll. On tlie other hand if .(U;) is in 
D then E(l\x(at+l)\[)  is uiiiforinly bounded, by L + m n B .  So for 
all observation times 

E(II:c(ai+l)II) 5 pE(II:c(ai)ll) + L + mnB. 

Tlius if llx(uo)ll I: ( L  + n?.nB)/(l - p )  = M ,  then (3) implies 
E(\ lx (a i ) l [ )  5 M for all i. This is sufficient to ensure weak- 
stability. Furthermore, since we have 61t _< ~ ~ z ( a ~ ) ~ ~ ,  it follows 
that the expected value of the time between observations is less 
t1ia.n M I S , .  

D 
By imposing some extra conditions we can deduce the stronger 

results t,liat tlie system is stabilizable. 

T h e o r e m  2 Suppose that assumption B and the co.nditions of 
theorem I hold. Assume also that the transition processes are 
such that b y  .using the policy described i n  proof of theovem 1 the 
process x(t)  i s  statio,ri.ary. Then the system is stabilizable. 

Proof. The stationarity assumption implies that both 
liint-+wt E(  Ilr(t)ll) a.nd liint,, t-'E[Ci;l_', 11x(s)ll] exist and have 
the sa,ine value. Using the observations times, {ai}, constructed 
iii  the proof of theorem 1, we have 

Now ronditioual 011 Itnowing (T; aiid r(a;), the value of ai+i is 
determined hy the construction described in the proof of theorem 
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The first term on the right hand side is uiiiformly bounded, by 
theorem I .  ],et. s k  1x1 the iiuinber of times for which production 
mode li h a s  been run 113; time ot-i. and t k  be the nuinher of times 
mode k is rim betwecii times a n d  oi. The secoiid term on 
the right Iiaiitl side of (4)  is 

which is uniformly bounded by theorem 1, 
0 

3. Stability without backlogging 

3.1 PN's with prodncilzg and co~isurni~ag transitions. In this 
section we suppose that iiiventories of tokells may not be nega- 
tive. To do this we start with a restricted PN in which we ca.n 
separate the notions of adding and subtracting from inventories. 
The system is said to be in a proOdi~ciri.g mode when any of modes 
r + 1. . . . . i n  are  used. Such modes only to add t80 the invento- 
ries: tliat is. ,5'k,L(/) is nonnegiltive for each of these modes. Tlie 
system is sa.itl t o  be in a consumiiag mode  when oiie of modes 
I,. . . , I , ,  is usecl. III  such a mode Sk , ; ( t )  is nonpositive. If the 
requests arising from ruiining the system in a consuming mode 
for one tiiiie period can l i e  niet froin inveiitory then this is clone 
aiicl the system is nest. i'tiii i n  coi~sriiiiing iiiocle without any t'ur- 
ther prod I ict io] 1 .  I.Io\vc ver, i I. reqnc ' arise for tokens that are 
llot i n  the! invent,or\' t11c11 I)c:l'ola i ~ , l l o ~ i ~ g  further requests the 
s);st.rm is run i i i  piwlircing inotl(~s i i i i t , i l  a11 out,sta.nding recluests 
are sat ishd.  Only d te r  siil,isl'yilrg ill1 tc:cl~~(:si,s arising fro111 one 
period's opcrii 1,iori i 11 c01 is i  I I I  I i I ig I I  I ( I (  I C  (lo \vc wnsider request,s 
arising froin t,he nest 1)crio I. opci.i~t.ioii i i i c~o~isu i~ i i i~g  iiiode. As 
before, wlici~ runniiig t . 1 1 ~ ~  i.orii LLV I i i ivc i i  dioiw a.s 1.0 \vliicli 
of the ni modcs we 1.1se. S iIi1.y is  ii.rlii(av(,(l iI. i i ,  i s  possihlc to 
maintain iiivcntories 0 1  1~0i1110(~0 ;I.VCT;I~:C~ h im .  

