
Probability in the Engineering and Informational Sciences, 4, 1990, 19-27. Printed in the U.S.A.

THE MOVE-TO-FRONT RULE
FOR MULTIPLE LISTS

COSTAS COURCOUBETIS
AT&T Bell Laboratories
600 Mountain Avenue

Murray Hill, New Jersey 07974

RICHARD R. WEBER

Cambridge University Engineering Department
Management Studies Group

Mill Lane, Cambridge, CB2 1RX, United Kingdom

A number of data items (1 ,2 , . . . ,n) are to be maintained in a structure which
consists of several linear lists. Successive requests to access items are indepen-
dent random variables, and the probability that a particular request is for item
/ is p/. The cost of accessing theyth item from the front of a list isy. For a sin-
gle list, the move-to-front rule (MF) has been extensively studied and has been
shown to provide good performance. In some actual circumstances, MF is the
only physically realizable or convenient policy. We extend the study of move-
to-front by examining the case where items are kept in several lists. Following
its access, an item must be replaced at the front of one of the lists. In certain
cases, assuming thep,'s are known, the policy which minimizes the average re-
trieval cost takes a particularly simple form: no item is ever moved from the
list in which it is placed initially.

1. THE MOVE-TO-FRONT RULE FOR MAINTAINING A LIST

The so-called library problem has been studied by a number of authors. In this
problem, n books are kept on a library shelf and are requested such that there
is a probability /?, that any particular request is for book /, independent of
other requests. The cost of retrieving a book is its position counting from the

© 1990 Cambridge University Press 0269-9648/90 $5.00 + .00 19

20 C. Courcoubetis and R. R. Weber

left-most book on the shelf, and it is desired to minimize the long-run average
cost of retrievals. When the p^s are known, say pt > • • • > pn, the optimal pol-
icy is to shelve the books in order of decreasing request probability (DP), with
book 1 left-most, followed by book 2, and so on. For the case in which the/?,'s
are unknown, a number of simple rules have been studied: (a) Move-to-front
(MF), in which the accessed book is returned to the left of the shelf: (b) trans-
pose (T), in which the accessed book changes places with the book previously
on its immediate left; and (c) frequency count (FC), in which a frequency count
is kept of the number of times each book has been requested and the books are
maintained on the shelf in order of nonincreasing frequency count. Move-to-
front and transpose are no-memory rules, in that the position in which book /
is replaced depends only on the positions of the books at the time i was
retrieved. Sleator and Tarjan [4] summarize a number of results in the study of
the library problem and we briefly repeat them here. Denote by EA(p) the
average cost associated with rule A, when p = (pu... ,pn). Then,

EDP(p) = EFC(p) < E7(p) < EMF(p) < 2 EDP(p),

where
n n n

EDP(p) = 2 ipi, and EMF(p) = 1 + 2 T,PiPj/(Pi + Pj).
i=\ 1=1 y=l

The formula for EMF(p) can be understood as follows: the probability that i
is the next item requested is /?,-. When item i is requested, the probability that
item / resides further from the front of the list than item j is Pj/(Pi + Pj),
which is simply the probability thaty rather than / was requested on the last oc-

asion that one of / or j was requested. Thus, 1 + Y.Pj/{Pi + Pj)\ is the ex-
L J*I J

pected position of item / from the front of the list.
Rivest [3] proved Ej(p) ^ EMF(p) and also conjectured that the transpose

rule is optimal for all /»in the class of no-memory rules. This was disproved by
a counterexample of Anderson et al. [1], which effectively ruled out the possi-
bility of a single simple rule being optimal for all p.

