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Abstract—In designing and managing a shared infrastructure
one must take account of the fact that its participants will
make self-interested and strategic decisions about the resrces
that they are willing to contribute to it and/or the share of
its cost that they are willing to bear. Taking proper account
of the incentive issues that thereby arise, we design mechiams
which, by eliciting appropriate information from the parti cipants,
can obtain for them maximal social welfare, subject to chargng
payments that are sufficient to cover costs. We show that ther
are incentivizing roles to be played both by the payments thawe
ask from the participants and the specifiation of how resoures
are to be shared.

New in this paper is our formulation of models for designing
optimal management policies, our analysis that demonstrats the
inadequacy of simple sharing policies, and our proposals fasome
better ones. We learn that simple policies may be far from opimal
and that efficient policy design is not trivial. However, we fnd
that optimal policies have simple forms in the limit as the number
of participants becomes large.

Index Terms—Communication system economics, Grid com-
puting, Incentives, Mechanism design, Scheduling, Virtuzation.

I. INTRODUCTION

appropriate incentives are in place, the economic perfoo@a

of the resulting system may be greatly reduced. This raises
the question of how a shared facility should be managed
S0 as to resolve the unavoidable conflicts that arise between
participants and to share the operating cost.

One way to share the cost of building a facility is to
require participants to pay fees. Another way is to add togret
actual resources that participants contribute, the sumhadtw
defines the size of the virtual facilityn this latter case, we
say that the participants are makipgyments in kindWe
might, in this case, operate a policy of asking each pagitip
to choose for himself a quantity of resource that he will
contribute to a shared pool of resources, and then say that
at all future instants the resource pool will be shared arabng
any participants who wish to draw upon it in proportion to the
sizes of their contributions. The participant who contrésu
more will receive more. But might the system work better if
the resource is shared in proportion to some other function o
their contributions? It is questions like this that we addre

The problem of policy design for computing facilities is
certainly not trivial, as has been observed in [1], [2], [Sim-
ple policies may perform very badly if they do not incent&iz

NFRASTRUCTURE virtualization is a powerful tool to-participants truthfully to reveal privately-held infortien re-
wards the creation of a global computing and commg@arding the utility they will obtain from a given allocation

nication infrastructure. It allows organizations to co@te

of resources.There is recent work in [4], [5] concerning

and contribute physical resources to the creation of virtuée definition of accounting requirements for grids, which
facilities involving networking or computing and storagesuggests that more sophisticated policies can be impledent
Examples include virtual networks, computational gridsl arin practice.

service clouds. Such facilties are shared by participating!n this paper we look at a number of models, making various
organizations and support specific services, applicatmns assumptions about the parameters that can be measured, and
scientific experiments. Although virtualization techrgjchas discuss tools for defining optimal policies. These polices
made significant progress, there remain many interestidg s#esigned to incentivize truthful revelation indirectly; bffer-
unanswered economic questions about the business moditgseach participant a choice of options and then observing
that can make such virtual infrastructures viable. which of them he chooses. More specifically, agents’ bids
In this paper we make the fundamental assumption thégtermine resource-sharing contracts. These contraetsfigp
each participant is an economic agent who profits froiihat quantities of resource each agent will obtain in each
using the common infrastructure, but that the value whidg¥pssible circumstance that some subset of agents wish to
he places upon being allocated a quantity of resourcesdi@w on the resource pool simultaneously. The parameters
private information. His incentive is to obtain for himselfof the contracts become finalized once all agents have made
as great as possible value from the shared infrastructure ff@eir bids. Each participant is incentivized to bid truthfu
service), while contributing minimally to the costs of itd.€. to reveal his true valuation for the given service. The
formation and maintenance. The result is that the partitga resulting contracts provide optimal resource sharingjesiiho
individual aims are not aligned with overall system effiggn a constraint that the fees paid by the agents cover costsisin t

This is an important observation and suggests that unless todel the rules of running the system are defined as functions
of the bids of the participants. We are effectively designin
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such that at thgBayesian)Nash equilibrium the economic
efficiency is maximized. Our approach leverages ideas from
the theory for optimal auctions [6] and mechanism design [7]
to the context of shared infrastructure design and manageme
We must stress that the mathematics involved in construct-



ing optimal policies in the context of incomplete infornmati find mechanisms that can compute (in polynomial time) both
can be very elaborate and rarely leads to simple analylientive payments and an allocation of jobs to machines, an
solutions. However, we can learn about some general featuobtain a makespan that is no more than some factor from
that good policies should hav&o in sections that follow optimal in the worst case. In addition to the emphasis on
we look at a number of carefully chosen examples, many pélynomial-time computation, there are two other diffares
which concern systems with just two participants. They aib our work: (i) there is no notion of any a priori distributis,
concern problems of efficiently sharing infrastructure aggi and so incentive compatibility conditions are to hold extpo
participants who hold private information. These examples and (ii) there is no constraint on the budget that is avadlabl
sufficiently simple that they can be solved, and their sohgi pay agents to reveal information (or conversely, a condtrai
point up important issues, challenges and future reseatblat payments taken from agents must cover cost).
directions, some of which we summarise in Section 1X. We The paper is organized as follows. In Section Il we introduce
do make the critical assumption that agents know the valaemodel for sharing an infrastructure of a given size and then
they place on being allocated resources, and also know flrevide an example in Section Ill. Section IV considers a
distributions of the private valuations of other agentsvéfdo problem of determining the infrastructure sidéwe supporting
not make those assumptions, then mechanism design probtaeory for sections |-V isn Section V. It is also applied to a
trivializes or has not enough structure to lead to a solutioscheduling a server in Section VI. In Section VII we discuss
More work is needed to refine our results and investigatiee inefficiencies of simple policies. Finally, in Sectionlly
their translation to practical implementations, i.e. imipan we look at how the design problem simplifies as the number
job scheduling policies of existing systems, see [8] and [9]of participants becomes large. We draw out some interesting
Previous work on computational grids has recommend&sssons for practice in Section IX.
the formation of a market for computation and the use of
prices at a heuristic level to guide resource sharing, seg [1 II. A MODEL FOR INFRASTRUCTURE SHARING
[11], [12]. In this market providers (sellers) and consusner . . )
(buyers) of computing resources go to trade. In [13] an opéh Sharing a given infrastructure
market for trading computational resources is proposeat, th We begin by presenting a model for optimally sharing an
operates similarly to the stock market double auction mod#&ifrastructure amongst participating users (or agents). Our
except that commodities are perishable. The market matcimedion of an infrastructure is one that we deliberately keep
the asks and bids, just as in the stock market, and allocatgste general. It is composed of resources (such as links,
resources accordingly. If it is competitive, then the markservers and buffers) and it can be operated in various ways
allocates resources efficiently, see [14], [15]. Orgairest (by choice of scheduling, routing and the manner in which
will decide how much infrastructure to self-procure and howesources are shared by the agents). (Letenote the set of
much to obtain from the market based upon the equilibriuall such ways that the infrastructure can be operated.
market price and on the statistics of their demand for com-To provide an example, let us introduce what we shall
putation, see [16]. This approach is sensible when ressurcall the scalar resource sharing modeln this model the
are commoditized and the market is competitive. i.e. thereinfrastructure can be parametrized by the quardjityf a single
a large number of buyers and sellers for each resource typesource. This might be the bandwidth of a communication
Our approach differs from the above, but is complementalipk, or the cycles available in a computational grid. A mann
and makes no assumption on competition. It is not based @hoperation (i.e. a membey of ) is specified by a vector
a market; rather itregulatesthe system by setting rules toxy,...,z, denoting the allocations of the resource that are
which participants must abide and a policy for sharing theade to the agents, whepe, z; < Q. The infrastructure is
resource pool and covering its cost. It is appropriate whém be shared amongst agents on a sequence ofldays. . .
organizations may collaborate over a long period of timeegit There is daily operating cost, which we assume to be a
(i) to share the cost of running an existing facility, or (i) constant, for all w € Q. This may include interest payments
create a new shared virtual facility, by each contributiogal on capital investment.
computing resources (or by providing finance for purchasing Given that the infrastructure is operated at day manner
and maintaining those resources). Case (i) is common where (2, the utility for agent is u;(w|0;..), where{0; ;}1—12,...
the infrastructure is initially created using public fungj and are independent and identically distibuted samples of dan
(i) is common in large e-science projects, e.g., [17], [18Variable with distribution functionF;. For convenience in
[19], [20], and in other virtual facility building projectiike exposition, let us suppose a product fomy,u;(w). The
Onelab [21] and PlanetLab [22]. Our approach allows fdunction w;(-) is public knowledge, but;, is known only
long-term predictable contracts, in which participantskena by agenti and is independent of othés ,, j # i. Essentially,
contributions in kind (infrastructure). This can be preéefto one can think of{(u;(w),...,u,(w)) : w € Q}, as a set
the uncertainty of fluctuating prices in a dynamic market. of achievable points, whose values to the agents are unterta
Mechanism design problems for scheduling have been cada-the operator of the facility because only the agents know
sidered by the computer science community, but with quitg ;. ..,#0, .. However, it is public knowledge, a priori, that
different objectives. In a problem addressed in [23] and [24; , is a sample of a random variable with distribution function
jobs must be allocated to machines which are strategic ). In practice, theF; might be constrained to a finite set of
revealing their processing times for the jobs. The aim is tlistributions, each associated with a certain organimdtipe.



