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Abstract. We consider a model in which wireless LANs are to be provided in a number
of locations. The owners of these WLANs have decided to peer with one another so that
they can roam in locations other than their own. We consider the question of designing a
mechanism for determining the quantities of resources that agents should provide so that
the qualities of service are achieved in the locations and a measure of expected welfare is
maximized, subject to the constraints that this mechanism is incentive compatible, rational
and feasible (in senses to be described). We show that as the number of participant becomes
large the solution to a limiting problem takes a simple form. Namely, it is near optimal to
demand that each participant in the same location makes a predetermined and equal contri-
bution to the system, this being comprised of a contribution of resources (such as coverage
area or the number of roaming peers he accepts), plus, possibly, a monetary transfer. A
participant is permitted to use the WLANs in other locations when roaming if and only if
he is willing to make this contribution. The advantage of this is that the provisioning policy
and contribution requirements can be easily communicated to the participants.

1 Peer to peer networks of wireless LANs

Access to the Internet is still not as ubiquitous as access to the telephone network. This greatly reduces
the economic value of many new portable devices, such as PDAs, tablet computers and smart-phones
running the IP protocol. The users of these devices would benefit greatly from cost-effective Internet
access that is wireless, always-on, ubiquitous and high-speed. However, deploying infrastructure with
wide enough coverage to support this is a non-trivial task, especially from the business perspective.

Wireless Local Area Networks (WLANs) are an important developing infrastructure. Specifically,
the IEEE 802.11 WLAN standard has grown steadily in popularity since its inception and, at least in
metropolitan areas, is now well positioned to complement much more complex and costly technologies
such as 3G. This is already happening. WLAN signals of networks set up by individuals for their own use
already pervade many cities and such WLAN ‘cells’ frequently cover greater areas than were originally
intended at their installation. Given how easy it is to gain access to a WLAN once a potential user is
within its coverage area, and leaving out the obvious security issues involved, one wonders if individuals
could share such infrastructure amongst themselves to achieve ubiquitous Internet access. Sharing comes
as a natural idea since WLANs provide large amounts of bandwidth that is mostly underutilized by its
local users. Also the pipe that connects the local WLAN users to the Internet is usually of a broadband
nature (DSL) and may also be under-used over large time periods. Existing technology allows (or will
soon allow) WLAN administrators to control access to their networks and to limit the consumption of
network resources by remote (roaming) users.

In this paper we develop an economic model for sharing resources among WLANs. As in existing
peer-to-peer (p2p) file sharing systems, such as Gnutella and Kazaa, each individual WLAN owner
may choose whether or not he wished to join the peering group. If he decides to join, then he is must
contribute a quantity of resources that are specified by some system participation rules. No central entity



controls the interaction between the peers, each of whom has full control of his own participation level in
the community. Our aim is to optimize participation rules to maximize economic efficiency and reduce
free-riding. Without such rules, the free-riding problem could be debilitating, as each WLAN would be
inclined to offer no resources to others (in order to minimize its own cost), while simultaneously trying
to consume as much as it can of the resources that are provided by peering WLANs when it roams in
remote areas. Altruism can go some way towards ameliorating this problem, and may partly explain why
existing p2p systems Kazaa) operate with some degree of success, even though studies indicate that the
majority of the users are free-riders (see [4] and [10]). However, we do not expect that altruism alone
can completely correct such inefficiencies.

We suppose that the value that each peer places on being part of the peering group is known only to
himself. The problem is one of ‘mechanism design’: to determine rules to specify the peers’ contributions
and usages that maximize social welfare. We note that existing p2p file sharing applications have recently
started to incorporate simple rules. In Kazaa, for example, each peer has an associated ‘participation
level’. When two peers try contend for downloading a file then the peer with the higher participation
level has priority. A peer can increase his participation level by increasing the amount of megabytes
that other peers download from him, or by ‘integrity-rating’ the files he shares. However, this rule is
only a heuristic and does not maximize social welfare. We seek rules that are social welfare maximizing,
subject to appropriate informational participation constraints (the ‘second-best’ in mechanism design
terminology). Unfortunately, such rules are likely to be very complicated. The contribution required of
a peer may depend on the preference declarations of all the other peers and a central planner would be
required to implement them. The remarkable result in this paper, is that there do exist simple rules that
are near-optimal; namely, as the number of participants in the system becomes large, the social welfare
maximizing contribution policy may be approximated by a simple fixed-fee rule. This rule says that a
peer who wishes to roam must contribute a fixed amount of resources (such as coverage area, the number
of roaming peers he accepts in his own WLAN, or a monetary payment). The required contribution can
be computed off-line before the system is instantiated.