In this paper, we study a library-type problem which is extended to more
than one shelf. In doing this, we are attempting to learn about reorganizing sys-
tems in which the data structure is more complex than a single linear list. One
example of multiple linear lists occurs in a data base using hashing. Each hash-
ing location is the start of a single linear list. In this paper, we focus attention
on the move-to-front rule. Not only is this the simplest starting point, but there
are theoretical and practical reasons why move-to-front is an important rule.
Bentley and McGeoch [2] have reported results of empirical tests which indicate
that on actual sequences, move-to-front is better than transpose and competi-
tive with frequency count. This is not surprising if successive requests in real se-
quences are not independent. Results of Sleator and Tarjan show that for any

MOVE-TO-FRONT RULE FOR MULTIPLE LISTS 21

initial ordering of the items and any sequence s of m successive retrievals,
C M F (s) < 2 C A (s) - / ? 2 , where CA(s) is the cost associated with using a rule A
that replaces each item no further from the front than the position from which
it was extracted, and otherwise does no rearrangement of items.

In some circumstances, move-to-front is the only practical rule. For exam-
ple., the items might be crates stacked in piles in a warehouse. Or they might be
cars, whose owners share for parking the use of several narrow driveways which
run between their houses.

2. THE MOVE-TO-FRONT RULE AND MULTIPLE LISTS

We consider a model in which n items with known request probabilities
P\ >•••> pn are to be maintained in k lists with a move-to-front discipline.
The cost of accessing an item which is j from the front of its list is j . Follow-
ing each access, the item which is accessed must be replaced at the front of one
of the k lists. This is the only operation allowed when an item is replaced; no
other reordering is permitted. In the case k = 2, the number of stationary poli-
cies which are possible for the resulting Markov decision problem is 2< n + 1) ! n / 2 ,
which is 215120 for just n - 6. This assumes that the choice of the list to which
an item is replaced is a function of the items in each list and their orders in each
list. However, as we shall show, the order of the items in the list is unimportant,
so for k = 2 the true number of unique stationary policies is 2"2" ', which is
219J for n = 6. The result that the order of the items in the lists is immaterial is
contained in the following lemma.

LEIVIMA: In specifying the list in which an item is to be replaced, the optimal pol-
icy need take no regard of the order in which the items appear in the lists.

PROOF: The idea is very simple. A cost / is to be paid whenever an item is ac-
cessed at depth / in a list. When item / is replaced at the front of a list L, it in-
creases by 1 the cost associated with the next retrieval of any item./ in L, if the
next retrieval of j occurs before the next retrieval of /. We can define a cost
structure which, in the time-average sense, gives the same cost, for any station-
ary policy, as our original cost structure, but which clearly does not depend on
the order in which the items are placed in the list. The new cost structure is one
in which a cost of [1 + pj/(pj + pj)] is paid whenever / is replaced at the front
of a list which includes j . Here Pj/(Pi + Pj) is just the probability that the next
request fory occurs before the next request for /. With the new cost structure,
it is clear that information about the ordering of items in the lists is irrelevant.

•
The reader may also appreciate the following proof of this Lemma. For a

given stationary strategy, let </>y denote the proportion of time for which items
/ andy are in the same list and item i is closer to the front. Let 0,-,- be the pro-
portion of all requests such that item /' is requested and replaced at the front of
a list which includes j . By considering the state of the lists before and after a re-

22 C. Courcoubetis and R. Ft. Weber

quest, one obtains the obvious balance equation <£,-, = (1 — /?, — prffoj + By.
This follows from the observation that if / andy are in the same list, and / closer
to the front than j , then either this circumstance held prior to the last request
and neither i or j was requested, or the last request was for item / and it was
replaced at the front of a list which included j . The time-average cost of retrieval
is clearly [1 + E,y <j>jjPj]. The time-average cost under a structure in which a
cost [1 + Pj/(Pi + Pj)] is paid whenever item / is replaced at the front of a list
which includes./ is E,y 0#{1 + Pj/(Pi +Pj)}- Using the relation 0y = (p, + Pj)<t>ij
from the above balance equation, it is clear that the time-average costs are
equal.

Lemma 1 provides a substantial simplification, but it is still very difficult
to determine the optimal stationary policy for a problem of any size. Suppose
we restrict our attention to a subclass of possible policies. We shall say that IT
is a partition policy, if it divides the items into k lists and then always replaces
each item to the same list from which it was accessed. The class of partition poli-
cies will be denoted by II. If the partition L is into sets LitL2, • • • ,Lk, the time-
average cost will be

c(L) = 1 + 2 PiPj/(Pi + Pj)+---+ £ PiPjHPi + Pj).

