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Economic Issues in Shared Infrastructures
Costas Courcoubetis and Richard Weber

Abstract—In designing and managing a shared infrastructure
one must take account of the fact that its participants will
make self-interested and strategic decisions about the resources
that they are willing to contribute to it and/or the share of
its cost that they are willing to bear. Taking proper account
of the incentive issues that thereby arise, we design mechanisms
which, by eliciting appropriate information from the parti cipants,
can obtain for them maximal social welfare, subject to charging
payments that are sufficient to cover costs. We show that there
are incentivizing roles to be played both by the payments that we
ask from the participants and the specifiation of how resources
are to be shared.

New in this paper is our formulation of models for designing
optimal management policies, our analysis that demonstrates the
inadequacy of simple sharing policies, and our proposals for some
better ones. We learn that simple policies may be far from optimal
and that efficient policy design is not trivial. However, we find
that optimal policies have simple forms in the limit as the number
of participants becomes large.

Index Terms—Communication system economics, Grid com-
puting, Incentives, Mechanism design, Scheduling, Virtualization.

I. I NTRODUCTION

I NFRASTRUCTURE virtualization is a powerful tool to-
wards the creation of a global computing and commu-

nication infrastructure. It allows organizations to cooperate
and contribute physical resources to the creation of virtual
facilities involving networking or computing and storage.
Examples include virtual networks, computational grids and
service clouds. Such facilties are shared by participating
organizations and support specific services, applicationsor
scientific experiments. Although virtualization technology has
made significant progress, there remain many interesting and
unanswered economic questions about the business models
that can make such virtual infrastructures viable.

In this paper we make the fundamental assumption that
each participant is an economic agent who profits from
using the common infrastructure, but that the value which
he places upon being allocated a quantity of resources is
private information. His incentive is to obtain for himself
as great as possible value from the shared infrastructure (or
service), while contributing minimally to the costs of its
formation and maintenance. The result is that the participants’
individual aims are not aligned with overall system efficiency.
This is an important observation and suggests that unless the
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appropriate incentives are in place, the economic performance
of the resulting system may be greatly reduced. This raises
the question of how a shared facility should be managed
so as to resolve the unavoidable conflicts that arise between
participants and to share the operating cost.

One way to share the cost of building a facility is to
require participants to pay fees. Another way is to add together
actual resources that participants contribute, the sum of which
defines the size of the virtual facility.In this latter case, we
say that the participants are makingpayments in kind. We
might, in this case, operate a policy of asking each participant
to choose for himself a quantity of resource that he will
contribute to a shared pool of resources, and then say that
at all future instants the resource pool will be shared amongst
any participants who wish to draw upon it in proportion to the
sizes of their contributions. The participant who contributes
more will receive more. But might the system work better if
the resource is shared in proportion to some other function of
their contributions? It is questions like this that we address.

The problem of policy design for computing facilities is
certainly not trivial, as has been observed in [1], [2], [3].Sim-
ple policies may perform very badly if they do not incentivize
participants truthfully to reveal privately-held information re-
garding the utility they will obtain from a given allocation
of resources.There is recent work in [4], [5] concerning
the definition of accounting requirements for grids, which
suggests that more sophisticated policies can be implemented
in practice.

In this paper we look at a number of models, making various
assumptions about the parameters that can be measured, and
discuss tools for defining optimal policies. These policiesare
designed to incentivize truthful revelation indirectly, by offer-
ing each participant a choice of options and then observing
which of them he chooses. More specifically, agents’ bids
determine resource-sharing contracts. These contracts specify
what quantities of resource each agent will obtain in each
possible circumstance that some subset of agents wish to
draw on the resource pool simultaneously. The parameters
of the contracts become finalized once all agents have made
their bids. Each participant is incentivized to bid truthfully,
i.e. to reveal his true valuation for the given service. The
resulting contracts provide optimal resource sharing, subject to
a constraint that the fees paid by the agents cover costs. In this
model the rules of running the system are defined as functions
of the bids of the participants. We are effectively designing
rules for a game (in which the agents play strategically)
such that at the(Bayesian)Nash equilibrium the economic
efficiency is maximized. Our approach leverages ideas from
the theory for optimal auctions [6] and mechanism design [7]
to the context of shared infrastructure design and management.

We must stress that the mathematics involved in construct-
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ing optimal policies in the context of incomplete information
can be very elaborate and rarely leads to simple analytic
solutions. However, we can learn about some general features
that good policies should have.So in sections that follow
we look at a number of carefully chosen examples, many of
which concern systems with just two participants. They all
concern problems of efficiently sharing infrastructure amongst
participants who hold private information. These examplesare
sufficiently simple that they can be solved, and their solutions
point up important issues, challenges and future research
directions, some of which we summarise in Section IX. We
do make the critical assumption that agents know the value
they place on being allocated resources, and also know the
distributions of the private valuations of other agents. Ifwe do
not make those assumptions, then mechanism design problem
trivializes or has not enough structure to lead to a solution.
More work is needed to refine our results and investigate
their translation to practical implementations, i.e. impact on
job scheduling policies of existing systems, see [8] and [9].

Previous work on computational grids has recommended
the formation of a market for computation and the use of
prices at a heuristic level to guide resource sharing, see [10],
[11], [12]. In this market providers (sellers) and consumers
(buyers) of computing resources go to trade. In [13] an open
market for trading computational resources is proposed, that
operates similarly to the stock market double auction model,
except that commodities are perishable. The market matches
the asks and bids, just as in the stock market, and allocates
resources accordingly. If it is competitive, then the market
allocates resources efficiently, see [14], [15]. Organizations
will decide how much infrastructure to self-procure and how
much to obtain from the market based upon the equilibrium
market price and on the statistics of their demand for com-
putation, see [16]. This approach is sensible when resources
are commoditized and the market is competitive. i.e. there is
a large number of buyers and sellers for each resource type.

Our approach differs from the above, but is complementary
and makes no assumption on competition. It is not based on
a market; rather itregulatesthe system by setting rules to
which participants must abide and a policy for sharing the
resource pool and covering its cost. It is appropriate when
organizations may collaborate over a long period of time either
(i) to share the cost of running an existing facility, or (ii)to
create a new shared virtual facility, by each contributing actual
computing resources (or by providing finance for purchasing
and maintaining those resources). Case (i) is common when
the infrastructure is initially created using public funding, and
(ii) is common in large e-science projects, e.g., [17], [18],
[19], [20], and in other virtual facility building projectslike
OneLab [21] and PlanetLab [22]. Our approach allows for
long-term predictable contracts, in which participants make
contributions in kind (infrastructure). This can be preferred to
the uncertainty of fluctuating prices in a dynamic market.

Mechanism design problems for scheduling have been con-
sidered by the computer science community, but with quite
different objectives. In a problem addressed in [23] and [24]
jobs must be allocated to machines which are strategic in
revealing their processing times for the jobs. The aim is to

find mechanisms that can compute (in polynomial time) both
incentive payments and an allocation of jobs to machines, and
obtain a makespan that is no more than some factor from
optimal in the worst case. In addition to the emphasis on
polynomial-time computation, there are two other differences
to our work: (i) there is no notion of any a priori distributions,
and so incentive compatibility conditions are to hold ex-post,
and (ii) there is no constraint on the budget that is available to
pay agents to reveal information (or conversely, a constraint
that payments taken from agents must cover cost).

The paper is organized as follows. In Section II we introduce
a model for sharing an infrastructure of a given size and then
provide an example in Section III. Section IV considers a
problem of determining the infrastructure size.The supporting
theory for sections I–IV isin Section V. It is also applied to a
scheduling a server in Section VI. In Section VII we discuss
the inefficiencies of simple policies. Finally, in Section VIII,
we look at how the design problem simplifies as the number
of participants becomes large. We draw out some interesting
lessons for practice in Section IX.

II. A MODEL FOR INFRASTRUCTURE SHARING

A. Sharing a given infrastructure

We begin by presenting a model for optimally sharing an
infrastructure amongstn participating users (or agents). Our
notion of an infrastructure is one that we deliberately keep
quite general. It is composed of resources (such as links,
servers and buffers) and it can be operated in various ways
(by choice of scheduling, routing and the manner in which
resources are shared by the agents). LetΩ denote the set of
all such ways that the infrastructure can be operated.

To provide an example, let us introduce what we shall
call the scalar resource sharing model. In this model the
infrastructure can be parametrized by the quantityQ of a single
resource. This might be the bandwidth of a communication
link, or the cycles available in a computational grid. A manner
of operation (i.e. a memberω of Ω) is specified by a vector
x1, . . . , xn denoting the allocations of the resource that are
made to the agents, where

∑

i xi ≤ Q. The infrastructure is
to be shared amongst agents on a sequence of days1, 2, . . . .
There is daily operating cost, which we assume to be a
constantc, for all ω ∈ Ω. This may include interest payments
on capital investment.

Given that the infrastructure is operated at dayt in manner
ω ∈ Ω, the utility for agenti is ui(ω|θi,t), where{θi,t}t=1,2,...

are independent and identically distibuted samples of a random
variable with distribution functionFi. For convenience in
exposition, let us suppose a product formθi,tui(ω). The
function ui(·) is public knowledge, butθi,t is known only
by agenti and is independent of otherθj,t, j 6= i. Essentially,
one can think of{(u1(ω), . . . , un(ω)) : ω ∈ Ω}, as a set
of achievable points, whose values to the agents are uncertain
to the operator of the facility because only the agents know
θ1,t . . . , θn,t. However, it is public knowledge, a priori, that
θi,t is a sample of a random variable with distribution function
Fi. In practice, theFi might be constrained to a finite set of
distributions, each associated with a certain organization type.
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If θi,t = 0 then agenti does not need to use the resource at
day t.

We wish to operate the facility so as to maximize the total
expected net benefit to the participating agents, subject toa
constraint that they pay enough to cover a daily operating cost
c. In doing this, we are to choose anoperating policy, say M,
implemented in two steps, as follows.

M1 (the rules) The agents are told that as a function of
declaredθt = (θ1,t, . . . , θn,t)

(a) the operating policy inΩ will be chosen using the
functionω(·);

(b) the payments on dayt will be determined by the
function p(·) = (p1(·), . . . , pn(·)).

M2 (the game) Knowing all data (that is, theFj , uj, for all
j ∈ {1, . . . , n}), his ownθi,t, and the functionsω(·) and
p(·) in M1, and assuming all other agents are truthful in
their declarations, agenti has a priori incentive to declare
truthfully his θi,t.

