
Easter 99 Version 99.1 Colin Sparrow

D2: Optimization

Examples Sheet

[This example sheet with comments for supervisors is circulated by the Statistical Labora-
tory to Directors of Studies and those supervisors on our mailing list (contact 37959 to be
added to this list). Any comments or corrections gratefully received. The student example
sheet with which this sheet corresponds can be identified by the year and version number at
the top of this page (it is produced from the same source file and so the question parts are
identical). Supervisors may make copies of this sheet available to students if they think it
would be helpful. ]

Comments and corrections to c.sparrow@statslab.cam.ac.uk please. Questions for Lec-
tures 1–6 and 7–12 may be suitable for 1st and 2nd supervisions. Questions F1–F18 are
suitable for further practice and revision. A copy of last years sheet (identical to this one)
can be found on the WWW site: http://www.statslab.cam.ac.uk/~rrw1/opt/index.html.

Linear programming: introduction (Lectures 1–2)

Questions in this section are introductory and cover, for a different problem, the same
material as the first two lectures of the course. If you attended lectures (and understood
them) you may wish to omit some or all of these questions.

1. Let P be the linear problem

maximize x1 + x2

subject to 2x1 + x2 ≤ 4
x1 +2x2 ≤ 4
x1 − x2 ≤ 1

x1, x2 ≥ 0.

Solve P graphically in the x1, x2 plane.

[Optimum 8/3 at x1 = x2 = 4/3 (vertex c). The feasible set has 5 vertices. ]

2. Write P in matrix notation: max cT x subject to Ax ≤ b, x ≥ 0 and write down the
problem D defined by: min bT λ subject to AT λ ≥ c, λ ≥ 0.

3. Introduce slack variables x3, x4, x5 and extend c and A to rewrite P as

max cT
e xe subject to Aexe = b, xe ≥ 0.

4. Define a basic solution to a set of linear equations. How many basic solutions are there
to the equation Aexe = b? Define a basic feasible solution. How many of these are there?
Are all the basic solutions non-degenerate?
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5. Write down the values of the variables x1, . . . , x5 and of the objective function for all
basic solutions to the equation Aex = b of question 3. Mark these on your diagram. Which
are the basic feasible solutions?

[The basic solutions correspond to the 10 =
(

5

2

)

intersections of the five lines defining the
feasible set. Since no vertex is the intersection of more than two lines no basic solution is
degenerate. Each line is defined by xi = 0 for some i.

a

b
c

d

e

f

g

h

i

j
x1 + 2x2 = 4

2x1 + x2 = 4

x1 − x2 = 1

x1 = 0

x2 = 0

x1 x2 x3 x4 x5 f

a 0 0 4 4 1 0

b 0 2 2 0 3 2

c 4

3

4

3
0 0 1 8

3

d 5

3

2

3
0 1 0 7

3

e 1 0 2 3 0 1

f 0 4 0 −4 5 4

g 2 1 −1 0 0 3

h 4 0 −4 0 −3 4

i 2 0 0 2 −1 2

j 0 −1 5 6 0 −1

There are 5 basic feasible solutions, a–e. ]

6. Introduce slack variables λ4 and λ5 into the problem D from question 2. Write down
the value of the variables λ1, . . . λ5 and of the objective function for each basic solution of
D. Which are the basic feasible solutions of D?

[The basic feasible solutions are c, f, g, h.

λ4 λ5 λ1 λ2 λ3 f

a −1 −1 0 0 0 0

b −1

2
0 0 1

2
0 2

c 0 0 1

3

1

3
0 8

3

d 0 0 2

3
0 −1

3

7

3

e 0 −2 0 0 1 1

f 1 0 1 0 0 4

g 0 0 0 2

3

1

3
3

h 0 1 0 1 0 4

i 0 −1

2

1

2
0 0 2

j −2 0 0 0 −1 −1

]

7. Let z1 = x3, z2 = x4, z3 = x5 be the slack variables for P and v1 = λ4, v2 = λ5 be the
slack variables for D. Show that for each basic solution x of P there is exactly one basic
solution λ of D such that (i) cT

e xe = bT λ (same objective value) and (ii) λizi = 0, i = 1, 2, 3
and xjvj = 0, j = 1, 2 (complementary slackness).

For how many pairs {xe, λ} is xe feasible for P and λ feasible for D?
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[At this stage this is just a matter for observation. Only one pair is feasible for both
problems; the pair of optimal solutions. Note i and j are infeasible for both problems. ]

8. Solve problem P using the simplex algorithm starting with initial basic feasible solution
x1 = x2 = 0. Try both choices of the variable to put into the basis on the first step. Com-
pare the objective rows of the various tableaux generated with appropriate basic solutions
to problem D? What do you observe?

[The x1 way takes three steps (a–e–d–c) and the x2 way takes two steps (a–b–c), as should
be obvious by observing how many vertices of the feasible region one needs to traverse to
reach the optimum.
The students now have a tableau for each of the five vertices of the feasible region and
should observe that the objective row is given by (−λ4,−λ5,−λ1,−λ2,−λ3) where λ is the
corresponding solution of the dual. For example, the final tableau (at vertex c) is:

x1 x2 x3 x4 x5

x2 0 1 −1

3

2

3
0 4

3

x5 0 0 −1 1 1 1

x1 1 0 2

3
−1

3
0 4

3

0 0 −1

3
−1

3
0 −8

3

]

Linear Programming: simplex, two-phase algorithm
(Lectures 3–4)

LP1. Use the simplex algorithm to solve

maximize 3x1 + x2 +3x3

subject to 2x1 + x2 + x3 ≤ 2
x1 + 2x2 +3x3 ≤ 5

2x1 + 2x2 + x3 ≤ 6
x1, x2, x3 ≥ 0.

