
Modern Statistical Methods
Rajen D. Shah r.shah@statslab.cam.ac.uk

Course webpage:
http://www.statslab.cam.ac.uk/~rds37/modern_stat_methods.html

In this course we will study a selection of important modern statistical methods. This
selection is heavily biased towards my own interests, but I hope it will nevertheless give you
a flavour of some of the most important recent methodological developments in statistics.

Over the last 25 years, the sorts of datasets that statisticians have been challenged to
study have changed greatly. Where in the past, we were used to datasets with many obser-
vations with a few carefully chosen variables, we are now seeing datasets where the number
of variables can run into the thousands and greatly exceed the number of observations. For
example, with microarray data, we typically have gene expression values measured for sev-
eral thousands of genes, but only for a few hundred tissue samples. The classical statistical
methods are often simply not applicable in these “high-dimensional” situations.

The course is divided into 4 chapters (of unequal size). Our first chapter will start by
introducing ridge regression, a simple generalisation of ordinary least squares. Our study
of this will lead us to some beautiful connections with functional analysis and ultimately
one of the most successful and flexible classes of learning algorithms: kernel machines.

The second chapter concerns the Lasso and its extensions. The Lasso has been at the
centre of much of the developments that have occurred in high-dimensional statistics, and
will allow us to perform regression in the seemingly hopeless situation when the number
of parameters we are trying to estimate is larger than the number of observations.

Where the previous chapters consider methods for relating a particular response variable
to a potentially large collection of (explanatory) variables, in the third chapter, we will
study how to infer relationships between the variables themselves. We will see that a fruitful
way of formalising the idea of variables being related is via conditional independence, and
we investigate ways of inferring conditional depedendencies in high-dimensional data.

Statistics is not only about developing methods that can predict well in the presence
of noise, but also about assessing the uncertainty in our predictions and estimates. In
the final chapter we will tackle the problem of how to handle performing thousands of
hypothesis tests at the same time and more generally the task of quantifying uncertainty
in high-dimensional settings.

Before we begin the main content of the course, we will briefly review two key classical
statistical methods: ordinary least squares and maximum likelihood estimation. This will
help to set the scene and provide a warm-up for the modern methods to come later.
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Classical statistics

Ordinary least squares

Imagine data are available in the form of observations (Yi, xi) ∈ R× Rp, i = 1, . . . , n, and
the aim is to infer a simple regression function relating the average value of a response, Yi,
and a collection of predictors or variables, xi. This is an example of regression analysis,
one of the most important tasks in statistics.

A linear model for the data assumes that it is generated according to

Y = Xβ0 + ε, (1)

where Y ∈ Rn is the vector of responses; X ∈ Rn×p is the predictor matrix (or design
matrix) with ith row xTi ; ε ∈ Rn represents random error; and β0 ∈ Rp is the unknown
vector of coefficients.

Provided p� n, a sensible way to estimate β is by ordinary least squares (OLS). This
yields an estimator β̂OLS with

β̂OLS := arg min
β∈Rp

‖Y −Xβ‖2
2 = (XTX)−1XTY, (2)

provided X has full column rank.
Under the assumptions that (i) E(εi) = 0 and (ii) Var(ε) = σ2I, we have that:

� Eβ0,σ2(β̂OLS) = E{(XTX)−1XT (Xβ0 + ε)} = β0.

� Varβ0,σ2(β̂OLS) = (XTX)−1XTVar(ε)X(XTX)−1 = σ2(XTX)−1.

The Gauss–Markov theorem states that OLS is the best linear unbiased estimator in
our setting: for any other estimator β̃ that is linear in Y (so β̃ = AY for some fixed matrix
A), we have

Varβ0,σ2(β̃)− Varβ0,σ2(β̂OLS)

is positive semi-definite.

Maximum likelihood estimation

The method of least squares is just one way to construct as estimator. A more general
technique is that of maximum likelihood estimation. Here given data y ∈ Rn that we take
as a realisation of a random variable Y , we specify its density f(y; θ) up to some unknown
vector of parameters θ ∈ Θ ⊆ Rd, where Θ is the parameter space. The likelihood function
is a function of θ for each fixed y given by

L(θ) := L(θ; y) = c(y)f(y; θ),

where c(y) is an arbitrary constant of proportionality. The maximum likelihood estimate
of θ maximises the likelihood, or equivalently it maximises the log-likelihood

`(θ) := `(θ; y) = log f(y; θ) + log(c(y)).
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A very useful quantity in the context of maximum likelihood estimation is the Fisher
information matrix with jkth (1 ≤ j, k ≤ d) entry

ijk(θ) := −Eθ
{

∂2

∂θj∂θk
`(θ)

}
.

