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Abstract

Variable selection in high-dimensional space characterizes many contemporary problems
in scientific discovery and decision making. Many frequently-used techniques are based
on independence screening; examples include correlation ranking (Fan and Lv, 2008) or
feature selection using a two-sample t-test in high-dimensional classification (Tibshirani et
al., 2003). Within the context of the linear model, Fan and Lv (2008) showed that this
simple correlation ranking possesses a sure independence screening property under certain
conditions and that its revision, called iteratively sure independent screening (ISIS), is
needed when the features are marginally unrelated but jointly related to the response
variable. In this paper, we extend ISIS, without explicit definition of residuals, to a general
pseudo-likelihood framework, which includes generalized linear models as a special case.
Even in the least-squares setting, the new method improves ISIS by allowing feature deletion
in the iterative process. Our technique allows us to select important features in high-
dimensional classification where the popularly used two-sample t-method fails. A new
technique is introduced to reduce the false selection rate in the feature screening stage.
Several simulated and two real data examples are presented to illustrate the methodology.

Keywords: Classification, feature screening, generalized linear models, robust regression,
feature selection.

1. Introduction

The remarkable development of computing power and other technology has allowed scien-
tists to collect data of unprecedented size and complexity. Examples include data from
microarrays, proteomics, brain images, videos, functional data and high-frequency financial
data. Such a demand from applications presents many new challenges as well as opportu-
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nities for those in statistics and machine learning, and while some significant progress has
been made in recent years, there remains a great deal to do.

A very common statistical problem is to model the relationship between one or more
output variables Y and their associated covariates (or features) Xi,...,X,, based on a
sample of size n. A characteristic feature of many of the modern problems mentioned in
the previous paragraph is that the dimensionality p is large, potentially much larger than n.
Mathematically, it makes sense to consider p as a function of n, which diverges to infinity.
The dimensionality grows very rapidly when interactions of the features are considered,
which is necessary for many scientific endeavors. For example, in disease classification using
microarray gene expression data (Tibshirani et al., 2003; Fan and Ren, 2006), the number
of arrays is usually in the order of tens or hundreds while the number of gene expression
profiles is in the order of tens of thousands; in the study of protein-protein interactions, the
sample size may be in the order of thousands, but the number of features can be in the
order of millions.

The phenomenon of noise accumulation in high-dimensional classification and regression
has long been observed by statisticians and computer scientists (see (Vapnik, 1995), Hastie
et al. (2009) and references therein) and has been analytically demonstrated by Fan and Fan
(2008). Various feature selection techniques have been proposed in both the statistics and
machine learning literature, and introductions and overviews written for the machine learn-
ing community can be found in, e.g. Liu and Motoda (1998), Guyon and Elisseeff (2003)
and Guyon et al. (2006). Specific algorithms proposed include but are not restricted to
FCBF (Yu and Li, 2003), CFS (Hall, 2000), ReliefF' (Kononenko, 1994), FOCUS (Almual-
lim and Dietterich, 1994) and INTERACT (Zhao and Liu, 2007). See also the special issue
published by JMLR on “variable and feature selection”, including Bi et al. (2003), Bengio
and Chapados (2003) and Guyon and Elisseeff (2003).

One particularly popular family of methods is based on penalized least-squares or, more
generally, penalized pseudo-likelihood. Examples include the LASSO (Tibshirani, 1996),
SCAD (Fan and Li, 2001), the Dantzig selector (Candes and Tao, 2007), and their related
methods. These methods have attracted a great deal of theoretical study and algorithmic
development recently. See Donoho and Elad (2003), Efron et al. (2004), Zou (2006), Mein-
shausen and Bithlmann (2006), Zhao and Yu (2006), Zou and Li (2008), Bickel et al. (2008),
and references therein. However, computation inherent in those methods makes them hard
to apply directly to ultrahigh-dimensional statistical learning problems, which involve the
simultaneous challenges of computational expediency, statistical accuracy, and algorithmic
stability.

A method that takes up the aforementioned three challenges is the idea of independent
learning, proposed and demonstrated by Fan and Lv (2008) in the regression context. The
method can be derived from an empirical likelihood point of view (Hall et al., 2008) and
is related to supervised principal component analysis (Bair et al., 2006; Paul et al., 2008).
In the important, but limited, context of the linear model, Fan and Lv (2008) proposed a
two-stage procedure to deal with this problem. First, so-called independence screening is
used as a fast but crude method of reducing the dimensionality to a more moderate size
(usually below the sample size); then, a more sophisticated technique, such as a penalized
likelihood method based on the smoothly clipped absolute deviation (SCAD) penalty, can
be applied to perform the final feature selection and parameter estimation simultaneously.



Independence screening recruits those features having the best marginal utility, which
corresponds to the largest marginal correlation with the response in the context of least-
squares regression. Under certain regularity conditions, Fan and Lv (2008) show surprisingly
that this fast feature selection method has a ‘sure screening property’; that is, with prob-
ability very close to 1, the independence screening technique retains all of the important
features in the model. A remarkable feature of this theoretical result is that the dimen-
sionality of the model is allowed to grow exponentially in the sample size; for this reason,
we refer to the method as an ‘ultrahigh’ dimensional feature selection technique, to dis-
tinguish it from other ‘high’ dimensional methods where the dimensionality can grow only
polynomially in the sample size. The sure screening property is described in greater detail
in Section 3.2, and as a result of this theoretical justification, the method is referred to as
Sure Independence Screening (SIS).

An important methodological extension, called Iterated Sure Independence Screening
(ISIS), covers cases where the regularity conditions may fail, for instance if a feature is
marginally uncorrelated, but jointly correlated with the response, or the reverse situation
where a feature is jointly uncorrelated but has higher marginal correlation than some im-
portant features. Roughly, ISIS works by iteratively performing feature selection to recruit
a small number of features, computing residuals based on the model fitted using these re-
cruited features, and then using the working residuals as the response variable to continue
recruiting new features. The crucial step is to compute the working residuals, which is easy
for the least-squares regression problem but not obvious for other problems. The improved
performance of ISIS has been documented in Fan and Lv (2008).

Independence screening is a commonly used techniques for feature selection. It has been
widely used for gene selection or disease classification in bioinformatics. In those applica-
tions, the genes or proteins are called statistically significant if their associated expressions
in the treatment group differ statistically from the control group, resulting in a large and
active literature on the multiple testing problem. See, for example, Dudoit et al. (2003)
and Efron (2008). The selected features are frequently used for tumor/disease classification.
See, for example, Tibshirani et al. (2003), and Fan and Ren (2006). This screening method
is indeed a form of independence screening and has been justified by Fan and Fan (2008)
under some ideal situations. However, common sense can carry us only so far. As indi-
cated above and illustrated further in Section 4.1, it is easy to construct features that are
marginally unrelated, but jointly related with the response. Such features will be screened
out by independent learning methods such as the two-sample ¢ test. In other words, genes
that are screened out by test statistics can indeed be important in disease classification and
understanding molecular mechanisms of the disease. How can we construct better feature
selection procedures in ultrahigh dimensional feature space than the independence screening
popularly used in feature selection?

The first goal of this paper is to extend SIS and ISIS to much more general models.
One challenge here is to make an appropriate definition of a residual in this context. We
describe a procedure that effectively sidesteps this issue and therefore permits the desired
extension of ISIS. In fact, our method even improves the original ISIS of Fan and Lv (2008)
in that it allows variable deletion in the recruiting process. Our methodology applies to a
very general pseudo-likelihood framework, in which the aim is to find the parameter vector



B=b,... ,ﬁp)T that is sparse and minimizes an objective function of the form

Q(B) =Y L(Y:, fo+ %/ B),

i=1

where (x!,Y;) are the covariate vector and response for the i’ individual. Important
applications of this methodology, which is outlined in greater detail in Section 2, include
the following:

1. Generalized linear models: All generalized linear models, including logistic regres-
sion and Poisson log-linear models, fit very naturally into our methodological frame-
work. See McCullagh and Nelder (1989) for many applications of generalized linear
models. Note in particular that logistic regression models yield a popular approach
for studying classification problems. In Section 4, we present simulations in which
our approach compares favorably with the competing LASSO technique (Tibshirani,
1996).