Each row of the final tableau is the sum of scalar multiples of the rows of the initial tableau.
Explain how to determine the scalar multipliers directly from the final tableau.

[Optimal f = 27

5
at (1

5
, 0, 8

5
, 0, 0, 4). Look in the columns in the final tableau which contained

the identity matrix in the initial tableau.

x1 x2 x3 z1 z2 z3

x1 1 1

5
0 3

5
−1

5
0 1

5

x3 0 3

5
1 −1

5

2

5
0 8

5

z3 0 1 0 −1 0 1 4

0 −7

5
0 −6

5
−3

5
0 −27

5

]
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LP2. Define P(ǫ) to be the LP problem obtained by replacing the vector b = (4, 4, 1)T in
P (question 1) by the perturbed vector b(ǫ) = (4 + ǫ1, 4 + ǫ2, 1 + ǫ3)

T . Give a formula, in
terms of ǫ = (ǫ1, ǫ2, ǫ3), for the optimal value for P(ǫ) when the ǫi are small. If ǫ2 = ǫ3 = 0,
for what range of ǫ1 values does the formula hold?

[The change in the optimal value is
∑3

i=1
λiǫi where λ is the dual solution at the optimum.

Hence 1

3
ǫ1 + 1

3
ǫ2 in this case. For ǫ2 = ǫ3 = 0, the formula is valid when −2 ≤ ǫ1 ≤ 1 (by

looking at the diagram). The explanations for this formula are (in order of their appearance
in lectures): (1) The entries in the final objective row, in the columns corresponding to the
basic variables in the initial tableau, tell you how many multiples of each initial row were
added to the original objective row as the algorithm progressed to the optimum. Thus, since
the values of b do not affect the multipliers used in the pivot operations, we have a formula
for the optimal value as a function of the bi, which will be valid provided the sequence
of pivots remains the same. (2) The entries in the final objective row are −1 times the
dual variables. If the change in b is small then the optimum occurs with the same primal
variables basic, and hence the dual optimum will occur with the same dual basis. But the
dual feasible region doesn’t depend on b, so the values of the optimal dual variables λi don’t
change. But the primal optimal value = dual optimal value = bT λ, so the dependence on b
follows. ]

LP3. Apply the simplex algorithm to

maximize x1 +3x2

subject to x1 − 2x2 ≤ 4
−x1 + x2 ≤ 3

x1, x2 ≥ 0.

Explain what happens with the use of a diagram.

[After one pivot on a22 we have the tableau shown. In
column 1 all entries are negative and this indicates
that x1 can be increased without limit. Therefore the
problem is unbounded

x1 x2 z1 z2

z1 −1 0 1 2 10
x2 −1 1 0 1 3

4 0 0 −3 −9

]

LP4. Use the two-phase algorithm to solve:

maximize −2x1 − 2x2

subject to 2x1 − 2x2 ≤ 1
5x1 + 3x2 ≥ 3

x1, x2 ≥ 0.

[Hint: You should get x1 = 9

16
, x2 = 1

16
. Note that it is possible to choose the first pivot

column so that phase I last only one step. But this requires a different choice of pivot
column than the one specified by the usual rule-of-thumb.]

[ I did not show them the big M method; instead I carried the phase II objective function
along as an extra row in phase I. Also, I used the tableau to make the initial transformation
of the phase I objective to get it in terms of non-basic variables. Solution is −5

4
, x1 = 9

16
,
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x2 = 1

16
. Note that if you consider just phase I of this problem it is not best to choose the

variable with the largest positive coefficient to enter the basis. Both choices take the same
number of steps (2) overall but phase I takes 1 step if x2 is chosen to enter the basis and
2 steps if x1 is chosen. ]

LP5. Use the two-phase algorithm to solve:

minimize 13x1 +5x2 − 12x3

subject to 2x1 + x2 + 2x3 ≤ 5
3x1 +3x2 + x3 ≥ 7
x1 +5x2 + 4x3 = 10

x1, x2, x3 ≥ 0.

[x1 = x2 = x3 = 1. It helps to choose pivots so that the fractions don’t get out of control. ]

Lagrangian methods and duality (Lectures 5–6)

L1. Minimize each of the following functions in the region specified.

(a) 3x in {x : x ≥ 0}; (b) x2 − 2x + 3 in {x : x ≥ 0}; (c) x2 + 2x + 3 in {x : x ≥ 0}.

For each of the following functions specify the set Y of λ values for which the function has
a finite minimum in the region specified, and for each λ ∈ Y find the minimum value and
(all) optimal x.

(d) λx subject to x ≥ 0; (e) λx subject to x ∈ R; (f) λ1x
2 + λ2x subject to x ∈ R;

(g) λ1x
2 + λ2x subject to x ≥ 0; (h) (λ1 − λ2)x subject to 0 ≤ x ≤ M .

[This question is intended to get students to see that these minimizations are easy before
they get entangled with Lagrangian methods. Answers: (d) λ ≥ 0, 0, x = 0 if λ > 0 and
any x ≥ 0 if λ = 0; (e) λ = 0, 0, any x; (f) λ1 > 0 (minimum by differentiation) or
λ1 = λ2 = 0 (minimum 0 any x); (g) λ1 > 0 (minimum at x = −λ2/2λ1 if λ2 ≤ 0 and at
x = 0 if λ2 > 0) or λ1 = 0, λ2 ≥ 0 (min at x = 0 unless λ2 = 0 when any x will do); (h)
(useful when we get to network problems) any λ’s, minimum at x = 0 if λ1 > λ2, x = M
if λ1 < λ2 and any 0 ≤ x ≤ M if λ1 = λ2. ]

L2. Use the Lagrangian Sufficiency Theorem to minimize x1
2+2x2

2 subject to x1+3x2 = b.