Prior to stat.ing ~ , ~ I C O I . C ~ I I I  :I IV(' o l i h ( ~ v ( .  t , l i (% I'ollowiiig c.oidla.ry 
of assiimptio~i A:  t.licr(2 c:sist.s ti. coi~st,ii~i~t, T/', Itl\ii.t, is iiitlqwiident 
oi the time .s arid tliv Iiist,ory 1 1 1 )  t,o .s, iiii(l w l i i r l i  101, I..i, 
( J k . ,  > 0. it is tlrc CR.X thiil I. riiiiiiiiig ii10(1(' 1. [or .s pc~iotls 
111(, expected iiuinI~(~r of pwiotls lor wliicli it. is wcliiirctl 1.0 ruii 
niotlr I; uut,il oiie inore protliici, i is p~.otluc:etl is less thaii 27'. \Ve 
see this since if t0k.i > 1 ,  

P(l\'A..l(S + t )  - : \ -k . , (s )  < 11 Fk(Y)) 
= P(.Vn,,(s + i) - X k , ! ( S )  - t O k , &  < 1 - t B k , ,  I&(.)) 
= P((Ark,L(.Y + 1 )  - !\jk.t(b) -to,,,)- 2 t H k , ,  - 1 I&(.?)) 
5 E ( ( N k . L ( s  + t )  - Nk,i(s) -ton-,,)- 1 Fk(S))/(tOk,, - 1) 

By assumption .A the final t,eriii is less than 1/2 for all t greater 
than soiiie integer T sufficiently large. Th~is for any history up 
t,o time B the probability of producing a t  least, one t,oIien of type 
i during the liexi T periods of use of liiode I;  is at least l/a. 
l h n t  is, r >  

P(Nk,t(s + t )  - N k i 2 ( S )  2 11 F k ( S ) )  2 1/2. 

Siiice this holds for s = U, u + T ,  ii + 2T,. . ., we see that the 
cqx.ctetl time uiitil one product of type i is produced is less 
tliaii 1' = 2T. C'learly, we caii talie T large enough that this 
holtls uniformly for all k aiid i .  

T h e o r e m  3 Sqipose fh,at f o p  t he  model described about- assvmp- 
tioil .4 holrls f o r  all :\r~,~(t) and the coilvex cone generated by 
0, . . . . .  O,,, is the uhole o,f R". Theta the system is iucakly- 
.stnbilianble. Furtherinore. if t h e  ussunzptions of theorem 9 hold 

Proof. The proof is a inodification of the proof for theo- 
rem 1. At ever!. observation tiine U& the inventory I(u,) is 
noniiegative. As in the proof of' theorem 1 we solve (1) and 
slio~v that, for llm(ut)li sufficiently large t caii be an integer with 
~ ~ ~ ( 0 ~ ) ~ ~ / ( 6 ~ f i )  < t < ~ ~ x ( u ~ ) \ l / 6 1 .  4 s  in the proof of theorem 
1 we choose tn such that l a k t  - t k J  < 1 and t = t l  + . . . + tVz. 
If :u(o,) is in D we riin any producing inode for one period and 
set ui+l = o; + 1. If n.(oj) is not, in D we first run each pro- 
ducing mode X. for t k  periods. k = I' + 1, . . . m and then run 
each coiisuniing mode for t k  periods; k = 1, .  . . , r ,  Ignore for 
the moinent the fact that in doiiig this some components of x ( t )  
may go negative. In a siiiiilar manner as in the proof of theorein 
1 .  \ye have t,liat the iiiveiitory satisfies, for s = U* and t = T,, 

Wowewr. iii\.calrtories are not allowed to go negat,ive. So suppose 
tlic effect of these f prriocls is to change inventory oftj ,pe X. to- 
liens by CA.. 'The policy we shall use is augmented by tlie proviso 
i l la t ,  if  I'ollowiiig aul' period during whicli the system is run i n  
coiisuiniiig iiiotle n token j is requmted that is not in the inven- 
tory, then a produciug iuock X: is chosen for which BA.,J > 0 and 
the system is run i n  iiiotle k uiitil a token of type j is produced. 
As deiiioiistrated prior to the statement of the theorem, assump- 
tion A implies t1ia.t tlie expected nuniber of periods of production 
required t o  produce one inore token of type j is bounded for all 
j by seine 'r < x,. The nuinher of times lye shall have t.o ini- 
t.ia.te est,i.a product,ion periods because of short,falls iii 1iriml)ers 
of tolirlis of t.lye j is at most (.r,(oL) + C2)-.  The result of all 
such atldit.iona1 procluct,ion periods, say v; periods in total. due 
to  slioitages for all t,!pes of product, will be to produce some fur- 
ther nuiiilier of tokens of type j ,  say Z,,. The nest. observation 
time is tnlieii as o,+, = U, + T~ + v,. It. follo\vs from assiuiiptioii 
,-\ alltl ( 5 )  1,Ila.t 
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aiid therefore E ( u L )  is o [ t ) .  Thus E ( Z , )  is also o( t ) .  Let C and 
Z lie the vectors with compoiients Cj aiid 2,. The inveiit,ory at 