An economic model for peering WLANs was proposed in [5] and [6]. The model in these papers differs
from ours in assuming that values which participates place on peering (their preference parameters) are
known to a global planner. They also discuss security and architectural issues (which may be fundamental
for the implementors). We focus on a more demanding, incomplete information model, seeking incentive
policies so that participants gain by participating and by being truthful. We also discuss conditions under
which no actual money may be part of a peer’s contribution, but he may only contribute resources, i.e.,
make contributions ‘in kind’. These issues can be crucial when implementing the system.

We must stress that the business aspect of ubiquitous wireless access is currently receiving lots of
attention from communication providers. WISP (Wireless ISP) associations, like Pass-One, and large
companies, such as Cometa Networks (with founders including AT&T, IBM and Intel), are attempting
to standardize technologies, protocols and behaviors among existing WISPs in order to make WLAN
roaming as seamless as possible. Cometa and other large WISPs attempt to set up new WLAN APs in
hot spots and create their own standards, usually by investing a substantial amount of capital in the
process. Due to its p2p character, our approach is fundamentally different. The network does not belong
to a small number of telecom operators, but to the users themselves.

The paper is organized as follows. In Section 2 we formulate a WLAN peering model and discuss
issues of cost. Section 3 formulates the optimization problem. In Section 4 we derive the limiting form
and solution for a large system.

2 A WLAN peering model

Suppose that a number of WLANs are available in L locations. Each location is a large geographical
area like a neighbourhood or a part of a city centre. Potentially n` WLANs are available in location
`. The owners of the WLANs may arrange to peer with one another, and thus agent aij , who is the
owner of the jth WLAN in location i, benefits when he roams in areas covered by other WLANs. When
agreeing to become a peer, a WLAN owner benefits, but he also incurs some cost in providing resources
to the community. We seek a mechanism, defined in terms of certain rules, to specify what quantities of
resources peers must contribute and what subsidies or payments they might have to make in addition
to the benefits they obtain from peering. Our aim is that the incentives given by these rules should be
such that when agents act to maximize their own benefits, social welfare is also maximized. To begin,
we assume that there is some central authority, a ‘global planner’, who serves as an intermediary for



implementing these rules. Later, we will show that these rule become very simple as the system becomes
large.

There are many possible models of benefit and cost. Our basic model supposes coverage in all locations.
Once a roaming peer is within coverage, he is accepted (perhaps with some fixed probability < 1). The
coverage (quality of service) in location ` is defined as the probability Q` that a roaming peer obtains
service in location `, and hence is equal to the proportion of area ` that is covered by the footprint of
the WLANs. Any congestion created by roaming peers is regarded as a negligible second order effect. We
view coverage as a public good. That is, each roaming peer benefits by the amount of coverage available,
and does not reduce the probability with which another roaming peer to obtain access. He benefits from,
but does not consume, Q`. The important issue is to provide incentives for this area to grow, while
balancing the resulting costs, assuming that existing WLAN owners can, at some cost, increase their
area of coverage (say, by upgrading or increasing the number of base stations).

A different model supposes fixed coverage, i.e., footprints of stations are fixed. However, each indi-
vidual WLAN owner can restrict the number of roaming customers who may simultaneously access the
Internet through his infrastructure and so consume some of his bandwidth. The quality of service Q`

models the geographically averaged probability that a roaming peer is granted service in location `. Now
incentives must be given to peers to accept more simultaneous roaming customers, while balancing the
resulting opportunity cost of the bandwidth they consume.

We shall focus on the first model. Suppose that agent aij receives total benefit

θij

L
∑

`=1

ui`(Q`) ,

where the preference parameters {θij}
ni

j=1 are independent, identically distributed realizations of random
variables with distribution function Fi on [0, 1]. All the Fis are known to all agents, and to a global
planner, but θij is known to agent aij alone. We allow the possibility that agent aij may or may not be
included in the set of agents who peer with one another, i.e., who share their WLANs, and we denote
these possibilities by πij = 1 and πij = 0 respectively.