If ;. = 0 then agent does not need to use the resource at A first-best (Pareto-efficient) allocation of resources is
dayt. achieved when goods and services are traded in a perfectly
We wish to operate the facility so as to maximize the totabmpetitive free market. The same efficiency can also be

expected net benefit to the participating agents, subjeet t@chieved by a central controller who has complete inforomati
constraint that they pay enough to cover a daily operatisy c@bout agent preferences and who has full centralized dontro
c. In doing this, we are to choose aperating policy say M, This can happen in what we shall call thdl informationcase,
implemented in two steps, as follows. i.e. when the operator of the system can somehow access the
M1 (the rules) The agents are told that as a function € values of thes. o _
declaredd, = (014, ..., 00+ _ There are many ways that_pgrfect competmon can _fall. One
’ ’ is if agents collude. Another is if agents have private infar
tion; in our models we call this thpartial information case,
i.e. the operator and agents know only a priori distribugiof
function p(-) — (py (- ' 6; +s. Now one must be content w?ths&cqnd—besﬁllocation
p ) Pr(1); - Pnl ))'_ of resources. The second-best is achieved by the system
M2 (the game) Knowing all data (that is, th§, u;, for all ~ gesigner imposing rules (for a auction, or other mechanism
j €{1,...,n}), his ownf;;, and the functions:(-) and ~ gesign) so that when independent agents act strategically i
p(-) in M1, and assuming all other agents are truthful ifhejr own self-interests, (in respect of actions and anyapely
their declarations, agenthas a priori incentive to declarepe|q information that such actions may reveal) then within
truthfully his 6; ;. the resulting non-coopertative game, the equilibrium (orsi
Given the declarations df 4, ..., 0, steps (a) and (b) equilibrium if there are more than one) has the greatest
are now implemented. possible efficiency.
i i i i Given any set of operating rules (not necessarily those
In M1 the functions.(-) andp(-) define a game in which ¢, \yhich second-best efficiency is obtained) the tesrite
agents participate by declaring values for their privakelgwn ot anarchyis used for the quotient between the first-best
0i.1- We wish to choose(-) andp(-) so that at an equilibrium sqcia| welfare and the social welfare that is obtained at the
of this game some objective is achieved. For example, Wgy st of the possible non-cooperative equilibria. Somesim
might seek the greatest possible sum of agents’ utiliti§fe price of anarchy tends to 1 as the number of participants
This makes our problem one afiechanism designVe NOW  hacomes large. This happens in a bandwith sharing problem
sketch, SO far as space allows, those basic elements of Ifo”iﬂﬁ/vhich the heuristic control is an auction, [25], and in i
mechanism design theory that are relevant. For more de@dhsequently the quotient between first-best and secosid-be
readers are referred to [7]. welfares also tends to 1. We see this also in Theorem 3 of
Let (,0-i) be shorthand fofy,...,7,...,0n:) @nd  gection VIII-B. However, in [26] we have considered a peer-
E_y,, denote expectation over afl;; for which j 7 i. If g peer file-sharing system and shown that a heuristic ofelfix
agent: declares; ; = 1 then his payoff is hisxpected net participation fee is asymptotically as good as second;best
benefit that the price of anarchy remains bounded away from 1.

E—ei,t[eiui(w(nae—i,t)) _pi(nvei,t)]' (1)

Suppose this game hasBayesian Nash equilibriurat which
each agent declares the true value ofthig i.e. no agent can
improve his expected net-benefit by unilaterally deparfiom
a strategy of making truthful declarations. The teBayesian
refers to the fact that each agent calculates his expected ne i
benefit while knowing thel’;, the distributions of all other w(0:) = argmfx{zeiat“i(w) - C}' @)
agents'd; ;s, (and that they will declare thege;s truthfully. =1
The revelation principlestates that nothing is lost by re-If the system is operated daily using¢;), then as each day
stricting attention to mechanisms whose equilibria arensut$ statistically the same, the long run average socal veeitar
that all agents make truthful declarations (so-caltkabct- n
Z 0; ru(w(fy)) — c] . 3)
=1

mechanisms Doing so imposes aincentive compatibility Ey,
privately-knowné; .. This is what we are saying in M2, andIf (3) is negative then there is no way to run the system so

(a) the operating policy if2 will be chosen using the
functionw(-);
(b) the payments on day will be determined by the

B. The full information case

In the full information case the best way to operate the
system on day would be by choosing € 2 as the maximizer
of the social welfare giving

conditionthat agent should be made to reveal truthfully his

in condition C1 of in Section II-C. that costs are covered. If (3) is nonnegative then one cakd a
We may immediately distinguish two important cases. Létom agent; a daily paymenp; that is less than his expected
us recall that in welfare economics an allocation of resesirchenefit of Ey, [6; ;u(w(6;))], also choosings, ..., p, so that

is calledPareto-efficientf no agent’s position can be improved) . p;, = ¢. Then each agent gains positive net benefit and
without making some other agent’s position worse. Any alldhe total payments cover cost. The paymgntneed not be
cation that maximizes social welfare is Pareto-efficiene Wnonetary. Instead, agentould be asked to contribute a fixed
measure an agent's position is measured by (1) and socjahntity of virtual resources that is of valpg i.e. to make a
welfare by (3) and (4), below. payment in kind



We can now also define anfrastructure optimization prob- could make the choice af, or the allocation of resources at
lem Suppose that there is a possible sp@a# infrastructures, time ¢, depend on a-length history of declarations up to time
i.e. Q € O, each with a given cost(2). The problem is to ¢, {6;—,41,...,6:}. The best policy of this type is surely very

choosel) € © that maximizes the social welfare complicated to derive. We look at two extreme cases:
n — one-shot participationthe facility runs for one day or
Ey, Zei,tui(w(g,et)) —c(Q)], (4) forever, but each agent remains in the system for only one
i=1 day (and sor = 1);

wherew(9, §,) denotes the optimal operation of the specific — long-term participation the facility runs forever and the
infrastructures). same agents participate each day (so effectivelyt).

To make things concrete, we now assume the scalar resoqrcﬁhe ex-ante versions of C1-C3 are natural for models with
sharing model. The s& of possible infrastructures might beinfinite repetition, where by the law of large numbers the
© = {Q : Q > 0}. The daily cost of the facility is:(Q). agents and the facility operator see time averages of profits
Suppose that) is given. In the full information case, theand cost covering payments. The one-shot scenario differs i
optimal allocations are given by the facility runs only once because, as the operator does not
see time averages, covering cost should be ex-post.

x¥(0:, Q) = arg _max {ZGi,tui(xi)}. (5)
i=1

Yo wi<Q I11. EXAMPLE OF SHARING A FIXED RESOURCE
The infrastructure optimization problem is A purpose of the examples in this section is to illustrate the
n more general results to be derived in Section V. To bdgtrys
max{E Z 0; ru(z; (0, Q))} - c(Q)}. (6) take the scalar resource sharing model witk: 2 agents and
@ i=1 @ = 1. We analyse memoryless mechanisms. Onagent
i has utility 0, ;u;(x) for resourcer, whereb; 1,0, 5, ..., are

L ) independent samples frobi[0, 1].

C. The partial information case

In practice, thed;, are usually private information of the
agents and they will act strategically when asked to reveal
them. An agent might choose to declare an inaccurate valuAs we see in Section V, ifu;(z) = x then optimal
of 6, ; in order to obtain a larger resource share. To incentivineechanisms allocate the resource (if at all) wholly to the
truthful declarations the operator must introduce payser#tigent declaring the greatest;. This makes the solution to
which depend on those declarations. Now agedeclared), ; our mechanism design problem equivalent to that of an optima
to maximize(1), his expected net benefit. This leads to thauction, and we can directly translate result&® now describe
type of game described in Section II-A. At the Bayesian Nastome possible policies. In what follows, we drop the suffix
equilibrium, we wish the following conditions to be satisfie from 6; ., since we now think about a memoryless mechanism

C1. Incentive compatibility Agents should find it in their a@pplied on a typical day.

The caseu;(z) =z

interest to be truthful in declaring thef ;. The first-best policy:This allocates the full resource to the
C2. Participation (also called individual rationality)Agents agent having maximurgy. Using the fact that the maximum of
should see positive net benefit from participation. two independent random variables, each uniformly disteu

C3. Cost coverage (also called budget-balancBpyments on [0,1], has mear2/3, we have
should cover the cost(Q).
C4. Maximum expected social welfare (total net beneft) E{ o poX (Grz1 + 925”2)} = Blmax(61,6,)] = 2/3,
attained (subject to C1-C3). o _ _
\gﬂ?re expectations are with respectég 6,. So if agents

Each of C1-C3 can be imposed in two senses. Consider ag . . . .
i and 16t0_.s = (Bups- . 05142055110 20n0). The ex- are truthful about thei; without the mechanism needing

ante (weak) sense means that for@l} the condition holds 'n(i/?/?]t'\:'ﬁe this, th;en thte etxpectet?] sozal welrl:ar-@/I 8- Ic but
in expectation, beforé_; ; is known to agent (and assuming athappens 1f we 1ry to use the above sharing policy, bu

truthful declarations by all other agents). For example 33, take no payments from agents, and so offer no incentives for

in the scaler resource sharing madélis means them to be truthful’.f_CIearI_y, every agent \.N'” declaré; = 1, .
and the operator might flip a coin to decide on the allocation.