The problem of minimizing c(L) is an NP-hard combinatorial optimization
problem, since for k = 2, n = 2m, pt = n~l + e,, and small e,, with Ee, = 0, it
is equivalent to the partition problem of finding a subset of exactly m e,'s
whose sum is as close as possible to 0. However, the number of possible poli-
cies which must be considered in an exhaustive search is much reduced. For
k = 2, it is 2""1 (which in the case n = 6 reduces the number of admissible poli-
cies from 2192 to 32).

In fact, numerical experimentation failed to turn up examples in which the
optimal policy in the entire class of policies was not a partition policy. Only af-
ter looking for conditions guaranteeing that the optimal policy lies in the class
II did we gain the understanding to construct an example in which the optimal
policy does not lie in II. The following is our example.

Example: S u p p o s e k = 2, n = 4 m , pl = • • • = p 2 m = a , a n d p 2 m + i = • • • =
P*m = b, where 2m(a + b) = 1. Essentially, there are two distinct types of item:
type A for which p, = a, and type B for which pt = b. It is not difficult to show
that an optimal policy in II is one ir, in which Lx and L2 contain exactly m
items of each type. There is clearly a reduced state space in which items with the
same p, are undistinguished. In this state-space discription, we let x be that
state in which there are m items of each type in each list. We let xp denote the
state obtained from x by moving one item, of the type having probability /?, =
p, from list Lx to L2. We consider a policy a which induces a stationary distri-

MOVE-TO-FRONT RULE FOR MULTIPLE LISTS 23

button on the four states x, x", xab, and xb. The policy a is most easily de-
scribed by its 4 X 4 transition matrix, in which P(x,x") = ma, P(xa,xab) =
mb.. P(xab,xb) = (m + \)a, and P(xb,x) = (m + \)b are the only nonzero
off- diagonal elements. Lengthy calculations show that for certain choices of a
and b, and m > 8, the policy a has a smaller cost than ir. The most unfavor-
able comparison of x to a occurs when m — 8, and a and 6 are approximately
^ and ^ . For a = ^ and 6 = ^ , the cost of a is 6.707 per access and the cost
of T is 6.722 per access (so a costs only 0.9977 as much as TT).

There are certain situations in which the optimal policy must lie in II. Given
a particular policy a, we say an item i is stable in state x with respect to a if when
/ is the next item requested it is replaced in the same list from which it was ac-
cessed. S(x) denotes the set of stable items. Unstable items are those which are
not stable and the set of these items is denoted by U(x). Let pS(X) = 2 Pi

ieSM

be the probability a stable item is chosen in state x.

THEOREM 1: Suppose we restrict attention to the class of policies such that for
every recurrent state x,

pSM + (n-2- \S(x)\) max [p,] < 1. (1)
<es<*)

Then the optimal policy lies in the class of partition policies II.

Corollaries of this theorem are that the optimal policy lies in II if either (a)
\/(n - 2) > max {/?,), that is, if the p, are nearly equal, or (b) the number

s ()
of unstable objects in any recurrent state never exceeds two, so that |S(x)| >
(n — 2). If n = 3, then the optimal policy is always in II. This follows from (b)
since there must be a route into every recurrent state, so there are at most two
unstable items in every recurrent state of a stationary policy. In fact, the par-
tition Lx = (1) and L2 = (2,3) is optimal for k = 2. Similarly, the above, and
other calculations, show that for n = 4, L\ — (1,4), L2 = (2,3) is optimal for
k ~- 2, and L, = (1), L2 = (2), and L3 = (3,4) is optimal for k = 3, for all val-
ues o f \ > p i >•••> p 4 .