[x1 = 2

11
b, x2 = 3

11
b, λ = 4

11
b, f = 2

11
b2. Note df/db = λ. ]

L3. (a) Use the Lagrangian Sufficiency Theorem to solve:

maximize x + 2y + z
subject to x2 + y2 + z2 ≤ 1

x, y, z ≥ 0.
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(b) Find a point in R
3 at which a plane parallel to x + 2y + z = 0 is tangent to the unit

sphere.

[ f =
√

6. λ = −
√

3/2, 2x = y = 2z = −1/λ. ]

L4. Minimize f =
∑

vix
−1
i in x ≥ 0 subject to

∑

aixi ≤ b where ai, vi > 0 for all i and
b > 0. [In this example f is the variance of an estimate derived from a stratified sample
survey subject to a cost constraint; xi is the size of the sample for the ith stratum, the ai

and vi are measures of sampling cost and of variability for this stratum.] Check that the
change in the minimal variance f for a small change δb in available resources is λ δb where
λ is the Lagrange multiplier.

[Slack variable term ⇒ λ ≤ 0. Write k =
∑√

aivi. Solution is f = k2b−1 at xi =

bk−1
√

via
−1

i , with λ = −k2b−2. Note that we know the slack variable z = 0 once we see
that λ = 0 is not a satisfactory choice. ]

Linear programming and duality (Lecture 6)

D1. Write down the Lagrangian for each of the following problems. In each case find the
set Y of λ values for which the Lagrangian has a finite minimum (subject to the appropriate
regional constraint), calculate the minimum L(λ) for each λ ∈ Y , and write down the dual
problem. In each case, write down the conditions for primal and dual feasibility and any
additional conditions (the complementary slackness conditions) needed for optimality.

(a) min cT x subject to Ax ≤ b, x ≥ 0; (b) min cT x subject to Ax = b, x ≥ 0.

[They will have seen this for (a) and (b) in the lectures, and for (a) in the notes. ]

D2. For each of the problems in the previous question verify that the dual of the dual
problem is the primal problem.

Suppose that an LP problem P is written in the two equivalent forms

min cT x subject to Ax ≤ b, x ≥ 0,

where A is an m × n matrix, c, x ∈ R
n and

min cT
e xe subject to Aexe = b, xe ≥ 0,

where, after addition of slack variables and extension of the matrix A and vector c in the
appropriate way Ae is m × (n + m), and ce, xe ∈ R

n+m. Use your answers to the previous
question to write down the dual problem to both versions of problem P, and show that the
dual problems are equivalent to each other.

[Dual of first version is max bT λ s.t. AT λ ≤ c, λ ≤ 0. Dual of second is max bT λ
s.t. AT

e λ ≤ ce. But Ae = (A|I) and ce = (c, 0) so the two duals are equivalent. ]
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D3. Consider the problem

minimize 2x1+3x2+5x3+2x4+3x5

subject to x1+ x2+2x3+ x4+3x5 ≥ 4
2x1−2x2+3x3+ x4+ x5 ≥ 3

x1, x2, x3, x4, x5 ≥ 0.

Write down the dual problem, and solve this graphically. Hence deduce the optimal solution
to the primal problem.

[Dual problems are not just sent to try us. This is easier than using the two-phase method.
Dual has max f = 5 with λ1 = 4

5
, λ2 = 3

5
, with constraints 1 and 5 tight. Hence x1 and x5

are basic, so x1 = x5 = 1. ]

Algebra of linear programming (Lectures 7–8)

LP6. Consider the three equations in 6 unknowns given by Ax = b where

A =





2 1 1 1 0 0
1 2 3 0 1 0
2 2 1 0 0 1



 , b =





2
5
6



 .

Choose B = {1, 3, 6} and write Ax = b in the form ABxB + ANxN = b where xB =
(x1, x3, x6)

T , xN = (x2, x4, x5)
T and the matrices AB and AN are constructed appropriately.

Now, write cT x = cT
BxB + cT

NxN and hence write cT x in terms of the matrices AB, AN and
the variables xN (i.e., eliminate the variables xB).

Compute A−1

B and hence calculate the basic solution having B as basis. For c = (3, 1, 3, 0, 0, 0)T

write cT x in terms of the non-basic variables. Prove directly from the formula for cT x that
the basic solution you have computed is optimal for the problem maximize cT x subject to
x ≥ 0, Ax = b.

Compare your answer with your answer to question LP1 and confirm that the final tableau
had rows corresponding to the equation xB + A−1

B ANxN = A−1

B b. Why is it not fair to say
that the simplex algorithm is just a complicated way to invert a matrix?

[An exercise to help with understanding the bit of the course which deals with the algebra
of the simplex algorithm. In addition to inverting the matrix AB (and multiplying it into
AN and b) the simplex algorithm also tells you how to choose B. ]

LP7. (Degeneracy.) Take problem P from question 1 and add the additional constraint
x1 + 3x2 ≤ 6. Use the simplex algorithm putting x2 into the basis at the first stage. Try
each of the possibilities for the variable leaving the basis. Explain, with a diagram, what
happens.