2. Classification: Other common approaches to classification assume the response takes
values in {—1, 1} and also fit into our framework. For instance, support vector machine
classifiers (Vapnik, 1995) use the hinge loss function L(Y;, 8o + x! B) = {1 — Y;(B +
x7'@)}+, while the boosting algorithm AdaBoost (Freund and Schapire, 1997) uses
L(Y;, o + x| B) = exp{~Yi(fo + x{ B)}.

3. Robust fitting: In a high-dimensional linear model setting, it is advisable to be
cautious about the assumed relationship between the features and the response. Thus,
instead of the conventional least squares loss function, we may prefer a robust loss
function such as the Ly loss L(Y;, 8o + x!3) = |Yi — By — x! B| or the Huber loss
(Huber, 1964), which also fits into our framework.

Any screening method, by default, has a large false selection rate (FSR), namely, many
unimportant features are selected after screening. A second aim of this paper, covered in
Section 3, is to present two variants of the SIS methodology, which reduce significantly the
FSR. Both are based on partitioning the data into (usually) two groups. The first has the
desirable property that in high-dimensional problems the probability of incorrectly selecting
unimportant features is small. Thus this method is particularly useful as a means of quickly
identifying features that should be included in the final model. The second method is less
aggressive, and for the linear model has the same sure screening property as the original
SIS technique. The applications of our proposed methods are illustrated in Section 5.

2. ISIS methodology in a general framework

Let y = (Y1,... ,Yn)T be a vector of responses and let x1,...,x, be their associated co-
variate (column) vectors, each taking values in RP. The vectors (x7,Y1),...,(x1,Y,) are
assumed to be independent and identically distributed realizations from the population
(X1,...,X,,Y)T. The n x p design matrix is X = (x1,...,%,)".



2.1 Feature ranking by marginal utilities

The relationship between Y and (X1, ..., X,)T is often modeled through a parameter vector
B=(f,-.- ,ﬁp)T, and the fitting of the model amounts to minimizing a negative pseudo-
likelihood function of the form

Q(Bo,B) =n~" > L(Y:, Bo + x; B). (1)
=1

Here, L can be regarded as the loss of using Gy + x;fpﬁ to predict Y;. The marginal utility
of the j* feature is

n
L; = min n_IZL(E,ﬂO +Xijﬂj), (2)

Bo,B; =1
which minimizes the loss function, where x; = (Xj1,... 7XZ-p)T. The idea of SIS in this
framework is to compute the vector of marginal utilities L = (L1,..., L,)T and rank them

according to the marginal utilities: the smaller the more important. Note that in order to
compute L;, we need only fit a model with two parameters, 3y and 3;, so computing the
vector L can be done very quickly and stably, even for an ultrahigh dimensional problem.
The feature X is selected by SIS if L; is one of the d smallest components of L. Typically,
we may take d = |n/logn|, though the choice of d is discussed in greater detail in Section 4.

The procedure above is an independence screening method. It uses only a marginal
relation between features and the response variable to screen variables. When d is large
enough, it has high probability of selecting all of the important features. For this reason,
we call the method Sure Independence Screening (SIS). For classification problems with
quadratic loss L, Fan and Lv (2008) show that SIS reduces to feature screening using a two-
sample ¢-statistic. See also Hall et al. (2008) for a derivation from an empirical likelihood
point of view and §3.2 for some theoretical results on the sure screening property.

2.2 Penalized pseudo-likelihood

With features crudely selected by SIS, variable selection and parameter estimation can
further be carried out simultaneously using a more refined penalized (pseudo)-likelihood
method, as we now describe. The approach takes joint information into consideration.
By reordering the features if necessary, we may assume without loss of generality that
Xi,...,Xq are the features recruited by SIS. We let x; 4 = (Xi1, ... , X;a)" and redefine

B = (Bi,...,04)". In the penalized likelihood approach, we seek to minimize
n d
(B0, B) =n"" > L(Yi, Bo+ %1 4B) + Y pallBj))- (3)
i=1 j=1

Here, py(-) is a penalty function and A > 0 is a regularization parameter, which may be
chosen by five-fold cross-validation, for example. The penalty function should satisfy certain
conditions in order for the resulting estimates to have desirable properties, and in particular
to yield sparse solutions in which some of the coefficients may be set to zero; see Fan and
Li (2001) for further details.



Commonly used examples of penalty functions include the L; penalty px(|3]) = A|g]
(Tibshirani, 1996; Park and Hastie, 2007), the smoothly clipped absolute deviation (SCAD)
penalty (Fan and Li, 2001), which is a quadratic spline with p)(0) = 0 and

/ A—
pA(l61) = A{ﬂ{mm + %hmw}

for some @ > 2 and |B| > 0, and the minimum concavity penalty (MCP), p)\(|5]) =
(A = 18] /a)+ (Zhang, 2009). The choice a = 3.7 has been recommended in Fan and Li
(2001). Unlike the L; penalty, SCAD and MC penalty functions have flat tails, which are
fundamental in reducing biases due to penalization (Antoniadis and Fan, 2001; Fan and Li,
2001). Park and Hastie (2007) describe an iterative algorithm for minimizing the objective
function for the L; penalty, and Zhang (2009) propose a PLUS algorithm for finding so-
lution paths to the penalized least-squares problem with a general penalty py(-). On the
other hand, Fan and Li (2001) have shown that the SCAD-type of penalized loss function
can be minimized iteratively using a local quadratic approximation, whereas Zou and Li
(2008) propose a local linear approximation, taking the advantage of recently developed
algorithms for penalized L; optimization (Efron et al., 2004). Starting from B© =0 as
suggested by Fan and Lv (2008), using the local linear approximation

pr(181) = pal18™1) + P (189 (18] — 18,
in (3), at the (k + 1) iteration we minimize the weighted L; penalty

n d
n LY B+ xDaB) + S w1, (4)

i=1 j=1

where wﬁ-k) = p’/\(\ﬁ](k)\) Note that with initial value 80 = 0, 8" is indeed a LASSO
estimate for the SCAD and MC penalties, since p)(04+) = A. In other words, zero is not
an absorbing state. Though motivated slightly differently, a weighted L; penalty is also
the basis of the adaptive Lasso (Zou, 2006); in that case wg.k) = w; = 1/|Bj|7, where

B = (51, ... ,Bd)T may be taken to be the maximum likelihood estimator, and ~v > 0 is
chosen by the user. The drawback of such an approach is that zero is an absorbing state
when (4) is iteratively used — components being estimated as zero at one iteration will
never escape from zero.

For a class of penalty functions that includes the SCAD penalty and when d is fixed as n
diverges, Fan and Li (2001) established an oracle property; that is, the penalized estimates
perform asymptotically as well as if an oracle had told us in advance which components
of B were non-zero. Fan and Peng (2004) extended this result to cover situations where d
may diverge with d = d,, = o(n'/®). Zou (2006) shows that the adaptive LASSO possesses
the oracle property too, when d is finite. See also further theoretical studies by Zhang and
Huang (2008) and Zhang (2009). We refer to the two-stage procedures described above as
SIS-Lasso, SIS-SCAD and SIS-Adalasso.