The cost (incurred by the agents) of ensuring quality Q` in location ` is c`(Q`, n`). Since this quality
is realized through averaging the total sum of n` footprint contributions (each of which is random in
space, equally provided by peers and required to cover a fraction Q` of the area), the cost increases with
n` because of expected overlaps in the footprints. To simplify notation, in the rest of the paper we omit
the dependence of c` on n`. The social welfare function is

L
∑

i=1

ni
∑

j=1

πijθij

L
∑

`=1

ui`(Q`) −

L
∑

i=1

ci (Qi) .

The decision variables πij and Qi are to be chosen by the global planner as functions of θ, where this
denotes a vector of all the θij . Let Θ denote the domain of θ and let F (θ) denote its distribution function,
i.e., F (θ) =

∏

i,j Fi(θij). Thus the expected social welfare to be maximized is

∫

Θ

L
∑

i=1





ni
∑

j=1

πij(θ)θij

∑L
`=1 ui`(Q`(θ)) − ci(Qi(θ))



 dF (θ) . (1)

Let us make some remarks on the cost. In the traditional model of public good provisioning, ci(·) is
the cost to a central authority of providing the public good. In our model, no central authority exists to
provide and manage the WLAN access points. These belong to the peers themselves. If a global planner
is to ensure a quality of service Qi then he must make available a total amount of resource (area of
coverage) by extracting it from the existing WLANs in location i. He acts as a middle man who both
pays peers to provide resources and also collects fees from peers that benefit from roaming. Here, ci(·) is
the total cost of the resources that must be purchased by the global planner in location i.

There are two cases to consider: in the first monetary transfers (payments or subsidies) are possible,
and agent aij pays a fee pij(θ) (positive or negative), which is his contribution towards the total cost of
the services subcontracted by the planner. We require

∑

ij pij(θ) ≥
∑

i ci(·). In the second case, monetary
payments are not possible, but only payments in kind. This means that the cost must be measured in the
units of the resource that is to be provided. For this to be possible, we need the cost to be linear in the



percentage of area covered by WLAN services. Assuming that this is the case, we must then redefine our
monetary unit to be a resource unit, and re-scale other functions appropriately. Now ci(·) is the amount
of resource required in location i and pij(θ) is the amount of resource that agent aij contributes. For
example, we might take ci(Qi) = Qi. When we maximize (1) with respect to the πij(θ) and Qi(θ), it
must be subject to L constraints

∑

j pij(θ) ≥ ci(·), i = 1, . . . , L.
We must take account of two further constraints. Agent aij should expect to benefit by participating

(individual rationality). He should also have the incentive to report to the global planner his true value
θij (incentive compatibility). Let fi denote the density of Fi, and define

gi(θij) = θij −
1 − Fi(θij)

fi(θij)
. (2)

We assume gi(·) is nondecreasing. In Section 3 we consider the case in which monetary payments are
possible and show that we can account for all the above constraints and compute the optimal policy of
the global planner by maximizing (1) subject to

∫

Θ

L
∑

i=1

[

ni
∑

j=1

πij(θ)gi(θij)
∑L

`=1 ui`(Q`(θ)) − ci(Qi(θ))

]

dF (θ) ≥ 0 . (3)

Let P(n) denote the problem of maximizing (1) subject to (3)3

In Section 4 we show that as n becomes large, with (n1, . . . , nL) = (nρ1, . . . , nρL) for some given
ρ1, . . . , ρL), the limiting form of P(n) is P̂(n), defined as:

maximize

L
∑

i=1

[

ni

∑L
`=1 ui`(Q`)

∫ 1

0

πi(θi)θi dFi(θi) − ci (Qi)

]

(4)

with respect to the scalars Q1, . . . , QL and functions π1(·), . . . , πL(·), subject to the constraint

L
∑

i=1

[

ni

∑L
`=1 ui`(Q`)

∫ 1

0

πi(θi)gi(θi) dFi(θi) − ci (Qi)

]

≥ 0 . (5)

Suppose Q∗

1, . . . , Q
∗

L and π∗

1(·), . . . , π∗

L(·) solve P̂(n). Then Qi(θ) = Q∗

i and πij(θ) = π∗

i (θij) are feasible
for P(n) and maximize (1) to within o(n) of its optimum value. In this case, it follows (by some algebra)
that the optimal policy requires agents based in location i to contribute a fixed amount of coverage and
to pay a fixed monetary fee (positive or negative), both of which depend only on i and not on the agents’
declared θijs. The global planner posts the expected values of coverage in the various locations and the
required footprint contributions and monetary fees. Agents that find it profitable to join under these
rules becomes members of the peer group. Agents that do not join are excluded from peering. It turns
out that the sum of the monetary fees is zero, and these are essentially used to adjust the total cost of
the agents. In this case, the sole role of the global planner is of a clearing agent who in addition checks
that the right contributions are made in each location.