PROOF OF THEOREM 1: Suppose policy a induces a recurrent Markov chain with
stationary probabilities ir(x). Let

k

Ax) = i + 2 S 2
h=\ ie

Here/(x) is the expected cost associated with the next retrieval if whatever item
is retrieved it is replaced in the same list from which it was retrieved. Let x be
the state x for which/(x) is minimal. That is, f(x) is the average cost per re-
trieval of the optimal policy in II. Denote by x' the state which is obtained

24 C. Courcoubetis and R. R. Weber

from a state x if item / G U{x) is requested and replaced at the front of the list
specified by a. The average cost per retrieval can be written as

x x i&U{x)

This follows by viewing costs as replacement costs (as in the Lemma at the start
of this section) and noting that if in state x an item / G U(x) is requested then
the cost of replacing that item differs from the cost that would be paid to re-
place it in the list from which it was requested by (l/2)(/(x') -f(x)}/pt. Re-
writing this,

(1/2) 2>W/(*)f 2 w(xi)/ir(x)-\U(x)\\.
x x KiBSU)

Formally substituting f(x) = f{x) in the above gives S = f(x); hence,

S -f(x) = £ ir(x) I f(x) -
X

+ (1/2) 2>W (/(*)-/(*))[E ir(xi)/ir(x)-\U(x)\\.
x I ieS(.x))

From the above, we see that S -f(x) > 0, implying that a has an average cost
of at least f(x) is for all x,

- 2 . (2)

Now the balance equation for state x is

*(x) = £ v(x)p,+ 2 v{x')ph
ies(x) iesM

or

*(X)(1-PSM)= 2 *(x')Pi* max [p,] 2 *(x'). (3)

The theorem follows by observing that Eqs. (1) and (3) imply Eq. (2). •

Our experience with numerical examples indicates that it is difficult to find
circumstances where a partition policy is not optimal, and if the optimal pol-
icy is not a partition policy it reduces costs only by a small amount. Our exam-
ple for which a partition policy is not optimal required n = 32, and we would
be surprised by an example in which the optimal policy is not in II and n much
less than this. It would be interesting to establish bounds on the suboptimality
of partition policies, but we have had no real success in that direction. However,
in the following section we discuss variations of the problem in which the op-
timal policy does indeed lie within the class of partition policies.

MOVE-TO-FRONT RULE FOR MULTIPLE LISTS 25

3. THE OPTIMALITY OF MOVE-TO-FRONT OF THE SAME LIST

In this section, we consider variations of the problem in which the cost struc-
ture is rather different and we can prove more. Consider the following two
problems.

1. The spaces left by items when they are removed from the lists are not
compacted. That is, although an item is moved to the front of some list
after being requested, the place it vacates remains. (Think, for example,
of a write-once, read-many data storage device, such as an optical disc.)
The cost of retrieving an item is equal to the number of items and va-
cated spaces between it and the front of the list at its time of retrieval.

2. The items are boxes containing different numbers of some object. Box
/ contains /z, objects and has a weight proportional to «,. The probabil-
ity that box / is requested is proportional to its weight (think, for exam-
ple, of stacks of heavy reference books containing differing numbers of
pages). The cost of retrieving a box is the weight of boxes which must
be temporarily lifted from above it.

Surprisingly perhaps, in both these cases, the optimal policy for operating
a move-to-front-of-some-list discipline lies in the class of partition policies.

More generally, consider the following model. Items reside in k sets (the list
structure is no longer the dominant feature). Whenever an item is requested it
is removed from its set, at some cost. It is then replaced in another set (possi-
bly the set it came from), at an additional cost. Suppose that an additive cost
ay is incurred whenever item / is removed from a set which includes item j .
Similarly, a cost bu is incurred whenever item / is replaced into a set which in-
cludes item j . Then we have the following theorem.

THEOREM 2: For any k, pit ay, and btj, with by = bji, the optimal dynamic
policy for replacing items following their retrieval is one in which items are in-
itially partitioned into k sets, and then items are always replaced into the same
set from which they are retrieved.

PROOF: Consider first the case in which there are no costs associated with
replacing items into sets; that is, btj = 0 for all i,j. Costs are paid only when
removing items. In this case, it is clear that the best scheme is to partition the
items into k sets such that the expected cost of removing the next requested item
is minimized. Then by always replacing each object in the set from which it was
retrieved, we can enjoy the same minimal expected-retrieval cost each time an
item is requested.