[You get the choice of taking z2 or z4 out of the basis at the first step. The other will
remain basic but become 0. Just keep obeying the simplex rules and the answer comes out.
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One way to understand what happens when you choose z4 to leave the basis is to imagine
a small perturbation to the fourth (additional) constraint so that it cuts the top corner off
the feasible region. Note that degeneracy can cause cycling, but it usually doesn’t except
in very contrived circumstances. Bazaraa, Jarvis & Sherali, Linear Programming and
Network Flows, have a good discussion (pgs 164–187), including an example of a problem
with m = 3, n = 7 and a cycle of length 6; they quote a result that the smallest problem
which will allow cycling has m = 2, n = 6 and a cycle of length 6. ]

LP8. In the previous question the additional constraint was redundant (it did not alter
the feasible set). Can degeneracy occur without redundant equations?

[Yes, for example imagine a pyramid with four or more faces meeting at the vertex. You
might conjecture that in 2 dimensions, a degenerate basis implies there is a redundant
constraint. But even this is not true. Consider (x, y) ≥ 0, x + y ≤ 1, x ≥ 1. The only
feasible point is (x, y) = (1, 0) with slack and surplus variables both 0. Thus, each of the
possible feasible bases is degenerate, but no contraint is redundant. ]

LP9. Show that introducing slack variables in a LP does not change the extreme points of
the feasible set by proving (using the definition of an extreme point) that x is an extreme
point of {x : x ≥ 0, Ax ≤ b} if and only if

(

x
z

)

is an extreme point of {
(

x
z

)

: x ≥ 0, z ≥
0, Ax + z = b}.

[An exercise in the use of the definition of extreme point. ]

Game theory (Lecture 9)

G1. Give sufficient conditions for strategies p and q to be optimal for a two-person zero-
sum game with pay-off matrix A and value v.

Two players fight a duel: they face each other 2n + 1 paces apart and each has a single
bullet in his gun. At a signal each may fire. If either is hit or if both fire the game ends.
Otherwise both advance one pace and may again fire. The probability of either hitting his
opponent if he fires after the ith pace forward (i = 0, 1, . . . , n) is i/n. If a player survives
after his opponent has been hit his payoff is +1 and his opponent’s payoff is −1. The
payoff is 0 if neither or both are hit. The guns are silent so that neither knows whether or
not his opponent has fired.

Show that, if n = 4, the strategy ‘shoot after taking two steps’ is optimal for both, but
that if n = 5 a mixed strategy is optimal. [Hint : (0, 5

11
, 5

11
, 0, 1

11
).]

[Slightly reworded from the old tripos question, but it means the same. First part: pT A ≥ v,
Aq ≤ v, and pT Aq = v where p and q are probability vectors and the inequalities hold in
each component. Second part: Clearly nobody shoots before the first step so the possibilities
are i = 1, . . . , n. Let

aij = E
(

payoff to player I | Player I fires at step i and Player 2 fires at step j
)

.
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For i < j, E = (i − j)/n + ij/n2, and the game is symmetric with value 0. Thus,

A4 = 1

16









0 −2 −5 −8
2 0 2 0
5 −2 0 8
8 0 −8 0









and A5 = 1

25













0 −3 −7 −11 −15
3 0 1 −2 −5
7 −1 0 7 5

11 2 −7 0 15
15 5 −5 −15 0













.

The optimality conditions may be checked with these matrices and the suggested solutions.
Alternatively, for a minimal answer just observe that for n = 4 the point (2, 2) is a saddle-
point for the game and that for n = 5 there can be no optimal pure strategy since there is
no non-positive column (or non-negative row). ]

G2. Optimal strategies are not always unique as illustrated by the following payoff matrix,

A =









0 −2 3 0
2 0 0 −3

−3 0 0 4
0 3 −4 0









.

Find all optimal strategies.

[ v = 0 since the game is symmetric. Any strategy (1 − d, 0, 0, d), with 2

5
≤ d ≤ 3

7
is

optimal. ]

G3. The n × n matrix of a two-person zero-sum game is such that the row and column
sums all equal s. Show that the game has value s/n. [Hint: Guess a solution and show
that it is optimal.]

[Mixed strategy with uniform probabilities 1/n for both players satisfies optimality condi-
tions for given v. ]

G4. Find optimal strategies for both players, and the value of the game, for the game with
payoff matrix

A =

(

1 4
3 2

)

.

[You may like to try to compare the effort required to solve this by (a) seeking strategies
and a value which satisfy the optimality conditions (b) direct solution of Player I’s original
minimax problem and (c) using the simplex method on one of the players problems after
transforming it as suggested in the lectures.]

[The solution is p = (1

4
, 3

4
)T , q = (1

2
, 1

2
)T , v = 5

2
. For this problem it is straightforward to

solve either Player I or Players II’s original problem. For example, Player I’s problem is
to find a strategy (p, 1 − p) to max{min(3 − 2p, 2 + 2p)} in 0 ≤ p ≤ 1. This has optimum
5

2
at p = 1

4
(by inspection). Similarly, it is easy to see the solution by attempting to satisfy

the optimality conditions once you observe that Aq ≤ v can only be solved for v ≥ 5

2
and

pT A ≥ v can only be solved for v ≤ 5

2
. Neither of these methods is very helpful for larger

problems. The method suggested in lectures is to transform Player I’s problem by (i) adding
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a constant k to each aij so that each is positive (this doesn’t change the solution but adds
k to the value of the game), (ii) change variables to xi = pi/v (ok since now v > 0), and
(iii) solve min 1

v
=

∑

xi subject to
∑

aijxi ≥ 1 for each j and xi ≥ 0 for each i. Step (i)
is unnecessary here. The problem to solve by simplex is thus

min x1 + x2 subject to x1 + 3x2 ≥ 1, 4x1 + 2x2 ≥ 1, x1, x2 ≥ 0.