Ey_,, [0iu(z:(6:) — pi(6:)] > 0. (7) The social welfare becomels’2 — ¢, substantially less than
the first-best o2/3 — c.

Second-best mechanismset us now examine some mech-
anisms that maximize social welfare under constraints G1-C
0; u(x;(0r)) — pi(0¢) > 0. (8) The first mechanism satisfies all the constraints ex-ante. Th
o . second mechanism satisfies the cost covering constraim C3 i
Similarly, ex-ante and ex-post versions of C3 &igip: (0:) + o stronger ex-post sense, but constraints C1-C2 ex-Eimge.

s 4 pp(0:)] = candpi(6:) + -+ pa(6:) > c. . SR ) )
Observe that the class of policies discussed so far tlrgrd mechanism is Vickrey auction type of mechanism that

restricted to those that are memoryless. More generally, \?/%“Sﬂes constraints C1-C2 ex-post and C3 ex-ante.

The ex-post (strong) sense means that for all possjhle_; ;
the condition holds. For C2, this means



Mechanism 1:This operating rule of this mechanism carturning to Mechanisms 2 and 3, it is interesting to compare
be seen as arising from (21) Section V-B and its paymentechanism 1 to a heuristic polidy which might be used by a
from (23). The operating rule, M1(a), is that amongst thoseon-sophisticated facility operator. The social welfalpéained
agents declaring; > @ the resource is wholly allocated to theby H is also shown in Figurel.

one who declares the greatést If neither declare®; > 0, A heuristic policyH: Suppose the operator posts a price
then no resource is allocated. The valuefol a parameter gnq ask both agents whether or not they are willing to pay this
of the mechanism. The payment rule, M1(b) is that if agentyyice in return for use of the resource. If just one is willing
declares; then he is charged then he is allocated the resource and payi§both are willing
pi(6:) = %(91_2 +9—2)1{9i>§}. 9) then the resource is randomly gllocated to one of them (by
symmetry) and he pays Otherwise no resource is allocated
Let z;(61,602) be 1 or O as the item is or is not allocatecind no payment is taken. The valueyois chosen so that the
to agenti, when the agents declare their parameters to becial welfare is maximized, subject to ex-ante covering.of
01,05. Agent 1, who is assuming that at equilibrium agent Zhe best choice op is found by solving the problem
is declaring truthfully, declare® = n to maximize his ex-ante

net benefit of
12, a2y 1.2, g2 It turns out that the optimgb is p = 1/3 if ¢ < 0.296, and
Eg, [0121(1,02) — 5(n° +0%)] = 61n — 5(n* +6%).  (10) the smaller root of 1 — p?)p = ¢, if 0.296 < ¢ < 0.385.
This incentives) = 0, for 6, > @, so ex-ante C1 holds. The Mechanism 2:The allocation rule is as in Mechanism 1,
maximized ex-ante net benefit jg67 — 6?) > 0, so ex-ante byt we adjust the payments so that C3 holds ex-post. This can

C2 holds. B be done by making agentpay p;(61,602) = ¢/2 + p1(61) —
The value off is chosen so that ex-ante C3 holds, i.e.  p,(6s,), with p;(6;) as defined in (9), i.e.

maximize (1 — p*) (1 +p) s.t. (1 —p°)p > c.

1 _ _ 2 72 B 2 | A2 _
c= Bl (60) +pa(0) =2 [ Juwt 40w 21008 =het 0T 4 001gy = B0+ )Ly,
i " v and similarly for agent 2. Note that C1 and C2 continue to
=1+6°—36° (11) hold ex-ante becausgy, [p1 (61, 62)] = p1(61) as in (9). Such

The right hand side increases frdn3 = 0.333 to a maximum an adjustment can always be made; if there weegents one

of 5/12 = 0.4166, asf increases from 0 td/2. Thus any cost could takepi(6) = s+ pi(0i) — 753 227 (0)-

can be covered, up 10.4166. Mechanism 3:The allocating rule is as in Mechanism 1.
In Figure 1 we plot the value of the expected social welfafdS an application of (24pgentl pays

as a function of;, and compare it to the first-best vallghe

qualitative lessons are that first-best and second-bestidei

if ¢ is small, but second-best is strictly worse:iis large. For and similarly, agent 2. It gives a second-price (or Vickrey)

very largec it is impossible to cover costsl is easy to check auction. Itis easy to check that C1-C2 hold ex-post. Morgove
f can be chosen so cost coverage is ex-ante, since it can be
easily checked thaky,p; (01, 62) = p1(01) as in (9).

Mechanism 4 (for long-term participation)How might
we exploit the fact of long-term participation? Might sirapl
mechanisms be more appropriate? Indeed this is true, as the
following mechanism shows.

— At each timet, ask the agents to declare théjr; and
award the resource to the agent declaring gre#test

— Police the declarationsmake sure that in the long run
the empirical distribution of the declared values of ihg
matchesF;. If this is not the case then penalize agertty
imposing an appropriate charge.

— Assuming that agents are truth-telling, compute the ex-
pected benefit of each agent at each timiaen just as in our
analysis of the full information case, split castarbitrarily
Fig. 1. Comparison of expected social welfares, as funstiir, for first-  INtO ¢1 and ¢z, so the expected benefit of agenis at least
_best (solid line), second-best (dashed line) and a heudst{dotted Iin_e). It ¢;, and then use these fixed charges at each time
e L o e o et s St of he k25 A we prove in Section VA, this simple poliy incentizes
second-best mechanism. truthful declarations. It also satisfies ex-ante C2 becautiee

long run each agent will have positive net benefit.
that the mechanism does not achieve any of C1-C3 ex-postOur discussion to this point shows that operating policies
As we now show with Mechanisms 2 and 3, it is possiblmay be very sensitive to modelling details. Policing is a
to strengthen the ex-ante constraints to ex-post onesreitpractical option only when the same set of agents with known
for C3, or for C1 and C2, but not for all. However, beforgrofiles are sharing the facility in a repeated fashion; giiss

p1(01,02) = max(6,02)1 (g, < max(d.00))
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a special structure to the problem that allows us to achietle infrastructure is shared among the agents accordirgto t
the same efficiency as in the full-information case. Howgvanfinite repetition model introduced in Section II-A in whic

if agents change from day to day, or policing is not possiblgents reveal their actual daily valuations.

then we must to do something more interesting and nontrivial Let us suppose a model in which if the infrastructure is
We have seen that there can be several versions of secarpkrated at day in mannerw € €, the utility for agenti
best mechanisms; which we prefer can depend on whichisfg;0; ;u(w), where¢; is the type of the agent and, ; is
constraints C1-C3 ought to be respected ex-post (or ej-arttes normalized valuation of the service at the given daks

in given practical circumstances. before, it is public knowledge, a priori, that is a sample
of a random variable with known distribution functidn, but
B. The casei;(z) =27, 0< 8 < 1 its true value is known only to agent Now, for eachi, ¢; ;

With w, () = 2% (0 < 8 < 1) the story changes, in that the|s also .prlvate qurmaﬂon with a knpwn dlst_nbutl()ﬂ-. A

) -way to interpret this is thaf; ; states in a relative scale how
resource is no longer wholly allocated to the agent de@a”(}aluable the service is to auentand multiolving it with ¢,
greatest, ,. It turns out that under a second-best mechanism geh pying !

. . . ..~ “rescales this to its actual value. For instartge,could take a
the optimal division ofQ into z; andxz, does not maximize . . . ’ L
3 3 . : . value in {1 (low), 2 (medium), 3 (high), and multiplying it
0142 + 02125 (as it would be for first-best). There is an ' .
efficienc Ié)ss in inducing incentive compatibility. Thisill by ¢; leads to the actual service valuation. Or we could have
y g P y that 0, ; is uniform on[0, 1], and¢; is uniform on|0, M], in

become clear in Section V-B. which casep;6; ; is uniform in[0, ¢;]. Hence the type of agent
Suppose that agents are identical and the common distribu- LU e © lype ot ag
tion of 6, , has density functiorf. Define, forA > 0 7 1s needed in order to determine fully the distribution of the
i,t . ’ - 1

parameterd®, ; in the model of Section II-A.

9(6;) =0; — (1= F(6;))/f(6:) (12)  Our mechanism now is a modification of M that can be
B N described as follows.
ha(0:) = (6: + Ag(6:)) ™ (13) Mt The agents are told that as a function of declased
We see in Section V that the optimal sharing policy is found (1., 0n)
by solving a Lagrangian dual problem: (a) the facility Q(¢) € © will be chosen;
2 (b) the operating policy for declaretl will be w(6;, ¢);
min{E max th(@')xf} —(1 +/\)c}_ (c) the payments for declareg} will be p(0;,¢) =
A>0 w1tz <l (P1(0r,0), ..., on(0r, 0)).