2.3 Iterative feature selection

The SIS methodology may break down if a feature is marginally unrelated, but jointly
related with the response, or if a feature is jointly uncorrelated with the response but has



higher marginal correlation with the response than some important features. In the former
case, the important feature has already been screened at the first stage, whereas in the latter
case, the unimportant feature is ranked too high by the independent screening technique.
ISIS seeks to overcome these difficulties by using more fully the joint covariate information
while retaining computational expedience and stability as in SIS.

In the first step, we apply SIS to pick a set A of indices of size k1, and then employ
a penalized (pseudo)-likelihood method such as Lasso, SCAD, MCP or the adaptive Lasso
to select a subset ﬂl of these indices. This is our initial estimate of the set of indices
of important features. The screening stage solves only bivariate optimizations (2) and
the fitting part solves only a optimization problem (3) with moderate size k1. This is an
attractive feature in ultrahigh dimensional statistical learning.

Instead of computing residuals, as could be done in the linear model, we compute

n
Lj B ﬂOvIBan\Illyﬁjn ;L(K,ﬁo +Xi,MlﬁM1 +Xz]ﬁ])v (5)

for j € X/i\f ={1,...,p}\ M, where X, 77, is the sub-vector of x; consisting of those

elements in M\l. This is again a low-dimensional optimization problem which can easily
be solved. Note that L§2) [after subtracting the constant minﬁo,ﬁﬁl n~tS  L(Y;, Bo +

x?ﬂ B /\71) and changing the sign of the difference] can be interpreted as the additional
i 1

contribution of variable X; given the existence of variables in M\l. After ordering {L§.2) :

J € M\f}, we form the set ,21\2 consisting of the indices corresponding to the smallest ko
elements, say. In this screening stage, an alternative approach is to substitute the fitted
value B T from the first stage into (5) and the optimization problem (5) would only be
bivariate. This approach is exactly an extension of Fan and Lv (2008) as we have

L(Y3, Bo + XZ:/QIBM\l + Xi305) = (7 — Bo — Xij3))°,

for the quadratic loss, where 7; = Y; — Xz‘T/\//Tl B i is the residual from the previous step of
fitting. The conditional contributions of features are more relevant in recruiting variables
at the second stage, but the computation is more expensive. Our numerical experiments in
Section 4.4 shows the improvement of such a deviation from Fan and Lv (2008).

After the prescreening step, we use penalized likelihood to obtain

n
By— argmin n~! Z L(Y;, Bo + XZﬂlﬁﬂl + x:@,@@) + Z pa(B5]). (6)
Bo,Bxz, Bay i=1 JEMIUA,

Again, the penalty term encourages a sparse solution. The indices of BQ that are non-zero
yield a new estimated set M\g of active indices. This step also deviates importantly from
the approach in Fan and Lv (2008) even in the least-squares case. It allows the procedure
to delete variables from the previously selected features with indices in M\l.

The process, which iteratively recruits and deletes features, can then be repeated until
we obtain a set of indices My which either has reached the prescribed size d, or satisfies



M\g = ./(/l\g,l. Of course, we also obtain a final estimated parameter vector Bg. The above
method can be considered as an analogue of the least squares ISIS procedure (Fan and Lv,
2008) without explicit definition of the residuals. In fact, it is an improvement even for the
least-squares problem.

In general, choosing larger values of each k, at each iteration decreases the computational
cost and the probability that the ISIS procedure will terminate too early. However, it
also makes the procedure more like its non-iterated counterpart, and so may offer less
improvement in the awkward cases for SIS described in Section 1. In our implementation,
we chose k1 = |2d/3], and thereafter at the rth iteration, we took k, = d — |/T/l\r,1\. This
ensures that the iterated versions of SIS take at least two iterations to terminate; another
possibility would be to take, for example, k, = min(5,d — |M,_1|).

Fan and Lv (2008) showed empirically that for the linear model ISIS improves signifi-
cantly the performance of SIS in the difficult cases described above. The reason is that the
fitting of the residuals from the (r — 1) iteration on the remaining features significantly
weakens the priority of those unimportant features that are highly correlated with the re-
sponse through their associations with {Xj; : j € /(/l\,n,l}. This is due to the fact that the

features {X; : j € /(/l\r,l} have lower correlation with the residuals than with the original
responses. It also gives those important features that are missed in the previous step a
chance to survive.

2.4 Generalized linear models

Recall that we say that Y is of exponential dispersion family form if its density can be
written in terms of its mean p and a dispersion parameter ¢ as

y0(u) — b(0(1))

fy(ysp, ¢) = exp{ + c(y, cb)},

¢
from some known functions 6(-), b(-) and ¢(+,-). In a generalized linear model for indepen-
dent responses Y7,...,Y,, we assert that the conditional density of Y; given the covariate

vector X; = Xx; is of exponential dispersion family form, with the conditional mean response
i related to x; through g(u;) = x! 3 for some known link function g(-), and where the
dispersion parameters are constrained by requiring that ¢; = ¢a;, for some unknown dis-
persion parameter ¢ and known constants ay, ..., a,. For simplicity, throughout the paper,
we take a constant dispersion parameter.

It is immediate from the form of the likelihood function for a generalized linear model
that such a model fits within the pseudo-likelihood framework of Section 4. In fact, we have
in general that

L(Y:. o +x[B) = D _{b(0(g~ (B0 +x/B)) = Yi6 (97" (B0 +xB)) }. (7)
i=1
If we make the canonical choice of link function, g(-) = (), then (7) simplifies to

L(Y;, B0 +x; B) = Y_{b(Bo+x] B) — Yi(Bo +x] B)}.
=1



An elegant way to handle classification problems is to assume the class label takes values
0 or 1, and fit a logistic regression model. For this particular generalized linear model, we

have
n

L(Y;, B+ xI'B) = Y {log(1 + ™ XIB) —vi( + xT8)},
=1

while for Poisson log-linear models, we may take

L(Y;, fo +xIB) = Y {%XIB _vi(5, + xI'B)}.
=1

3. Reduction of false selection rates

Sure independence screening approaches are simple and quick methods to screen out irrel-
evant features. They are usually conservative and include many unimportant features. In
this section, we outline two possible variants of SIS and ISIS that have attractive theoretical
properties in terms of reducing the FSRs. The first is an aggressive feature selection method
that is particularly useful when the dimensionality is very large relative to the sample size;
the second is a more conservative procedure.

3.1 First variant of ISIS

It is convenient to introduce some new notation. We write A for the set of active indices
— that is, the set containing those indices j for which 8; # 0 in the true model. Write
Xa=1{X;:j € A} and X4 = {X; : j € A°} for the corresponding sets of active and
inactive variables respectively.

Assume for simplicity that n is even, and split the sample into two halves at random.
Apply SIS or ISIS separately to the data in each partition (with d = |n/logn| or larger,
say), yielding two estimates A1) and A®) of the set of active indices A. Both of them
should have large FSRs, as they are constructed from a crude screening method. Assume
that both sets have the satisfy

P(AcC AY)) 1, forj=1and 2.

Then, the active features should appear in both sets with probability tending to one. We
thus construct A = AW N A as an estimate of A. This estimate also satisfies

-~

P(.AC.A)—>1.

However, this estimate contains many fewer indices corresponding to inactive features, as
such indices have to appear twice at random in the sets AW and A®). This is indeed shown
in Theorem 1 below.

Just as in the original formulation of SIS in Section 2, we can now use a penalized
(pseudo)-likelihood method such as SCAD to perform final feature selection from A and
parameter estimation. We can even proceed without the penalization since the false selection
rate is small.

In our theoretical support for this variant of SIS, we will make use of the following
condition:



(A1) Let r € N, the set of natural numbers. We say the model satisfies the exchangeability
condition at level r if the set of random vectors

{(Y, X4, Xj,,...,Xj.) : j1,..., jr are distinct elements of A}
is exchangeable.