Given the declarations ofθ1,t, . . . , θn,t, steps (a) and (b)
are now implemented.

In M1 the functionsω(·) andp(·) define a game in which
agents participate by declaring values for their privatelyknown
θi,t. We wish to chooseω(·) andp(·) so that at an equilibrium
of this game some objective is achieved. For example, we
might seek the greatest possible sum of agents’ utilities.
This makes our problem one ofmechanism design. We now
sketch, so far as space allows, those basic elements of formal
mechanism design theory that are relevant. For more detail
readers are referred to [7].

Let (η, θ−i,t) be shorthand for(θ1,t, . . . , η, . . . , θn,t) and
E−θi,t denote expectation over allθj,t for which j 6= i. If
agenti declaresθi,t = η then his payoff is hisexpected net
benefit

E−θi,t [θiui(ω(η, θ−i,t))− pi(η, θi,t)]. (1)

Suppose this game has aBayesian Nash equilibriumat which
each agent declares the true value of hisθi,t, i.e. no agent can
improve his expected net-benefit by unilaterally departingfrom
a strategy of making truthful declarations. The termBayesian
refers to the fact that each agent calculates his expected net-
benefit while knowing theFj , the distributions of all other
agents’θj,ts, (and that they will declare theseθj,ts truthfully.

The revelation principlestates that nothing is lost by re-
stricting attention to mechanisms whose equilibria are such
that all agents make truthful declarations (so-calleddirect-
mechanisms). Doing so imposes anincentive compatibility
condition that agenti should be made to reveal truthfully his
privately-knownθi,t. This is what we are saying in M2, and
in condition C1 of in Section II-C.

We may immediately distinguish two important cases. Let
us recall that in welfare economics an allocation of resources
is calledPareto-efficientif no agent’s position can be improved
without making some other agent’s position worse. Any allo-
cation that maximizes social welfare is Pareto-efficient. We
measure an agent’s position is measured by (1) and social
welfare by (3) and (4), below.

A first-best (Pareto-efficient) allocation of resources is
achieved when goods and services are traded in a perfectly
competitive free market. The same efficiency can also be
achieved by a central controller who has complete information
about agent preferences and who has full centralized control.
This can happen in what we shall call thefull informationcase,
i.e. when the operator of the system can somehow access the
true values of theθi,ts.

There are many ways that perfect competition can fail. One
is if agents collude. Another is if agents have private informa-
tion; in our models we call this thepartial informationcase,
i.e. the operator and agents know only a priori distributions of
θi,ts. Now one must be content with asecond-bestallocation
of resources. The second-best is achieved by the system
designer imposing rules (for a auction, or other mechanism
design) so that when independent agents act strategically in
their own self-interests, (in respect of actions and any privately
held information that such actions may reveal) then within
the resulting non-coopertative game, the equilibrium (or worst
equilibrium if there are more than one) has the greatest
possible efficiency.

Given any set of operating rules (not necessarily those
for which second-best efficiency is obtained) the termprice
of anarchy is used for the quotient between the first-best
social welfare and the social welfare that is obtained at the
worst of the possible non-cooperative equilibria. Sometimes
the price of anarchy tends to 1 as the number of participants
becomes large. This happens in a bandwith sharing problem
in which the heuristic control is an auction, [25], and in which
consequently the quotient between first-best and second-best
welfares also tends to 1. We see this also in Theorem 3 of
Section VIII-B. However, in [26] we have considered a peer-
to-peer file-sharing system and shown that a heuristic of a fixed
participation fee is asymptotically as good as second-best, but
that the price of anarchy remains bounded away from 1.

B. The full information case

In the full information case the best way to operate the
system on dayt would be by choosingω ∈ Ω as the maximizer
of the social welfare, giving

ω(θt) = argmax
ω

{

n
∑

i=1

θi,tui(ω)− c

}

. (2)

If the system is operated daily usingω(θt), then as each day
is statistically the same, the long run average socal welfare is

Eθt

[

n
∑

i=1

θi,tu(ω(θt))− c

]

. (3)

If (3) is negative then there is no way to run the system so
that costs are covered. If (3) is nonnegative then one could ask
from agenti a daily paymentpi that is less than his expected
benefit ofEθt [θi,tu(ω(θt))], also choosingp1, . . . , pn so that
∑

i pi = c. Then each agent gains positive net benefit and
the total payments cover cost. The paymentpi need not be
monetary. Instead, agenti could be asked to contribute a fixed
quantity of virtual resources that is of valuepi, i.e. to make a
payment in kind.
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We can now also define aninfrastructure optimization prob-
lem. Suppose that there is a possible spaceΘ of infrastructures,
i.e. Ω ∈ Θ, each with a given costc(Ω). The problem is to
chooseΩ ∈ Θ that maximizes the social welfare

Eθt

[

n
∑

i=1

θi,tui(ω(Ω, θt))− c(Ω)

]

, (4)

whereω(Ω, θt) denotes the optimal operation of the specific
infrastructureΩ.

To make things concrete, we now assume the scalar resource
sharing model. The setΘ of possible infrastructures might be
Θ = {Q : Q ≥ 0}. The daily cost of the facility isc(Q).
Suppose thatQ is given. In the full information case, the
optimal allocations are given by

x∗(θt, Q) = arg max
∑

i
xi≤Q

{

n
∑

i=1

θi,tui(xi)

}

. (5)

The infrastructure optimization problem is

max
Q

{

E

[

n
∑

i=1

θi,tu(x
∗
i (θt, Q))

]

− c(Q)

}

. (6)

C. The partial information case

In practice, theθi,t are usually private information of the
agents and they will act strategically when asked to reveal
them. An agent might choose to declare an inaccurate value
of θi,t in order to obtain a larger resource share. To incentivize
truthful declarations the operator must introduce payments
which depend on those declarations. Now agenti declaresθi,t
to maximize(1), his expected net benefit. This leads to the
type of game described in Section II-A. At the Bayesian Nash
equilibrium, we wish the following conditions to be satisfied.
C1. Incentive compatibility: Agents should find it in their

interest to be truthful in declaring theirθi,t.
C2. Participation (also called individual rationality): Agents

should see positive net benefit from participation.
C3. Cost coverage (also called budget-balance): Payments

should cover the costc(Q).
C4. Maximum expected social welfare (total net benefit)is

attained (subject to C1–C3).
Each of C1–C3 can be imposed in two senses. Consider agent
i and let θ−i,t = (θ1,t, . . . , θi−1,t, θi+1,t, . . . , θn,t). The ex-
ante (weak) sense means that for allθi,t the condition holds
in expectation, beforeθ−i,t is known to agenti (and assuming
truthful declarations by all other agents). For example, for C2,
in the scaler resource sharing model, this means

Eθ−i,t

[

θi,tu(xi(θt))− pi(θt)
]

≥ 0. (7)

The ex-post (strong) sense means that for all possibleθi,t, θ−i,t

the condition holds. For C2, this means

θi,tu(xi(θt))− pi(θt) ≥ 0. (8)

Similarly, ex-ante and ex-post versions of C3 areEθ[p1(θt)+
· · ·+ pn(θt)] ≥ c andp1(θt) + · · ·+ pn(θt) ≥ c.

Observe that the class of policies discussed so far is
restricted to those that are memoryless. More generally, we

could make the choice ofω, or the allocation of resources at
time t, depend on aτ -length history of declarations up to time
t, {θt−τ+1, . . . , θt}. The best policy of this type is surely very
complicated to derive. We look at two extreme cases:

– one-shot participation: the facility runs for one day or
forever, but each agent remains in the system for only one
day (and soτ = 1);

– long-term participation: the facility runs forever and the
same agents participate each day (so effectivelyτ = t).

The ex-ante versions of C1–C3 are natural for models with
infinite repetition, where by the law of large numbers the
agents and the facility operator see time averages of profits
and cost covering payments. The one-shot scenario differs if
the facility runs only once because, as the operator does not
see time averages, covering cost should be ex-post.

III. E XAMPLE OF SHARING A FIXED RESOURCE

A purpose of the examples in this section is to illustrate the
more general results to be derived in Section V. To begin,let us
take the scalar resource sharing model withn = 2 agents and
Q = 1. We analyse memoryless mechanisms. On dayt, agent
i has utility θi,tui(x) for resourcex, whereθi,1, θi,2, . . . , are
independent samples fromU [0, 1].

A. The caseui(x) = x

As we see in Section V, ifui(x) = x then optimal
mechanisms allocate the resource (if at all) wholly to the
agent declaring the greatestθi,t. This makes the solution to
our mechanism design problem equivalent to that of an optimal
auction, and we can directly translate results. We now describe
some possible policies. In what follows, we drop the suffixt
from θi,t, since we now think about a memoryless mechanism
applied on a typical day.

The first-best policy:This allocates the full resource to the
agent having maximumθi. Using the fact that the maximum of
two independent random variables, each uniformly distributed
on [0, 1], has mean2/3, we have

E
[

max
x1+x2≤1

(θ1x1 + θ2x2)
]

= E
[

max(θ1, θ2)
]

= 2/3,

where expectations are with respect toθ1, θ2. So if agents
are truthful about theirθi without the mechanism needing
incentivize this, then the expected social welfare is2/3− c.

What happens if we try to use the above sharing policy, but
take no payments from agents, and so offer no incentives for
them to be truthful?Clearly, every agent will declareθi = 1,
and the operator might flip a coin to decide on the allocation.
The social welfare becomes1/2 − c, substantially less than
the first-best of2/3− c.