It can be thought of as a measure of how hard it is to estimate θ when it is the true
parameter value. The Cramér–Rao lower bound states that if θ̃ is an unbiased estimator
of θ, then under regularity conditions,

Varθ(θ̃)− i−1(θ)

is positive semi-definite.
A remarkable fact about maximum likelihood estimators (MLEs) is that (under quite

general conditions) they are asymptotically normally distributed, asymptotically unbiased
and asymptotically achieve the Cramér–Rao lower bound.

Assume that the Fisher information matrix when there are n observations, i(n)(θ) (where
we have made the dependence on n explicit) satisfies i(n)(θ)/n → I(θ) for some positive
definite matrix I. Then denoting the maximum likelihood estimator of θ when there are
n observations by θ̂(n), under regularity conditions, as the number of observations n→∞
we have √

n(θ̂(n) − θ) d→ Nd(0, I
−1(θ)).

Returning to our linear model, if we assume in addition that εi ∼ N(0, σ2), then the
log-likelihood for (β, σ2) is

`(β, σ2) = −n
2

log(σ2)− 1

2σ2

n∑
i=1

(yi − xTi β)2.

We see that the maximum likelihood estimate of β and OLS coincide. It is easy to check
that

i(β, σ2) =

(
σ−2XTX 0

0 nσ−4/2

)
.

The general theory for MLEs would suggest that approximately
√
n(β̂−β) ∼ Np(0, nσ

2(XTX)−1);
in fact it is straight-forward to show that this distributional result is exact.
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Chapter 1

Kernel machines

Let us revisit the linear model with

Yi = xTi β
0 + εi.

For unbiased estimators of β0, their variance gives a way of comparing their quality in
terms of squared error loss. For a potentially biased estimator, β̃, the relevant quantity is
the mean-squared error (MSE),

Eβ0,σ2{(β̃ − β0)(β̃ − β0)T} = E[{β̃ − E(β̃) + E(β̃)− β0}{β̃ − E(β̃) + E(β̃)− β0}T ]

= Var(β̃) + {E(β̃ − β0)}{E(β̃ − β0)}T ,

a sum of squared bias and variance terms. A crucial part of the optimality arguments
for OLS and MLEs was unbiasedness. Do there exist biased methods whose variance is is
reduced compared to OLS such that their overall prediction error is lower? Yes—in fact the
use of biased estimators is essential in dealing with settings where the number of parameters
to be estimated is large compared to the number of observations. In the first two chapters
we will explore two important methods for variance reduction based on different forms of
penalisation: rather than forming estimators via optimising a least squares or log-likelihood
term, we will introduce an additional penalty term that encourages estimates to be shrunk
towards 0 in some sense. This will allow us to produce reliable estimators that work well
when classical MLEs are infeasible, and in other situations can greatly outperform the
classical approaches.

1.1 Ridge regression

One way to reduce the variance of β̂OLS is to shrink the estimated coefficients towards 0.
Ridge regression [Hoerl and Kennard, 1970] does this by solving the following optimisation
problem

(µ̂R
λ , β̂

R
λ ) = arg min

(µ,β)∈R×Rp
{‖Y − µ1−Xβ‖2

2 + λ‖β‖2
2}.
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Here 1 is an n-vector of 1’s. We see that the usual OLS objective is penalised by an
additional term proportional to ‖β‖2

2. The parameter λ ≥ 0, which controls the severity of
the penalty and therefore the degree of the shrinkage towards 0, is known as a regularisation
parameter or tuning parameter. We have explicitly included an intercept term which is not
penalised. The reason for this is that were the variables to have their origins shifted so
e.g. a variable representing temperature is given in units of Kelvin rather than Celsius, the
fitted values would not change. However, Xβ̂ is not invariant under scale transformations
of the variables so it is standard practice to centre each column of X (hence making them
orthogonal to the intercept term) and then scale them to have `2-norm

√
n.