This has solution (after use of the two-phase algorithm, or solve the dual) x1 = 1

10
, x2 = 3

10

which after appropriate rescaling gives the pi. ]

Max-flow/min-cut problems (Lecture 10)

N1. Show that the maximal value of a flow through a network with a source at node 1 and
a sink at node n equals the minimum cut capacity. Find a ‘maximal flow’ and ‘minimal
cut’ for the network below.

1

1

1

2

2

2

2

3

4

5

5

5

n

[Bookwork covered in lectures. Max flow 6 with cut separating sink n from other nodes. ]

N2. Devise rules for a version of the Ford-Fulkerson algorithm which works with undirected
arcs.

As a consequence of drought, an emergency water supply must be pumped from Oxbridge
to Camford along the network of pipes shown in the figure. The numbers against the pipes
show their maximal capacities, and each pipe may be used in either direction. Find the
maximal flow and prove that it is maximal.

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15Oxbridge Camford
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[Optimum is 28. Proof of maximality is by exhibiting a cut with the same value (e.g., the
cut that crosses (from top to bottom) arcs with capacities 7,5,4,1,11). For the algorithm,
either replace each undirected arc by two directed arcs and use the FF algorithm in the
normal way. Or, write |xij| ≤ cij for the capacity constraints where each arc is labelled
only once (from node i to node j) even though flow is allowed in both directions. With the
source at node 1 and sink at node n, define the set S of nodes inductively by (i) 1 ∈ S, (ii)
if i ∈ S and xij < cij then j ∈ S, (iii) if j ∈ S and xij > −cij then i ∈ S, until n ∈ S or
no more nodes can be added to S. If n ∈ S then there is a path from 1 to n along which
the flow should be increased by the minimum of min[cij − xij ] over arcs i to j in the path,
and min[cij + xij ] over arcs j to i in the path. ]

N3. How would you augment a directed network to incorporate restrictions on node
capacity (the total flow permitted through a node) in maximal flow problems?

The road network between two towns A and B is represented in the diagram below. Each
road is marked with an arrow giving the direction of the flow, and a number which repre-
sents its capacity. Each of the nodes of the graph represents a village. The total flow into
a village cannot exceed its capacity (the number in the circle at the node). Obtain the
maximal flow from A to B.

The Minister of Transport intends to build a by-pass round one of the villages, whose
effect would be to completely remove the capacity constraint for that village. Which
village should receive the by-pass if her intent is to increase the maximal flow from A to B
as much as possible? What would the new maximal flow be?

A B25
25

30

55

5

20

7

8
8

10

10

1010

10
10

11

12

12 13

15

15

15

16

[Split each node into two, one receiving incoming flows, the other generating the outgoing
flows, and joined by an arc with capacity equal to the node capacity. Example has max flow
39. Best by-pass is the village at top right (capacity 13), increasing the max flow to 45. ]

Minimal cost circulations (Lecture 11)

N4. By finding a suitable potential on the nodes (i.e., a set of suitable node numbers) of
the network show that the flow illustrated below is a minimal cost circulation. [Each arc
is labelled with xij and with a triple of numbers giving the constants (c−ij, c

+

ij , dij) for that
arc.]
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1

1

1

2

2

2

2

3 3 4

4

5
5

(2, 4, 2)

(1, 4, 0)

(2, 4, 3)

(2, 5, 2)

(0,∞,−6)

(1, 5, 2)

(1, 4, 3)

(0, 1, 4)(c−ij , c
+
ij , dij)

xij

[Potential λ1 = −6 + c, λ2 = −3 + c, λ3 = −5 + c, λ4 = −2 + c, λ5 = 0 + c will do for
any c. The method of solution it to set one node number to zero arbitrarily, to then solve
dij − λj + λi = 0 on those arcs where the flow c−ij < xij < c+

ij (there will be sufficient such
arcs in non-degenerate problems to create a spanning tree), and then to check the optimality
conditions on the remaining arcs. The transportation algorithm is a special case. ]

N5. Consider the problem of assigning lecturers L1, . . . , Ln to courses C1, . . . , Cn so as to
minimize student dissatisfaction. The dissatisfaction felt by students if lecturer Li gives
course Cj is dij, and each lecturer must give exactly one course. Show how to state this
problem as the problem of minimizing the cost of a circulation in a network. (Can you be
sure that your network problem has an optimal flow of the appropriate kind?)

For the example of 3 lecturers and 3 courses with dissatisfaction matrix





6 3 1
5 4 3
8 3 2





find an optimal flow through the appropriate network (by guessing) and compute node
numbers for each node so that the optimality conditions are satisfied.

[Various networks will do. Some argument is needed that there will be an integer solution
amongst the optimal solutions to the flow problem; one argument, given an algorithm for
solving the problem that depends — as they all do — on increasing flows by the maximum
permitted amount around circuits, is that there is an obvious integer initial feasible flow
and that all steps of the algorithm will preserve the integer nature of the flow. ]

Transportation algorithm (Lecture 12)

N6. Sources 1, 2, 3 stock candy floss in amounts of 20, 42, 18 tons respectively. The
demands for candy-floss at destinations 1, 2, 3 are 39, 34, 7 tons respectively. The matrix
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of transport costs per ton is




7 4 9
8 12 5
3 11 7





with the (ij) entry corresponding to the route i → j. Find the optimal transportation
scheme and the associated minimal cost.

[ If the algorithm is started by the NW rule this example requires three steps before reaching
the optimum. Answer 505. To aid clarity it is useful to label potentials with λ’s on the
source nodes and µ’s on the destination nodes, so we require dij −λi +µj = 0 on arcs with
non-zero flow. Students should not be discouraged from guessing better initial solutions
than those given by the NW rule. The node numbers and optimal allocations are shown in
the final tableau below. Everywhere that xij = 0 we have dij − λi + µj ≥ 0.