Second-best mechanisms:Let us now examine some mech-
anisms that maximize social welfare under constraints C1–C3.
The first mechanism satisfies all the constraints ex-ante. The
second mechanism satisfies the cost covering constraint C3 in
the stronger ex-post sense, but constraints C1–C2 ex-ante.The
third mechanism is Vickrey auction type of mechanism that
satisfies constraints C1–C2 ex-post and C3 ex-ante.
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Mechanism 1:This operating rule of this mechanism can
be seen as arising from (21) Section V-B and its payments
from (23). The operating rule, M1(a), is that amongst those
agents declaringθi ≥ θ̄ the resource is wholly allocated to the
one who declares the greatestθi. If neither declaresθi ≥ θ̄,
then no resource is allocated. The value ofθ̄ is a parameter
of the mechanism. The payment rule, M1(b) is that if agenti
declaresθi then he is charged

pi(θi) =
1
2 (θ

2
i + θ̄2)1{θi>θ̄}. (9)

Let zi(θ1, θ2) be 1 or 0 as the item is or is not allocated
to agenti, when the agents declare their parameters to be
θ1, θ2. Agent 1, who is assuming that at equilibrium agent 2
is declaring truthfully, declaresθ1 = η to maximize his ex-ante
net benefit of

Eθ2

[

θ1z1(η, θ2)− 1
2 (η

2 + θ̄2)
]

= θ1η − 1
2 (η

2 + θ̄2). (10)

This incentivesη = θ1 for θ1 > θ̄, so ex-ante C1 holds. The
maximized ex-ante net benefit is12 (θ

2
1 − θ̄2) ≥ 0, so ex-ante

C2 holds.
The value ofθ̄ is chosen so that ex-ante C3 holds, i.e.

c = Eθ1,θ2 [p1(θ1) + p2(θ2)] = 2

∫ 1

θ̄

1
2 (w

2 + θ̄2) dw

= 1
3 + θ̄2 − 4

3 θ̄
3. (11)

The right hand side increases from1/3 = 0.333̇ to a maximum
of 5/12 = 0.4166̇, asθ̄ increases from 0 to1/2. Thus any cost
can be covered, up to0.4166̇.

In Figure 1 we plot the value of the expected social welfare
as a function ofc, and compare it to the first-best value.The
qualitative lessons are that first-best and second-best coincide
if c is small, but second-best is strictly worse ifc is large. For
very largec it is impossible to cover costs.It is easy to check
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Fig. 1. Comparison of expected social welfares, as functions of c, for first-
best (solid line), second-best (dashed line) and a heuristic H (dotted line). It
is only for c ∈ [0.333, 0.416] that the second-best falls short of the first-best.
We see from (11) that there is no way to cover a costc ≥ 0.416 using a
second-best mechanism.

that the mechanism does not achieve any of C1–C3 ex-post.
As we now show with Mechanisms 2 and 3, it is possible
to strengthen the ex-ante constraints to ex-post ones, either
for C3, or for C1 and C2, but not for all. However, before

turning to Mechanisms 2 and 3, it is interesting to compare
Mechanism 1 to a heuristic policyH which might be used by a
non-sophisticated facility operator. The social welfare obtained
by H is also shown in Figure1.

A heuristic policyH : Suppose the operator posts a pricep
and ask both agents whether or not they are willing to pay this
price in return for use of the resource. If just one is willing
then he is allocated the resource and paysp. If both are willing
then the resource is randomly allocated to one of them (by
symmetry) and he paysp. Otherwise no resource is allocated
and no payment is taken. The value ofp is chosen so that the
social welfare is maximized, subject to ex-ante covering ofc.
The best choice ofp is found by solving the problem

maximize(1− p2)12 (1 + p) s.t. (1− p2)p ≥ c.

It turns out that the optimalp is p = 1/3 if c ≤ 0.296, and
the smaller root of(1− p2)p = c, if 0.296 ≤ c ≤ 0.385.

Mechanism 2:The allocation rule is as in Mechanism 1,
but we adjust the payments so that C3 holds ex-post. This can
be done by making agent1 pay p1(θ1, θ2) = c/2 + p1(θ1)−
p2(θ2), with pi(θi) as defined in (9), i.e.

p1(θ1, θ2) =
1
2c+

1
2 (θ

2
1 + θ̄2)1{θ1>θ̄} − 1

2 (θ
2
2 + θ̄2)1{θ2>θ̄},

and similarly for agent 2. Note that C1 and C2 continue to
hold ex-ante becauseEθ2 [p1(θ1, θ2)] = p1(θ1) as in (9). Such
an adjustment can always be made; if there weren agents one
could takepi(θ) = 1

nc+ pi(θi)− 1
n−1

∑

j 6=i pj(θj).

Mechanism 3:The allocating rule is as in Mechanism 1.
As an application of (24)agent1 pays

p1(θ1, θ2) = max(θ̄, θ2)1{θ1>max(θ̄,θ2)}

and similarly, agent 2. It gives a second-price (or Vickrey)
auction. It is easy to check that C1–C2 hold ex-post. Moreover,
θ̄ can be chosen so cost coverage is ex-ante, since it can be
easily checked thatEθ2p1(θ1, θ2) = p1(θ1) as in (9).

Mechanism 4 (for long-term participation):How might
we exploit the fact of long-term participation? Might simpler
mechanisms be more appropriate? Indeed this is true, as the
following mechanism shows.

– At each timet, ask the agents to declare theirθi,t and
award the resource to the agent declaring greatestθi,t.

– Police the declarations: make sure that in the long run
the empirical distribution of the declared values of theθi,t
matchesFi. If this is not the case then penalize agenti by
imposing an appropriate charge.

– Assuming that agents are truth-telling, compute the ex-
pected benefit of each agent at each timet; then just as in our
analysis of the full information case, split costc arbitrarily
into c1 and c2, so the expected benefit of agenti is at least
ci, and then use these fixed charges at each timet.

As we prove in Section V-A, this simple policy incentivizes
truthful declarations. It also satisfies ex-ante C2 becausein the
long run each agent will have positive net benefit.

Our discussion to this point shows that operating policies
may be very sensitive to modelling details. Policing is a
practical option only when the same set of agents with known
profiles are sharing the facility in a repeated fashion; thisgives
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a special structure to the problem that allows us to achieve
the same efficiency as in the full-information case. However,
if agents change from day to day, or policing is not possible
then we must to do something more interesting and nontrivial.
We have seen that there can be several versions of second-
best mechanisms; which we prefer can depend on which of
constraints C1–C3 ought to be respected ex-post (or ex-ante)
in given practical circumstances.

B. The caseui(x) = xβ , 0 < β < 1

With ui(x) = xβ (0 < β < 1) the story changes, in that the
resource is no longer wholly allocated to the agent declaring
greatestθi,t. It turns out that under a second-best mechanism
the optimal division ofQ into x1 andx2 does not maximize
θ1,tx

β
1 + θ2,tx

β
2 (as it would be for first-best). There is an

efficiency loss in inducing incentive compatibility. This will
become clear in Section V-B.

Suppose that agents are identical and the common distribu-
tion of θi,t has density functionf . Define, forλ ≥ 0,

g(θi) = θi −
(

1− F (θi)
)

/f(θi) (12)

hλ(θi) = (θi + λg(θi))
+. (13)

We see in Section V that the optimal sharing policy is found
by solving a Lagrangian dual problem:

min
λ≥0

{

E

[

max
x1+x2≤1

2
∑

i=1

hλ(θi)x
β
i

]

− (1 + λ)c

}

.

This means thatxi(θ1, θ2) ∝ hλ(θi)
1/(1−β). Notice that if

λ = 0 this means allocating the resource in the most efficient
way, i.e. to maximize

∑

i θiu(xi). However, for a mechanism
parameterized byλ > 0, the resource is allocated differently.
There is a θ̄, such that an agent who declaresθi < θ̄ is
allocated no resource. Whenθ1 > θ2 > θ̄, agent 1 receives
a greater share of the resource than he would in an efficient
allocation. We findx1(θ1, θ2)/x2(θ1, θ2) is increasing inλ.

As λ increases from0 to∞ the cost that is being covered by
the mechanism is increasing. Forβ = 1/2, this means we can
cover c ≤ 0.2344 with λ = 0, and thenc ∈ [0.2344, 0.4413]
by takingλ ∈ [0,∞). The mechanism is complicated, but the
results of its application can be calculated numerically and a
figure produced that is very similar to Figure 1. We return
to the issue of calculating payments for this mechanism in
Section V-B. Similar stories are true if there are more than 2
agents. However, numerical calculations can be intractable.

IV. BUILDING AN OPTIMAL INFRASTRUCTURE

We return now to the infrastructure optimization problem
that we touched upon briefly in Section II-B, in which
the declarations of the agents are also used to choose the
size of the infrastructure. There are now two stages in the
implementation of a mechanism. In the first stage agents
declare their ‘types’, that can be interpreted as how valuable
is using the infrastructure on atypical day. As a function
of these declarations the operator decides on the size of the
infrastructure and on the payment functions and allocation
rules that will be used in the second stage. In the second phase

the infrastructure is shared among the agents according to the
infinite repetition model introduced in Section II-A in which
agents reveal their actual daily valuations.

Let us suppose a model in which if the infrastructure is
operated at dayt in mannerω ∈ Ω, the utility for agenti
is φiθi,tu(ω), whereφi is the type of the agent andθi,t is
his normalized valuation of the service at the given dayt. As
before, it is public knowledge, a priori, thatφi is a sample
of a random variable with known distribution functionΦi, but
its true value is known only to agenti. Now, for eachi, θi,t
is also private information with a known distributionFi. A
way to interpret this is thatθi,t states in a relative scale how
valuable the service is to agenti, and multiplying it withφi
rescales this to its actual value. For instance,θi,t could take a
value in {1 (low), 2 (medium), 3 (high)}, and multiplying it
by φi leads to the actual service valuation. Or we could have
that θi,t is uniform on[0, 1], andφi is uniform on[0,M ], in
which caseφiθi,t is uniform in [0, φi]. Hence the type of agent
i is needed in order to determine fully the distribution of the
parametersθi,t in the model of Section II-A.

Our mechanism now is a modification of M that can be
described as follows.
M†1 The agents are told that as a function of declaredφ =

(φ1, . . . , φn)

(a) the facilityΩ(φ) ∈ Θ will be chosen;
(b) the operating policy for declaredθt will be ω(θt, φ);
(c) the payments for declaredθt will be p(θt, φ) =

(p1(θt, φ), . . . , pn(θt, φ)).

M†2 Knowing all the above, and assuming all other agents
are truthful, C1–C3 hold at the equilibrium and agent
i has a priori incentive to declare truthfully hisφi, and
subsequently at every dayt his θi,t.

Given declarations ofφ1, . . . , φn, step (a) is imple-
mented once at the start, and then, givenθ1,t, . . . , θn,t,
steps (b) and (c) are implemented daily.

This model of facility building has both one-shot and
repeated components. The initial component is one-shot. On
the basis of declaredφ1, . . . , φn, the choice ofΩ and the
functions ω(θt, φ) and p(θt, φ) are specified. Each agent
(and the operator) can now estimate average net benefit (and
revenue) throughout the future and might be inclined to leave
the system (decline to operate) if this estimate is negative. This
suggests that constraints C2–C3 must hold ex-post in regard
to step (a). However, as regards to the repeated component of
steps (b) and (c) they need only hold ex-ante. In general, it is
impossible for all of C1–C3 to hold ex-post, but it becomes
possible as the number if agentsn tends to infinity.