the next observation time will be 

.l(crt+i) = ( x ( 0 , )  + C)+ + 2 - (2(01) + C ) -  
( n ( a , )  + C)+ + 2. 5 

7’hus ~ ~ x ( q t l ) ~ ~  has an o ( t )  I~oui1cl of 6, + ( ( t )  + llE(Z)1l. The 
theorem is completed along the same lines as theorem 1. Under 
the assuiiiptions oi t lieoreni 2, a. siiiiilar proof shows that the 
syst,eni is stabilizable. 

3.2 Deterrwiiiistic frtrrisifions mid  ,%.nctririting inputs. In this sec- 
tion we present il PN a.s a geiieral inodel for a iiiaii~il~i.ct,~iriilg 
system and apply soine of the idem from previous sections. We 
think of a manufacturing system that may lie iiiodeled by 71 

distinct queues. Some queues a.re queues of orders for finislied 
products. Other queues represent inventories of raw i~mterials, 
parts anti suliassemlilies, or work-in-progress waiting for process- 
ing at a given machine. It,enis arrive from outside t,he syst,eiii 
to these queues according to a stocha.stic process. The arriv- 
iiig items are supplies of raw materials a.nd orders for finislied 
product,s, .4s a.bove, we let r , ( t )  lie the number of items in 
queur i at time t .  We shall suppose that a mode of manu- 
fact, I I rr  111 a kes (let <> rtniizi s t i c  changes to the queues, sulit,ractiii g 
ikms froiii some queues and a.tldiiig it.eiiis to o~liers. Sulitrac- 
tioiis co~responci to the consumption of raw ma.terials or the use 
of interniedia.te subassemblies t,o build other subassemblies and 
finished products. A final assembly operation subt,ra.cts from 
cert,aiii queues tlie resources required to build a finishecl product 
arid then also siibtra.ct,s one unit from the queue of unfilled orders 
for that product. A limiting constraint in  this model is tl1a.t the 
queues a.re not a.llowed to assume nega.t,ive values, correspoiidiiig 
to the case in which a maiiufa.cturing mode caiinot lie execut,ed if 
the subassemblies or iiiat,erials it, needs arc not, already available. 

As in t,he previous section suppose that the t’th period of ar- 
rivals adds to x the vector So(t), which for this section is assumed 
to be nonnegative i i i  every coinponent. The modes of ma.1iufa.c- 
tiire make deterministic changes to tlie queues by addition to 
~ ( t )  of the vectors SI, . . . , ST,%; these are fixed vectors t1ia.t 11ia.y 
have 1)ot.h positive and negative components. The above model 
corresponds to a I” where inodes of 1nanufa.cturing correspond 
to a.rliitrary deteririiiiistic tra,iisit,ioiis, and queues correspond to 
pla.ces. There is a uniqiw fluctuating Iransition correspoiidiiig 
to mode 0. This (ra.iisitioii does 1101 coiisuine ally tolieiis. ancl 
when fired lor the t’th time it adds a random number ,SO,i(t) of 
tOkellS to place i, i = 1:. . . . 171.. ”0 t1ia.t if there is a uoiinega.- 
tive linear coiiibinations of Si,.  , . , ,, equal to 0, it is possilile, 
given a. la.rge enough initial invent,ory, to const,ruct a policy that 
staliilizes the system but never uses mode 0. Since this does not 
model a practical alt,erna.tive we shall oiily colisider policies that 
selecl mode 0 infiiiitelj~ of’t.eii. We desire to stabilize t>l~e system 
by ensuring that for all i a,nd t we have E ( z i ( t ) )  < B for some 
R. 

Wit,liout loss of generality suppose it, is exactly tlie first 1’ coni- 
poileiits of 00 thi1.t are nonzero. Let 

a 

r = E R” : I o alld ,L‘i = o for i > r j .  