This condition ensures that each inactive feature is equally likely to be recruited by SIS.
Note that (A1) certainly allows inactive features to be correlated with the response, but
does imply that each inactive feature has the same marginal distribution. In Theorem 1
below, the case r = 1 is particularly important, as it gives an upper bound on the probability
of recruiting any inactive features into the model. Note that this upper bound requires only
the weakest version (level 1) of the exchangeability condition.

Theorem 1 Let r € N, and assume the model satisfies the exchangeability condition (A1)
at level r. If A denotes the estimator of A from the above variant of SIS, then

(&) 1( d? ),

p—|A

N

PlJAN A >71) < (P—\A\) <

where, for the second inequality, we require d> < p — |A| and d is the prescribed number of
selected features in A or A®).

Proof Fix r € N, and let J = {(j1,..-,Jr) : J1,--.,Jr are distinct elements of A°}. Then

PIANAl>r) < Y PGreA - g el

(jl,--wj'r‘)e\j
= Z P(]l 6_/21\(1)7... 7]'7‘ ej(l))Q’
(jly"'7j’l‘)€j

in which we use the random splitting in the last equality. Obviously, the last probability is
bounded by

max P(]l c _/Zl\(l)’ RN 7jr & .,Zl\(l)) Z P(]l € le\(l)’ U 7jr € le\(l)) (8)
(J15-dr)€T (1 yeonsfir) €T

Since there are at most d inactive features from A€ in the set jl\(l), the number of r-tuples
fgom J falling in the set AWM can not be more than the total number of such r-tuples in

AW e,
< d
Y Tgeangean <\, )

(jlv"wj’l‘)ej

Thus, we have
~ ~ d
> Phe AV g e A < (1)) o)
(jlwnyjr)ej
Substituting this into (8), we obtain
N d N N
PUANAT 20 < (1) max PGy e AV, e A

(jl""7j’r‘)ej

10



Now, under the exchangeability condition (A1), each r-tuple of distinct indices in A€ is
equally likely to be recruited into A1), Hence, it follows from (9) that

d
IR AN ¢
0BT €A €A = ol

and the first result follows. The second result follows from the simple fact that

d—i)?  d?
W= 4 ano<i<d,
pr—i T p

where p* = p — | A], and the simple calculation that

) rlprpr =1 (pr—r+1) " 7!

T

p*

2
A" 1 dd-1)2(d—r+1) _1 <d>"
This completes the proof. |

Theorem 1 gives a nonasymptotic bound, using only the symmetry arguments, and this
bound is expected to be reasonably tight especially when p is large. From Theorem 1, we
see that if the exchangeability condition at level 1 is satisfied and if p is large by comparison
with n?, then when the number of selected features d is smaller than n, we have with
high probability this variant of SIS reports no ‘false positives’; that is, it is very likely
that any index in the estimated active set also belongs to the active set in the true model.
Intuitively, if p is large, then each inactive feature has small probability of being included
in the estimated active set, so it is very unlikely indeed that it will appear in the estimated
active sets from both partitions. The nature of this result is a little unusual in that it
suggests a ‘blessing of dimensionality’ — the bound on the probability of false positives
decreases with p. However, this is only part of the full story, because the probability of
missing elements of the true active set is expected to increase with p.

Of course, it is possible to partition the data into K > 2 groups, say, each of size n/K,
and estimate A by ADVANAD N N AE ), where Ak) represents the estimated set of active
indices from the kth partition. Such a variable selection procedure would be even more
aggressive than the K = 2 version; improved bounds in Theorem 1 could be obtained, but
the probability of missing true active indices would be increased. As the K = 2 procedure
is already quite aggressive, we consider this to be the most natural choice in practice.

In the iterated version of this first variant of SIS, we apply SIS to each partition sepa-
rately to obtain two sets of indices le\gl) and le\?), each having k; elements. After forming

the intersection ,11 = ﬁﬁ” N ,152), we carry out penalized likelihood estimation as before

to give a first approximation M\l to the true active set of features. We then perform a
second stage of the ISIS procedure, as outlined in Section 2, to each partition separately to
obtain sets of indices M\l U le\gl) and M\l U le\g). Taking the intersection of these sets and
re-estimating parameters using penalized likelihood as in Section 2 gives a second approxi-
mation /@2 to the true active set. This process can be continued until we reach an iteration
£ with My = M,_q, or we have recruited d indices.
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3.2 Second variant of ISIS

Our second variant of SIS is a more conservative feature selection procedure and also relies
on random partitioning the data into K = 2 groups as before. Again, we apply SIS to each
partition separately, but now we recruit as many features into equal-sized sets of active
indices A1) and A®? as are required to ensure that the intersection A= A0 N A has d
elements. We then apply a penalized pseudo-likelihood method to the features X ; = {X;:
Je ,Z} for final feature selection and parameter estimation.

Theoretical support for this method can be provided in the case of the linear model;
namely, under certain regularity conditions, this variant of SIS possesses the sure screening
property. More precisely, if Conditions (1)—(4) of Fan and Lv (2008) hold with 2k + 7 < 1,
and we choose d = [n/logn]|, then there exists C' > 0 such that

P(AC A) =1 - Ofexp(—Cn'~>"/logn +logp)}.

The parameter £ > 0 controls the rate at which the minimum signal min;ec 4 |3;] is allowed
to converge to zero, while 7 > 0 controls the rate at which the maximal eigenvalue of the
covariance matrix ¥ = Cov(Xy,..., X)) is allowed to diverge to infinity. In fact, we insist
that minje 4 |5 > n™" and Apax(X) < n7 for large n, where Ayax(X) denotes the maximal
eigenvalue of X. Thus, these technical conditions ensure that any non-zero signal is not too
small, and that the features are not too close to being collinear, and the dimensionality is
also controlled via logp = o(n'=2%/logn), which is still of an exponential order. See Fan
and Lv (2008) for further discussion of the sure screening property.

Recently, Fan and Song (2009) extended the result of Fan and Lv (2008) to generalized
linear models. Let Lo = ming, n~ 1 >0 | L(Y;, ) be the baseline value to (2). The feature
ranking procedure is equivalent to the thresholding method: M\Vn ={j:Lj—Lo>uwy}, in
which v, is a given thresholding value. Under certainly regularity conditions, if

mi} lcov(X;,Y)| > cin™", for some ¢; > 0 and kK < 1/2
j€

and v, = con~2* for a sufficiently small cy, then we have
P(AC M,,) — 1,

exponentially fast, provided that log p, = o(n'~=2%). The sure screening property does not
depend on the correlation of the features, as expected. However, the selected model size does
depend on the correlation structure: The more correlated the features, the larger the selected
model size. In fact, Fan and Song (2009) demonstrated further that with probability
tending to one exponentially fast, |M\Vn\ = O(v;, > max(B)). When A\pax () = O(n7) and
Amax(2) = O(n=2%), the selected model size is |M\Vn| = O(n?*7). In particularly, if the
condition 2x + 7 < 1 is imposed as in Fan and Lv (2008), we can reduce safely the model
size to o(n) by independence learning.

An iterated version of this second variant of SIS is also available. At the first stage
we apply SIS, taking enough features in equal-sized sets of active indices jgl) and 252) to
ensure that the intersection 21 = 251) ﬁj?) has k1 elements. Applying penalized likelihood
to the features with indices in A, gives a first approximation Ml to the true set of active
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indices. We then carry out a second stage of the ISIS procedure of Section 2 to each partition
separately to obtain equal-sized new sets of indices Agl) and Ag), taking enough features
to ensure that JZQ = jgl) N ﬂf) has ko elements. Penalized likelihood applied to M1 N ./12

gives a second approximation Ma to the true set of active indices. As with the first variant,
we continue until we reach an iteration £ with M, = Mjy_1, or we have recruited d indices.

