
STATISTICAL MODELLING Part IIC
Practical 7: Binomial regression and Poisson regression RDS/Lent 2014

Smoking example continued

Re-download the Smoking data from the course webpage and fit a logistic regression model with covari-
ates, age, age squared and smoking status (see practical sheet 6 for more details).

> file_path <- "http://www.statslab.cam.ac.uk/~rds37/teaching/statistical_modelling/"

> (Smoking <- read.csv(paste0(file_path, "Smoking.csv")))

> attach(Smoking)

> total <- Survived + Died

> propDied <- Died / total

> SmokingLogReg2 <- glm(propDied ~ Age.group + I(Age.group^2) + Smoker, family = binomial,

+ weights = total)

We now plot our estimate of the probability of dying as a function of age in black for non-smokers and in
red for smokers. To do this, we use the predict function. When applied to a glm object, predict calls
the predict.glm function. So type ?predict.glm to get more details. In order to plot the expected
proportion survived across a range of different ages, we form an artificial dataset of covariates and feed
this as the newdata argument to predict. We form this dataset as follows

> newdata <- data.frame("Age.group" = rep(21:80, times=2),

+ "Smoker" = gl(2, 60, labels = levels(Smoker)))

> newdata[1:3,]

View the help entries on rep and gl to understand what they do. It may help to experiment by supplying
them with some arguments to see what they output.
To create the y values for our plot, we use type = ‘‘response’’ in predict. This will give our estimates
of the mean of the response for the different values of the covariates we have created.

> PredProp <- predict(SmokingLogReg2, newdata, type = "response")

The first half of the components of PredProp will correspond to smoking status equals No.

> plot(propDied[Smoker == "Yes"] ~ Age.group[Smoker == "Yes"],

+ xlab = "Age group", ylab = "Proportion died", col = "red")

> points(propDied[Smoker == "No"] ~ Age.group[Smoker == "No"], pch = 4)

> lines(21:80, PredProp[1:60], xlab = "Age", ylab = "Prob of dying", type = "l")

> lines(21:80, PredProp[61:120], col = "red")

To add pointwise confidence bands to our plot we do the following.

> PredLin <- predict(SmokingLogReg2, newdata, se.fit = TRUE, type = "link")

> str(PredLin)

This gives the fitted values of the linear predictor xT β̂ along with estimates for its standard deviation;
these estimates will take the form √

xT i−1(β̂)x.

To transform the linear predictors to the scale of the mean response, we must apply the inverse of the
link function. Here this will be

η 7→ exp(η)

1 + exp(η)
,

the inverse of the logit function. We code this as a function in R:

> invlogit <- function(x) exp(x) / (1 + exp(x))

Noting that asymptotically, the linear predictor is normally distributed, and that P(Z ≤ 1.96) ≈ 0.975
when Z ∼ N(0, 1), we plot our 95% pointwise confidence bands as follows:

1

> lines(21:80, invlogit(PredLin$fit[1:60] + 1.96 * PredLin$se.fit[1:60]), lty = 2)

> lines(21:80, invlogit(PredLin$fit[1:60] - 1.96 * PredLin$se.fit[1:60]), lty = 2)

> lines(21:80, invlogit(PredLin$fit[61:120] + 1.96 * PredLin$se.fit[61:120]),

+ lty = 2, col = "red")

> lines(21:80, invlogit(PredLin$fit[61:120] - 1.96 * PredLin$se.fit[61:120]),

+ lty = 2, col = "red")

Poisson regression

Download the English Premiership data from 2014 with

> detach(Smoking)

> football2014 <- read.csv(paste0(file_path, "football2014.csv"))

> football2014[1:3,]

GoalsScored By Against HomeAway

1 2 Arsenal Crystal Palace Home

2 2 Leicester Everton Home

3 1 Man United Swansea Home

The first row says that Arsenal scored 2 goals against Crystal Palace when Arsenal was playing at home.
There are 20 teams in the Premier League and each team plays every other team twice, once at home
and once away. Thus 380 matches are played in total. Our dataset here has 524 rows as the goals scored
by the home and away teams are recorded separately, and the season has not yet finished.