It is straightforward to show that after this standardisation of X, µ̂R
λ = Ȳ :=

∑n
i=1 Yi/n,

so we may assume that
∑n

i=1 Yi = 0 by replacing Yi by Yi − Ȳ and then we can remove µ
from our objective function. In this case

β̂R
λ = (XTX + λI)−1XTY.

In this form, we can see how the addition of the λI term helps to stabilise the estimator.
Note that when X does not have full column rank (such as in high-dimensional situations),
we can still compute this estimator. On the other hand, when X does have full column
rank, we have the following theorem.

Theorem 1. For λ sufficiently small (depending on β0 and σ2),

E(β̂OLS − β0)(β̂OLS − β0)T − E(β̂R
λ − β0)(β̂R

λ − β0)T

is positive definite.

Proof. First we compute the bias of β̂R
λ . We drop the subscript λ and superscript R for

convenience.

E(β̂)− β0 = (XTX + λI)−1XTXβ0 − β0

= (XTX + λI)−1(XTX + λI − λI)β0 − β0

= −λ(XTX + λI)−1β0.

Now we look at the variance of β̂.

Var(β̂) = E{(XTX + λI)−1XT ε}{(XTX + λI)−1XT ε}T

= σ2(XTX + λI)−1XTX(XTX + λI)−1.

Thus E(β̂OLS − β0)(β̂OLS − β0)T − E(β̂ − β0)(β̂ − β0)T is equal to

σ2(XTX)−1 − σ2(XTX + λI)−1XTX(XTX + λI)−1 − λ2(XTX + λI)−1β0β0T (XTX + λI)−1.

After some simplification, we see that this is equal to

λ(XTX + λI)−1[σ2{2I + λ(XTX)−1} − λβ0β0T ](XTX + λI)−1.
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Thus E(β̂OLS − β0)(β̂OLS − β0)T − E(β̂ − β0)(β̂ − β0)T is positive definite for λ > 0 if and
only if

σ2{2I + λ(XTX)−1} − λβ0β0T

is positive definite, which is true for λ > 0 sufficiently small (we can take 0 < λ <
2σ2/‖β0‖2

2).

The theorem says that β̂R
λ outperforms β̂OLS provided λ is chosen appropriately. To

be able to use ridge regression effectively, we need a way of selecting a good λ—we will
come to this very shortly. What the theorem doesn’t really tell us is in what situations
we expect ridge regression to perform well. To understand that, we will turn to one of the
key matrix decompositions used in statistics, the singular value decomposition (SVD).

1.1.1 Connection to principal components analysis

The singular value decomposition (SVD) is a generalisation of an eigendecomposition of a
square matrix. We can factorise any X ∈ Rn×p into its SVD

X = UDV T .

Here the U ∈ Rn×n and V ∈ Rp×p are orthogonal matrices and D ∈ Rn×p has D11 ≥ D22 ≥
· · · ≥ Dmm ≥ 0 where m := min(n, p) and all other entries of D are zero. To compute
such a decomposition requires O(npmin(n, p)) operations. The rth columns of U and V
are known as the rth left and right singular vectors of X respectively, and Drr is the rth
singular value.

When n > p, we can replace U by its first p columns and D by its first p rows to produce
another version of the SVD (sometimes known as the thin SVD). Then X = UDV T where
U ∈ Rn×p has orthonormal columns (but is no longer square) and D is square and diagonal.
There is an equivalent version for when p > n.

Let us take X ∈ Rn×p as our matrix of predictors and suppose n ≥ p. Using the (thin)
SVD we may write the fitted values from ridge regression as follows.

Xβ̂R
λ = X(XTX + λI)−1XTY

= UDV T (V D2V T + λI)−1V DUTY

= UD(D2 + λI)−1DUTY

=

p∑
j=1

Uj
D2
jj

D2
jj + λ

UT
j Y.