4. Numerical results

We illustrate the breadth of applicability of (I)SIS and its variants by studying its perfor-
mance on simulated data in four different contexts: logistic regression, Poisson regression,
robust regression (with a least absolute deviation criterion) and multi-class classification
with support vector machines. We will consider three different configurations of the p = 1000
features Xi,...,X):

Case 1: X,..., X, are independent and identically distributed N(0,1) random variables

Case 2: Xi,...,X, are jointly Gaussian, marginally N(0,1), and with corr(X;, X4) =
1/V2 for all i # 4 and corr(X;, X;) = 1/2 if i and j are distinct elements of {1,...,p}\
{4}

Case 3: Xi,..., X, are jointly Gaussian, marginally N(0,1), and with corr(X;, X5) = 0
for all i # 5, corr(X;, X4) = 1/+/2 for all i ¢ {4,5}, and corr(X;, X;) = 1/2 if i and j
are distinct elements of {1,...,p} \ {4,5}.

Case 1, with independent features, is the most straightforward for variable selection. In
Cases 2 and 3, however, we have serial correlation such that corr(X;, X;) does not decay
as |t — j| increases. We will see later that for both Case 2 and Case 3 the true coefficients
are chosen such that the response is marginally uncorrelated with Xy4. We therefore expect
feature selection in these situations to be more challenging, especially for the non-iterated
versions of SIS. Notice that in the asymptotic theory of SIS in Fan and Lv (2008), this type
of dependence is ruled out by their Condition (4).

Regarding the choice of d, the asymptotic theory of Fan and Lv (2008) shows that in
the linear model there exists 8* > 0 such that we may obtain the sure screening property
with Lnlfe*J < d < n. However, 6* is unknown in practice, and therefore Fan and Lv
recommend d = |n/logn| as a sensible choice. Of course, choosing a larger value of d
increases the probability that SIS will include all of the correct variables, but including
more inactive variables will tend to have a slight detrimental effect on the performance of
the final variable selection and parameter estimation method. We have found that this
latter effect is most noticeable in models where the response provides less information. In
particular, the binary response of a logistic regression model and, to a lesser extent, the
integer-valued response in a Poisson regression model are less informative than the real-
valued response in a linear model. We therefore used d = Lﬁj in the logistic regression
and multicategory classification settings of Sections 4.1 and 4.5, d = Lﬁj in the Poisson
regression settings of Section 4.2 and d = |5 | in Section 4.4. These model-based, rather than
data-adaptive, choices of d seem to be satisfactory, as the performance of the procedures is
quite robust to different choices of d (in fact using d = Llognj for all models would still give
good performance).
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4.1 Logistic regression

In this example, the data (x7,Y7),...,(x1,Y,) are independent copies of a pair (x7,Y),
where Y is distributed, conditional on X = x, as Bin(1, p(x)), with log(lf S(?C)) = Gy+xTp.
We choose n = 400.

As explained above, we chose d = [5—] = 16 in both the vanilla version of SIS
outlined in Section 2 (Van-SIS), and the second variant (Var2-SIS) in Section 3.2. For the
first variant (Varl-SIS), however, we used d = [z | = 66; note that since this means the
selected features are in the intersection of two sets of size d, we typically end up with far
fewer than d features selected by this method.

For the logistic regression example, the choice of final regularization parameter X for the
SCAD penalty (after all (I)SIS steps) was made by means of an independent validation data
set of size n (generated from the same model as the original data, used only for tuning the
parameters), rather than by cross-validation. This also applies for the LASSO and Nearest
Shrunken Centroid (NSC, Tibshirani et al., 2003) methods which we include for comparison;
instead of using SIS, this method regularizes the log-likelihood with an Li-penalty. The
reason for using the independent tuning data set is that the lack of information in the
binary response means that cross-validation is particularly prone to overfitting in logistic
regression, and therefore perfoms poorly for all methods.

The coefficients used in each of the three cases were as follows:

Case 1: Gy =0, f1 = 1.2439, B = —1.3416, B3 = —1.3500, B4 = —1.7971, B5 = —1.5810,
Be = —1.5967, and B; = 0 for j > 6. The corresponding Bayes test error is 0.1368.

Case 2: 3y =0, 081 =4, fo =4, 3 =4, 1 = —61/2, and B;j = 0 for j > 4. The Bayes test
error is 0.1074.

Case 3: By =0, 81 =4, fo =4, B3 =4, f1=—6V2, 85 =4/3, and 3; = 0 for j > 5. The
Bayes test error is 0.1040.

In Case 1, the coefficients were chosen randomly, and were generated as (4logn//n +
|Z]/4)U with Z ~ N(0,1) and U = 1 with probability 0.5 and —1 with probability —0.5,
independent of Z. For Cases 2 and 3, the choices ensure that even though (54 # 0, we
have that X, and Y are independent. The fact that X, is marginally independent of the
response is designed to make it difficult for a popular method such as the two-sample t test
or other independent learning methods to recognize this important feature. Furthermore,
for Case 3, we add another important variable X5 with a small coefficient to make it even
more difficult to identify the true model. For Case 2, the ideal variables picked up by
the two sample test or independence screening technique are X;, X and X3. Using these
variables to build the ideal classifier, the Bayes risk is 0.3443, which is much larger than
the Bayes error 0.1074 of the true model with X7, Xo, X3, X4. In fact one may exaggerate
Case 2 to make the Bayes error using the independence screening technique close to 0.5,
which corresponds to random guessing, by setting Gy = 0, 81 = 82 = (3 = a, G, = a for
m=5,6,---,7, b1 =—a(j —1)v/2/2, and 3, = 0 for m > j. For example, the Bayes error
using the independence screening technique, which deletes X4, is 0.4290 when j = 20 and
a = 4 while the corresponding Bayes error using X,,, m =1,2,--- ,20 is 0.0445.
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In the tables below, we report several performance measures, all of which are based
on 100 Monte Carlo repetitions. The first two rows give the median L and squared Lo
estimation errors |3 — 81 = 3-7_o |8;— 3j] and [|B— B3 = X-0_o(8; — 3;)?. The third row
gives the proportion of times that the (I)SIS procedure under consideration includes all of
the important features in the model, while the fourth reports the corresponding proportion
of times that the final features selected, after application of the SCAD or LASSO penalty
as appropriate, include all of the important ones. The fifth row gives the median final
number of features selected. Measures of fit to the training data are provided in the sixth,
seventh and eighth rows, namely the median values of 2Q(@0, B), defined in (1), Akaike’s
information criterion (Akaike, 1974), which adds twice the number of features in the final
model, and the Bayesian information criterion (Schwarz, 1978), which adds the product of
logn and the number of features in the final model. Finally, an independent test data set
of size 100n was used to evaluate the median value of QQ(BO, () on the test data (Row 9),
as well as to report the median 0-1 test error (Row 10), where we observe an error if the
test response differs from the fitted response by more than 1/2.

Table 1 compares five methods, Van-SIS, Varl-SIS, Var2-SIS, LASSO, and NSC. The
most noticeable observation is that while the LASSO always includes all of the important
features, it does so by selecting very large models — a median of 94 variables, as opposed
to the correct number, 6, which is the median model size reported by all three SIS-based
methods. This is due to the bias of the LASSO, as pointed out by Fan and Li (2001) and
Zou (2006), which encourages the choice of a small regularization parameter to make the
overall mean squared error small. Consequently, many unwanted features are also recruited.
This is also evidenced by comparing the differences between L; and Lo losses in the first
two rows. Thus the LASSO method has large estimation error, and while 2Q(Bo, B) is small
on the training data set, this is a result of overfit, as seen by the large values of AIC/BIC,
QQ(BO, () on the test data and the 0-1 test error.