Let us now describe a model that we shall often use.
We use the terminologyactivity modelto refer to modelling
assumptions that the utility for agenti is φiθi,tu(·), where
θi,t ∈ {0, 1}, truthful declaration ofθi,t takes place automati-
cally, andφi is private information, with a priori distribution
Φi. This gives a model in which agents are either ‘active’ or
‘inactive’, i.e. are only interested in using the infrastructure
on some days, and given that agenti is active, she has always
the same utility functionφiu(·). Assume that{θi,t}t=1,2,... are
independent and identically distributed samples of a Bernoulli
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random variable.Letαi be theactivity frequencyof agenti, i.e.
the probability thatθi,t = 1. Define the probability that on a
given day the set of agents who wish to use the infrastructure
S is α(S), whereS ⊆ {1, . . . , n}. We assume that on any
particular day the value ofS is known, since there is no reason
why any agent would pretend she wishes to use the resource
when she cannot benefit from doing so, or pretend she cannot
benefit from using it when she could. This is by the same
arguments as in the proof of Theorem 1, Section V-A.

Consider the scalar resource sharing model, with the activity
model assumptions,n = 2, u(x) = x, and a prioriφi ∼
U [0, 1]. Suppose thatΘ = {Q : 0 ≤ Q ≤ 1} andc(Q) = γQ.
Let ᾱi = 1− αi. The first best optimum would be

E max
0≤Q≤1

{

(α1ᾱ2φ1 + α2ᾱ1φ2 + α1α2 max(φ1, φ2))Q − γQ
}

=
(

α1ᾱ2φ1 + α2ᾱ1φ2 + α1α2 max(φ1, φ2)− γ
)+

. (14)

Recall thathλ(φ) = φ + λg(φ), where forφi ∼ U [0, 1] we
haveg(φ) = 2φ− 1.

As we see from the theory in Section V the value of the
second-best social welfare is

min
λ≥0

{

Eφ1.φ2

[(

α1ᾱ2hλ(φ1) + α2ᾱ1hλ(φ2)

+ α1α2 max
(

hλ(φ1), hλ(φ2)
)

− (1 + λ)γ
)+ ]}

, (15)

which also provides a way of finding the appropriate value of
λ. This leads to a mechanism in which agenti participates
only if φi > φ̄ (defined byhλ(φ̄) = 0), andQ = 1 or Q = 0
as the term is round brackets above is positive or not.

V. THEORY

This section contains the theory underlying Sections II–
IV. We separately consider the scenarios in which a set of
agents interacts over a long period of time (our ‘long-term
participation’ model) or on just a single day (our ‘one-shot
participation’ model). It is interesting that in the first ofthese
scenarios a simple policy that uses policing can asymptotically
obtain the same social welfare as the first-best policy, justas
when there is full information.

A. Long-term participation: incentive compatibility achieved
by policing

The key idea is that long-term participation makes it pos-
sible to incentivize agents to be truthful by policing their
declarations. We may threaten to impose a very large fine
upon agenti, or to exclude him from participation, if the
empirical distribution of his declaredθi,1, θi,2, . . . does not
converge to the publicly knownFi. There are many ways in
which this might be done. For example, ifFi is the uniform
distribution on[0, 1] we might partition[0, 1] into N equally
likely subintervals of width1/N . We then run leaky bucket
policers for each of these subintervals. Each bucket can hold an
infinite number of tokens, and receives tokens at a rate of1 per
N days. A token is removed from the bucket corresponding to
the subinterval of[0, 1] in which a declaredθi,t falls; if there
is no token in that buffer, then agenti obtains no resource.

After many days (which should be exponential inN , so that
the system will operates for a long time near its steady-state),
N can be doubled. One can show (though we omit further
details) that if this policer is employed then agenti maximizes
his long-run average net benefit by respecting the constraint
that the empirical distribution of hisθi,t matchesU [0, 1].
Applying Theorem 1 (below) we can conclude that subject
to this constraint he does best by being truthful.

Once we know that agents are truthful, the problem simpli-
fies since we can then use (5) to make an optimal resource
allocation for each vectorθt = (θ1,t, . . . , θn,t).

It remains to check that the combination of the allocation
mechanism (5) and the policing mechanism described above
does actually incentivize agents to be truthful. We need to
check that there is no equilibrium which achieves a better
payoff and in which agents sometimes report theirθi,t in
a non-truthful way. To check this, we start by noticing that
the payment ofpi that is to be taken from agenti is fully
determined by public knowledge ofF1, . . . , Fn, and so does
not depend on the agent’s declarations ofθi,1, θi,2, . . . . Let
us now consider whether it could be advantageous for agent
i to decide that whenever hisθi,t takes the valueθi he will
declare it to beθ′i (possibly even randomizing). The policing
mechanism constrainsθ′i to have the same distribution as
θi. Subject to this constraint, the agent wishes to maximize
E[θiVi(θ

′
i)], whereVi(θi) = Eθ−i

[u(xi(θt))|θi,t = θi].
Theorem 1:Suppose that when agenti has θi,t = θi

he declares it asθ′i (possibly randomizing), subject to the
constraint that the unconditional distribution ofθ′i must also
beFi. Given that the resource is to be allocated according to
declaredθ′i,t and by using (5), the agent maximizes his net
benefit by always being truthful, i.e. withθ′i = θi.

Proof: Given thatui(x) is concave increasing inxi and
xi(θt) is determined by (5) the functionVi(·) must be non-
decreasing. We now use the Hardy-Littlewood rearrangement
inequality, which generalizes to integrals the simple factthat
given anya1, . . . , an andb1, . . . , bn, then

∑

i aibi ≤
∑

i a
∗
i b

∗
i ,

where the starred sequences are rearrangements of the original
sequences into increasing order. Takinga(θi) = θi and
b(θi) = E[V (θ′i)|θi], we havea∗(θi) = θi andb∗(θi) = V (θi),
and obtain

E[θiVi(θ
′
i)] = E

[

θiE[Vi(θ
′
i)|θi]

]

=

∫

θi

ab ≤
∫

θi

a∗b∗

= E[θiVi(θi)].

So there is no reason for agenti to be other than truthful.

B. One-shot participation: optimal auctions

Now we turn to the more difficult circumstance in which it is
not possible to police the parametersθi,t because the scenario
is one-shot. Our discussion focuses upon a typical dayt. Let
ui(xi|θi) denote the utility of agenti for allocation of resource
xi. It is a function of his privately known parameterθi. A
special case of this model isui(xi|θi) = θiu(xi), as assumed
hitherto. Another special case is

ui(x|θi) =
{

0, x = 0

r − (1− θi)x, x = 1, 2, . . .
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for 0 < r ≤ 1. This models a scheduling problem, to be
discussed in Section VI, in which there aren unit length jobs,
each belonging to an agent; a subset of them us chosen for
processing and scheduled in some order. If the job of agent
i is completed after a timex, then he gains utilityr − γix,
whereγi = 1 − θi is a per unit cost of delay. The allocation
x = 0 indicates that the job is not processed.

As usual, the a priori distribution ofθi is Fi, which is
known to all agents and the system operator. Based on this
information, the operator imposes on the agents a mechanism,
say M∗. This is the same as M, except that we now allow
the choice of operating modeω to be a randomized choice
within Ω, say taking the valueω with probability q(ω|θt).
The payments arepi(ω, θt), i = 1, . . . , n. Specification of the
functionsq(·|·) andpi(·, ·) are part of the rules of M∗.

We now drop the suffixt, writing θi (and θ), in place of
θi,t (andθt). For simplicity, let us suppose that for every pure
choice ofω, the allocationxi(ω) takes one of the values in
a finite set, sayX (e.g.X = {0, 1, . . . , Q}). Let us denote
probabilities for agenti being allocatedx, conditional onθ or
on θi, as

ψi(x|θ) = P (xi(ω) = x|θ),

ψi(x|θi) = P (xi(ω) = x|θi) = Eθ−i
ψi(x|θ).

It is because M∗ allows randomization over the choice ofω
that these variables can take values strictly between 0 and 1.
We also denote ex-post and ex-ante payments as

pi(θ) = Eω|θpi(ω, θ), pi(θi) = Eθ−i
pi(θ).

The aim of the operator is to design a mechanism maximiz-
ing total expected net benefit of

Eθ

{

∑

i

∑

x

ui(x|θi)ψi(x|θ)
}

− c, (16)

subject to C1–C3. The ex-ante net benefit of agenti is

nbi(θi) =
∑

x

ui(x|θi)ψi(x|θi)− pi(θi). (17)

For simplicity, suppose thatui(x|0) = 0 for all x.

Theorem 2:There existsλ ≥ 0 such that the optimal
mechanism design (satisfying ex-ante C1–C3) choosesω as
function of θ to maximize

∑

i

[

(1 + λ)ui(xi|θi)− λ1−Fi(θi)
fi(θi)

∂
∂θi
ui(xi|θi)

]

. (18)

Proof: The ex-ante expected net benefit of agenti, given
in (17), is continuous and differentiable inθi. Assuming that
the Fj are continuous, this is due to the averaging that takes
place overθ−i when obtainingui(x|θi) = Eθ−i

ui(x|θ). The
ex-ante incentive compatibility constraint C2 means that a
truthful declaration ofθi maximizes agenti’s expected net
benefit. Using (17), this provides a stationarity condition, that
declaringθi = η,

∑

x

ui(x|θi) ∂
∂ηψi(x|η) − ∂

∂ηpi(η) = 0.

Upon substitutingη = θi and integrating, this gives

pi(θi) = pi(0) +
∑

x

[

ui(x|θi)ψi(x|θi)

−
∫ θi

0

∂
∂si
ui(x|si)ψi(x|si)dsi

]

. (19)

By taking an expected value of (19) with respect toθ, using
integration by parts, and then summing oni, we find that the
ex-ante cost-covering constraint can be written as

∑

i

pi(0) + Eθ

{

∑

i

∑

x

[

ui(x|θi)

− 1−Fi(θi)
fi(θi)

∂
∂θi
ui(x|θi)

]

ψi(x|θ)
}

≥ c.