This means thaty;(6;,05) o hy(6;)/1=5). Notice that if MT2 Knowing all the above, and assuming all other agents
)\ = 0 this means allocating the resource in the most efficient ~ are truthful, C1-C3 hold at the equilibrium and agent

way, i.e. to maximiz&_, 6,u(z;). However, for a mechanism i has a priori incentive to declare truthfully his, and

parameterized by > 0, the resource is allocated differently. subsequently at every dayhis 6; ;.

There is af, such that an agent who declarés < 0 is Given declarations ofpy,...,¢,, step (a) is imple-

allocated no resource. Whehy > 6, > 6, agent 1 receives mented once at the start, and then, giden, ..., 0, .,

a greater share of the resource than he would in an efficient steps (b) and (c) are implemented daily.

allocation. We findz, (61, 62)/22(61, 62) is increasing im\. This model of facility building has both one-shot and
As X increases fron to oo the cost that is being covered byreneated components. The initial component is one-shot. On

the mechanism is increasing. For= 1/2, this means we can e pasis of declared,, ..., é,, the choice ofQ and the

COVEI’? < 0.2344 with A = 0, and _ther_lc S [0.2344,0.4413] functions w(f;, ¢) and p(6;,$) are specified. Each agent
by taking A € [0, 00). The mechanism is complicated, but th¢anq the operator) can now estimate average net benefit (and
results of its application can be calculated numericallg an reyenue) throughout the future and might be inclined todeav
figure produced that is very similar to Flgu.re 1. We returfhe system (decline to operate) if this estimate is negafiis
to the issue of calculating payments for this mechanism igqests that constraints C2-C3 must hold ex-post in regard
Section V-B. Similar stor_les are true_lf there are more thand step (a). However, as regards to the repeated component of
agents. However, numerical calculations can be intragtabl steps (b) and (c) they need only hold ex-ante. In genera, it i
impossible for all of C1-C3 to hold ex-post, but it becomes
IV. BUILDING AN OPTIMAL INFRASTRUCTURE possible as the number if agentstends to infinity.

We return now to the infrastructure optimization problem Let us now describe a model that we shall often use.
that we touched upon briefly in Section 1I-B, in whichwe use the terminologgctivity modelto refer to modelling
the declarations of the agents are also used to choose @ssumptions that the utility for agentis ¢,0; ;u(-), where
size of the infrastructure. There are now two stages in thg, € {0,1}, truthful declaration of); , takes place automati-
implementation of a mechanism. In the first stage agertally, and¢; is private information, with a priori distribution
declare their ‘types’, that can be interpreted as how vdduahb;. This gives a model in which agents are either ‘active’ or
is using the infrastructure on fypical day. As a function ‘inactive’, i.e. are only interested in using the infrastiure
of these declarations the operator decides on the size of dresome days, and given that ageéis active, she has always
infrastructure and on the payment functions and allocatidine same utility functio; (). Assume tha{f; ;}1—1 »,... are

yeen

rules that will be used in the second stage. In the seconephamlependent and identically distributed samples of a Balino



random variablelet «; be theactivity frequencyf agenti, i.e.  After many days (which should be exponentialif so that
the probability thaty; ; = 1. Define the probability that on athe system will operates for a long time near its steadye}tat
given day the set of agents who wish to use the infrastructuke can be doubled. One can show (though we omit further
S is a(S), whereS C {1,...,n}. We assume that on anydetails) that if this policer is employed then agéntaximizes
particular day the value & is known, since there is no reasorhis long-run average net benefit by respecting the constrain
why any agent would pretend she wishes to use the resoutitat the empirical distribution of hi®;, matchesU|0,1].
when she cannot benefit from doing so, or pretend she canApplying Theorem 1 (below) we can conclude that subject
benefit from using it when she could. This is by the sante this constraint he does best by being truthful.

arguments as in the proof of Theorem 1, Section V-A. Once we know that agents are truthful, the problem simpli-
Consider the scalar resource sharing model, with the activiies since we can then use (5) to make an optimal resource

model assumptions; = 2, u(z) = z, and a priori¢; ~ allocation for each vecta, = (01, ...,0,,).

UJ0,1]. Suppose tha® = {Q : 0 < @ <1} and¢(Q) = Q. It remains to check that the combination of the allocation

Let @; =1 — ay. The first best optimum would be mechanism (5) and the policing mechanism described above

does actually incentivize agents to be truthful. We need to
Eolglg§l{(ald2¢1 + az@1¢2 + araz max(¢1, ¢2))Q —WQ} check that there is no equilibrium which achieves a better
o 4 payoff and in which agents sometimes report th&ig in
= (a1d2¢1 + az01¢2 + ajaz max(¢r, ¢2) — 7) . (14) a non-truthful way. To check this, we start by noticing that
the payment ofp; that is to be taken from ageritis fully
Recall thatha(¢) = ¢ + Ag(¢), where forg; ~ U[0,1] We  yetermined by public knowledge df,.. .., F,, and so does
haveg(¢) = 2¢ — 1. _ _ not depend on the agent's declarationsdgf, 0,0, ... . Let
As we see from the theory in Section V the value of th§q oy consider whether it could be advantageous for agent
second-best social welfare is i to decide that whenever his ; takes the valu#, he will

min{Ed,]m [(041642hx(¢1) + andihy () declare it to beJ; (possibly even randomizing). The policing
A0 mechanism constraing; to have the same distribution as

_ + 0;. Subject to this constraint, the agent wishes to maximize
+arazmax(ha(61),ha(@2)) = (1+ A7) |}, (29) v whoret e e |
which also provides a way of finding the appropriate value of Theorem 1:Suppose that when agerit has 00 = 6;
A. This leads to a mechanism in which agenparticipates he declares it a®] (possibly randomizing), subject to the
only if ¢; > ¢ (defined byh,(¢) =0), and@ =1 or @ =0 constraint that the unconditional distribution @f must also

as the term is round brackets above is positive or not. e F;. Given that the resource is to be allocated according to
declaredd; , and by using (5), the agent maximizes his net
V. THEORY benefit by always being truthful, i.e. withf = 0;.

This section contains the theory underlying Sections Il— Proof: Given thatu;(z) is concave increasing in; and
IV. We separately consider the scenarios in which a set %) iS determined by (5) the functiol;(-) must be non-
agents interacts over a long period of time (our ‘long_ter&ecrea_f,mg. We now use.the Hardy-thtIewood rearrangement
participation’ model) or on just a single day (our ‘one-shdf€auality, which generalizes to integrals the simple fhf‘t
participation’ model). It is interesting that in the first tlese  9IV€N anyai, ..., a, andbi, ..., by, then_; aib; < 57, aibi,
scenarios a simple policy that uses policing can asymaibyic where the st{;\rred_ sequences are rearrangements of theabrigi
obtain the same social welfare as the first-best policy, ggst SqUences into increasing *order. Takmg91) = ¢ and
when there is full information. b(Gé) :bE_[V(@i)Wi]a we haver” (0;) = 0; andb™(0;) = V' (6:),

and obtain

A. Long-term participation: incentive compatibility aeiied E[0;Vi(0;)] = E[&E[Vi(@i)lﬁ]} :/ ab < / a*b*
by policing 0 0;
: ; U ; = E[0;V;(0:)].

The key idea is that long-term participation makes it pos-
sible to incentivize agents to be truthful by policing theio there is no reason for ageinto be other than truthfulm
declarations. We may threaten to impose a very large fine L ) )
upon agenti, or to exclude him from participation, if the B+ One-shot participation: optimal auctions
empirical distribution of his declared; 1,0; ,... does not  Now we turn to the more difficult circumstance in which it is
converge to the publicly knowtd;. There are many ways in not possible to police the parametéfs because the scenario
which this might be done. For example, At is the uniform is one-shot. Our discussion focuses upon a typicaltdadyet
distribution on[0, 1] we might partition[0, 1] into N equally u;(z;|0;) denote the utility of agenitfor allocation of resource
likely subintervals of widthl/N. We then run leaky bucket z;. It is a function of his privately known parametéy. A
policers for each of these subintervals. Each bucket cahdrol special case of this model ig(x;|0;) = 0;u(z;), as assumed
infinite number of tokens, and receives tokens at a ratepefr  hitherto. Another special case is
N days. A token is removed from the bucket corresponding to 0
the subinterval of0, 1] in which a declared), ; falls; if there u;(x]0;) = { ’

€Tr =
is no token in that buffer, then agentobtains no resource. r=(1-0)z, z=12...



for 0 < r < 1. This models a scheduling problem, to bé&Jpon substituting; = 6, and integrating, this gives
discussed in Section VI, in which there ateunit length jobs,

each belonging to an agent; a subset of them us chosen foy; (9,) = . (0) + Z wi(2)0; s (]6;)
processing and scheduled in some order. If the job of agent -

1 is completed after a time, then he gains utilityr — ~;z, 0,

wherev; = 1 — 6, is a per unit cost of delay. The allocation —/
x = 0 indicates that the job is not processed.