Here we have used the notation (that we shall use throughout the course) that Uj is the
jth column of U . For comparison, the fitted values from OLS (when X has full column
rank) are

Xβ̂OLS = X(XTX)−1XTY = UUTY.
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Both OLS and ridge regression compute the coordinates of Y with respect to the columns
of U . Ridge regression then shrinks these coordinates by the factors D2

jj/(D
2
jj + λ); if Djj

is small, the amount of shrinkage will be larger.
To interpret this further, note that the SVD is intimately connected with Principal

Components Analysis (PCA). Consider v ∈ Rp with ‖v‖2 = 1. Since the columns of X
have had their means subtracted, the sample variance of Xv ∈ Rn, is

1

n
vTXTXv =

1

n
vTV D2V Tv.

Writing a = V Tv, so ‖a‖2 = 1, we have

1

n
vTV D2V Tv =

1

n
aTD2a =

1

n

∑
j

a2
jD

2
jj ≤

1

n
D2

11

∑
j

a2
j =

1

n
D2

11.

As ‖XV1‖2
2/n = D2

11/n, V1 determines the linear combination of the columns of X which
has the largest sample variance, when the coefficients of the linear combination are con-
strained to have `2-norm 1. XV1 = D11U1 is known as the first principal component of
X. Subsequent principal components D22U2, . . . , DppUp have maximum variance D2

jj/n,
subject to being orthogonal to all earlier ones—see example sheet 1 for details.

Returning to ridge regression, we see that it shrinks Y most in the smaller principal
components of X. Thus it will work well when most of the signal is in the large principal
components of X. We now turn to the problem of choosing λ.

1.2 v-fold cross-validation

Cross-validation is a general technique for selecting a good regression method from among
several competing regression methods {f̂λ}λ∈Λ. Here the f̂λ take in as arguments training
data (X, Y ) and vector of predictors x ∈ Rp, and output prediction f̂λ(x;X, Y ) ∈ R.

So far, we have considered the matrix of predictors X as fixed and non-random. How-
ever, in many cases, it makes sense to think of it as random. Let us assume that our data
are i.i.d. pairs (xi, Yi), i = 1, . . . , n. Then ideally, we might want to pick a λ value such
that

E{(Y ∗ − f̂λ(x∗;X, Y ))2|X, Y } (1.1)

is minimised. Here (x∗, Y ∗) ∈ Rp×R is independent of (X, Y ) and has the same distribution
as (x1, Y1). This λ is such that conditional on the original training data (X, Y ), it minimises
the expected prediction error on a new observation drawn from the same distribution as
the training data.

A less ambitious goal is to find a λ value to minimise the expected prediction error,

E[E{(Y ∗ − f̂λ(x∗;X, Y ))2|X, Y }] (1.2)

where compared with (1.1), we have taken a further expectation over the training set.
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We still have no way of computing (1.2) directly, but we can attempt to estimate it.
The idea of v-fold cross-validation is to split the data into v groups or folds of roughly
equal size: (X(1), Y (1)), . . . , (X(v), Y (v)). Let (X(−k), Y (−k)) be all the data except that in
the kth fold. For each λ on a grid of values, we compute f̂λ(·;X(−k), Y (−k)): the fitted
regression function based on all the data except the kth fold. Writing κ(i) for the fold to
which (xi, Yi) belongs, we choose the value of λ that minimises

CV(λ) =
1

n

n∑
i=1

{Yi − f̂λ(xi;X(−κ(i)), Y (−κ(i)))}2. (1.3)

Writing λCV for the minimiser, our final regression function is given by f̂λCV
(·;X, Y ).

Note that for each i,

E{Yi − f̂λ(xi;X(−κ(i)), Y (−κ(i)))}2 = E[E{Yi − f̂λ(xi;X(−κ(i)), Y (−κ(i)))}2|X(−κ(i)), Y (−κ(i))].
(1.4)

This is precisely the expected prediction error in (1.2) but with the training data X, Y
replaced with a training data set of smaller size. If all the folds have the same size, then
CV(λ) is an average of n identically distributed quantities, each with expected value as in
(1.4). However, the quantities being averaged are not independent as they share the same
data.

Thus cross-validation gives a biased estimate of the expected prediction error. The
amount of the bias depends on the size of the folds, the case when the v = n giving the
least bias—this is known as leave-one-out cross-validation. The quality of the estimate,
though, may be worse as the quantities being averaged in (1.3) will tend to be more
positively correlated. Common choices of v are 5 or 10.