Subject to this constraint, we wish to maximize (16). The
decision variables are thepi(0) (which are to be≤ 0) and
the ψi(x|θ), i ∈ {1, . . . , n}, x ∈ {0, 1, . . . , Q} (which are
to be in [0, 1], as well as consistent with the randomized
choice ofω ∈ Ω). The fact that we allow the choice ofω
to be randomized means that the set of all possible choices
of decision variables is convex. All decision variables appear
linearly in both the objective function and constraint, andso
the problem can be solved by considering maximization of a
Lagrangian of

L = Eθ

{

∑

i

∑

x

[

(1 + λ)ui(x|θi)

− λ1−Fi(θi)
fi(θi)

∂
∂θi
ui(x|θi)

]

ψi(x|θ)
}

− (1 + λ)c+ λ
∑

i

pi(0). (20)

This can be maximized pointwise for eachθ, and the statement
of the theorem now follows.

Let us make some remarks.
1. The assumption thatxi(ω) takes values in a finite set

is simplifying for exposition, and useful in some examples.
However, if x has a continuous domain we may replace
∑

x . . . ψi(x|θ) by
∫

x . . . ψi(x|θ)dx, with ψ now a density.
2. Theorem 2, its proof, and remark 3 recast, in the context

of our models, standard arguments from the theory of optimal
auctions and mechanism design, as expounded in [6] and
[7]. There is one difference in that we seek to maximize
social welfare, whereas in an auction one is usually seeking
to maximize a principal’s profit.

3. Consider the scalar resource sharing examples in Sec-
tions III-A and III-B, where we hadui(xi|θi) = θiu(xi). The
coefficient ofλ in (18) is gi(θ) = θ− (1−Fi(θ))/fi(θ). The
choice ofω in (18) becomes the problem

maximize
∑

i
xi≤Q

{

∑

i

(

θi + λgi(θi)
)

u(xi)

}

. (21)

Assume gi(·) is nondecreasing (as is the case for many
distributions), and let̄θi be the leastθi for which it is profitable
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to allocate resource to agenti, i.e.θi+λgi(θi) ≥ 0 for θi ≥ θ̄i
in (21). To calculate the payments, define

V1(w) = Eθ2

[

u(x1(w, θ2))
]

, (22)

and similarlyV2(·). Upon declaringθi agenti must pay

pi(θi) = θiVi(θi)−
∫ θi

θ̄i

Vi(w)f1(w)dw, θi ≥ θ̄i, (23)

and 0 otherwise.
This mechanism satisfies the ex-ante versions of C1–C3. It

is possible, as above, to alter the mechanism so that ex-post
version hold, either for C3, or for C1 and C2. For example,
ex-post C1–C2 are achieved by agent 1 paying,

p1(θ1, θ2) = θ1u(x1(θ1, θ2))

−
∫ θ1

θ̄1

u(x1(w, θ2))f1(w)dw, (24)

for θ1 ≥ θ̄1, and 0 otherwise, and similarly forp2(θ1, θ2).
Using L in (20), the appropriate value ofλ can be found

from the Lagrangian dual problemminλ maxx L. We can write
the maximum social welfare as

min
λ≥0

E

[

max
∑

i
xi≤Q

{

∑

i

(

θi + λgi(θi)
)

u(xi)

}

− (1 + λ)c

]

.

4. It is interesting to compare solutions withλ > 0 and
λ = 0. For the following discussion, we continue to suppose
that ui(x|θi) = θiu(x).

If λ > 0 thenE
[
∑

i pi(θi)
]

= c and pi(0) = 0 for all i.
Note that the resource is not necessarily allocated in the same
way that an efficient market would allocate it. For example,
supposen = 2 and θ1 ∼ U [0, 1], θ2 ∼ U [0, 2]. Suppose that
c is such that we cover the cost when takingλ = 1. Then
if θ1 = 5/6 and θ2 = 1 we will have thatx1, x2 should be
chosen to maximize32u(x1) + u(x2). Assumingu is concave
this will mean we should takex1 > x2, even thoughθ1 < θ2.

If λ = 0 then we see from (18) that the resource is
always allocated in the most efficient way, i.e. to maximize
∑

i θiu(xi). This is now the same way an efficient market
would allocate it. The expected sum of payments can create
a surplus, says = E

[
∑

i pi(θi)
]

− c > 0. In this case we
may takep1(0), . . . , pn(0) as any quantities summing to−s;
for instance we could share the surplus equally amongst the
agents by settingpi(0) = −s/n.

5. At the end of Section IV we looked at an infrastructure
optimization problem, in which the revelation of private pa-
rametersφ1, φ2 takes place once at the start and influences the
choice ofQ. The analysis for this problem is very similar. We
derive (15) from the Lagrangian dual

min
λ
Eφ max

Q

{

Eθt max
x∈X

∑

i hλ(φi)θi,tu(xi)− (1 + λ)c(Q)
}

.

This illustrates that one needs to be careful in ordering
operators ofmaxQ, Eφ andEθ.

6. Although the above gives a methodology, it is not easy
to apply analytically, even in simple cases. It is not even easy
to say whether or notλ = 0, although we know this depends
on the value ofc.

VI. A N APPLICATION TO SCHEDULING A SERVER

Suppose that each ofn agents has a single unit length job
which he wishes to have processed, and with minimum delay
cost. An operator owns a machine. He is to decide which of
the agents’ jobs to process and how their processing is to be
ordered. Suppose that the utility to agenti if his job is finished
after a timexi is ui(xi) = ri − γixi, whereγi = 1 − θi is
the per unit time delay cost andθi is private information of
agenti. If his job is not processed utility is 0. To indicate that
a job is not processed we can letxi = 0, with ui(0) = 0.
Suppose that a prioriθi is distributed uniformly on[0, 1] and
the ris are known. Since jobs are of unit length,xi = j if
agenti’s job is processedjth in the sequence. The operator
wishes to maximize the expected sum of net benefits, subject
to obtaining payments from the agents sufficient to cover the
cost of operating the machine,c. Application of our theory
in Section V reveals that the optimal schedule maximizes, for
some appropriately chosenλ,

∑

i

[

(1 + λ)(ri − (1 − θi)xi)− λθixi

]

1{xi>0}

=
∑

i∈S

(

(1 + λ)ri + θixi

)

− (1 + λ)

|S|
∑

i=1

i

whereS is the set jobs chosen for processing. Consider the
special case thatri = r for all i (r < 1), and suppose
declarations are such thatθ1 > · · · > θn. Then the mechanism
will operate by choosing some set of jobs1, 2, . . . , k (with
least delay costs) and then schedule them in orderk, . . . , 2, 1
(i.e. giving decreasing priority to jobs with decreasing delay
costs). A little algebra shows thatk is the least nonnegative
integer such that

θ1 + · · ·+ θk+1

k + 1
< (1 + λ)

(

1− r

k + 1

)

, (25)

or k = n if the above does not hold fork = n. Thus we have
found the general form of an optimal operating policy. One
might have guessed that an optimal mechanism would choose
to process a set of jobs with small delay cost, but the precise
criterion for selection in (25) is not something that one would
easily guess. However, there remains a difficult calculation to
determine the right payments,pi(θi), and to find the value of
λ such that the resulting policy induces payments that exactly
cover the costc.

VII. SHARING POLICIES AND INCENTIVES

In this section we analyse the inefficiency of simple sharing
policies and their inability to optimally incentivize agents to
contribute to the shared infrastructure.

For simplicity, we take the activity model of Section IV
and assume thatφi = 1 for all i. Let the set of active
agents at dayt be S, whereα(S) =

∏

i∈S αi

∏

i6∈S(1 − αi).
Supposec(Q) = Q and that agents contribute dailyq1, q2
(monetary or ‘in kind’) towards covering it, i.e.Q =

∑

j qj .
If all contending agents have the same concave utility function
ui(x) = u(x), it would seem sensible to takexi(S) = Q/|S|.
But is this optimal? Or should the sharing policy depend on the
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αi and on the agents’ contributions,qi? One might expect that
sharing resource amongst agents in proportion to their initial
contributions provides better incentives and greater efficiency
than sharing resource equally amongst agents. Next we analyze
the performance of different simple policies for two agents, an
equal sharing policy forn agents and subscription pricing in
which all participants are charged the same fixed fee.

A. Sharing a resource between two agents.

Supposen = 2. Let xi(S) be the share of resource given
to agenti when the set of active agents isS. The average net
benefit of agent 1 per period is

α1(1− α2)u(x1({1})) + α1α2u(x1({1, 2}))− q1.

Supposeu(x) = r − 1/x, with r = 10, andα1 = α2 = α =
0.8. If we take xi({i}) = xi({1, 2}) = qi then we model
agents acting alone, i.e. each building her own facility. Acting
alone agenti maximizesα (r − 1/qi)−qi. She obtains average
net benefit ofα10− 2

√
α = 6.2112, for qi = 0.8944.

Now suppose agents share the resource. Sinceα1 = α2 = α
we would expect that under any reasonable mechanism the
agents should be incentivized to contribute equally and that
resource should be shared equally whenS = {1, 2}. However,
it matters what this mechanism is. We now look at such
mechanisms.

Equal sharing. Consider an ‘equal shares’ policy of
xi({i}) = q1 + q2 and xi({1, 2}) = 1

2 (q1 + q2). Agent i
has net benefit of

nbi(q1, q2) = α

(

r − 1− α

q1 + q2
− α

1
2 (q1 + q2)

)

− qi.

The social optimum is achieved by choosingq1 = q2 = q to
maximizenb1(q1, q2) + nb2(q1, q2). This is achieved byq =
√

α(1 + α) = 0.8485. The net benefit per agent is6.3029.
Suppose agents have full information regardingα, q1 and

q2. Sharing resource with the equal shares policy, agenti
maximizesnbi(q1, q2) with respect toqi. There is equilibrium
for any (q1, q2) such thatq1+ q2 = 1.2. If we requireq1 = q2
then the equilibrium isq1 = q2 = 0.6, and each agent has
net benefit6.2. This is less than the6.2112 they obtain when
acting alone. In fact, whenn = 2, two identical agents will
prefer to act alone for allα1 = α2 > 7/9.

The above issue worsens as the number of agents increases.
If n = 10 then each agent contributesqi = 0.2561 and the
net benefit per agent is5.1826. For n ≥ 98 the equilibrium
is driven to a point where agents no longer have positive net
benefit. They will start deserting the system, even though, with
a central planner, there would be benefit increasing inn.

We have made a surprising observation: two identical agents
can obtain greater net benefit by acting on their own than by
participating in a shared system in which their contributions
are determined as the Nash equilibrium of a game. We have
seen that the social welfare obtained by ‘equal shares’ can be
less than stand alone forα > 7/9. With α = 0.8 the stand
alone welfare is6.2112 and the shared-infrastructure welfare
is only 6.2. This is because the incentives are wrong and each

agent tries to be a partial free-rider. How might we provide
better incentives? One way is with proportional sharing.