We now show that when replacement costs are not zero, the optimal pol-
icy can be determined by considering a related model in which replacement costs
are zero. Recall that when / is replaced in a set which includes j , the replacement

26 C. Courcoubetis and R. R. Weber

cost by is charged. Suppose we delay payment of this charge until the next time
that either / ory is requested. To do this we must remember, at the time when
either / ory is next requested, that there is still a charge of by to pay. But un-
der this scheme there will always be a charge of either by or fy, to pay when i
or j is requested and they reside in the same list. This is because if / andy are
in the same list then either / was last replaced in the list when it included y", or
j was last replaced in the list when it included /. This is the key idea in the proof.
Because by = bjh it does not really matter whether the charge for replacement
whose payment is pending is by or 6,,. So it is just as if we are operating a sys-
tem in which there are no replacement costs and the retrieval costs are ay =
ay + by. Together with the remarks of the first paragraph, this completes the
proof. •

Model 1 is equivalent to the general model with ay = 0, by = 1, since by
replacing item / at the front of a list which includes j the cost of the next re-
trieval of j is increased by 1. This 1 is the incremental cost due to the fact that
at the next retrieval of j there will be a cost of 1, due to the place which is, or
was, filled by /. The resulting partition problem is to choose disjoint sets
Lu.. .,Lkto

Minimize |L, | 2 A + • • • + \Lk\ 2 Pi-

The solution of this problem requires a calculation which is of polynomial time
in n. Assumingpt > • • • > pn, the sets are Lj = (/,,/} + 1,...,/}+, - 1) for some
1 = /i < /2 ^ • • •</*< /*+i = n. That is, all items in set Lt have either smaller
or greater request probabilities than the items in set Lj.

In Model 2, suppose box / contains «, objects, each of weight 1, and N =
£/?,. Box i is requested with probability p, = nt/N. Then the appropriate charge
to make when / is replaced on top of a pile which includes j is n,Pj/(Pi + pj);
namely, the cost «, times the probability Pj/(Pi + Pj) that box i is requested be-
fore boxy. Here by = n,-n,-/(/i/ + nfi is symmetric. The resulting partition prob-
lem is

Minimize 2 «/«/H \- J] ninj-

For k = 2, this is equivalent to a standard partition problem: for L a subset of
{1,2, . . . , / !) , and « , , . . .,nn integers,

Minimize »«• - S «/

This problem is NP-hard. Not surprisingly, the weight of the boxes in the two
stacks are to be made as nearly equal as possible.

MOVE-TO-FRONT RULE FOR MULTIPLE LISTS 27

In closing, we remark that all of the results of this paper continue to hold
even if costs are discounted continuously in time with discount rate a. The
proofs may seem to have relied on the fact that when costs are time-averaged
one can shift the time at which costs are paid and make no difference to the
average cost. However, with modification, one can repeat these ideas for a
discounted-cost structure. For example, in the proof of Theorem 2, assuming
times of successive requests to be a Poisson process of rate 1, we would need
to write au = a0 + {1 + <*/(/>, + Pj)}bu.

REFERENCES

1. Anderson, E.J., Nash, P., & Weber, R.R. (1982). A counterexample to a conjecture on optimal
list ordering. Journal of Applied Probability 19: 730-732.

2. Bentley, L.J. & McGeoch, C. (1983). Worst-case analysis of self-organizing sequential search
heuristics. In Proceedings of the 20th Allerton Conference on Communications, Control, and
Computing. University of Illinois, Urbana Champaign, Illinois, Oct. 6-8, 1982, pp. 452-461.

3. Rivest, R. (1976). On self-organizing sequential search heuristics. Communication of the ACM
19: 63-67.

4. Sleator, D.D. & Tarjan, R.E. (1985). Amortized efficiency of list update and paging rules. Com-
munication of the ACM 28: 202-208.