As the features are independent in Case 1, it is unsurprising to see that Van-SIS has the
best performance of the three SIS-based methods. Even with the larger value of d used for
Varl-SIS, it tends to miss important features more often than the other methods. Although
the method appears to have value as a means of obtaining a minimal set of features that
should be included in a final model, we will not consider Varl-SIS further in our simulation
study.

Table 2 displays the results of repeating the Case 1 simulations for Van-SIS, Varl-SIS
and Var2-SIS under the same conditions, but using the LASSO penalty function rather than
the SCAD penalty function after the SIS step. These versions are called Van-SIS-LASSO,
Varl-SIS-LASSO and Var2-SIS-LASSO respectively. We see that, as well as decreasing
the computational cost, using any of the three versions of SIS before the LASSO improves
performance substantially compared with applying the LASSO to the full set of features.
On the other hand, the results are less successful than applying SIS and its variants in
conjuction with the SCAD penalty for final feature selection and parameter estimation. We
therefore do not consider Van-SIS-LASSO, Varl-SIS-LASSO and Var2-SIS-LASSO further.

In Cases 2 and 3, we also consider the iterated versions of Van-SIS and Var2-SIS, which
we denote Van-ISIS and Var2-ISIS respectively. At each intermediate stage of the ISIS
procedures, the Bayesian information criterion was used as a fast way of choosing the
SCAD regularization parameter.

15



Table 1: Logistic regression, Case 1

Van-SIS  Varl-SIS  Var2-SIS LASSO NSC
18— Bl 11093 1.2495 12134 84821 N/A
18 — B2 04861 05237 05204  1.7029 N/A
Prop. incl. (I)SIS models | 0.99 0.84 0.91 N/A N/A
Prop. incl. final models 0.99 0.84 0.91 1.00 0.34
Median final model size 6 6 6 94 3
2Q(fo, B) (training) 937.21  247.00 24285  163.64 N/A
AIC 250.43 259.87 256.26 352.54 N/A
BIC 27777 284.90 282.04 72470  N/A
2Q(bo, B) (test) 971.81  273.08 27291 31852 N/A
0-1 test error 0.1421 0.1425 0.1426 0.1720  0.3595

Table 2: Logistic regression, Case 1

Van-SIS-LASSO  Varl-SIS-LASSO  Var2-SIS-LASSO

1B — Bl 3.8500 2.1050 3.0055
B — BH% 1.0762 0.7536 0.9227
Prop. incl. (I)SIS models | 0.99 0.84 0.91

Prop. incl. final models 0.99 0.84 0.91

Median final model size 16.0 9.0 14.5

QQ(BO,B) (training) 207.86 240.44 226.95
AIC 239.69 260.49 255.99
BIC 302.98 295.40 316.36
2Q(5o, B) (test) 304.79 280.95 291.79
0-1 test error 0.1621 0.1476 0.1552

From Tables 3 and 4, we see that the non-iterated SIS methods fail badly in these
awkward cases. Their performance is similar to that of the LASSO method. On the other
hand, both of the iterated methods Van-ISIS and Var2-ISIS perform extremely well (and
similarly to each other).

4.2 Poisson regression

In our second example, the generic response Y is distributed, conditional on X = x, as
Poisson(j:(x)), where log u(x) = By + x 3.

Due to the extra information in the count response, we choose n = 200, and apply all
versions of (I)SIS with d = 515 ] = 37. We also use 10-fold cross-validation to choose the
final regularization parameter for the SCAD and LASSO penalties. The coefficients used
were as follows:

Case 1: 5y = 5, 1 = —0.5423, G5 = 0.5314, B3 = —0.5012, B4 = —0.4850, B5 = —0.4133,
Be = 0.5234, and (3; = 0 for j > 6.
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Table 3: Logistic regression, Case 2

Van-SIS  Van-ISIS Var2-SIS Var2-ISIS LASSO NSC
1B — Bl 20.0504  1.9445 20.1100 1.8450 21.6437 N/A
B — BH% 9.4101 1.0523 9.3347 0.9801 9.1123 N/A
Prop. incl. (I)SIS models | 0.00 1.00 0.00 1.00 N/A N/A
Prop. incl. final models 0.00 1.00 0.00 1.00 0.00 0.21
Median final model size 16 4 16 4 91 16.5
QQ(BO,B) (training) 307.15 187.58 309.63 187.42 127.05 N/A
AIC 333.79 195.58 340.77 195.58 311.10 N/A
BIC 386.07 211.92 402.79 211.55 672.34 N/A
QQ(BO,B) (test) 344.25 204.23 335.21 204.28 258.65 N/A
0-1 test error 0.1925 0.1092 0.1899 0.1092 0.1409  0.3765

Table 4: Logistic regression, Case 3

Van-SIS  Van-ISIS Var2-SIS Var2-ISIS LASSO NSC
B — Bl 20.5774  2.6938 20.6967  3.2461 23.1661 N/A
B — BH% 9.4568 1.3615 9.3821 1.5852 9.1057 N/A
Prop. incl. (I)SIS models | 0.00 1.00 0.00 1.00 N/A N/A
Prop. incl. final models 0.00 0.90 0.00 0.98 0.00 0.17
Median final model size 16 5 16 5 101.5 10
QQ(BO,B) (training) 269.20 187.89 296.18 187.89 109.32 N/A
AIC 289.20 197.59 327.66 198.65 310.68 N/A
BIC 337.05 218.10 389.17 219.18 713.78 N/A
QQ(BO,B) (test) 360.89 225.15 358.13 226.25 275.55 N/A
0-1 test error 0.1933 0.1120 0.1946 0.1119 0.1461  0.3866

Case 2: ) =5, 31 = 0.6, 82 = 0.6, B3 = 0.6, 34 = —0.9v/2, and 3; = 0 for j > 4.

Case 3: 3y =5, 01 = 0.6, B = 0.6, 5 = 0.6, B4 = —0.9v/2, 35 = 0.15, and Bj = 0 for
j>b.

In Case 1, the magnitudes of the coefficients 31, ..., s were generated as (l‘z}gﬁ" +|Z1/8)U
with Z ~ N(0,1) and U = 1 with probability 0.5 and —1 with probability 0.5, independently
of Z. Again, the choices in Cases 2 and 3 ensure that, even though 84 # 0, we have
corr(Xy4,Y) = 0. The coefficients are a re-scaled version of those in the logistic regression

model, except that Sy = 5 is used to control an appropriate signal-to-noise ratio.

The results are shown in Tables 5, 6 and 7. Even in Case 1, with independent features,
the ISIS methods outperform SIS, so we chose not to present the results for SIS in the other
two cases. Again, both Van-ISIS and Var2-ISIS perform extremely well, almost always
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including all the important features in relatively small final models. The LASSO method
continues to suffer from overfitting, particularly in the difficult Cases 2 and 3.