Proportional sharing.Suppose we divide the resource be-
tween agents in proportion to their contributions. This gives
xi({i}) = q1 + q2 andxi({1, 2}) = qi. The equilibrium is at
q1 = q2 = 0.8246 and the social welfare is6.30225, which is
better than the stand alone welfare. This is just a bit less than
the 6.30294 that a social planner could achieve.

Consider now a scheme that shares resource proportionally
to sth powers of the contributions. That is,

xi({i}) = q1 + q2, xi({1, 2}) = qs
1

qs
1
+qs

2

(q1 + q2).

Equal division iss = 0. Proportional division iss = 1. It
turns out that the equilibrium point is increasing ins. For
s = 9/8 = 1.125 the equilibrium is exactly the same as that
of the social optimum. In fact, this works for anyα when we
takes = 1

2 (1 + 1/α). Note that this means takings ≥ 1.
Other schemes can also be good. For example, recallq1 =

q2 = q0 =
√

α(1 + α)/2 achieves first-best welfare. Let

x1({1}) = q1 + q21{q1≥q0}

x2({2}) = q2 + q11{q2≥q0}, xi({1, 2}) = qi.

That is, when agent1 alone is active then she is allowed to
use agent 2’s contribution, but only if she contributes at least
q0. This scheme achieves the same social welfare as does a
central planner. However, to computeq0 we need to know the
parametersα1, α2 (as when choosings = 1.25 above).

B. Equal sharing provides wrong incentives.

The inadequacy of equal sharing is true more generally.
Suppose that there aren agents,φi = 1 for all i, andα1 >
· · · > αn. It turns out that the equal shares policy does not
work well, because only agent 1 has any incentive to contribute
resources. To see this, note that agent 1 wishes to maximize

nb1(q) = α1

[

α2Eu

( ∑

i qi
M + 2

)

+ ᾱ2Eu

( ∑

i qi
M + 1

)

]

− q1

with respect toq1, and agent 2 maximizes a similar expression
nb2(q) with respect toq2, whereM is a random variable
denoting the number of agents3, . . . , n that are present. Since
α1(1− α2) > α2(1− α1) it follows that

∂nb1(q)/∂q1 = 0 =⇒ ∂nb2(q)/∂q2 < 0.

So the only possible equilibrium is withqi = 0, i ≥ 2.
Now let M ′ be the number of the agents2, . . . , n who are

present. For an equilibrium to exist withq1 > 0 and qi = 0,
i ≥ 2, it would have to be that

α1∂E[u(q1/(M
′ + 1))]/∂q1 − 1 = 0

for someq1 > 0. This can happen if and only if

α1u
′(0)E [1/(M ′ + 1)]− 1 > 0.

Clearly,E [1/(M ′ + 1)] → 0 asn→ ∞. So if u′(0) <∞ and
n is large then no agent will wish to make any contribution.
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C. Equal sharing with subscription pricing.

One possible scheme is to charge a flat subscription fee to
any agent who wishes to participate. We purchase the greatest
amount of resource that the collected fees allow, and in each
epoch share it equally amongst any agents who are active.
Such schemes are commonly used in practice due to their
simplicity. Let us investigate how well such a scheme can do.

Suppose thatφ1 = · · · = φn = 1, but αi differ, and that
a priori these are uniformly distributed on[0, 1]. If we set
the fixed subscription fee to beq then there is a minimumα,
sayαq, for which it is advantageous for a ‘marginal’ agent to
participate. SupposeN is the number of the othern−1 agents
who have theirαi greater thanαq. As the marginal agent’s net
benefit is 0,

0 = αqEN

[

r −
1 +

(

1+αq

2

)

N

(N + 1)q

]

− q.

UsingN ∼ B(n− 1, 1− αq), routine calculation gives

0 = αq

(

r − [1− αn
q + (1 + αq)n]/(2nq)

)

− q,

and the expected net benefit of all the agents is

1
2 (1− α2

q)n

(

r −
1− αn

q + (1 + αq)n

2nq

)

− (1− αq)nq.

For r = 10 we find optimalq and αq as in the table that
follows. For comparison, the final column shows the first-best
that could be obtained in the full information case. We can also
calculate that under proportional sharing, asn → ∞, agents
of activity α are incentivized to contribute

√
0.6α, and the

average net benefit per agent is3.967. Stand-alone it would
be 3.667.

n q αq net benefit/agent
subscription first-best

2 0.6367 0.0726 3.770 3.827
10 0.5418 0.0697 3.939 3.966
∞ 0.5158 0.0575 3.987 4.000

Of course it would be even better to ask for a subscription
fee that depends onα, which could then be policed. For
example, this might beα q. For n large it is optimal to take
q = 1, there is noαq, and the expected net benefit is≈ 4n,
which is almost the same as using subscriptionq = 0.5158
for all agents. Other schemes might be investigated, such as
sharing in proportion toqi/αi.

VIII. B UILDING SYSTEMS WITH MANY PARTICIPANTS

We now address the formation of systems with large
numbers of participants and show that optimal tariffs have
a simple structure. Again our aim is to incentivize agents
to report indirectly some private parameter by choosing the
tariff that suits them most. As a function of his tariff choice,
an agent is guaranteed a certain amount of service and the
operator uses the payments to procure the infrastructure at
the right sizeQ. In particular we consider tariffs of the form
{(p(t), x(t)) : t ∈ [0, 1]}, parametrized byt, such that an
agent who chooses tarifft, paysp(t) and getsx(t) whenever

he is active. Each agent chooses the parametert that offers
him the best combination of cost and value. An equivalent
non-parametric representation would bex = x(p), a function
of the payment.

Our analysis treats special cases of the general model in
Section IV. Specifically, in Section VIII-A we deal with a new
problem which we did not address before: we have the activity
model, and the private information of an agent is his activity
frequencyαi. In Section VIII-B the unknown parameter is
service valuationφi.

A. Optimal incentives for declaring activity frequencies

We now consider the optimum designs for systems in which
a large number of agents participate and which are of the
activity model type introduced in Section IV, i.e.θi,t is 0 or
1, with probabilities1− αi andαi respectively.

Suppose thatEφi = 1, which for simplicity we approximate
asφi = 1 for all i, and the values ofα1, . . . , αn, are unknown
to the system designer. He would like to elicit these as part
of an incentive compatible scheme that optimally sizes a
system whose cost is covered by the payments of the agents.
This model applies to the practical circumstance in which
the central planner does not use accounting mechanisms to
estimate, and thereby police theαis. The aim is to structure
the tariffs to incentivize agents to reveal truthfully their αis.

Let us suppose thatc(Q) = Q, u(x) =
√
x and that a priori

the αi are distributed uniformly on[0, 1]. That is, there are
approximately equal numbers of agents with each value of
α in the range[0, 1]. The number of agents is very large,
so we may suppose (by the law of large numbers) that we
can meet demands from the common resource pool provided
the total amount contributed through payments covers the cost
of meeting average demand. The numbers we obtain in this
section can be viewed as upper bounds on performance for a
system with a small number of agents.

We would like to compare efficiency of the second-best
policy with the full information case, but also with the case
where agents use a different policy, the ‘go-it-alone’ policy, to
self-provide their infrastructure and not share it with others.

The go-it-alone solution:If an agent with parameterα must
go-it-alone then he will choose to build a facility of sizex to
maximizeαu(x)−x and therefore takex = 1

4α
2. The average

social welfare per agent is then
∫ 1

0

1
4α

2 dα = 1
12 = 0.0833̇.

The full information solution:Suppose a system designer
having full information decides to provide an agent with
parameterα = t with resourcex(t). The expected social
welfare (per agent) is

∫ 1

0

t u(x(t)) dt−
∫ 1

0

t x(t) dt.

So the optimum isx(t) = 1/4 for all t, and the resulting social
welfare per agent is1/8 = 0.125. It is somewhat surprising
that a system designer will wish to allocate the same resource
of 1/4 to any agent on occasions he is present. This is because
every time any agent is present he presents an opportunity to
earn benefit

√
x.
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The partial information solution using optimal tariffs:Now
the designer of the system wishes to optimize the system
by designing appropriate incentive compatible tariffs. Each
agent chooses the tariff that is most beneficial to him. A tariff
specifies the amount of resource an agent will receive each
time he is active and the corresponding payment he must make
initially in order to participate in such a system.

We consider the set of tariffs(p(t), x(t)) parametrized byt,
the type of the customer (in this caseαi). According to these
tariffs an agent who contributesp(t) getsx(t) whenever he
is active, and{p(t), x(t) : t ∈ [0, 1]} is the set of possible
choices.An agent’s maximum net benefit isf(α), where

f(α) = max

{

max
s

[

αu(x(s)) − p(s)
]

, 0

}

. (26)

The maximum of linear functions ofα is convex inα; this
is how we knowf(α) is convex. Similar to the arguments in
Section V-B, for incentive compatibility we must have

αu′(x(α))x′(α)− p′(α) = 0.

So if an agent with parameter̄α has net benefit0, then
incentive compatibility is equivalent with

p(α) = αu(x(α)) −
∫ α

ᾱ

u(x(s)) ds

and
∫ 1

ᾱ

p(α) dα =

∫ 1

ᾱ

(2α− 1)u(x(α)) dα. (27)

The resource constraint is
∫ 1

0

[αx(α) − p(α)] dα ≤ 0.

Our goal is to maximize the social welfare subject to incentive
compatibility and cost coverage. Consider the net benefit from
(26), the constraint (27), and substitute the resource constraint
which holds with equality. Then we seek to maximize point-
wise for eachs a Lagrangian of

L =

∫ 1

ᾱ

[

(s+ λ(2s− 1))u(x(s))− (1 + λ)sx(s)
]

ds,

whereᾱ = λ/(1+2λ) (the value ofs such thats+λ(2s−1) =
0).

For u(x) =
√
x the maximizingx(s) is

x(s) =

(

2λ+ 1

2(λ+ 1)
− λ

2(λ+ 1)s

)2

.

This means thatL is maximised to

1− 2λ2 log
(

λ
1+2λ

)

− λ2

8(λ+ 1)
.

By minimizing this with respect toλ, we findλ = 0.232206.
This gives for a solution in which forα ≥ 0.158566 = ᾱ,

p(t) = 0.173521+ 0.0942239 log t

x(t) = (0.594224− 0.0942239/t)2

andp(t) = x(t) = 0 for t < 0.158566 (= λ/(1 + 2λ)).