Here r is the set of nonpositive vectors that are only iioiizero 
in components corresponding to queues to which &(t)  can add 
items. We call these first r queues the input queues a d  the 
reina.ining queues the intemerliate queues. Let 

be the set of vectors in r that can be represented as E[Ck izkSk] 

for iioiiiiegative integer-valued ra,ncloin va.riables nk. It con- 
t,~i.ins all tliose rautloiii combimtions of the manufacturing modes 
whose effect is to not increase the size of the input queues and 
t.o lcave the sizes of intermedia.te queues unchanged. We provide 
a leiiiiiia and a. theorem t1ia.t chara.ct,erize stability. 

L e m m a  1 A is a ,f i t i i tel:y ,qeiierated co’ne whose generators may  
be trike,, to  be nonpositivt integer-vrrlued vectors. Each of these 
genercr.for,a cnn be rai?.lten CIS n positive linear combination with 
intcgc I‘ coe,@cients of the vec~foi~s SI . . . . , S,. 

Proof. Since the vectors ,SI,. . . . ,?,,, are integer-valued they 
generate a cone t1ia.t can be written as {x : As 2 0} for some 
matrix A with integer coefficients. Similarly, r = {x : Bx 2 0) 
for sonie B with coefficients that a,re all -1, 0 or 1. Thus A = 
{x : Ay 2 0, Ba 2 0). Since the generators of A inust be rational 
vectors and they lie in the cone generated by SI,. . . , S,,, each 
of t.hcm can be expressecl as a. nonnegative linear combina,tion of 
t,he ,?k’s. There must be such linear combinations in which the 
nidt.ipliers of the SA.’s can be t,a.ken to be nonnegative ra,tionals. 
It folloa.s, by rescaling tlie generators, that there is a choice of 
gelieriltors for which the multipliers of the Sk’s are noiinega,tive 
integers. 

0 

Let 0; a.ud A’ be the restrictions of Bk and A to their first r 
components, i.e. the nonzero components of Ou. 

T h e o r e m  4 S i i p p s r  t h e  nrrivnl process N O ( t )  satis,fies assump- 
tion A niid -0; 1ie.s i i t .  the infevi0.r of the conuex cone AI . Then 
t h e  .s;y.qfc ni, i.. ~irrecilily-sfobilirn8le. Furthermore, there exists a 
ioenkly-.stnBiliziiig policg wider iohich the inteimediate queue sizes 
are zin<{omIy boundrd. J j  thr nsszimptio,ias of theorem 2 hold then, 
weaklyl-sftrblilitabl~ muy be sfwngthened to  stabilizable. 

Proof. Using leinina 1, let Si,. . . ,Si  be the genera,tors of 
A such that ,Si = XI; p l k S k ,  1 = 1,. . . ,d, where the ~ 1 ~ ’ s  are 
nonnegative integers. We caii associate with each S; a new maii- 
ufacturiiig mode that corresponds to running mode k for plk 

times, k = 1,. , .  , 1 7 1 .  Consider the new system where the arrival 
iiiotle is the sa,iiie i3.s before and the productioii modes are the 
ones correspoiiding to  the Si, 2 = 1,.  . . ,d. If we project the 
state of t,he system to one in which we watch only the input 
queues then we caii weakly-stabilize this system while keeping 
the input queues nonnegative. This follows from an application 
of theorem 3 when there is a single producing mode correspond- 
ing to ,& aiid d request modes corresponding to the $5’;’~. Let 
I< = nia.x,{Ck [ i l k }  nmx~~l,;{IS~,;l}.  One can see that if before 
runni~ig any mode $5’; the size xi of each intermediate queue is 
great,er than I<, t.hen while ruiiiiiiig the Sk’s  coinprising ,Si this 

e will reiiia.in within the ra.nge xi f IC, and at the end reas- 
suine the value .E;. This implies that if the intermediate queues 
sizes arr  all at. least, Ji initially we can weakly-stabilize the pro- 
ject,ioii of the systrin onto its iiiput, queues a.nd thereby wea.ldy- 
staliilizc~ ( l i e  coniplet,cJ systcm a s  well while ellsuring t1ia.t the 
i i i ~ ~ ~ i i i r < I i a . t ~  queue sizes a,re uniformly bounded. If we a.ssume 
tlie c~ontlitioiis of t8licoreni 2 a similar proof shows the system is 
sta1,ilizalilr. 
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4. Necessary conditions for stabilizability 