In the case where only payments in kind are possible, the optimal policy requires agents to contribute
a fixed amount of coverage that depends only on the location. As above, the global planner posts the
expected coverage in the various locations and the required footprint contributions, and agents decide
whether to join. No money transfers are needed, and the role of the global planner in now simply to
check that participating peers do indeed contribute the amounts of resource required.

3 Mechanism design

The basic problem in maximizing social welfare subject to covering the cost by payments is the fact that
the global planner does not have complete information regarding the θijs of the agents. The situation
corresponds to a two stage game where the global planner first posts his policy defined by the functions
Qi(θ), πij(θ), pij(θ), i = 1, . . . , L, j = 1, . . . , ni, and then the agents make their declarations of the
θijs based on the policy of the global planner, and the system is dimensioned accordingly. The global

3 If only payments in kind are possible, then, as in (21), we would need L constraints, equivalent to requiring that each
term in the sum on i on the left hand side of (3) is individually nonnegative.



planner seeks to design his policy so that the end result of the game maximizes social welfare subject to
the constraint that the payments cover cost. This falls with the traditional ‘mechanism design’ paradigm
studied by economists. In this section we apply this approach to our problem, exploiting the fact that
we have modelled coverage in location i as a public good.

As we have said, there are two possibilities. Either there are monetary transfers, so resources can
be purchased from those agents based in location i, or there are no monetary transfers, but agents in
location i provide resources in exchange for being allowed to roam in other regions. Throughout what
follows we take the first viewpoints: monetary transfers are allowed. We also suppose that there is a
mechanism for excluding agents from the peering set. If exclusion is not an option, then we simply make
the restriction πij(θ) = 1 for all i, j and θ. We adapt as the ideas in [9] as follows.

An allocation is said to be feasible if the sum of the payments made by agents in location i covers
the cost of providing quality of service Qi in that location, i.e.,

L
∑

i=1





ni
∑

j=1

πij(θ)pij(θ) − ci (Qi(θ))



 ≥ 0 (6)

for all θ ∈ Θ. An allocation is weakly feasible if the expected sum of the payments covers the expected
cost, i.e.,

Eθ





L
∑

i=1





ni
∑

j=1

πij(θ)pij(θ) − ci (Qi(θ)))







 ≥ 0 . (7)

Note that agents who are excluded do not pay.
Suppose agent aij pays pij(θ). Let us define

Vij(θij) =

∫

Θ−ij

πij(θij , θ−ij)
∑

` ui(Q`(θij , θ−ij)) dF (θ−ij) (8)

Pij(θij) =

∫

Θ−ij

πij(θij , θ−ij)pij(θij , θ−ij) dF (θ−ij) . (9)

Here θ−ij denotes the vector of all preference parameters other than that of agent aij . Its distribution
function is F (θ−ij) and its domain is Θ−ij . Agent aij must expect to have a positive net benefit and an
incentive to report truthfully his value of θij . These are the condition of individual rationality4:

θijVij(θij) − Pij(θij) ≥ 0 (10)

and incentive compatibility:

θijVij(θij) − Pij(θij) ≥ θijVij(θ̂ij) − Pij(θ̂ij) , for all θ̂ij ∈ [0, 1]. (11)

We have the following.

Lemma 1. (a) It is necessary and sufficient for incentive compatibility that (i) Vij(θij) is nondecreasing
in θij, and (ii)

Pij(θij) = Pij(0) + θijVij(θij) −

∫ θij

0

Vij(η) dη . (12)

(b) Given incentive compatibility, a necessary and sufficient condition for individual rationality is Pi(0) ≤
0.

Proof. Firstly, we must have

[θ∗ijVij(θ
∗

ij) − Pij(θ
∗

ij)] + [θ̄ijVij(θ̄ij) − Pij(θ̄ij)] ≥ [θ∗ijVij(θ̄ij) − Pij(θ̄ij)] + [θ̄ijVij(θ
∗

ij) − Pij(θ
∗

ij)]

If this were not true then it would be better to declare θ∗ij when θij = θ̄ij , and/or to declare θ̄ij when

θij = θ∗ij . The above gives (θ∗ij − θ̄ij)[Vij(θ
∗

ij) − Vij(θ̄ij)] ≥ 0 and hence we find the condition that
(i) Vij(θij) is nondecreasing in θij .