Cross-validation aims to allow us to choose the single best λ (or more generally regres-
sion procedure); we could instead aim to find the best weighted combination of regression
procedures. Suppose Λ = {λ1, . . . , λL}. We can then minimise

1

n

n∑
i=1

{
Yi −

L∑
l=1

wlf̂λl(xi;X
(−κ(i)), Y (−κ(i)))

}2

over w ∈ RL subject to wl ≥ 0 for all l, to give ŵ. This is a non-negative least-squares
optimisation, for which efficient algorithms are available. We may then take the final re-
gression function to be

∑L
l=1 ŵlf̂λl(·;X, Y ). This is sometimes known as stacking [Wolpert,

1992, Breiman, 1996] and it can often outperform cross-validation.

1.3 The kernel trick

The fitted values from ridge regression are

X(XTX + λI)−1XTY. (1.5)
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An alternative way of writing this is suggested by the following

XT (XXT + λI) = (XTX + λI)XT

(XTX + λI)−1XT = XT (XXT + λI)−1

X(XTX + λI)−1XTY = XXT (XXT + λI)−1Y. (1.6)

Two remarks are in order:

� Note while XTX is p × p, XXT is n × n. Computing fitted values using (1.5)
would require roughly O(np2 + p3) operations. If p � n this could be extremely
costly. However, our alternative formulation would only require roughly O(n2p+n3)
operations, which could be substantially smaller.

� We see that the fitted values of ridge regression depend only on inner products
K = XXT between observations (note Kij = xTi xj).

Now suppose that we believe the signal depends quadratically on the predictors:

Yi = xTi β +
∑
k,l

xikxilθkl + εi.

We can still use ridge regression provided we work with an enlarged set of predictors

xi1, . . . , xip, xi1xi1, . . . , xi1xip, xi2xi1, . . . , xi2xip, . . . , xipxip. (1.7)

This will give us O(p2) predictors. Our new approach to computing fitted values would
therefore have complexity O(n2p2 + n3), which could be rather costly if p is large.

However, rather than first creating all the additional predictors and then computing
the new K matrix, we can attempt to directly compute K. To this end consider

(1/2 + xTi xj)
2 − 1/4 =

(
1

2
+
∑
k

xikxjk

)2

− 1

4

=
∑
k

xikxjk +
∑
k,l

xikxilxjkxjl.

Observe this amounts to an inner product between vectors of the form (1.7) Thus if we set

Kij = (1/2 + xTi xj)
2 − 1/4 (1.8)

and plug this into the formula for the fitted values, it is exactly as if we had performed
ridge regression on an enlarged set of variables given by (1.7). Now computing K using
(1.8) would require only O(p) operations per entry, so O(n2p) operations in total. It thus
seems we have improved things by a factor of p using our new approach. This is a nice
computational trick, but more importantly for us it serves to illustrate some general points.
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� Since ridge regression only depends on inner products between observations, rather
than fitting non-linear models by first mapping the original data xi ∈ Rp to φ(xi) ∈ Rd

(say) using some feature map φ (which could, for example introduce quadratic effects),
we can instead try to directly compute k(xi, xj) = 〈φ(xi), φ(xj)〉.

� In fact rather than thinking in terms of feature maps, we can instead try to think
about an appropriate measure of similarity k(xi, xj) between observations. Modelling
in this fashion is sometimes much easier.

We will now formalise and extend what we have learnt with this example.

1.4 Kernels

We have seen how a model with quadratic effects can be fitted very efficiently by replacing
the inner product matrix (known as the Gram matrix ) XXT in (1.6) with the matrix in
(1.8). It is then natural to ask what other non-linear models can be fitted efficiently using
this sort of approach.

We will not answer this question directly, but instead we will try to understand the sorts
of similarity measures k that can be represented as inner products between transformations
of the original data.

That is, we will study the similarity measures k : X × X → R from the input space X
to R for which there exists a feature map φ : X → H where H is some (real) inner product
space with

k(x, x′) = 〈φ(x), φ(x′)〉. (1.9)

Recall that an inner product space is a real vector space H endowed with a map 〈·, ·〉 :
H×H → R that obeys the following properties.

(i) Symmetry: 〈u, v〉 = 〈v, u〉.

(ii) Linearity: for a, b ∈ R 〈au+ bw, v〉 = a〈u, v〉+ b〈w, v〉.