As usual, the a priori distribution of; is F;, which is By taking an expected value of (19) with respectiousing
known to all agents and the system operator. Based on tltigegration by parts, and then summing @mwe find that the

information, the operator imposes on the agents a mechanigi.ante cost-covering constraint can be written as
say M. This is the same as M, except that we now allow

the choice of operating mode to be a randomized choice _ E (216:
within Q, say taking the values with probability g(w|6;). zi:pl(OH "{;;[uz(“’c' i)

o2 ui(alsi )i (als:)dsi | (19)

The payments arg;(w, 6;), i = 1, ..., n. Specification of the
functionsq(-|-) andp;(-,-) are part of the rules of M _ 1}?9(‘;) 6‘Zvuz'($|9i)]¢i(d?|9) > c.
We now drop the suffix, writing 6; (and #), in place of o '

0. (and@;). For simplicity, let us suppose that for every pur%ubject to this constraint, we wish to maximize (16). The

ch(_)ige ofw, the allocationz;(w) takes one of the values in decision variables are thg(0) (which are to be< 0) and
a f|n|te_§gt, sayX (e.g.X ={0,1,...,Q}). I__(_at us denote bi(2]0), i € {1,...,n}, z € {0,1,...,Q} (which are
probabilities for agent being allocated:, conditional ond or to be in [0,1], as well as consistent with the randomized

ond;, as choice ofw € Q). The fact that we allow the choice of
bi(2]0) = P(x;(w) = 2]0), to be randomized means that the set of all possible choices
of decision variables is convex. All decision variables egp
¥i(x]0;) = P(z;(w) = z|0;) = Eq_,1;(x|0). linearly in both the objective function and constraint, aud

the problem can be solved by considering maximization of a

It is because M allows randomization over the choice of J_Eilgrangian of

that these variables can take values strictly between 0 an

We also denote ex-post and ex-ante payments as
P pay L:EQ{ZZ (1 + N (x]6:)
pi(0) = Ejgpi(w, 0), pi(0s) = Eg_,pi(9). iz
The aim of the operator is to design a mechanism maximiz- - /\1;?9((1) a%iui(xwi)] 7/’z‘($|9)}
ing total expected net benefit of

—(L+Ne+AD>pi(0). (20)

Eg{ZZui(IWi)wi(xW)} —c, (16)

%

This can be maximized pointwise for eaghand the statement

subject to C1-C3. The ex-ante net benefit of agest of the theorem now follows. [ |
Let us make some remarks.
bi(0;) = i(20:)i(z|0;) — pi(0:). 17 : . .
nbi(6:) zw:u (216:)9:(l0:) = pi(6:) ) 1. The assumption that,;(w) takes values in a finite set

o is simplifying for exposition, and useful in some examples.
For simplicity, suppose that;(z|0) = 0 for all . However, if z has a continuous domain we may replace
Theorem 2:There existsA > 0 such that the optimal >, ...¢;(x]0) by [ ...4(x|0)dz, with ¢ now a density.
mechanism design (satisfying ex-ante C1-C3) choases 2. Theorem 2, its proof, and remark 3 recast, in the context
function of f to maximize of our models, standard arguments from the theory of optimal
R0 8 auctions and mechanism design, as expounded in [6] and
Z{(“”\)“i(xiwi) — A a_(ai“i(xi|9i)] (18) [7]. There is one difference in that we seek to maximize
i social welfare, whereas in an auction one is usually seeking
Proof: The ex-ante expected net benefit of agergiven to maximize a principal’s profit.
in (17), is continuous and differentiable #. Assuming that 3. Consider the scalar resource sharing examples in Sec-
the F; are continuous, this is due to the averaging that takéiens llI-A and 11I-B, where we hadi;(z;]0;) = 0;u(z;). The
place overd_; when obtainingu;(z|6;) = Ey_,u;(x|#). The coefficient of in (18) isg;(0) = 0 — (1 — F;(0))/ fi(9). The
ex-ante incentive compatibility constraint C2 means that choice ofw in (18) becomes the problem

truthful declaration off; maximizes agent’s expected net
benefit. Using (17), this provides a stationarity condifitivat maximize{Z(Gi + /\gi(Gi))U(xi)}. (21)
declaringt; = 7, Yo |G

Zui(ﬂei)i%(xm)— 2p:(n) = 0. Assume g;(-) is nondecreasing (as is the case for many
. on on distributions), and lef; be the leas#; for which it is profitable



to allocate resource to ageiji.e. 6; + \g;(6;) > 0 for 6; > 0; VI. AN APPLICATION TO SCHEDULING A SERVER

in (21). To calculate the payments, define Suppose that each of agents has a single unit length job

Vi (w) = By [u(zl(w 92))] (22) which he wishes to have processed, and with minimum delay
: ’ ' cost. An operator owns a machine. He is to decide which of
and similarlyV>(-). Upon declaringd; agenti must pay the agents’ jobs to process and how their processing is to be

0, ordered. Suppose that the utility to ageifthis job is finished
pi(0;) = 0;V;(0;) —/ Vi(w) fi(w)dw, 6; >0;, (23) after atimex; is u;(z;) = r; — v;x;, wherey; =1 —0; is
0: the per unit time delay cost artt] is private information of
and 0 otherwise. agent;. If his job is not processed utility is 0. To indicate that
This mechanism satisfies the ex-ante versions of C1-C3alfob is not processed we can lef = 0, with «;(0) = 0.
is possible, as above, to alter the mechanism so that ex-pBgppose that a prio; is distributed uniformly o0, 1] and
version hold, either for C3, or for C1 and C2. For exampléhe ;s are known. Since jobs are of unit length, = j if

ex-post C1-C2 are achieved by agent 1 paying, agenti's job is processedth in the sequence. The operator
wishes to maximize the expected sum of net benefits, subject
p1(61,02) = Oru(w:1(61,62)) to obtaining payments from the agents sufficient to cover the

81 P J 24 cost of operating the machine, Application of our theory
~ Js uzs(w, 02)) fr(w)dw, —(24) 5 section V reveals that the optimal schedule maximizes, fo

_ some appropriately chosen
for 6, > 6,, and 0 otherwise, and similarly fgr (61, 63). PPIop y

Using L in (20), the appropriate value of can be found Z [(1 +A)(ri — (1 —0;)x;) — /\Gixz} 1,0}
from the Lagrangian dual problemin max, L. We can write i
the maximum social welfare as IS|
R R ! e,

o ) ) ) where S is the set jobs chosen for processing. Consider the
4. It is interesting to compare solutions with > 0 and  gpecial case that; = r for all i (r < 1), and suppose

A = 0. For the following discussion, we continue to sUppoSgeclarations are such thét > - - - > 6,,. Then the mechanism
thatu;(z|0;) = ;u(x). will operate by choosing some set of jobs2, ...,k (with

If A >0 then E[3Z; pi(0;)] = c andp;(0) = 0 for all i. |east delay costs) and then schedule them in okder. , 2, 1
Note that the resource is not necessarily allopated in theesaj e giving decreasing priority to jobs with decreasindage
way that an efficient market would allocate it. For exampl@osts). A little algebra shows thatis the least nonnegative
supposen = 2 and 6y ~ U[0,1], 62 ~ U[0,2]. Suppose that jnteger such that
c is such that we cover the cost when takihg= 1. Then
if 6, =5/6 andf, = 1 we will have thatzy, 25 should be Ot Opir <1+ (1 _ " ) (25)
chosen to maximiz&€w(x1) + u(z2). Assumingu is concave k+1 k+1)’
this will mean we should take; > x2, even thouglty < 62. or k = n if the above does not hold fdr = n. Thus we have

If A = 0 then we see from (18) that the resource ifpund the general form of an optimal operating policy. One
always allocated in the most efficient way, i.e. to maximizgight have guessed that an optimal mechanism would choose
> Oiu(z;). This is now the same way an efficient markejo process a set of jobs with small delay cost, but the precise
would allocate it. The expected sum of payments can cregi@erion for selection in (25) is not something that one idou
a surplus, say = E[>, pi(6;)] — ¢ > 0. In this case we easily guess. However, there remains a difficult calcutetio
may takep: (0),...,p,(0) as any quantities summing tes;  determine the right payments;(¢;), and to find the value of
for instance we could share the surplus equally amongst theuch that the resulting policy induces payments that exactl

agents by setting;(0) = —s/n. cover the cost.
5. At the end of Section IV we looked at an infrastructure

optimization problem, in which the revelation of private- pa
rameterspy, ¢, takes place once at the start and influences the

choice of(. The analysis for this problem is very similar. we N this section we analyse the inefficiency of simple sharing
derive (15) from the Lagrangian dual policies and their inability to optimally incentivize agsrto
contribute to the shared infrastructure.

min Ey Inax{Egt max y_, ha(¢i)0; ru(z;) — (14 N)e(Q) ¢ For simplicity, we take the activity model of Section IV
A Q veX and assume that; = 1 for all i. Let the set of active
This illustrates that one needs to be careful in orderiragents at day be S, wherea(S) = [[;cq @i [[ig5(1 — ).
operators ofnaxg, E, and Ey. Supposec(Q)) = @ and that agents contribute daily, g-
6. Although the above gives a methodology, it is not eagynonetary or ‘in kind’) towards covering it, i.&) = Zj qj-
to apply analytically, even in simple cases. It is not evesyealf all contending agents have the same concave utility fonct
to say whether or nok = 0, although we know this dependsu;(z) = u(z), it would seem sensible to take(S) = Q/|S|.
on the value of. But is this optimal? Or should the sharing policy depend @n th

VII. SHARING POLICIES AND INCENTIVES
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«; and on the agents’ contributiong;? One might expect that agent tries to be a partial free-rider. How might we provide
sharing resource amongst agents in proportion to theialnitbetter incentives? One way is with proportional sharing.
contributions provides better incentives and greaterieffiry Proportional sharing.Suppose we divide the resource be-
than sharing resource equally amongst agents. Next wezmnalyween agents in proportion to their contributions. Thisegiv
the performance of different simple policies for two ageats z;({i}) = ¢1 + ¢2 andz;({1,2}) = ¢;. The equilibrium is at
equal sharing policy for agents and subscription pricing ing; = g2 = 0.8246 and the social welfare i6.30225, which is
which all participants are charged the same fixed fee. better than the stand alone welfare. This is just a bit leas th

the 6.30294 that a social planner could achieve.