0.2 0.4 0.6 0.8 1.0
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0.10
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f(t)
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4
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Fig. 2. The solid lines showp(t) andx(t) when t > 0.2339. The dotted
line is net benefitf(t) = tu(x(t)) − p(t) and the dashed line ist2/4, the
net benefit obtained by an agent acting alone.

Remarks.
1. The social welfare obtained is0.116121 and this is just a

bit less than the social welfare of0.125 that could be obtained
by a system designer having full information.

2. The optimal scheme is one in which agents withα ≤
ᾱ = 0.1586 are prevented from participating. Intuitively, the
reason we need to do this is so we can incentivize the agents
with greaterα to make more substantial contributions. Another
way to think about this is that we prevent agents from free-
riding by declaring smallα, by preventing such smallα from
participating.

3. The black lines in Figure 2 showp(t) and x(t) (the
amounts that agents will contribute and receive when declaring
α = t). Most agents receive more than they contribute. But
agents with values ofα ≤ 0.23389 receive less than they
contribute. However, if go-it-alone is not possible (because
they cannot purchase and install resource for themselves or
because there may be some additional fixed cost) then they
will still take up this scheme, since their net benefit is positive.

4. The dashed blue line ist2/4, which is the net benefit an
agent could obtain if he were to go-it-alone, by takingx(t) =
p(t) = t2/4. The dotted red line isf(t) = tu(x(t)) − p(t),
the net benefit that an agent obtains in the shared system.
This is convex, so there would be no benefit to an agent
with parameterα masquerading as being two agents with
parametersα/2. Notice that the dotted red and dashed blue
lines cross; an agent does better by going alone ifα ≤ 0.2884.
It is easy to rework this analysis and obtain the optimal tariffs
under the assumption that agents can go-it-alone if they find
it more beneficial.

B. Optimal incentives for declaring service valuation

Now we look at infrastructures with a large number of
participants and obtain a solution that is simple and intuitive.

We again consider the general model in Section IV, and
specialize it for unknownφis, andθi,ts which are truthfully
reported because of policing and long-term participation.We
analyze first the simple case in which agents are of the activity
model type, i.e.θi,t ∈ {0, 1}, with known activity frequencies.
Then we generalize for arbitraryFis. Thus we suppose that
agenti is active on dayt with probabilityαi and when active
and allocated resourcesxi his benefit isφiu(xi).
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We state first a heuristic derivation of the largen result.
For any n (not small) the optimal mechanism is like this:
a system is built of sizeQ(φ). Agents are charged pay-
mentsp1(φ), . . . , pn(φ), and the sum of these covers the cost
c(Q(φ)). When agenti is contending for the resource amongst
a group of active agentsS he receivesxi(φ, S). Following
the steps in the analysis presented in Section V-B, there is a
λ ≥ 0, such that for allS the optimal way to share resource
Q amongst a set of active agentsS with declarationsφ is to
maximize

∑

i∈S(φi + λg(φi))u(xi(φ, S)), (28)

over
∑

i xi(φ, S) ≤ Q(φ). This follows from the fact that we
are maximizing pointwise for each(φ, S), a Lagrangian of

L = E
[

∑

S,i∈S α(S)
(

φi + λg(φi)
)

u(xi)− (1 + λ)c(Q)
]

overQ = Q(φ) andxi = xi(φ, S), subject to the constraint
∑

i∈S xi(φ, S) ≤ Q(φ) for all S. The Lagrange multiplierλ
is associated with the ex-ante constraint on cost coverage.

This has an interesting limit whenn is large, and it allows
payments to made in kind. Note that when agenti is active
the rest of the system will be in its typical average state. So
we can look for an approximate solution in whichxi(φ, S) is
independent ofS and we only need satisfy the constraint

∑

i αixi(φ) ≤ Q(φ). (29)

That is, we should choose thexis so that the average sum of
resource allocations does not exceedQ. Sincec(Q) = Q, the
Lagrangian for the problem reduces to

L = E
[

∑

i αi(φi + λg(φi))u(xi)− (1 + λ)
∑

i αixi

]

,

to be maximized with respect toxi ≥ 0. It turns out that asn
becomes large,λ→ 0, the constraint (29) is satisfied, and the
solution is

xi(φ) = xi(φi) := argmaxx′

i
{φiu(x′i)− x′i}. (30)

Moreover, each time an agent is active he is allocated the
optimal amount independently of the other agents. But agent
i pays onlyαixi(φi) and this exactly pays for his average
resource usage. This is the form of first-best policy that one
expects to obtain in the limit for largen, whereQ is provi-
sioned to serve the system in its typical (average) state. This
suggests the simple form of optimal tariffs(αix, x), x ≥ 0,
for eachi. In this set of tariffs, agenti must choose a specific
tariff, i.e. the best value ofx ≥ 0 given that by payingαix he
obtains always, when he is active,x. Clearly, agents of large
αis should be policed so as not to use tariffs with smallerαis.

It is interesting that the optimal contract chosen by agenti
secures the same amount of resources from the shared resource
pool as he would optimally choose to self-procure if no shared
infrastructure was available and he wasalwaysactive. But he
needs only pay for his average usage, namely forαixi. By
construction, this scheme is incentive compatible, i.e. hewill
choose the tariff parameterized by his actual value ofφ. Note
that xi(φi) exceeds the size of the facility he would form if
he were to stand-alone, which would be

x0i (φi) := argmaxx′

i
{φiαiu(x

′
i)− x′i}. (31)

Thus an agent benefits from the existence of the other agents
which are not always claiming resources; he uses the optimal
amount when he is active but pays only when he uses it, since
others pay for it when he is not.

In the general case the utility for agenti is φiθi,tu(xi). We
make the assumption thatθi,t is truthfully declared by policing
and that it takes values from a finite set{σ1, . . . , σM}, which
is the same for all agents (for simplifying notation). Letαi,m

be the publicly known probabilities that agenti hasθi,t = σm.
For instance,θi,t could take a valueσm ∈ {1, 2, 3} (perhaps
corresponding to low, medium, and high). Letxi(φ, θt) be
the allocation to agenti when the agents are in stateθt =
θ1,t, . . . , θn,t.

It is easy to see that same analysis holds as before. Again,
we assume when agenti is active withθi,t = σm, the rest of
the agents are in their typical average state. So it is reasonable
to look again for an approximate solution in whichxi(φ, θt)
depends only on the value ofθi,t, i.e. is of the formxi,m =
xi(φ, σm), and we only need to satisfy the constraint

∑

i

∑

m αi,mxi(φ, σm) ≤ Q(φ). (32)

That is, we should choose thexi,ms so that the average sum
of resource allocations does not exceedQ. As beforexi,m is
the guaranteed amount agenti gets when his stateθi,t = σm.
Again it turns out that asn→ ∞ we have a solution in which

xi,m(φ) = xi,m(φi) := argmaxx′

i
{φiσmu(x′i)− x′i}. (33)

This achieves the first-best optimum where each time an agent
is in statem he is allocated the optimal amountxi,m(φi) inde-
pendently of the other agents and he pays onlyαi,mxi,m(φi).
Hence in total he pays for his average resource usage. This
suggests the generalized form of optimal tariffs(αi,mx, x),
x ≥ 0, for eachi andm. In this set of tariffs, agenti must
choose a specific tariff for each statem, i.e. the best value of
x given that by payingαi,mx he obtains alwaysx when he is
in statem. Clearly this tariff is possible because, as a result
of policing, the value ofm is truthfully declared.

Before stating a limiting result for the optimality of the
above tariffs, lets see why it works. We work again using the
easier notation of the activity model. Letxi = xi(φi), as de-
fined above in (30). In practice, we need

∑

i xi(φ, S) ≤ Q(φ)
for all S. This is not possible if we try to takexi(φ, S) = xi for
all S. However, we can modify things slightly by proposing an
approximation of our previous tariff which is implementable
for every n and in the limit becomes the tariff(αix, x).
With agenti contributingqi, we let yi = qi/αi and redefine
xi(φ, S) = yiQ/

∑

j∈S yj , whereQ =
∑

j qj . This is a pro-
portional sharing ofQ that takes into account the contributions
of the agents and their frequency of use.

We illustrate the scheme withu(x) = r − 1/x. Let Ij ∼
B(1, αj). Agent i has expected net benefit of

αiφiE
[

r −
(

yi +
∑

j 6=i Ijyj
)

/(yiQ)
]

− αiyi

= αi

(

φi(r − 1/yi)− yi
)

− αi(1 − αi)/Q.

The termαi(1−αi)/Q is small and varies little withyi, and
αi(φi(r− 1/yi)− yi) is maximized byyi = xi(φi). So agent
i is incentivized to contribute≈ αixi and the total welfare,
which isO(n), will differ from its first-best value by justO(1).
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A limiting result for largen: Consider the activity model
with n identical agents. Suppose that each agent is present
with the same frequencyα, and when present agenti has
utility for resourceφiu(xi). Resource costsc(Q) = Q. Let
us do everything ex-ante and for a single period. The aim is
to maximize the expected net benefit (with the usual idea that
we must satisfy C1–C3).

We know that the solution is one in which agenti will
participate ifφi + λg(φi) > 0, and then, if the set of agents
who turn out to present isJ , the resource will be allocated to
maximize

∑

i∈J (φi + λg(φi))u(xi).
Let us definef1

n andf2
n as the maximal first- and second-

best social welfares that can be obtained fromn identical
agents. We shall show that asn → ∞ both f1

n/n and f2
n/n

converge to the same social welfare per agent, as could be
obtained if perfect multiplexing of resource allocations to
agents were possible: meaning that if an agent were to make
a contribution towardsQ of αx and then he could receive
preciselyx whenever he is present. If this could be guaranteed
then the agent with parameterφi should choose

x(φi) = argmax
x

[

αφiu(x)−αx
]

= α argmax
x

[

φiu(x)− x
]

.

Let us define

z(φ) = max
x

{φu(x)− x} = φu(x(φ)) − x(φ)

z̄ = Ez(φ).

Note thatf2
n ≤ f1

n ≤ nαz̄.

Theorem 3:f2
n/n→ αz̄.

Proof: We already havef2
n ≤ nαz̄. To establish an in-

equality in the opposite direction we need to find a mechanism
that is implementable and which achieves a social welfare of
almostnαz̄.