λi \ µj 0 −4 3

0
7

20
4 9

20

8 21
8

14
12

7
5

42

3 18
3 11 7

18

39 34 7

]

Further Examples

Linear programming, simplex algorithm (Lectures 3–4)

F1. Consider the problem min
∑n

i=0
|xi| subject to Ax ≤ b where A is m×n and b ∈ R

m.
Show how to convert the problem into a standard LP problem suitable for solution by the
simplex algorithm. What happens if you replace min by max?

[Replace xi in all constraints by yi − zi, where yi, zi ≥ 0, and take the objective function to
be

∑

i(yi + zi). It is clear that at the optimum at most one of yi and zi will non-zero and
they will correspond respectively to the positive and negative parts of xi. So yi + zi = |xi|.
If min is replaced by max there is no finite optimum. ]

F2. Maximize 3x1 + 6x2 − x3 subject to xi ≥ 0 and

− x1+4x2− x3 ≤ 2
2x1+ x2+ x3 ≤ 5

− x1+ x2+2x3 ≤ 1.
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Write down the dual problem and its solution. Now replace the second constraint by
2x1 + x2 + x3 ≤ 5 + t. Find the new maximum for small values of t. For what range of t
values is this solution valid?

[The final tableau is as shown.
Hence the dual solution is
λ = (1, 2, 0).

x1 x2 x3 z1 z2 z3

x2 0 1 −1

9

2

9

1

9
0 1

x1 1 0 5

9
−1

9

4

9
0 2

z3 0 0 8

3
−1

3

1

3
1 2

0 0 −2 −1 −2 0 −12

The new maximum is 12+2t and this holds provided 1+ 1

9
t ≥ 0, 2+ 4

9
t ≥ 0 and 2+ 1

3
t ≥ 0,

i.e., for t ≥ −9

2
. ]

F3. Use the simplex algorithm to solve

minimize 5x1−3x2 = f
2x1− x2+3x3 ≤ 4
x1+ x2+2x3 ≤ 5

2x1− x2+ x3 ≤ 1
x1, x2, x3 ≥ 0.

Write down the dual problem, and solve it by inspection of the final tableau for the primal.
If the constraints in the right hand side of the above problem are changed to 4+ ε1, 5+ ε2,
1 + ε3, respectively, for small ε1, ε2, ε3, by how much does the optimum value of f change?

[The final tableau is as shown. Hence the
dual solution is λ = (0,−3, 0).

x1 x2 x3 z1 z2 z3

x4 3 0 5 1 1 0 9

x2 1 1 2 0 1 0 5

z3 3 0 3 0 1 1 6

8 0 6 0 3 0 15

So with small changes the optimum changes to −15 − 3ǫ2. ]

Lagrangian sufficiency theorem (Lectures 5–8)

F4. Define the Lagrangian L(x; λ) for the problem: minimize f(x) in x ∈ X subject to
g(x) = b, where f : R

n → R, g : R
n → R

m, and b ∈ R
m, X ⊂ R

n.

Show that if there exist x ∈ X and λ ∈ R
m such that

L(x; λ) ≤ L(x; λ) for all x ∈ X

and g(x) = b then x is optimal for the above problem.

Use the above result to minimize (v1/x1) + (v2/x2) subject to x1c1 + x2c2 = c, x1 ≥ a1,
x2 ≥ a2, where c1, c2 and a1, a2, v1, v2 and c are given positive constants, and c ≥ a1c1+a2c2.
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[The Lagrangian is minimized by xi = max
{

ai,
√

−vi/λc
}

, for λ < 0. Note that x1(λ)c1+

x2(λ)c2 increases from a1c1 + a2c2 to ∞ as λ increases from −∞ to 0. So the condition
c ≥ a1c1 + a2c2 ensures that there exists a λ such that x1(λ)c1 + x2(λ)c2 = c. ]

F5. A gambler at a horse race has an amount b to bet. The gambler assesses pi, the
probability that horse i will win, and knows that si has been bet on horse i by others, for
i = 1, 2, . . . , n. The total amount bet on the race is shared out in proportion to the bets
on the winning horse, and so the gamblers optimal strategy is to choose (x1, x2, . . . , xn) to

max
n

∑

i=1

pixi

si + xi

subject to
n

∑

i=1

xi = b, x1, x2, . . . , xn ≥ 0 ,

where xi is the amount the gambler bets on horse i.

Find the form of the gamblers optimal strategy. Deduce that if b is small enough, the
optimal strategy is to bet only on the horses for which the ratio pi/si is maximal.

[The Lagrangian is maximized by xi = max
{

0, si

(√

pi/siλ−1
)}

, for λ > 0. As λ increases
from 0 the value of

∑

i xi(λ) decreases from ∞ to 0. Thus if b is small, λ will be large,
and when λ is large enough the only xi that will be non-zero is one corresponding to the
maximal ration of pi/si. ]

F6. Two sets of n positive real numbers (p1, . . . , pn), (q1, . . . , qn) are given, where the
numbers in each set sum to 1 (i.e., they are probability distributions). It is desired to find
numbers x1, . . . , xn, where 0 ≤ xi ≤ 1, such that for a given number α, (0 < α < 1) the
quantity

β = 1 − (x1q1 + · · ·+ xnqn)

is minimized, subject to
x1p1 + · · ·+ xnpn = α .

Write down the Lagrangian for this problem, and show that the minimization is achieved
if, for a certain value of λ,

xi = 1 if qi > λpi

xi = 0 if qi < λpi

xi = φ if qi = λpi

for a value of φ such that 0 < φ ≤ 1.