> football2014[263:265,]

GoalsScored By Against HomeAway

263 1 Crystal Palace Arsenal Away

264 2 Everton Leicester Away

265 2 Swansea Man United Away

Row 263 gives data from the same match as that for the first row. The observation says that Crystal
Palace scored 1 goal against Arsenal when Crystal Palace was playing away. If you wish, you can treat
favourite team as the baseline by doing

> football2014$By <- relevel(football2014$By, "Man United")

> football2014$Against <- relevel(football2014$Against, "Man United")

for example. Here this forces Manchester United to be the first level in each of the factors so it is used as
the reference level in the default corner point constraints used by R. Write down the model being fitted
by the following command. Note that R uses the canonical log link by default

> attach(football2014)

> LogLinMod <- glm(GoalsScored ~ HomeAway + By + Against, family = poisson)

> summary(LogLinMod)

Try to interpret the results of the output. What is the size of the home advantage and is it statistically
significant? (Note we should view any inferential statements with some reservation as there are several
issues here including the fact that the scores will not be independent)

2

The function barplot can be useful to visualise the results of the fit e.g.

> attack_strength <- exp(sort(coef(LogLinMod)[3:21], decreasing = TRUE))

> barplot(rev(attack_strength), las=2, horiz=TRUE, cex.names=0.75)

The options las=2 and cex.names=0.75 rotate the labels so they are perpendicular to the axes and
reduce their font size respectively.
The following analyses are optional, though I hope interesting. We will attempt to find for each team,
the probability that at the end of the season they are in position j = 1, . . . , 20, based on our fitted model.
Download the remaining fixtures from the course webpage using

> detach(football2014)

> fixtures_remaining <- read.csv(paste0(file_path, "fixtures_remaining.csv"))

According to our model, the number of goals scored by each team in each match are independent Poisson
random variables. Our estimates of the means of these Poisson random variables can be obtained using
the predict function:

> Pred <- predict(LogLinMod, newdata=fixtures_remaining, type="response")

> cbind(fixtures_remaining, Pred)

Using these means, we can simulate the scores of the remaining matches in the premiership. In each
match, a team is awarded 3 points if it wins, 1 if it draws and 0 if it loses. The final positions of the
teams at the end of the season are based on the total number of points accrued. Issue the following
code that creates a matrix of 1000 simulated versions of the points gained by each of the teams in the
remaining matches (you may wish to copy and paste).

number of simulations

B <- 1000

n_rem_fix <- length(Pred)/2

create an empty matrix to store the simulation results

sim_points <- matrix(nrow=2*n_rem_fix, ncol=B)

for (b in 1:B) {

The simulated difference in the score between the Home and Away teams

sim_score_diff <- rpois(n=n_rem_fix, lambda=Pred[1:n_rem_fix]) -

rpois(n=n_rem_fix, lambda=Pred[(n_rem_fix+1):(2*n_rem_fix)])

Calculate the points scored

points_scored <- 2*sign(sim_score_diff)

points_scored <- c(pmax(points_scored+1, 0), pmax(1-points_scored, 0))

sim_points[, b] <- points_scored

}

The aggregate function groups data by factor levels and then applies a given function to summarise
each group. Here we use it to sum the points attained by each team in the matches it plays.

> sim_table <- aggregate(sim_points, by=list(fixtures_remaining$By), FUN=sum)

> sim_table[, 1:10]

> rownames(sim_table) <- sim_table[, 1]

> sim_table <- sim_table[, -1]

Now download the current standings of the teams with

> (table_cur <- read.csv(paste0(file_path, "table_cur.csv")))

and add these to the simulated points table

> sim_table <- sim_table + table_cur[, 2]

3

Recall that the apply function (starred section of Practical 4) applies a given function to each row or
each column of a matrix so e.g. apply(A, 1, mean) computes the row means of a matrix A. The rank

function returns the rank of each element of a vector. Here we use it where ties are broken at random.

> set.seed(1)

> rank(c(4, 6, 1, 2, 2, 7.9), ties.method="random")

[1] 4 5 1 3 2 6

Using rank on each column of -sim table will now rank the teams in order of decreasing points.

> sim_ranks <- apply(-sim_table, 2, function(x) rank(x, ties.method="random"))

The tabulate function takes an integer-valued vector as its first argument, and counts the number of
times each integer from 1 up to its second argument occurs in it.

> final_standings <- apply(sim_ranks, 1, function(x) tabulate(x, 20)) / B

final standings now contains our estimated probability of each team being in each position at the end
of the season. The matrix is perhaps easiest to view in its transposed form: t(final standings). A
heatmap can be produced by

> heatmap(t(final_standings), Rowv = NA, Colv=NA)

4