Consider now a scheme that shares resource proportionally

A. Sharing a resource between two agents. to sth powers of the contributions. That is,
Supposen = 2. Let z,;(S) be the share of resource given o g

to agenti when the set of active agents.$s The average net ri({i) =a+ e, =({l2}) = QT';‘JE (01 + a2)-

benefit of agent 1 per period is Equal division iss = 0. Proportional division iss = 1. It
turns out that the equilibrium point is increasing $n For

a1 (1l —ag)u(z1({1})) + acrasu(x1({1,2})) — q1. .
1 2Jul@:({1}) wguf ({1, 2h) — o s = 9/8 = 1.125 the equilibrium is exactly the same as that
Supposeu(x) = r — 1/x, with r = 10, anda; = a; = o =  0f the social optimum. In fact, this works for amywhen we

0.8. If we take z;({i}) = =;({1,2}) = ¢ then we model takes = (1 + 1/a). Note that this means taking> 1.
agents acting alone, i.e. each building her own facilitytidg Other schemes can also be good. For example, recal

alone agent maximizesx (r — 1/¢;) —q;. She obtains averageq. = g0 = v/a(1 + «)/2 achieves first-best welfare. Let
net benefit ofn10 — 2,/a = 6.2112, for ¢; = 0.8944.
Now suppose agents share the resource. Since as = « 1({1}) = @1 + @21{g, >0}

we would expect that under any reasonable mechanism the — 22({2}) = @2 + q1l{g, >4}, #:({1,2}) = ;.
agents should be incentivized to contribute equally and thah ) h | ) ve th he is all q
resource should be shared equally wites {1,2}. However, That is, when agent alone is active then she is allowed to

it matters what this mechanism is. We now look at sudise agent 2’s contribution, but only if she contributes atte
mechanisms qo. This scheme achieves the same social welfare as does a

Equal sharing. Consider an ‘equal shares’ policy Ofcentral planner. However, to compu}@we need to know the
2({i}) = q1 + ¢» and z;({1,2}) = %(th + ¢o). Agent i parametersy;, s (as when choosing = 1.25 above).

has net benefit of

1—a a > B. Equal sharing provides wrong incentives.
i

nbi(q1,q2) = « <T - -
an+e o+

The inadequacy of equal sharing is true more generally.
Suppose that there areagents,p; = 1 for all 7, anda; >
-+ > ay. It turns out that the equal shares policy does not
work well, because only agent 1 has any incentive to cortiibu
resources. To see this, note that agent 1 wishes to maximize

The social optimum is achieved by choosifg= ¢2 = ¢ to
maximizenb; (q1,q2) + nba(q1, q2). This is achieved by =
Va(l + «) = 0.8485. The net benefit per agent §53029.
Suppose agents have full information regardingg; and
q2. Sharing resource with the equal shares policy, agent B > > o E >
maximizesnb; (¢1, ¢2) with respect tay;. There is equilibrium " 1(g) = [0‘2 U\ arxa) TP 3 } o
for any (¢1, ¢2) such thatg; 4+ g2 = 1.2. If we requireq; = ¢ ] o o )
then the equilibrium is; = ¢» — 0.6, and each agent hasWith respect tay, and agent 2 maximizes a similar expression

net benefits.2. This is less than the.2112 they obtain when 702(¢) With respect tog,, where A/ is a random variable
acting alone. In fact, when — 2, two identical agents will denoting the number of a\_gerﬁs. ..,n that are present. Since
prefer to act alone for al; = ay > 7/9. ai(l - az) > az(1l - a) it follows that

The above issue worsens as thg number of agents increases. Anb1(q)/dq1 = 0 = Anba(q)/dga < 0.
If n = 10 then each agent contributgs = 0.2561 and the
net benefit per agent i5.1826. For n > 98 the equilibrium So the only possible equilibrium is witly = 0, i > 2.
is driven to a point where agents no longer have positive netNow let M/’ be the number of the agertts. .., n who are

benefit. They will start deserting the system, even thougth, wpresent. For an equilibrium to exist with > 0 and¢; = 0,
a central planner, there would be benefit increasing.in i > 2, it would have to be that
We have made a surprising observation: two identical agents
can obtain greater net benefit by acting on their own than by a10Eu(q1/(M'+1))]/9g1 —1=0
participating in a shared system in which their contriblulsl;iof 0. Thi h it and onlv if
are determined as the Nash equilibrium of a game. We have SOMeq > U. This can happen 1T and only 1
seen that the social welfare obtained by ‘equal shares’ ean b o (OVE[1/(M' +1)] =1 > 0.
less than stand alone fer > 7/9. With o = 0.8 the stand
alone welfare i$5.2112 and the shared-infrastructure welfareClearly, £ [1/(M’ + 1)] — 0 asn — oo. So ifu/(0) < oo and
is only 6.2. This is because the incentives are wrong and eaahs large then no agent will wish to make any contribution.
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C. Equal sharing with subscription pricing. he is active. Each agent chooses the parantetkat offers

One possible scheme is to charge a flat subscription feeli the best combination of cost and value. An equivalent
any agent who wishes to participate. We purchase the gteafé¥-parametric representation would be- z(p), a function
amount of resource that the collected fees allow, and in ea@hthe payment. _ .
epoch share it equally amongst any agents who are active©Ur @nalysis treats special cases of the general model in
Such schemes are commonly used in practice due to thagction V. _Speuﬂcglly, in Section VIII-A we deal with a new
simplicity. Let us investigate how well such a scheme can dgfoPlem which we did not address before: we have the activity

Suppose thaty, = --- = ¢,, = 1, but o; differ, and that model, and the prlvat_e information of an agent is his atytl\_/lt
a priori these are uniformly distributed d, 1]. If we set [régquencya;. In Section VIII-B the unknown parameter is
the fixed subscription fee to hethen there is a minimum, Service valuationy;.
say «, for which it is advantageous for a ‘marginal’ agent t
participate. Supposd is the number of the other— 1 agents
who have theiry; greater thamy,. As the marginal agent's net

A. Optimal incentives for declaring activity frequencies

We now consider the optimum designs for systems in which
a large number of agents participate and which are of the

benefit is 0, o . _ . . .
activity model type introduced in Section IV, i.8;; is 0 or
14 (H%) N 1, with probabilitiesl — «; and «; respectively.
0=oasEN|r— (NT] —q. Suppose thab'¢; = 1, which for simplicity we approximate
q as¢; = 1 for all 7, and the values ok, . .., a,,, are unknown

to the system designer. He would like to elicit these as part

Using N ~ B(n — 1,1 — a,), routine calculation gives ; _ : X _
of an incentive compatible scheme that optimally sizes a

0=ay(r—[1- al + (1+ ag)nl/(2nq)) — g, system whose cost is covered by_ the payments of the agents.
) ) This model applies to the practical circumstance in which
and the expected net benefit of all the agents is the central planner does not use accounting mechanisms to
) ) 1—a? + (14 ag)n estimate, and thereby police thgs. The aim is to structure
5(1 - Oéq)” r— g — (1 —ay)ng. the tariffs to incentivize agents to reveal truthfully theis.