In the previous sections we 1ia.i.e given several va.riations of a 
model for a PN and derived sufficient conditions for thew 111otlels 
to be wealily-staliilizahle or stabilizal>le. In theorems 1-3 it was 
required that the cone generated by positive linear combinations 
of 61,. . . , Qk be the whole of R". This condition is necrssary i n  
the sense tha,t if the cone generated by 01,. . . , On, is not thc whole 
of R.. then, there are processes S k ( t )  for which the systeni cannot 
be sta.tbilized. 111 this section we sliall show that the sufficient, 
condition is necessa.ry when tlrc processes Sk,;( t )  are intlepelideni 
Bernoulli processes. We discuss the necessity for theorcm 2: the 
necessito. argument, is similar for the other theorems. R ~ a l l  that 
the system is run ill one of k possilile niodes during eacli time 
period. Suppose tlie { S k , ; ( t ) }  are mutually independent random 
variables aiid {Sk,*( t ) } E l  a.rc itleiitically clist,riliutetI. ,Assump- 
tion A will hold. 

Wit.hout loss of generality asst ime that if any of the ~ J L  1-nodes 
are not aiailalde then the process is 110 longer stabilizal,le. As- 
suine also that the inventor!; level of each token is affected by 
at least one mode. Tinder tlie first assumption it is easy to see 
that to stabilize the system every niode must almost, surely lie 
used infinitely often. Suppose t1ia.t Illere is such a policy, but 
the cone generated by B,, . . . , U,,, is not the whole of E".  Then 
by Farkas' lemma. taliere exists a q,  which 1na.y be chosen to have 
integer coefficients. such that, q T O k  2 o for all 8. Choose such 
a, q and consider the integer-valued process y ( t )  = q T s ( L ) .  Note 
that. if t.he system is run in mode k during period t we have 

E[y( t+l ) -y ( t ) lx ( t ) ]  = qTQk 2 0 and thus y ( t )  is asubmartingale 
and by the martingale convergence theorem it tends to a limit on 
every sample path. Now this must almost surely be a finite limit, 
since I y ( t ) l  5 ~ ~ q ~ ~ ~ ~ z ( t ) ~ / ,  and E [ x ( t ) ]  is uniformly bounded for 
all t since it is produced by a stabilizing policy. Since y ( t )  is an 
integer, its limit on almost every sa.mple path inust be an integer 
and y(t) must be equal to this limit for all t sufficieiit,ly la.rge. 
But since we have assumed each mode is almost surely used in- 
finitely often this is impossible unless on almost every sa.inple 
path the incremeiital cha.iige in y when mode I ;  is used for the 
t'th time satisfies ( I T S k ( t )  = 0 for all t sufficiently large. Non: if q 
ha.s only one nonzero component, say i ,  this would imply t.hat on 
almost every sample path no mode effects the iiivent,ory of t.oken 
i for t sufficiently la.rge. contradictiiig our second a.ssmiipt,ion. If 
q is nonzero in more t1ia.n one component, say in all components 
i E I ,  then it is cIea.rly impossible to have qTS,(t) = o unless the 
independent ra.ndoin va.ria.bles , S k , , i (  t ) ,  i E I ,  a.re almost surcly 
constants for t sufficiently large. Thc~refore, except i n  t.he special 
case t1ia.t some modes clia.iigc. the inventories of soinc I aliens liy 
deterinillistic amounts, tlic system cannot. be stabilizalile. 

The above a,rgunient denioiistrat.es 1.lia.t the suficient condi- 
tion in theorem 2 is necessary if thr system is to be staliiliealile 
for a.ny ,Sk(t)'s. The exception is when some of the S k ' s  are  cleter- 
ministic a.nd have a posit,ive 1inea.r combination t1ia.t is zero. The 
necessity argument for the other stability theorems is similar. 

5. Relation to previous work 

The results in this paper a.re csseliiially the tra.nslation ol t,hc 1.c- 
sults i n  C!ourcoubetis a.nd Weber [GI Iroiii the contest 01 flcsible 
manufacturing to  that of Petri-Nets. Rela.ted results i l l  the Ii1,- 
eraiurv  ai^: t,he following. The notion of staiiilizabili~y has Iieeii 
pre\.iously studied in t . l i r  contcst of oil-liiir hili-pacliiiig prol,- 
lems in [a], [ :3],  [ill, [5] antl for ofr-line pacliing i n  [SI. Onr can 
think of 77 t.ypes of item t.lia,t, arrive t,o a. Iiii1-packiiig systoiii ancl 
can be ~>a.clied into bins i n  various ways. For examl)lr. il bin 