Let us suppose thatφi has a distributionF over an interval
[a, b ]. Assumingu(·) is concave, thenx(φ) is increasing in
φ. Suppose that0 < x(a) < x(b) <∞.

Fix some smallε > 0. Suppose that it is possible to create
a mechanism with the property that if an agent contributes
α(1 + ε)x then he can be given an ex-ante guarantee that if
he is present he will receive exactly resource amountx with
probability1− ε and resource 0 with probabilityε. Assuming
this is so, agenti will choose to contribute an amountxi which
maximizes his ex-ante expected net benefit of

α(1 − ε)φiu(xi)− α(1 + ε)xi,

and so he will take

xi = x
(

1−ε
1+ε φi

)

.

Define

xmin := x
(

1−ε
1+ε a

)

and xmax := x
(

1−ε
1+ε b

)

.

Assumexmin > 0. Note thatxmin ≤ xi ≤ xmax.
We now show that for largen it is possible to fulfill the ex-

ante guarantee to every agent. To see this, we observe that the
probability we cannot provide resource ofx1 to agent 1 is no
more than the probability that the total resource is insufficient

to give resource ofxj to every agentj who is present. Letting
Ii be aB(1, α) random variable, this is

P

(

x1 +

n
∑

i=2

Iixi > (1 + ε)αx1 +

n
∑

i=2

(1 + ε)αxi

)

= P

(

(1− α)x1 +

n
∑

i=2

(Ii − α)xi > εαx1 + ε

n
∑

i=2

αxi

)

≤ Ex2,...,xn







(1− α)2x21 +
∑n

i=2 α(1− α)x2i
(

εα
∑

i xi

)2







≤ (xmax/xmin)
2 /ε2α2n,

where for the first inequality we have used a Chebyshev
inequality of the formP (Y > δ) ≤ E[Y 2]/δ2, taking the
expectation here overI2, . . . , In.

Thus forn sufficiently large the right hand side above is less
than ε, uniformly in x1. Thus the ex-ante guarantee to agent
1 (and similarly other agents) can be fulfilled. The expected
net benefit for agenti is then

α(1 + ε)z
(

1−ε
1+ε φi

)

.

Now z(φi) is convex inφi. So by Taylor expansion inε around
0, and using the fact thatz′(φi) = u(x(φi)), we find that agent
i has, for someε0 ∈ [0, ε], expected net benefit of

(1 + ε)z
(

1−ε
1+ε φi

)

= z(φi) + [z(φi)− 2φiz
′(φi)]ε

+ 2φ2i z
′′(φi)ε

2
0

≥ z(φi) + [z(φi)− 2φiz
′(φi)]ε

= z(φi)− [x(φi) + φiu(x(φi))]ε

≥ z(φi)− [x(b) + u(x(b))]ε.

This shows that the expected net benefit that can be obtained
from n agents by use of an optimal mechanism is at least
nαz̄ − αn[x(b) + u(x(b))]ε, for largen. Sinceε is arbitrary,
this completes the proof thatf2

n/n→ αz̄.

IX. CONCLUSIONS

We have investigated policies for running shared computing
resource infrastructures. We have assumed that participants are
strategic in disclosing private information about their actual
resource needs and we have considered how best to share
resources and take payments from the participants so as to
maximize the overall efficiency of the system, while covering
its costs. The chief lessons from this study are as follows.

1. A participant’s decision about the quantity of resources
that he will choose to contribute to the resource pool can
be greatly affected by the resource allocation mechanism that
he knows will be deployed when the system operates. Thus,
a resource allocation policy may not be optimal if it only
allocates resources with regard to the efficiency of the division
of resources, while ignoring the effect this has on incentivizing
agents to contribute towards covering cost. For example, ifthe
resource will be shared equally amongst participants then an
agent may choose to contribute nothing to the resource pool.
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2. One way to incentivize potential participants to make
significant contributions to the resource pool is to impose
a rule that a participant will only be permitted to draw on
the pool if he makes a minimum contribution to it at the
point that it is formed. Another important rule is that an
agent who contributes more resource will have greater priority
for obtaining resource than an agent who has contributed
less. Such rules will incentivize agents to make contributions
that reflect their privately held beliefs about the benefits they
expect to obtain. The result is a facility with an appropriately
large quantity of resource, which is efficiently shared. Since
contribution are made in kind there is no need for any internal
money transfers.

3. We have seen that some optimal resource sharing mech-
anisms are parameterized by a Lagrange multiplierλ, or by
the θ̄ or ᾱ of a marginal participant. In practice, it would be
useful if one could discover the right value of these parameters
by some sort of on-line adaptation algorithm. We suggest that
this could be an area for fruitful research.

4. In a facility that is already built and so has a fixed size
(such as NRNs, National Grid Infrastructures), the running
cost must be shared by charging the participants. In general,
if the identities of the participants change over time, then
our results for one-shot participation suggest that one should
to operate a specialized mechanism in which participants
receive resource shares according to their declared needs,
while generating enough payments to cover running cost. In
the scenario of long-term participation simpler policies exist,
but at the added cost of implementing some accounting, such
as policing of theαi.

REFERENCES

[1] “e-Infrastructures Reflection Group,” /www.e-irg.eu/images/stories/publ/
finnishpresidency-recommendationsanddecisions.pdf.

[2] “Joint policy security group,” proj-lcg-security.web.cern.ch/proj-lcg-
security/securitypolicy.html.

[3] “European grid initiative,” web.eu-egi.eu/,www.eu-egi.eu/blueprint.pdf.
[4] “The Distributed Grid Accounting System (DGAS),” www.to.infn.it/

grid/accounting/main.html.
[5] “User’s guides for the DGAS services,” https://edms.cern.ch/document/

571271.
[6] R. B. Myerson, “Optimal auction design,”Mathematics of Operations

Research, vol. 6, no. 1, 1981.
[7] ——, “Mechanism Design,” inThe New Palgrave Dictionary of Eco-

nomics Online, 2nd ed., S. N. Durlauf and L. E. Blume, Eds. Palgrave
Macmillian, 2009, www.dictionaryofeconomics.com.

[8] “gLite middleware,” glite.cern.ch/,edms.cern.ch/file/722398/1.2/gLite-3-
UserGuide.pdf.

[9] G. Borges, M. David, J. Gomes, J. Lopez, P. Rey, A. Simon, C. Fernan-
dez, D. Kant, and K. M. Sephton, “Sun grid engine, a new scheduler
for EGCE middleware,” pubs.doc.ic.ac.uk/egee-sge-integration/egee-
sge-integration.pdf.

[10] C. S. Yeo and R. Buyya, “A taxonomy of market-based resource
management systems for utility-driven cluster computing,” Software
Practice and Experience, vol. 36, no. 13, pp. 1381–1419, 2006.

[11] R. Buyya, D. Abramson, and S. Venugopal, “The grid economy,”
Proceedings of the IEEE, vol. 93, no. 3, pp. 698–714, 2005.

[12] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, “Economic
models for resource management and scheduling in grid computing,”
Concurrency and Computation: Practice and Experience, vol. 14, no.
13–15, pp. 1507–1542, 2002.

[13] C. Courcoubetis, M. Dramitinos, T. Rayna, S. Soursos, and G. D.
Stamoulis, “Market mechanisms for trading grid resources,” See [14],
pages 58–72, 2008.

[14] M. W. Cripps and J. M. Swinkels, “Efficiency of large double auctions,”
Econometrica, vol. 74, no. 1, pp. 47–92, 2006.

[15] G. K. Dhananjay and S. Sunder, “What makes markets allocationally
efficient?” Quarterly Journal of Economics, vol. 112, no. 2, pp. 603–
630, 1997.

[16] R. Mason, C. Courcoubetis, and N. Miliou, “Grid economics and busi-
ness models,” inGrid Economics and Business Models: 6th International
Workshop, GECON 2009, Delft, The Netherlands, August 24, 2009, R. B.
J. Altmann and O. F. Rana, Eds., vol. 5745. Springer, 2009.

[17] “Distributed European Infrastructure for Supercomputing Applications,”
www.deisa.org.

[18] “Enabling grids for E-sciencE,” www.eu-egee.org/.
[19] “Partnership for Advanced Computing in Europe,” www.prace-project.

eu/.
[20] “WLCG MoU documents,” lcg.web.cern.ch/LCG/planning/planning.

html#res.
[21] “The OneLab Project,” www.onelab.eu.
[22] “The PlanetLab project,” www.planet-lab.org.
[23] G. Christodoulou and E. Koutsoupias, “Mechanism design for schedul-

ing,” Bulletin of European Association for Theoretical ComputerSci-
ence, vol. 97, pp. 40–59, 2009.

[24] N. Nisan, A. Ronen, and A. Ronen, “Algorithmic mechanism design,”
Games and Economic Behavior, vol. 35, pp. 166–196, 2001.

[25] J. Y. Yu and S. Mannor, “Efficiency of market-based resource allocation
among many participants,”IEEE Journal on Selected Areas in Commu-
nications, vol. 24, no. 6, pp. 1244–1259, 2007.

[26] C. Courcoubetis and R. R. Weber, “Incentives for large peer-to-peer
systems,”IEEE Journal on Selected Areas in Communications, vol. 24,
no. 5, pp. 1034–1049, May 2006.

Costas Courcoubetisis Professor in Computer Sci-
ence and heads the Network Economics and Services
Group and the Theory, Economics and Systems Lab
at the Athens University of Economics and Business.
He received his PhD from the University of Cali-
fornia, Berkeley and from 1982 until 1990 he was
Member of the Technical Staff in the Mathematical
Sciences Research Center at Bell Laboratories. His
research interests include economics of communica-
tion networks, resource allocation and optimization,
peer-to-peer computing, and regulation policy. He

is a co-author, with Richard Weber, of the bookPricing Communication
Networks: Economics, Technology and Modeling(Wiley, 2003). He has been
frequently a consultant with Bell Laboratories and the Greek regulation
authorities, and has participated in many EU research projects related to
network economics such as Ca$hman, M3i, MMAPPS, Gridecon and Etics

Richard Weber is Churchill Professor of Mathe-
matics for Operational Research in the Mathemat-
ics Department of the University of Cambridge.
His research interests include the economics of
networks and pricing, bin packing, Gittins index,
queueing control, rendezvous search, and schedul-
ing. He is a coauthor (with Gittins and Glazebrook)
of Multi-armed Bandit Allocation Indices(Wiley
2011). He has participated in EU research projects
related to network economics such as Ca$hman,
M3i, MMAPPS and Gridecon.