Let us suppose that{ @) = @, u(x) = /x and that a priori
Forr = 10 we find optimalg and o, as in the table that the o, are distributed uniformly or0, 1]. That is, there are
follows. For comparison, the final column shows the firsttbegpproximately equal numbers of agents with each value of
that could be obtained in the full information case. We cap al, in the range[0,1]. The number of agents is very large,
calculate that under proportional sharing,7as+ oo, agents so we may suppose (by the law of large numbers) that we
of activity « are incentivized to contribute/0.6cr, and the can meet demands from the common resource pool provided
average net benefit per agent3967. Stand-alone it would the total amount contributed through payments covers the co

be 3.667. of meeting average demand. The numbers we obtain in this
n q 0y net benefit/agent section can be viewed as upper bounds on performance for a
subscription  first-best system with a small number of agents.
2 06367 0.0726 3.770 3.827 We would like to compare efficiency of the second-best
10 0.5418 0.0697 3.939 3.066 policy with the full information case, but also with the case
>~ 0.5158 0.0575 3.087 4.000 where agents use a different policy, the ‘go-it-alone’ pglio

self-provide their infrastructure and not share it withesth
Of course it would be even better to ask for a subscription The go-it-ak)ne solutionif an agent with parametef must
fee that depends om, which could then be policed. Forgo-it-alone then he will choose to build a facility of sizeto
example, this might bexg. For n large it is optimal to take maximizeau(z)— 2 and therefore take = ~a?2. The average
q = 1, there is noa,, and the expected net benefitAs4n, social welfare per agent is then
which is almost the same as using subscriptjos 0.5158 1
for all agents. Other schemes might be investigated, such as /
sharing in proportion t@; /. 0

1
1

10% da = 75 = 0.0833.
The full information solution:Suppose a system designer
having full information decides to provide an agent with

VIII. B UILDING SYSTEMS WITH MANY PARTICIPANTS . .
, . parametera = ¢ with resourcez(t). The expected social
We now address the formation of systems with larggeifare (per agent) is

numbers of participants and show that optimal tariffs have 1 1

a simple structure. Again our aim is to incentivize agents / tu(x(t))dt—/ tx(t) dt.

to report indirectly some private parameter by choosing the 0 0

tariff that suits them most. As a function of his tariff chejc So the optimum is:(¢) = 1/4 for all ¢, and the resulting social

an agent is guaranteed a certain amount of service and wedfare per agent id/8 = 0.125. It is somewhat surprising
operator uses the payments to procure the infrastructurettat a system designer will wish to allocate the same resourc
the right size@. In particular we consider tariffs of the formof 1/4 to any agent on occasions he is present. This is because
{(p(t),x(t)) : t € [0,1]}, parametrized by, such that an every time any agent is present he presents an opportunity to
agent who chooses tariff paysp(t) and gets(t) whenever earn benefit/z.



The partial information solution using optimal tariffé\ow

the designer of the system wishes to optimize the system
by designing appropriate incentive compatible tariffsclita
agent chooses the tariff that is most beneficial to him. Aftari
specifies the amount of resource an agent will receive each
time he is active and the corresponding payment he must make

initially in order to participate in such a system.
We consider the set of tarifig(t), «(t)) parametrized by,

the type of the customer (in this casg). According to these
tariffs an agent who contributegt) getsxz(t) whenever he
t € [0,1]} is the set of possible

is active, and{p(t), z(t) :
choices.An agent’s maximum net benefit j§«), where

(26)

S

f(a)—wnaX{HMXkuwx@D<—p@ﬂvO}-

The maximum of linear functions ok is convex inq; this

is how we knowf(«) is convex. Similar to the arguments in

Section V-B, for incentive compatibility we must have
au/(z(a))’(a) = p'(@) = 0.

So if an agent with paramete¥ has net benefi), then
incentive compatibility is equivalent with

(@) = au(a(a)) - |

(03

i u(x(s)) ds

(e}

and X 1
/d pla)da = /07 (2a — Du(z(a)) da.

The resource constraint is

1
/ [az(a) — p(a)] da < 0.
0

(27)

12

030 —
0.25 —
0.20 —
0.15 —
0.10 —

0.05F

Fig. 2. The solid lines show(t) and z(¢t) whent > 0.2339. The dotted
line is net benefitf(t) = tu(xz(t)) — p(t) and the dashed line i€ /4, the
net benefit obtained by an agent acting alone.

Remarks.

1. The social welfare obtained (5116121 and this is just a
bit less than the social welfare 6f125 that could be obtained
by a system designer having full information.

2. The optimal scheme is one in which agents with<
a = 0.1586 are prevented from participating. Intuitively, the
reason we need to do this is so we can incentivize the agents
with greatery to make more substantial contributions. Another
way to think about this is that we prevent agents from free-
riding by declaring smalt, by preventing such smadt from
participating.

3. The black lines in Figure 2 show(¢) and x(¢) (the
amounts that agents will contribute and receive when diegar
a = t). Most agents receive more than they contribute. But
agents with values ofr < 0.23389 receive less than they
contribute. However, if go-it-alone is not possible (besmu
they cannot purchase and install resource for themselves or

Our goal is to maximize the social welfare subject to inaanti because there may be some additional fixed cost) then they
compatibility and cost coverage. Consider the net beneiib fr will still take up this scheme, since their net benefit is posi

(26), the constraint (27), and substitute the resourcet@ng

4. The dashed blue line ¥§/4, which is the net benefit an

which holds with equality. Then we seek to maximize poinfagent could obtain if he were to go-it-alone, by taking) =

wise for eachs a Lagrangian of

[e3%

L= /1 {(s +A(2s = 1)u(z(s)) — (1 + )\)sx(s)} ds,

wherea = A/(1+2)) (the value ofs such thats+A(2s—1) =
0).
For u(z) = v/ the maximizingz(s) is

2\ +1 A 2
x(s) = — .
200 +1) 2(A+1)s
This means thal is maximised to
1-2Xlog (15 ) — A°
8(A+1)

By minimizing this with respect ta\, we find A = 0.232206.
This gives for a solution in which forx > 0.158566 = @,

p(t) = 0.173521 + 0.0942239 log t
2(t) = (0.594224 — 0.0942239/t)*

andp(t) = z(t) = 0 for t < 0.158566 (= A/(1 + 2X)).

p(t) = t2/4. The dotted red line isf(t) = tu(x(t)) — p(t),

the net benefit that an agent obtains in the shared system.
This is convex, so there would be no benefit to an agent
with parametera masquerading as being two agents with
parametersy/2. Notice that the dotted red and dashed blue
lines cross; an agent does better by going alomedf 0.2884.

It is easy to rework this analysis and obtain the optimafftari
under the assumption that agents can go-it-alone if they find
it more beneficial.

B. Optimal incentives for declaring service valuation

Now we look at infrastructures with a large number of
participants and obtain a solution that is simple and iivelit

We again consider the general model in Section IV, and
specialize it for unknownp;s, andé; ;s which are truthfully
reported because of policing and long-term participatidi.
analyze first the simple case in which agents are of the gctivi
model type, i.eb; ;. € {0, 1}, with known activity frequencies.
Then we generalize for arbitrarf;s. Thus we suppose that
agent; is active on day with probability «; and when active
and allocated resources his benefit isp;u(z;).
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We state first a heuristic derivation of the largeresult. Thus an agent benefits from the existence of the other agents
For anyn (not small) the optimal mechanism is like thiswhich are not always claiming resources; he uses the optimal
a system is built of sizeQ(¢). Agents are charged pay-amount when he is active but pays only when he uses it, since
mentspi (¢), ..., pn(¢), and the sum of these covers the cosithers pay for it when he is not.
c(Q(¢)). When agent is contending for the resource amongst In the general case the utility for agenis ¢;0; ;u(z;). We
a group of active agent§ he receivesr;(¢, S). Following make the assumption thé, is truthfully declared by policing
the steps in the analysis presented in Section V-B, there isuad that it takes values from a finite det;, ..., o}, which
X > 0, such that for allS the optimal way to share resources the same for all agents (for simplifying notation). Le&t,,

@ amongst a set of active agenfiswith declarationsp is to be the publicly known probabilities that ageriast, , = o,,.

maximize For instancef), ; could take a valuer,,, € {1,2,3} (perhaps
Y ics (@i + Ag(di))u(zi(9, S)), (28) corresponding to low, medium, and high). Let(¢,6;) be
over_. z;(¢,S) < Q(¢). This follows from the fact that we tk;e; aIIoceatlf)n to agent when the agents are in state —

are maximizing pointwise for eacfy, 5), a Lagrangian of It is easy to see that same analysis holds as before. Again,

_ _ . N we assume when agenis active withé; ; = o,,,, the rest of

L=FE ZS,iES O‘(S)@’l + )‘g(d’l))u(%) (1+ /\)C(Q)} the agents are in their typical average state. So it is redsen
over Q = Q(¢) andx; = z;(¢,5), subject to the constraintto look again for an approximate solution in whieh(¢, 6;)
Yics Ti(@,5) < Q(¢) for all S. The Lagrange multiplien  depends only on the value 6f;, i.e. is of the formz; ,,, =
is associated with the ex-ante constraint on cost coverage.z;(¢, o,,), and we only need to satisfy the constraint

This has an interesting limit when is large, and it allows o
payments to made in kind. Note that when ageig active 2 L Xism®i($;0m) < Q(@)- (32)
the rest of the system will be in its typical average state. 3dat is, we should choose the,,s so that the average sum
we can look for an approximate solution in whigh(¢, S) is of resource allocations does not exc&gdAs beforex; ,, is

independent ofS and we only need satisfy the constraint the guaranteed amount agergets when his staté; ; = o,
Again it turns out that as — oo we have a solution in which
2o 2izi(9) < Q(9). (29)

Tim(P) = Tim (@) = argmaxy {piomu(z;) — zi}. (33)
That is, we should choose thgs so that the average sum of _, . . . - .
resource allocations does not excegdSincec(Q) — Q, the f'I'h|s achieves the first-best optimum where each time an agent