4 Since this is a function of an agent’s expected benefit, there can be times when he is be required to pay more than he
benefits, in which cases he might decide not to participate. Our model make most sense if users make binding agreements
to participate, or if there are repeated rounds, so a user who reneges on participating in one round can be punished in
subsequent rounds.



Secondly, since θij maximizes θijVij(θ̄ij)−Pij(θ̄ij) with respect to θ̄ij , we must have, taking derivatives
with respect to θ̄ij ,

θijV
′

ij(θij) − P ′

ij(θij) = 0 .

Integrating the above, we find (12). Thus (i) and (ii) are necessary for incentive compatibility. It is easy
to check that they are also sufficient.

Individual rationality is the condition that θijVij(θij) − Pij(θij) ≥ 0 for all θij . Considering this as
θij → 0, we see that individual rationality requires Pij(0) ≤ 0. Conversely, Pij(0) ≤ 0 and incentive
compatibility, implies individual rationality via (8) and (12).

Now consider the problem of maximizing expected social welfare (1), subject to the constraint that
our mechanism is weakly feasible5, individually rational and incentive compatible. Since the scheme is
to be incentive compatible, we can deduce from (12) that the expected sum of the payments in location
i is given by

ni
∑

j=1

∫

πij(θij , θ−ij)pij(θ) dF (θ) (13)

=

ni
∑

j=1

∫

Pij(θij) dF (θ)

=

ni
∑

j=1

Pij(0) +

ni
∑

j=1

∫

[

θijVij(θij) −

∫ θij

0

Vij(η)dη

]

dF (θ)

=

ni
∑

j=1

Pij(0) +

ni
∑

j=1

∫

πij(θ)g(θij)
∑

` ui`(Q`(θ)) dF (θ) . (14)

Since the scheme is to be weakly feasible, we can use (14) to deduce that our problem is one of maximizing
(1) subject to

−
∑

ij

Pij(0) ≤
∑

ij

∫

[πij(θ)g(θij)
∑

` ui`(Q`(θ)) − ci (Qi(θ))] dF (θ) ,

The maximization is with respect to a choice of the functions Qi(θ) and the constants Pij(0). Restricting
ourself to individually rational payments means we must take Pij(0) ≤ 0 for all i. These enter only
through their sum, and we may take every Pij(0) = 0. This gives Pij(θij) ≥ 0 for all θij , which is as
we wish if the payments are to be made in kind. Hence the problem reduces to one of maximizing (1)
subject to

∫

Θ

L
∑

i=1





ni
∑

j=1

πij(θ)gi(θij)
∑

` ui`(Q`(θ)) − ci (Qi(θ))



 dF (θ) ≥ 0 . (15)

The maximum is to be found by pointwise choice of πij(θ) and Qi(θ). Having found it, we can calculate
Vij(θij), and then the Pij(θij) from (12). Finally, we set pij(θ) = Pij(θij)/Eθ−ij

πij(θij , θ−ij) if πij(θ) > 0
and pij(θ) = 0 if πij(θ) = 0, so that agent aij pays only if he is included and (9) holds.

We can establish several more important lemmas. Lemma 3 is used to prove Theorem 1 and establish
the limiting problem P̂(n). Lemma 4 guarantees one of the conditions that we require for incentive
compatibility, i.e., (i) on page 5. The following lemma is easy to prove.

Lemma 2. If for two agents in location i we have θij > θih then an optimal solution must have πij(θ) ≥
πih(θ).

5 In practice, we would like to have the stronger condition of feasibility, so that the required resources to be provided
with probability 1. If we are allowed to charge excluded agents, then an argument of [7] shows that a scheme which is
weakly feasible, incentive compatible and individual rational can always be turned into one that is feasible, incentive
compatible and individual rational. However, this requires some monetary transfer payments between the agents, so we
are no longer in a market where the only currency is payment in kind. If excluded agents cannot be charged, then it
is not yet clear to us whether a similar result can be proved. Perhaps one can only hope for weak feasibility. But the
fact that we are providing the required resources on average may be enough. It is possible to modify the optimal weakly
feasible scheme so that as n → ∞, with ni = nρi, the probability the scheme is feasible tends to 1 and the percentage
reduction in expected social welfare tends to 0.