[Hint. Without loss of generality, suppose that q1/p1, . . . , qn/pn are in increasing order of
magnitude. IB students should note that this is essentially a proof of the Neyman-Pearson
lemma and should be able to give an interpretation to the numbers xi.]

F7. Show how to solve the problem

min

n
∑

i=1

1

(ai + xi)
subject to

n
∑

i=1

xi = b, xi ≥ 0 (i = 1, . . . , n)

where ai > 0, i = 1, . . . , n and b > 0.
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F8. A certain lecturer eats only nuts and beans. His pathetic daily salary is I > 0. The
quality of his lectures is given by the real number xa1

1 xa2

2 where x1 is his daily consumption
of nuts, x2 is his daily consumption of beans, and the ai are positive constants, a1 +a2 = 1.
The price of nuts and beans are p1 and p2 respectively (pi > 0). The lecturer, for reasons
known best to himself, wishes to give lectures that are of as high a quality as possible,
without spending more than his income. Unfortunately, the lecturer is too weak to solve
his own optimization problem. Please do it for him.

Despite the lecturer’s best efforts, the students still find his lectures pretty awful. They
decide to make a collection and succeed in raising the tiny (even in comparison with I)
amount δI. The sum having been handed over with due ceremony, how much of an increase
in the quality of their lectures can the students expect?

[The Lagrangian is L = xa1

1 xa2

2 − λ(p1x1 + p2x2 − I). This is maximized, for λ > 0, where
xi = ai/piλ. (Check that the second derivative matrix is negative semi-definite.) To satisfy
the constraint, we take λ = 1/I and hence xi = aiI/pi. The increase in the quality of
lectures is given by λδI = I−1δI. ]

F9. Consider the problem: minimize x2 subject to g(x) ≥ b. Show that it is possible to
use the Lagrangian Sufficiency Theorem to solve the problem when (a) g(x) = x and b = 2,
but that this is not possible for (b) g(x) = x3 and b = 8. Explain why the Lagrangian
method works in case (a) but not in case (b).

[ In case (a) the Lagrangian is L = x2 − λ(x − z − 2) and this is minimized at x = 2,
z = 0, for λ = 4. However, for (b), the Lagrangian is L = x2 − λ(x3 − z − 8) and this is
minimized either at x = ∞, z = 0 if λ > 0, or at x = 0, z = ∞ if λ ≤ 0. If we define
φ(b) as the maximum value of x subject to g(x) = b, then Lagrangian methods work if φ(b)
has a supporting hyperplane at b. In case (a) g(x) = x and φ(b) = b2, which is a convex
function. In case (b) g(x) = x3 and φ(b) = b2/3, which is a concave function, and so does
not have a supporting hyperplane at any point. ]

Two-person zero-sum games (Lecture 9)

F10. Follow the usual steps to find the dual problem to player I’s problem

max v subject to
∑

i

aijpi ≥ v (each j),
∑

i

pi = 1, p ≥ 0.

Show that the dual problem is player II’s problem, and use the Lagrange sufficiency theorem
to find sufficient conditions for a strategy vectors p and q to be optimal for the two players.

[Bookwork; covered in lectures. ]

F11. Let the matrix (aij), i = 1, . . . , m, j = 1, . . . , n define a two-person zero-sum game.
Show that there exist numbers p1, . . . , pm and q1, . . . , qn with

pi ≥ 0, qj ≥ 0,
∑

pi = 1,
∑

qj = 1
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such that
∑

i,j

aijp
′

iqj ≤
∑

i,j

aijpiqj ≤
∑

i,j

aijpiq
′

j

for all numbers p′1, . . . , p
′

m and q′1, . . . , q
′

n with

p′i ≥ 0, q′j ≥ 0,
∑

p′i = 1,
∑

q′j = 1

and explain the sense in which this entails the existence of optimal strategies for the game.

In the game of Undercut each player selects secretly a number from 1, 2, . . . , N . The
numbers are then revealed, and the player with the smaller number wins £1, unless the
numbers are either adjacent, when the player with the larger number wins £2, or equal,
when the game is tied (with payoff zero). Show that for N ≥ 5 it is optimal for both
players to name the numbers 1, 2, 3, 4, 5 with probabilities ( 1

16
, 5

16
, 1

4
, 5

16
, 1

16
) respectively,

and to avoid all larger numbers.

Show, using the first part of the question or otherwise, that the optimal strategy given
above is the unique optimal strategy for this game.

[ In the first part, p and q are solutions to the usual LP. The pay-off matrix is

A =



























0 −2 1 1 1 1 1 · · ·
2 0 −2 1 1 1 1 · · ·

−1 2 0 −2 1 1 1 · · ·
−1 −1 2 0 −2 1 1 · · ·
−1 −1 −1 2 0 −2 1 · · ·
−1 −1 −1 −1 2 0 −2
−1 −1 −1 −1 −1 2 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.



























.

From this we can check that pT A = (0, 0, 0, 0, 0, 13

16
, 1, 1, . . . ) ≥ 0, Aq ≤ 0 and pT Aq = 0,

so the sufficient conditions for optimality are satisfied. The solution is unique because if
player I uses this strategy then player II can only use numbers 1–5. But there is only one
solution to Aq ≤ 0, 1Tq = 1. ]

Maximal flows (Lecture 10)

F12. A network with nodes 1, . . . , n has a maximal capacity Mij ≥ 0 for transfer along the
directed arc from node i to node j. Describe an algorithm to compute the maximal flow
from node 1 to node n in the case when all the Mij are integers. Prove that the algorithm
will converge to the maximal flow in a finite number of steps.

Derive the Max-flow-Min-cut Theorem, and explain how the theorem can be used to prove
that a particular flow is maximal.