might lie fully packed by either one item of each of types 1,2 
antl 4, or by five items of type 3 .  The idea is to pack items in 
bins, as t,hey a.rrive. a n d  ensure t,lia.t the time-average number 
of partially full bins remains Iiouncletl. Clearly, this is similar to 
the Petri.Net formula,tioii if we thinli of spaces for items as aris- 
ing from a production process aiid the deinaiid for these spaces 
as being generated by raiidoinly arriving items. In [3]  we gave 
a necessary aiid sufficient condition for a bin-pacliing system 
to Ibe stal~ilizalile when iteins arrive according to independent 
Bernoulli processes. In [4] this wa.s more fully developed for sev- 
eral special tjrpes of pa.cking configurations. In [2] Courcoubetis 
a.nd Rot hhlum considered models in whicli rewards are obtained 
when different paclting configurations used. Rhee and Ta.lagrand 
[SI coiisidered a. model in  which sizes of items are uniformly dis- 
tributed ol-er a subint,erval [a.,li] of [0.1] and a. bin can contain 

any numlier of items whose sizes add to no inore than 1. They 
characterized the choices of [a,li] for which the wasted space in 
partially full bins ca.n be held finite in time merage by using an 
off-line packing algorithm. In [SI we have coiisidered stabiliziiig 
systems when there are side constraints on the frequencies with 
which liins may he paclied in different ways. A production model 
with batch arrivals has been considered in [l]. 

6. Discussion 

We have seen that if the models in this paper are reasonable 
for a parlicular application aiid we can estimate the vectors Bk, 

then theorems 1-4 provide criteria by which to test whether the 
system can operated in a manner that keeps expected inventory 
levels uilifornily bounded through time. The criteria of the the- 
orems cil.11 lie tested using simple algorithms. In theorems 1-3 
it was required t1ia.t the cone generated by nonnegative linear 
comliiiiatioiis of 01, . . . , O,,, be the whole of 'R'. This holds if and 
only if 0,.  . . ..U,, spa.ii 'R.'2 aiid there exist y l , .  . . , -ym such that 
~k > 1 [or all I ;  and Ck yn.0, = 0. This can be checked by a 
linear program i n  ~ J I .  wriables. Theorem 4 required that -6; be 
in the interior of 11'. An algorithm to check this can he based 
on the follo~ving ideas. Let R = {x E R." : R'; = 0 for i > r }  and 
define I as t!ie set of those indices i > 0 for which there exists 
{ n . ~  2 0. # i }  such that 0; + Ek+ C V ~ Q ~  E R. The condition of 
theorem 4 is equivalent to requiring that the vectors {at, i E I }  
span R and there exist { y L  > 0 , i  E I }  such that EiGl~ iBr  = -Bo. 

There are a.t least two important questions outstanding. 
First,ly, one would like to idenlifj? pructicul policies that achieve 
st,abilit>-. The policies described in the proofs of theorems 1-4 
can 136: iinplemented by relatively simple calculations, but they 
a.rc \rasbeful in use of inyentory space and certainly not rules-of- 
t.liunih. or methods oiie would recoimnend in  practice. Clearly, 
it i s  iinportant bo . I T I ; I I ~ I I I ; : ~  average inventory levels. not just, to 
ensure t,heir expected values remain finite. One would really like 
to find po1icif.s t1ia.t staliilize the system antl require mininiuin 
ave~age invenlory levels to do so. Secondly, the mniirn~im in- 
ventory size is likel~. to IIC constrained. Interestingly, we can say 
soinet.hiiig about this sort of constra.int when assumption A is 
replaced by 
Assuiiiptioii C. For all k ,  i .  Lq aiid t 

where g ( t ) / t  ---t 0 as f -+ x,. 
IIntlcr this assumption it is straightforward to modify the proofs 
of tlieorrnis I--l to show st,aliility i n  the sense that l x i ( t ) l  is 
Iioundcd by  a conshi t .  uniformly in t .  
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Another practical consideratioil inay be coiistraints on the 
rates at which some of the transition modes are used. For esam- 
ple, we might pose the ploblem of stabilizing the system subject 
to a constraint that a particular mode k be used at rate A k .  

This problem has been coilsidered in [5 ]  and similar results can 
hc obtained for the models in this paper. 
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