Lemma 3. There exists a Lagrange multiplier λ such that an optimal solution to P(n) can be found by
maximizing the Lagrangian

∫

Θ

L
∑

i=1

[

ni
∑

j=1

πij(θ)(θij + λgi(θij))
∑L

`=1 ui`(Q`(θ)) − (1 + λ)ci(Qi(θ))

]

dF (θ) . (16)

The proof is in the Appendix.

Lemma 4. Vij(θij) is nondecreasing in θij .

Proof. Assume first that Fi is the uniform distribution on [0, 1]. By details we omit the argument
generalizes to arbitrary Fi. It is sufficient to show that πij(θij , θ−ij)

∑

` ui`(Q`(θij , θ−ij)) is nondecreasing
in θij . For then integrating with respect to θ−ij would complete the proof. So suppose this were not true
and that for a fixed θ−ij , and θ′ij > θij we have

πij(θij , θ−ij)
∑

` ui`(Q`(θij , θ−ij)) > πij(θ
′

ij , θ−ij)
∑

` ui`(Q`(θ
′

ij , θ−ij))

Denote the integrand in (16) by s(θ) and consider s(θij , θ−ij) and s(θ′ij , θ−ij). Suppose we make a change
in which the values of Q`(θij , θ−ij), πij(θij , θ−ij) are interchanged with Q`(θ

′

ij , θ−ij), πij(θ
′

ij , θ−ij) for
all `. With these changes, denote the integrand by s̄(θ). Then as θij + λigi(θij) ≤ θ′ij + λigi(θ

′

ij) we find

s(θij , θ−ij) + s(θ′ij , θ−ij) < s̄(θij , θ−ij) + s̄(θ′ij , θ−ij)

The integral over all other values of θ other than (θij , θ−ij) and (θ′ij , θ−ij) is unchanged. This contradicts
the fact that the original choices of the Q`(θ), πij(θ) were optimal, since that would require would require
s(θij , θ−ij) ≥ s̄(θij , θ−ij) and s(θ′ij , θ−ij) ≥ s̄(θ′ij , θ−ij).

4 The provisioning problem for a large system

It is difficult to compute and communicate the πij(θ), Qi(θ) (which maximize (16)) and the payments
that the participants are to make. A central authority would have to learn the preference parameters of
all the agents and then communicate the required payments to the agents. Fortunately, when n is large
the problem becomes easier. Recall that P(n) is to maximize (1) subject to (3). We define problem P̂(n)
as one of maximizing (4) subject to (5) when ni = nρi, for some given ρ1, . . . , ρL, where

∑

i ρi = 1.

Theorem 1. Let Φn and Φ̂ denote the optimal values of P(n) and P̂(n) respectively. Then

Φ̂n ≤ Φn ≤ Φ̂n + o(n) .

Moreover, if the decision variables Q∗

1, . . . , Q
∗

L and π∗

1(·), . . . , π∗

L(·) solve P̂(n), then by taking πij(θ) =
π∗

i (θij) and Qi(θ) = Q∗

i , for all θ and i, j, we have a feasible solution for P(n) for which the value of

the expected social welfare is Φ̂n, i.e., suboptimal by only o(n).

Form of the limiting solution Note that the optimal solution to P̂(n) can be computed off-line. In
particular, π∗

i (θi) is 1 or 0 as θi does or does not exceed a threshold, say θ∗i . We find that (8) becomes

Vi(θij) = πi(θij)
∑

` ui(Q`) (17)

and from (12) we have
Pi(θij) = θ∗i Vi(θij) . (18)

Thus every WLAN in location i that is included for roaming is required to do two things: (i) pay the same
fixed fee

∑

` θ∗i ui(Q`). This fee can be calculated (knowing the ni, ui and Fi) and communicated before
hearing the values of the preference parameters; (ii) contribute its share of the cost in terms of coverage,
this being Qi/ni. Assuming that all agents have identical cost function for coverage, each should provide
an equal share. P̂(n) is now just

maximize
Q1,...,QL,θ∗

1
,...,θ∗

L

L
∑

i=1

[

ni(1 − Fi(θ
∗

i ))
∑

` ui(Q`) − ci(Qi)
]

(19)



subject to
L
∑

i=1

[

ni(1 − Fi(θ
∗

i )) θ∗i
∑

` ui(Q`) − ci(Qi)
]

≥ 0 . (20)

The proof is in the Appendix and is given for the more general case in which only payments in kind
are possible. Now we require L constraints and so replace (3) by

∫

Θ

[

ni
∑

j=1

πij(θ)gi(θij)
∑L

`=1 ui`(Q`(θ)) − ci(Qi(θ))

]

dF (θ) ≥ 0 . (21)

i = 1, . . . , L. Lemma 3 must be generalized to Lemma 5. Its proof is in the appendix.