F13. Formulate the maximum flow through a network problem as a linear programming
problem. How many variables and constraints may be needed for a problem with n nodes?
Show that the dual problem has a solution in which the variables takes only two values,
and explain the significance of this result.
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Applications of max-flow min-cut theorem (Lecture 10)

F14. (Konig-Egervary Theorem). Consider an m × n matrix A in which every entry is
either 0 or 1. Say that a set of lines (rows or columns of the matrix) covers the matrix if
each 1 belongs to some line of the set. Say that a set of 1’s is independent if no pair of 1’s of
the set lies in the same line. Use the max-flow min-cut theorem to show that the maximal
number of independent 1’s equals the minimal number of lines that cover the matrix.

[Consider a network consisting of a source and since and m + n other nodes. There are
m nodes corresponding to the rows, and n nodes corresponding to the columns. There is
an edge of capacity 1 from a column node to a row node if there is a 1 in the matrix. The
row nodes are connected to the source by edges of capacity ∞ and the column nodes are
connected to the sink by edges of capacity ∞. The theorem follows from min cut = max
flow. ]

F15. Derive the vertex form of Menger’s Theorem, which states that if A and B are nodes
of an undirected network then the maximum number of node-disjoint paths from A to
B which can be chosen simultaneously is equal to the minimum number of nodes whose
removal disconnects A and B. [Two paths from A to B are node-disjoint if the only nodes
they have in common are A and B. The removal of a set of nodes S disconnects A and B
if any path from A to B passes through at least one node of S.]

[Consider the network in which each node i in the original graph is replaced by two nodes
(i1 and i2) joined by a directed edge (i1 → i2) of capacity 1, and each edge in the original
graph (i, j) is replaced by two directed edges (i2 → j1) and (j2 → i1) of capacity ∞. In this
network The node version of Menger’s Theorem follows from min cut = max flow. ]

F16. Suppose that N is a network with vertices 0, 1, 2, . . . , 2n, 2n+1, where 0 is the source
and 2n + 1 is the sink, such that

1. (a) for each i = 1, . . . , n, (0, i) is an edge of capacity 1;

2. (b) for each j = n + 1, . . . , 2n, (j, 2n + 1) is an edge of capacity 1;

3. (c) the only other edges have capacity n and are of the form (i, j) with i ∈ {1, . . . , n},
j ∈ {n + 1, . . . , 2n},

and for each subset I ⊂ {1, . . . , n} the number of distinct vertices j such that an edge
(i, j) exists for some i ∈ I is not less than |I|, the number of elements in I. Prove that any
maximal flow in N has value n.

Hence show (the Hall ‘Marriage Theorem’) that if we have a set of n boys and a set of n
girls, such that every subset B of the boys between them know at least |B| of the girls,
then they can pair off, each boy with a girl whom he knows.

[We need to show that the minimum cut is n. It is certainly no more than n because we
could simply cut through all edges of type (a). If it were less than n then it could not
cut through any edge of type (c). Consider a cut that cuts exactly r edges of type (a).
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Then there is a set I of n − r nodes in {1, . . . , n} connected to 0. Therefore, by the given
condition, there are at least n− r nodes in {n + 1, . . . , 2n} connected to 0 via the nodes in
I. To separate node 0 from node 2n + 1 requires that the cut to go through at least n − r
edges of type (b). Thus the cut has value at least r + (n − r) = n.

The Marriage Theorem is an almost immediate corollary of the above. However, it is
important to note that there exists a maximal flow of n in which the flow on every edge is
either 0 or 1 (since we might have obtained this flow using the Ford-Fulkerson Algorithm).
This integer-valued flow pairs off the boys and girls. ]

Transportation algorithm (Lecture 12)

F17. What is meant by a transportation problem? Describe an algorithm for solving such
a problem, illustrating your account by solving the problem with three sources and three
destinations described by the table

4 3 1 10
6 10 3 8
3 5 7 8
3 9 14

where the figures in the boxes denote transportation costs (per unit), the right-hand column
denotes supplies, and the bottom row denotes demands.

[Optimum is 76 with node numbers and allocations given in the tableau below.

λi \ µj −1 −3 −1

0
4

4
3

6
1

10

2
6 10

8
3

8

2 3
3

5
5 7

8

3 9 14

Everywhere that xij = 0 we have dij − λi + µj ≥ 0. ]

F18. A manufacturer has to supply {5, 7, 9, 6} units of a good in each of the next four
months. He can produce up to 8 units each month on ordinary time at costs {1, 3, 4, 2} per
unit, and up to 3 extra each month on overtime at costs {2, 5, 7, 4} per unit (where costs
are given for each of the next four months). Storage costs are 1 per unit per month. He
desires to schedule production to minimize costs over the four-month period. Formulate
his problem as a transportation problem and solve it.

[Hint. Formulate this problem as one with 8 sources and 5 destinations.]

[Optimum is 71. The problem formulation is clear from the tableau below, in which we
show the node numbers and allocations of an optimal allocation. There are many optimal
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allocations.
λi \ µj −1 −2 −3 −1 1

0 5
1

3
2 3 4 0

8

1
2

3
3 4 5 0

3

1 ∞ 1
3

7
4 5 0

8

1 ∞ 5 6 7
3

0
3

1 ∞ ∞ 2
4 5

6
0

8

1 ∞ ∞ 7 8
3

0
3

1 ∞ ∞ ∞ 6
2

2
0

8

1 ∞ ∞ ∞ 4
3

0
3

5 7 9 6 17

This satisfies the optimality conditions that everywhere that xij > 0 we have dij−λi+µj = 0
and everywhere that xij = 0 we have dij − λi + µj ≥ 0. ]
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