Table 5: Poisson regression, Case 1

Van-SIS ~ Van-ISIS  Var2-SIS  Var2-ISIS LASSO
18 = Bl 0.0695  0.1239 11773  0.1222 0.1969
I8 — BH% 0.0225  0.0320 0.4775 0.0330 0.0537
Prop. incl. (I)SIS models | 0.76 1.00 0.45 1.00 N/A
Prop. incl. final models 0.76 1.00 0.45 1.00 1.00
Median final model size 12 18 13 17 27
2Q(BO,B) (training) 1560.85  1501.80  7735.51  1510.38 1534.19
AIC 1586.32  1537.80  7764.51  1542.14 1587.23
BIC 1627.06  1597.17  7812.34  1595.30 1674.49
QQ(BO,B) (test) 1557.74  1594.10  14340.26 1589.51 1644.63

Table 6: Poisson regression, Case 2

Van-ISIS  Var2-ISIS LASSO
18 — Bl 0.2705  0.2252 3.0710
18 — Bl 0.0719  0.0667  1.2856
Prop. incl. (I)SIS models | 1.00 0.97 N/A
Prop. incl. final models 1.00 0.97 0.00
Median final model size 18 16 174
2Q(Bo, B) (training) 149453 1509.40  1369.96
AIC 1530.53 15641.17 1717.91
BIC 1589.90 1595.74 2293.29
2Q(Bo, B) (test) 1629.49  1614.57  2213.10

Table 7: Poisson regression, Case 3

Van-ISIS  Var2-ISIS LASSO
18 =Bl 0.2541  0.2319 3.0942
18 — B2 0.0682  0.0697 1.2856
Prop. incl. (I)SIS models | 0.97 0.91 0.00
Prop. incl. final models 0.97 0.91 0.00
Median final model size 18 16 174
2Q(fy, B) (training) 1500.03  1516.14  1366.63
AIC 1536.03  1546.79  1715.35
BIC 1595.40  1600.17  2293.60
2Q(5o, B) (test) 1640.27  1630.58  2389.09
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4.3 Robust regression

We have also conducted similar numerical experiments using Li-regression for the three
cases in an analogous manner to the previous two examples. We obtain similar results. Both
versions of ISIS are effective in selecting important features with relatively low false positive
rates. Hence, the prediction errors are also small. On the other hand, LASSO missed the
difficult variables in cases 2 and 3 and also selected models with a large number of features
to attenuate the bias of the variable selection procedure. As a result, its prediction errors
are much larger. To save space, we omit the details of the results.

4.4 Linear regression

Note that our new ISIS procedure allows feature deletion in each step. It is an impor-
tant improvement over the original proposal of Fan and Lv (2008) even in the ordinary
least-squares setting. To demonstrate this, we choose Case 3, the most difficult one, with
coefficients given as follows.

Case 3: By =0,51=5,62=5, f3=5, s = —15v2/2, B5 =1, and §; = 0 for j > 5.

The response Y is set as Y = x! 3 + ¢ with independent ¢ ~ N(0,1). This model is the
same as Example 4.2.3 of Fan and Lv (2008). Using n = 70 and d = n/2, our new ISIS
method includes all five important variables for 91 out of the 100 repetitions, while the
original ISIS without feature deletion includes all the important features for only 36 out of
the 100 repetitions. The median model size of our new variable selection procedure with
variable deletion is 21, whereas the median model size corresponding to the original ISIS of
Fan and Lv (2008) is 19.

We have also conducted the numerical experiment with a different sample size n = 100
and d = n/2 = 50. For 97 out of 100 repetitions, our new ISIS includes all the important
features while ISIS without variable deletion includes all the important features for only
72 repetitions. Their median model sizes are both 26. This clearly demonstrates the
improvement of allowing feature deletion in this example.

4.5 Multicategory classification

Our final example in this section is a four-class classification problem. Here we study
two different feature configurations, both of which depend on first generating independent
Xi,... ,Xp such that X1,..., X4 are uniformly distributed on [—v/3,4/3], and Xs,... ,X'p
are distributed as N(0,1). We use these random variables to generate the following cases:

Case 1: Xj:f(j forj=1,...,p

Case 2: X1 :2)21 — \/5)25, X2 = XQ + \/5)25, X3 = Xg - \/§X5, X4 = X4 + \/5)25, and
X :\/ng for j=5,...,p.

Conditional on X = x, the response Y was generated according to P(Y = k|X = %)
exp{fr(X)}, for k =1,...,4, where fi(X) = —aZ1+aZy4, fo(X) = aZ1—aZ2, f3(X) = aZa—aZ3
and f4(X) = aZ3 — aZy4 with a = 5/V/3.

In both Case 1 and Case 2, all features have the same standard deviation since sd(X;) =
1for j=1,2,--- ,pin Case 1 and sd(X;) = V3 for j=1,2,---,pin Case 2. Moreover, for
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this case, the variable X5 is marginally unimportant, but jointly significant, so it represents
a challenge to identify this as an important variable. For both Case 1 and Case 2, the Bayes

error is 0.1373.
For the multicategory classification we use the loss function proposed by Lee et al.
) Denote the coefficients for the kth class by Gor and 8;, for k = 1,2,3,4, and let B =

(200
((Bo1, BT)T, (Boz2, B3)T, (Bos, B3)T, (Boa, B1)T). Let fr(x) = fk(XaBOkaBk) Bor + xT By,

k=1,2,3,4, and

f(x) = f(x, B) = (f1(x), f2(x), f3(x), fa(x))""
The loss function is given by L(Y, f(x)) = >_, .y [1 + f;(x)],, where [¢]4 = ¢ if ¢ > 0 and
0 otherwise. Deviating slightly from our standard procedure, the marginal utility of the j*

feature is defined by
4
1
nZL Vi f(Xi5,B)) + 53 B
k=1

to avoid possible unidentifiablity issues due to the hinge loss function. Analogous modifica-
tion is applied to (5) in the iterative feature selection step. With estimated coefficients BOk
and 3, and fk(x) = Box, + xT'B, for k =1,2,3,4, the estimated classification rule is given
by argmax;, fk(x) There are some other appropriate multi-category loss functions such as
the one proposed by Liu et al. (2005).

As with the logistic regression example in Section 4.1, we use n = 400, d = | 410gnj =16
and an independent validation data set of size n to pick the final regularization parameter
for the SCAD penalty.

The results are given in Table 8. The mean estimated testing error was based on a
further testing data set of size 200n, and we also report the standard error of this mean
estimate. In the case of independent features, all (I)SIS methods have similar performance.
The benefits of using iterated versions of the ISIS methodology are again clear for Case 2,
with dependent features.

Table 8: Multicategory classification

Van-SIS  Van-ISIS Var2-SIS Var2-ISIS LASSO NSC
Case 1
Prop. incl. (I)SIS models | 1.00 1.00 0.99 1.00 N/A N/A
Prop. incl. final model 1.00 1.00 0.99 1.00 0.00 0.68
Median modal size 2.5 4 10 5 19 4
0-1 test error 0.3060 0.3010 0.2968 0.2924 0.3296  0.4524
Test error standard error | 0.0067 0.0063 0.0067 0.0061 0.0078  0.0214
Case 2
Prop. incl. (I)SIS models | 0.10 1.00 0.03 1.00 N/A N/A
Prop. incl. final models 0.10 1.00 0.03 1.00 0.33 0.30
Median modal size 4 11 5 9 54 9
0-1 test error 0.4362 0.3037 0.4801 0.2983 0.4296  0.6242
Test error standard error | 0.0073 0.0065 0.0083 0.0063 0.0043  0.0084
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5. Real data examples

In this section, we apply our proposed methods to two real data sets. The first one has a
binary response while the second is multi-category. We treat both as classification prob-
lems and use the hinge loss discussed in Section 4.5. We compare our methods with two
alternatives: the LASSO and NSC.

5.1 Neuroblastoma data

We first consider the neuroblastoma data used in Oberthuer et al. (2006). The study
consists of 251 patients of the German Neuroblastoma Trials NB90-NB2004, diagnosed
between 1989 and 2004. At diagnosis, patients’ ages range from 0 to 296 months with a
median age of 15 months. They analyzed 251 neuroblastoma specimens using a customized
oligonucleotide microarray with the goal of developing a gene expression-based classification
rule for neuroblastoma patients to reliably predict courses of the disease. This also provides
a comprehensive view on which set of genes is responsible for neuroblastoma.