Lemma 5. There exist λ1, . . . , λL > 0 such that P(n) can be solved by maximizing the Lagrangian

∫

Θ

L
∑

i=1

[

ni
∑

j=1

πij(θ)(θij + λigi(θij))
∑L

`=1 ui`(Q`(θ)) − (1 + λi)ci (Qi(θ))

]

dF (θ) . (22)

The maximization is carried out pointwise. That is, for each θ, the values of πij(θ) and Qi(θ) are chosen
to maximize the integrand in (22).
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Appendix

A Proofs of Lemma 3 and 5

We prove Lemma 5, which we need for P(n) when only payments in kind are possible. The proof of
Lemma 3 is similar. This is the problem of maximizing (1) subject to (21). Let us rewrite this as the
problem of maximizing

∫

Θ

L
∑

i=1





ni
∑

j=1

xij(θ) − ci(Qi(θ))



 dF (θ) , (23)

with respect to xij(θ), Qi(θ), subject to

Qi(θ) ≥ 0 , xij(θ) ≥ 0 , (24)

xij(θ) − θij

∑L
`=1 ui`(Q`(θ) ≤ 0 , for all i, j, θ (25)



and

−

∫

Θ

[

ni
∑

j=1

xij(θ)
gi(θij)

θij
− ci(Qi(θ))

]

dF (θ) ≤ 0 , i = 1, . . . , L . (26)

Assuming that ui(·) is concave and ci(·) is convex, the objective function (23) is a concave function of
the decision variables, and (24)–(26) define a region that is convex in the decision variables. These are
sufficient conditions for the problem to be solvable by maximizing a Lagrangian. That is, there exist
λ1, . . . , λL such that we can solve the problem by maximizing

∫

Θ

L
∑

i=1





ni
∑

j=1

xij(θ)

(

1 + λi
gi(θij)

θij

)

− (1 + λi)ci(Qi(θ))



 dF (θ) , (27)

with respect to Qi(θ), xij(θ), subject to (25). This is equivalent to maximizing

∫

Θ

L
∑

i=1





ni
∑

j=1

πij(θ)(θij + λigi(θij))
∑L

`=1 ui`(Q`(θ) − (1 + λi)ci(Qi(θ))



 dF (θ) , (28)

with respect to Qi(θ), πij(θ), subject to 0 ≤ πij(θ) ≤ 1.

B Proof of Theorem 1

Note that solving P̂(n) is equivalent to solving P(n) under the additional constraints that πij(θ) depends

only on θij and Qi(·) depends only on i. This fact immediately gives Φ̂n ≤ Φn. Moreover, if we take as a
solution to P(n), πij(θ) = π∗

i (θij) and Qi(θ) = Q∗

i for all θ and i, j, then these define a weakly feasible,

incentive compatible and individually rational scheme that has expected social welfare equal to Φ̂n. We
can set pij(θij) equal to Pij(θij), where Pij(θij) is calculated via (8) and (12).

It remains to show that Φn ≤ Φ̂n + o(n). By Lemma 5, the problem can be solved by maximizing a
Lagrangian with Lagrange multipliers λ̄ = (λ̄1, . . . , λ̄L). Then for λ̄ and all other λ we have

Φn = max
Q`(·),π`j(·)

∫

Θ

L
∑

`=1

[

n
∑̀

j=1

π`j(θ)(θ`j + λ̄`g`(θ`j))
∑L

h=1 u`h(Qh(θ)) − (1 + λ̄`)c`(Q`(θ))

]

dF (θ)

≤ max
Q`(·),π`j(·)

∫

Θ

L
∑

`=1

[

n
∑̀

j=1

π`j(θ)(θ`j + λ`g`(θ`j))
∑L

h=1 u`h(Qh(θ)) − (1 + λ`)c`(Q`(θ))

]

dF (θ) (29)

We will show that the integral in (29) is bounded above by Φ̂n + o(n), where

Φ̂n = inf
λ

max
Q`,π`(·)

L
∑

`=1

n`

[

∑L
h=1 u`h(Qh)

∫ 1

0

π`(θ`)(θ` + λ`g`(θ`)) dF`(θ`) − (1 + λ`)c`(Q`)/n`

]

(30)

Let us suppose that each F` is the uniform distribution. It is notationally more elaborate, but routine,
to prove the theorem for general F`. Imagine dividing the interval [0, 1] into k equal parts, defining

Ii =

[

i − 1

k
,
i

k

)

, i = 1, . . . , k.