(iii) Positive-definiteness: 〈u, u〉 ≥ 0 with equality if and only if u = 0.

Definition 1. A positive definite kernel or more simply a kernel (for brevity) k is a
symmetric map k : X ×X → R for which for all n ∈ N and all x1, . . . , xn ∈ X , the matrix
K with entries

Kij = k(xi, xj)

is positive semi-definite.

A kernel is a little like an inner product, but need not be bilinear in general. However,
a form of the Cauchy–Schwarz inequality does hold for kernels.

Proposition 2.
k(x, x′)2 ≤ k(x, x)k(x′, x′).

7



Proof. The matrix (
k(x, x) k(x, x′)
k(x′, x) k(x′, x′)

)
must be positive semi-definite so in particular its determinant must be non-negative.

First we show that any inner product of feature maps will give rise to a kernel.

Proposition 3. k defined by k(x, x′) = 〈φ(x), φ(x′)〉 is a kernel.

Proof. Let x1, . . . , xn ∈ X , α1, . . . , αn ∈ R and consider∑
i,j

αik(xi, xj)αj =
∑
i,j

αi〈φ(xi), φ(xj)〉αj

=

〈∑
i

αiφ(xi),
∑
j

αjφ(xj)

〉
≥ 0.

Showing that every kernel admits a representation of the form (1.9) is more involved,
and we delay this until after we have studied some examples.

1.4.1 Examples of kernels

Proposition 4. Suppose k1, k2, . . . are kernels.

(i) If α1, α2 ≥ 0 then α1k1 + α2k2 is a kernel. If limm→∞ km(x, x′) =: k(x, x′) exists for
all x, x′ ∈ X , then k is a kernel.

(ii) The pointwise product k = k1k2 is a kernel.

Linear kernel. k(x, x′) = xTx′.

Polynomial kernel. k(x, x′) = (1 +xTx′)d. To show this is a kernel, we can simply note
that 1 + xTx′ gives a kernel owing to the fact that 1 is a kernel and (i) of Proposition 4.
Next (ii) and induction shows that k as defined above is a kernel.

Gaussian kernel. The highly popular Gaussian kernel is defined by

k(x, x′) = exp

(
− ‖x− x

′‖2
2

2σ2

)
.

For x close to x′ it is large whilst for x far from x′ the kernel quickly decays towards 0.
The additional parameter σ2 > 0, sometimes known as the bandwidth controls the speed
of the decay to zero. Note it is less clear how one might find a corresponding feature map
and indeed any feature map that represents this must be infinite dimensional.
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To show that it is a kernel first decompose ‖x−x′‖2
2 = ‖x‖2

2 + ‖x′‖2
2− 2xTx′. Note that

by Proposition 3,

k1(x, x′) = exp

(
− ‖x‖

2
2

2σ2

)
exp

(
− ‖x

′‖2
2

2σ2

)
is a kernel. Next writing

k2(x, x′) = exp(xTx′/σ2) =
∞∑
r=0

(xTx′/σ2)r

r!

and using (i) of Proposition 4 shows that k2 is a kernel. Finally observing that k = k1k2

and using (ii) shows that the Gaussian kernel is indeed a kernel.

Sobolev kernel. Take X to be [0, 1] and let k(x, x′) = min(x, x′). Note this is the
covariance function of Brownian motion so it must be positive definite.

Jaccard similarity kernel. Take X to be the set of all subsets of {1, . . . , p}. For
x, x′ ∈ X with x ∪ x′ 6= ∅ define

k(x, x′) =
|x ∩ x′|
|x ∪ x′|

and if x ∪ x′ = ∅ then set k(x, x′) = 1. Showing that this is a kernel is left to the example
sheet.