. is in statem he is allocated the optimal amount,,, (¢;) inde-
Lagrangian for the problem reduces to pendently of the other agents and he pays @nly,z; ., (¢; ).
L=FE\} ai(di + Ag(di))u(z:) — (L+A) >, Olﬂh}, Hence in total he pays for his average resource usage. This
suggests the generalized form of optimal tarifts; ,,,x, x),
to be maximized with respect to; > 0. It turns out that ass ;. > 0, for eachi andm. In this set of tariffs, agent must
becomes large) — 0, the constraint (29) is satisfied, and thehoose a specific tariff for each state i.e. the best value of
solution is x given that by payingy; ,, = he obtains always when he is
2i(¢) = 4(:) = arg max, {pu(z!) — 2/} (30) in sta;elm. Clearly this tar!ff is possible because, as a result
: of policing, the value ofn is truthfully declared.
Moreover, each time an agent is active he is allocated theBefore stating a limiting result for the optimality of the
optimal amount independently of the other agents. But agetove tariffs, lets see why it works. We work again using the
i pays onlya;z;(¢;) and this exactly pays for his averagesasier notation of the activity model. Lef = z;(¢;), as de-
resource usage. This is the form of first-best policy that offieed above in (30). In practice, we ne®d, z;(¢, S) < Q(¢)
expects to obtain in the limit for large, where@ is provi- forall S. This is not possible if we try to take; (¢, S) = x; for
sioned to serve the system in its typical (average) states Thil S. However, we can modify things slightly by proposing an
suggests the simple form of optimal tariffe;z, z), > 0, approximation of our previous tariff which is implementabl
for eachi. In this set of tariffs, agent must choose a specificfor every n and in the limit becomes the tariffa;x, z).
tariff, i.e. the best value of > 0 given that by payingv;z he  With agenti contributingq;, we lety; = ¢;/a; and redefine
obtains always, when he is active, Clearly, agents of large x;(¢, S) = 4:Q/ >, 5 y;, whereQ = >~ ¢;. This is a pro-
;s should be policed so as not to use tariffs with smalle.  portional sharing of) that takes into account the contributions
It is interesting that the optimal contract chosen by agenbf the agents and their frequency of use.
secures the same amount of resources from the shared resourtVe illustrate the scheme with(z) = » — 1/z. Let I; ~
pool as he would optimally choose to self-procure if no sare3(1, «;). Agenti has expected net benefit of

infrastructure was available and he wal#&aysactive. But he
needs only pay for his average usage, namelydfor;. By Qi ko {7” - Wi+ Xu ijj)/(yiQ)} — QY
construction, this scheme is incentive compatible, i.ewiie =a;(¢i(r —1/y:) —yi) — ai(l — i) /Q.

choose the tariff parameterized by his actual value.olote . L .

that ;(¢;) exceeds the size of the facility he would form ifThe terma (1 — O‘i)/Q 1S S”?a'_' and varies little withy;, and

he were to stand-alone, which would be a;(¢i(r —1/y) — ;) is maximized byy; = 2;(¢;). So agent
’ 1 is incentivized to contributes «;z; and the total welfare,

29(p;) == arg max, { giu(r;) — a7} (31) whichisO(n), will differ from its first-best value by jusD(1).
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A limiting result for largen: Consider the activity model to give resource of; to every agenj who is present. Letting
with n identical agents. Suppose that each agent is presénbe aB(1,«) random variable, this is
with the same frequency, and when present agenthas
utility for resourceg;u(z;). Resource costs(@Q)) = Q. Let (wl + ZI% (1+ €)az; + Z 14e oz:vz>
us do everything ex-ante and for a single period. The aim is i—2
to maximize the expected net benefit (with the usual idea that " "
we must satisfy C1-C3). o . ) . =P ((1 —a)r + Z(Ii —a)r; > eaxy + ez a:vZ)
We know that the solution is one in which agenwill P P
participate if¢; + Ag(¢;) > 0, and then, if the set of agents

who turn out to present ig, the resource will be allocated to <E (1—a)z?+> ", a(l —a)z?
maximize) ", - ;(¢; + Ag(dq))u(x;). = 2T
Let us definef,! and f2 as the maximal first- and second- (EO‘ 2 Il)

best social welfares that can be obtained franidentical - 2,9 9
agents. We shall show that as— oo both f!/n and f2/n < (Zmax/Tmin)” [ 00

converge to the same social welfare per agent, as couldvideere for the first inequality we have used a Chebyshev
obtained if perfect multiplexing of resource allocatiors tinequality of the formP(Y > §) < E[Y?]/4?, taking the
agents were possible: meaning that if an agent were to makgectation here ovel, ..., I,,.

a contribution towards) of axz and then he could receive Thus forn sufficiently large the right hand side above is less
preciselyz whenever he is present. If this could be guaranteéigan ¢, uniformly in z;. Thus the ex-ante guarantee to agent

then the agent with parameter should choose 1 (and similarly other agents) can be fulfilled. The expected
net benefit for agent is then
x(¢;) = argmax |ag;u(x) — ozx} = qargmax [gblu(x) - x}
x xT 1 + i)
Let us define ol o)z (1“ o )
B B Now z(¢;) is convex ing;. So by Taylor expansion inaround
#(¢) = max{gu(z) — v} = pu(x(¢)) — =(¢) 0, and using the fact that (¢;) = u(z(¢;)), we find that agent
_ i has, for somey € [0, €], expected net benefit of
Note thatf; < f, < naz. (1+€)z (1+6 qsl) = 2(0s) + [2(01) — 20:2/(9u)]e
200 1N, 2
Theorem 3:f2/n — az. +2¢727(di)eg )
Proof: We already havef? < naz. To establish an in- 2 2(¢i) + [2(i) — 20i2 (1)]e

equality in the opposite direction we need to find a mechanism 2(¢;) — [2(di) + piul(z(0s))]e

that is implementable and which achieves a social welfare of

almostnaz. > 2(¢i) — [2(b) + u(z(b))]e.
Let us suppose that; has a distribution” over an interval

h This shows that the expected net benefit that can be obtained
[a,b]. Assumingu(.) is concave, them(¢) is increasing in from n agents by use of an optimal mechanism is at least

¢- Suppose tha < z(a) < z(b) < co. naz — anfz(b) + u(x(b))]e, for largen. Sincee is arbitrary,
Fix some smalk > 0. Suppose that it is possible to creatg . completes the proof thai2 /n — az. n

a mechanism with the property that if an agent contributes
a(l + €)z then he can be given an ex-ante guarantee that if
he is present he will receive exactly resource amaumtith
probability 1 — e and resource 0 with probabiliy Assuming
this is so, agentwill choose to contribute an amount which
maximizes his ex-ante expected net benefit of

IX. CONCLUSIONS

We have investigated policies for running shared computing
resource infrastructures. We have assumed that partisipa®
strategic in disclosing private information about theituat
resource needs and we have considered how best to share
a(l —e)piu(x;) — a(l + )y, resources and take payments from the participants so as to

maximize the overall efficiency of the system, while covgrin

its costs. The chief lessons from this study are as follows.
T, =1 (1‘6 (bi) . 1. A participant’s decision about the quantity of resources

that he will choose to contribute to the resource pool can

and so he will take

Define be greatly affected by the resource allocation mechanisi th
JPR—— (1—6 a) and = — (1 e b) he knows will be deployed when the system operates. Thus,
min = 1+E max = 1+E . . . . .
a resource allocation policy may not be optimal if it only
Assumez,;, > 0. Note thatr,;, < z; < Tpax- allocates resources with regard to the efficiency of thestivi

We now show that for large it is possible to fulfill the ex- of resources, while ignoring the effect this has on inceritig
ante guarantee to every agent. To see this, we observe éhataents to contribute towards covering cost. For examptbeif
probability we cannot provide resource of to agent 1 is no resource will be shared equally amongst participants ten a
more than the probability that the total resource is insigffic agent may choose to contribute nothing to the resource pool.



2. One way to incentivize potential participants to makgs]
significant contributions to the resource pool is to impose
a rule that a participant will only be permitted to draw ORy 6]
the pool if he makes a minimum contribution to it at the
point that it is formed. Another important rule is that an
agent who contributes more resource will have greaterip;ior[17
for obtaining resource than an agent who has contributed
less. Such rules will incentivize agents to make contrimgi [18]
that reflect their privately held beliefs about the benefitsyt
expect to obtain. The result is a facility with an appropfat [20]
large quantity of resource, which is efficiently shared.c8in

L o i ; 21]
contribution are made in kind there is no need for any |nﬂerr{§2]
money transfers. [23]

3. We have seen that some optimal resource sharing mech-
anisms are parameterized by a Lagrange multiplieor by [24]
the # or @ of a marginal participant. In practice, it would be
useful if one could discover the right value of these paranset [25]
by some sort of on-line adaptation algorithm. We suggest tha
this could be an area for fruitful research. [26]

4. In a facility that is already built and so has a fixed size
(such as NRNs, National Grid Infrastructures), the running
cost must be shared by charging the participants. In general
if the identities of the participants change over time, then
our results for one-shot participation suggest that onailsho
to operate a specialized mechanism in which participants
receive resource shares according to their declared needs,
while generating enough payments to cover running cost. In
the scenario of long-term participation simpler policiesst
but at the added cost of implementing some accounting, st
as policing of they;.
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