The complete data set, obtained via the MicroArray Quality Control phase-II (MAQC-
IT) project, includes gene expression over 10,707 probe sites. Of particular interest is to
predict the response labeled “3-year event-free survival” (3-year EFS) which is a binary
variable indicating whether each patient survived 3 years after the diagnosis of neuroblas-
toma. Excluding five outlier arrays, there are 246 subjects out of which 239 subjects have
3-year EFS information available with 49 positives and 190 negatives. We apply SIS and
ISIS to reduce dimensionality from p = 10,707 to d = 50. On the other hand, our com-
petitive methods LASSO and NSC are applied directly to p = 10,707 genes. Whenever
appropriate, five-fold cross validation is used to select tuning parameters. We randomly se-
lect 125 subjects (25 positives and 100 negatives) to be the training set and the remainder
are used as the testing set. Results are reported in the top half of Table 9. Selected probes
for LASSO and all different (I)SIS methods are reported in Table 10.

In MAQC-II, a specially designed end point is the gender of each subject, which should
be an easy classification. The goal of this specially designed end point is to compare the
performance of different classifiers for simple classification jobs. The gender information is
available for all the non-outlier 246 arrays with 145 males and 101 females. We randomly
select 70 males and 50 females to be in the training set and use the others as the testing
set. We set d = 50 for our SIS and ISIS as in the case of the 3-year EFS end point. The
results are given in the bottom half of Table 9. Selected probes for all different methods
are reported in Table 11.

Table 9: Results from analyzing two endpoints of the neuroblastoma data

End point SIS ISIS  var2-SIS wvar2-ISIS LASSO NSC

3-year EFS No. of features 5 23 10 12 Y 9413
Testing error | 19/114  22/114  22/114  21/114  22/114  24/114

Gender No. of features 6 2 4 2 42 3
Testing error 4/126  4/126 4/126 4/126 5/126  4/126

We can see from Table 9 that our (I)SIS methods compare favorably with the LASSO
and NSC. Especially for the end point 3-year EFS, our methods use fewer features while
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giving smaller testing error. For the end point GENDER, Table 11 indicates that the most
parsimonious model given by ISIS and Var2-ISIS is a sub model of others.

5.2 SRBCT data

In this section, we apply our method to the children cancer data set reported in Khan et al.
(2001). Khan et al. (2001) used artificial neural networks to develop a method of classifying
the small, round blue cell tumors (SRBCTSs) of childhood to one of the four categories:
neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL), and the
Ewing family of tumors (EWS) using cDNA gene expression profiles. Accurate diagnosis
of SRBCTs to these four distinct diagnostic categories is important in that the treatment
options and responses to therapy are different from one category to another.

After filtering, 2308 gene profiles out of 6567 genes are given in the SRBCT data set. It
is available online at http://research.nhgri.nih.gov/microarray/Supplement/. It includes a
training set of size 63 (12 NBs, 20 RMSs, 8 NHLs, and 23 EWS) and an independent test
set of size 20 (6 NBs, 5 RMSs, 3 NHLs, and 6 EWS).

Before performing classification, we standardize the data sets by applying a simple
linear transformation to both the training set and the test set. The linear transformation
is based on the training data so that, after standardizing, the training data have mean
zero and standard deviation one. Our (I)SIS reduces dimensionality from p = 2308 to
d = |63/log63] = 15 first while alternative methods LASSO and NSC are applied to
p = 2308 gene directly. Whenever appropriate, a four-fold cross validation is used to select
tuning parameters.

ISIS, var2-ISIS, LASSO and NSC all achieve zero test error on the 20 samples in the
test set. NSC uses 343 genes and LASSO requires 71 genes. However ISIS and var2-ISIS
use 15 and 14 genes, respectively.

This real data application delivers the same message that our new ISIS and var2-ISIS
methods can achieve competitive classification performance using fewer features.
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Table 10: Selected probes for the 3-year EFS end point

Probe SIS ISIS var2-SIS var2-I1SIS LASSO

‘A_23_P160638’ X
‘A_23_P168916’ X X
‘A_23_P42882’ X

‘A_23_P145669’ X
‘A_32_P50522’

‘A_23_P34800°

‘A_23_P86774’ x

‘A_23_.P417918’ x
‘A_23_P100711’

‘A_23_P145569’

‘A_23_P337201’

‘A_23_P56630’ x x
‘A_23_P208030°
‘A_23_.P211738’ x

‘A_23_P153692’

‘A_24_P148811’ x
‘A_23_P126844’ x
‘A_23_P25194°

‘A_24_P399174°

‘A_24_P183664’

‘A_23_P59051’ x
‘A_24_P14464°

‘A_23_P501831’ X x
‘A_23_P103631’ X
‘A_23_P32558’ x
‘A_23_P25873’ X

‘A_23_P95553’

‘A_24_P227230° X

‘A_23_P5131’

‘A_23_.P218841’

‘A_23_P58036’

‘A_23_P89910’ X

‘A_24_P98783’

‘A_23_P121987’ X

‘A_32_P365452’

‘A_23_P109682’ X

‘Hs58251.2° x
‘A_23_P121102’ X

‘A_23_P3242’

‘A_32_P177667’

‘Hs6806.2°

‘Hs376840.2’

‘A_24_P136691’

‘Pro25G_B35.D_7’ x x
‘A_23_P87401° X
‘A_32_P302472’

‘Hs343026.1° X
‘A_23_P216225’ X X
‘A_23_P203419’
‘A_24_P22163’ X

‘A_24_P187706’

‘C1.QC’

‘Hs190380.1’ x

‘Hs117120.1° x
‘A_32_P133518’

‘EQCP1_Pro25G._T5’

‘A_24_P111061° x
‘A_23_P20823’ X X X x
‘A24_P211151° X
‘Hs265827.17 X
‘Pro25G_B12_.D_7’ x
‘Hs156406.1° X
‘A_24_P902509’ x
‘A_32_P32653’

‘Hs42896.1° x

‘A_32_P143793’ X X
‘A_23_P391382’

‘A_23_P327134°

‘Pro25G_EQCP1._T5’

‘A_24_P351451’ x
‘Hs170298.1’

‘A_23_P159390’

‘Hs272191.1° x

‘r60-a135’

‘Hs439489.1’

‘A_23_P107295’

‘A_23_P100764’ x x x x
‘A_23_P157027’ X

‘A_24_P342055’

‘A_23_.P1387’ x

‘Hs6911.17 x
‘r60-1’
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Table 11: Selected probe for Gender end point

Probe SIS ISIS  var2-SIS  var2-ISIS LASSO NSC
‘A_23_P201035’ X
‘A_24_P167642’ X
‘A_24_P55295’ X
‘A_24_P82200’ b'¢

‘A_23_P109614’ X

‘A_24_P102053’
‘A_23_P170551°
‘A_23_P329835’ X
‘A_23_P70571’

‘A_23_P259901’

‘A_24_P222000°

‘A_23_P160729’

‘A_23_P95553’ X x
‘A_23_P100315’

‘A_23_P10172’

‘A_23_P137361°

‘A_23_P202484’

‘A_24_P56240°

‘A_32_P104448’

‘(-)3xSLvl’

‘A_24_P648880’

‘Hs446389.2°

‘A_23_P259314’ X X X X
‘Hs386420.1°

‘Pro25G_B32_D_7’

‘Hs116364.2°

‘A_32_P375286’ b'e

‘A_32_P152400’

‘A_32_P105073’

‘Hs147756.1° b'¢

‘Hs110039.1°

‘r60-a107’

‘Hs439208.1°

‘A_32_P506090’

‘A_24_P706312’ X

‘Hs58042.1°

‘A_23_P128706’

‘Hs3569.1°

‘A_24_P182900°

‘A_23_P92042’

‘Hs170499.1°

‘A_24_P500584’ X X X X
‘A_32_P843590°

‘Hs353080.1°

‘A_23_P388200’

‘C1.QC’

‘Hs452821.1°
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