1.4.2 Reproducing kernel Hilbert spaces

Theorem 5. For every kernel k there exists a feature map φ taking values in some inner
product space H such that

k(x, x′) = 〈φ(x), φ(x′)〉. (1.10)

Proof. We will take H to be the vector space of functions of the form

f(·) =
n∑
i=1

αik(·, xi), (1.11)

where n ∈ N, xi ∈ X and αi ∈ R. Our feature map φ : X → H will be

φ(x) = k(·, x). (1.12)

We now define an inner product on H. If f is given by (1.11) and

g(·) =
m∑
j=1

βjk(·, x′j) (1.13)

9



we define their inner product to be

〈f, g〉 =
n∑
i=1

m∑
j=1

αiβjk(xi, x
′
j). (1.14)

We need to check this is well-defined as the representations of f and g in (1.11) and
(1.13) need not be unique. To this end, note that

n∑
i=1

m∑
j=1

αiβjk(xi, x
′
j) =

n∑
i=1

αig(xi) =
m∑
j=1

βjf(x′j). (1.15)

The first equality shows that the inner product does not depend on the particular expansion
of g whilst the second equality shows that it also does not depend on the expansion of f .
Thus the inner product is well-defined.

First we check that with φ defined as in (1.12) we do have relationship (1.10). Observe
that

〈k(·, x), f〉 =
n∑
i=1

αik(xi, x) = f(x), (1.16)

so in particular we have

〈φ(x), φ(x′)〉 = 〈k(·, x), k(·, x′)〉 = k(x, x′).

It remains to show that it is indeed an inner product. It is clearly symmetric and (1.15)
shows linearity. We now need to show positive definiteness.

First note that
〈f, f〉 =

∑
i,j

αik(xi, xj)αj ≥ 0 (1.17)

by positive definiteness of the kernel. Now from (1.16),

f(x)2 = (〈k(·, x), f〉)2.

If we could use the Cauchy–Schwarz inequality on the right-hand side, we would have

f(x)2 ≤ 〈k(·, x), k(·, x)〉〈f, f〉, (1.18)

which would show that if 〈f, f〉 = 0 then necessarily f = 0; the final property we need
to show that 〈·, ·〉 is an inner product. However, in order to use the traditional Cauchy–
Schwarz inequality we need to first know we’re dealing with an inner product, which is
precisely what we’re trying to show!

Although we haven’t shown that 〈·, ·〉 is an inner product, we do have enough infor-
mation to show that it is itself a kernel. We may then appeal to Proposition 2 to obtain
(1.18). With this in mind, we argue as follows. Given functions f1, . . . , fm and coefficients
γ1, . . . , γm ∈ R, we have∑

i,j

γi〈fi, fj〉γj =

〈∑
i

γifi,
∑
j

γjfj

〉
≥ 0

where we have used linearity and (1.17), showing that it is a kernel.
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To further discuss the space H we recall some facts from analysis. Any inner product
space B is also a normed space: for f ∈ B we may define ‖f‖2

B := 〈f, f〉B. Recall that a
Cauchy sequence (fm)∞m=1 in B has ‖fm − fn‖B → 0 as n,m→∞. A normed space where
every Cauchy sequence has a limit (in the space) is called complete, and a complete inner
product space is called a Hilbert space.

Hilbert spaces may be thought of as the (potentially) infinite-dimensional analogues of
finite-dimensional Euclidean spaces. For later use we note that if V is a closed subspace
of a Hilbert space B, then any f ∈ B has a decomposition f = u+ v with u ∈ V and

v ∈ V ⊥ := {v ∈ B : 〈v, z〉B = 0 for all z ∈ V }.

By adding the limits of Cauchy sequences to H (from Theorem 5) we can make H a
Hilbert space. Indeed, note that if (fm)∞m=1 ∈ H is Cauchy, then since by (1.18) we have

|fm(x)− fn(x)| ≤
√
k(x, x)‖fm − fn‖H,

we may define function f ∗ : X → R by f ∗(x) = limm→∞ fm(x). We can check that all such
f ∗ can be added to H to create a Hilbert space.

In fact, the completion of H is a special type of Hilbert space known as a reproducing
kernel Hilbert space (RKHS). Since it is the completion of H that will me of most use to
us in what follows, with a slight abuse of notation, we will refer to this space as H.

Definition 2. A Hilbert space H of functions f : X → R is a reproducing kernel Hilbert
space (RKHS) if for all x ∈ X , there exists kx ∈ H such that

f(x) = 〈kx, f〉 for all f ∈ B.

The function

k : X × X → R
(x, x′) 7→ 〈kx, kx′〉 = kx′(x)

is known as the reproducing kernel of H.