Let the random variable X`i be the number of the θ`1, . . . , θ`n`
that are in Ii, Note that X`i has a

binomial distribution with mean n`/k, and that by Chebyshev’s inequality we have

P (|X`i − n`/k| > ε) ≤
n`(1 − 1/k)(1/k)

ε2
≤

n

ε2
.

We shall use this with ε = n2/3. Let us define the set S = {θ : |X`i − n`/k| ≤ n2/3, for all `, i}. Then

P (Sc) = P

(

L
⋃

`=1

k
⋃

i=1

{

|X`i − n`/k| > n2/3
}

)

≤

L
∑

`=1

k
∑

i=1

P
({

|X`i − n`/k| > n2/3
})

≤
1

n1/3
.



Let us assume that the minimizing λ in (30) tends to a finite limit as n → ∞. Let Λ be a some compact
subset of R

L which contains both λ̄ and also the minimizing λ in (30) for all n. Let s(θ) denote the
integrand in (29) for a given λ ∈ Λ. Then we have for (29)

max
Q`(·), π`j(·)

∫

Θ

s(θ) dF (θ) ≤ max
Q`(·), π`j(·)

∫

S

s(θ) dF (θ) + max
Q`(·), π`j(·)

∫

Sc

s(θ) dF (θ) (31)

Since P (Sc) ≤ 1/n1/3 we can bound the final term in (31) by (1/n1/3)(nBΛ), where BΛ is a bound such
that for all i, j, θ, and λ ∈ Λ.

πij(θ)(θij + λigi(θij))
∑L

`=1 ui`(Q`(θ)) − (1 + λi)ci(Qi(θ)) ≤ BΛ .

We bound the first term in on the right hand side of (31) by

max
Q`(·),πj`(·)

∫

S

s(θ) dF (θ) (32)

≤ max
Q1,...,QL,θ∈S,
θ1∈I1,...,θk∈Ik

π1(·),...,πL(·)

L
∑

`=1

[

k
∑

i=1

X`iπ`(θi)(θi + λ`g`(θi))
∑L

h=1 u`h(Qh) − (1 + λ`)c`(Q`)

]

(33)

≤ max
Q1,...,QL,θ∈S,
θ1∈I1,...,θk∈Ik

π1(·),...,πL(·)

L
∑

`=1

[

k
∑

i=1

(n`/k)π`(θi)(θi + λ`g`(θi))
∑L

h=1 u`h(Qh) − (1 + λ`)c`(Q`)

]

(34)

+ BΛ

L
∑

`=1

k
∑

i=1

|X`i − n`/k| (35)

The second term in (35) is bounded by n2/3LkBΛ.
Given any ε > 0 we can choose k sufficiently large so that the intervals Ii have very small widths, of

1/k, and so we can have (using continuity and approximation of an integral by a Riemann sum)

max
Q1,...,QL,

θ1∈I1,...,θk∈Ik

π1(·),...,πL(·)

L
∑

`=1

[

k
∑

i=1

(n`/k)π`(θi)(θi + λ`g`(θi))
∑L

h=1 u`h(Qh) − (1 + λ`)c`(Q`)

]

≤ max
Q1,...,QL

π1(·),...,πL(·)

L
∑

`=1

n`

[

∑L
h=1 u`h(Qh)

∫ 1

0

π`(θi)(θ` + λ`g`(θ`)) dF`(θi) − (1 + λ`)c`(Q`)/n`

]

+ nε/2

Given this k we can then choose n sufficiently large that n2/3LkBΛ is less than nε/2. It follows, that
given any ε > 0 it is possible to choose k sufficiently large and then n sufficiently large to deduce that
for n sufficiently large (but depending on Λ),

Φn ≤ max
Q1,...,Q`

π1(·),...,πL(·)

L
∑

`=1

n`

[

∑L
h=1 u`h(Qh)

∫ 1

0

π`(θi)(θ` + λ`g`(θ`)) dF`(θi) − (1 + λ`)c`(Q`)/n`

]

+ nε

By taking an infimum over λ ∈ Λ on the right hand side we deduce Φn ≤ Φ̂n + o(n). The fact that the
limiting optimization problem in (4), (5) is solved by the Lagrangia corresponding to Φ̂n follows by a
proof similar to that of Lemma 5.