By Proposition 3 the reproducing kernel of any RKHS is a (positive definite) kernel,
and Theorem 5 shows that to any kernel k is associated an RKHS that has reproducing
kernel k; exercise 14 in Example Sheet 1 shows that this RKHS is unique.

Examples

Linear kernel. Here H = {f : f(x) = βTx, β ∈ Rp} and if f(x) = βTx then ‖f‖2
H =

‖β‖2
2.
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Sobolev kernel. It can be shown that H is roughly the space of continuous functions
f : [0, 1] → R with f(0) = 0 that are differentiable almost everywhere, and for which∫ 1

0
f ′(x)2dx < ∞. It contains the class of Lipschitz functions (functions f : [0, 1] → R for

which there exists some L with |f(x)− f(y)| ≤ L|x− y| for all x, y ∈ [0, 1]) that are 0 at
the origin. It may be shown that the norm is(∫ 1

0

f ′(x)2dx

)1/2

.

Though the construction of the RKHS from a kernel is explicit, it can be challenging to
understand precisely the space and the form of the norm.

1.4.3 The representer theorem

To recap, what we have shown so far is that replacing the matrix XXT in the definition of
an algorithm byK derived form a positive definite kernel is essentially equivalent to running
the same algorithm on some mapping of the original data, though with the modification
that instances of xTi xj become 〈φ(xi), φ(xj)〉.

But what exactly is the optimisation problem we are solving when performing kernel
ridge regression? Clearly it is determined by the kernel or equivalently by the RKHS. Note
we know that an alternative way of writing the usual ridge regression optimisation is

arg min
f∈H

{ n∑
i=1

{Yi − f(xi)}2 + λ‖f‖2
H

}
(1.19)

where H is the RKHS corresponding to the linear kernel. The following theorem shows in
particular that kernel ridge regression (i.e. ridge regression replacing XXT with K) with
kernel k is equivalent to the above with H now being the RKHS corresponding to k.

Theorem 6 (Representer theorem, [Kimeldorf and Wahba, 1970, Schölkopf et al., 2001]).
Let c : Rn ×X n ×Rn → R be an arbitrary loss function, and let J : [0,∞)→ R be strictly
increasing. Let x1, . . . , xn ∈ X , Y ∈ Rn. Finally, let f ∈ H where H is an RKHS with
reproducing kernel k, and let Kij = k(xi, xj) i, j = 1, . . . , n. Then f̂ minimises

Q1(f) := c(Y, x1, . . . , xn, f(x1), . . . , f(xn)) + J(‖f‖2
H)

over f ∈ H iff. f̂(·) =
∑n

i=1 α̂ik(·, xi) and α̂ ∈ Rn minimises Q2 over α ∈ Rn where

Q2(α) = c(Y, x1, . . . , xn, Kα) + J(αTKα).

Proof. Suppose f̂ minimises Q1. Note that V := span{k(·, x1), . . . , k(·, xn)} is a closed
subspace of H. Thus we may write f̂ = u+ v where u ∈ V and v ∈ V ⊥. Then

f̂(xi) = 〈k(·, xi), u+ v〉 = 〈k(·, xi), u〉 = u(xi).
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Meanwhile, by Pythagoras’ theorem we have J(‖f̂‖2
H) = J(‖u‖2

H + ‖v‖2
H) ≥ J(‖u‖2

H) with

equality iff. v = 0. Thus by optimality of f̂ , v = 0, so f̂(·) =
∑n

i=1 αik(·, xi) for α ∈ Rn.

Now observe that if f̂ takes this form, then ‖f̂‖2
H = αTKα, so Q1(f̂) = Q2(α). Then by

optimality of f̂ , we have that α must minimise Q2.
Now suppose α̂ minimises Q2 and f̂(·) =

∑n
i=1 α̂ik(·, xi). Note that Q1(f̂) = Q2(α̂).

If f̃ ∈ H has Q1(f̃) ≤ Q1(f̂), by the argument above, writing f̃ = u + v with u ∈ V ,
v ∈ V ⊥, we know that Q1(u) ≤ Q1(f̃). But by optimality of α̂ we have Q1(f̂) ≤ Q1(u), so
Q1(f̂) = Q1(f̃).

Consider the result specialised the ridge regression objective. We see that (1.19) is
essentially equivalent to minimising

‖Y −Kα‖2
2 + λαTKα,

and you may check (see example sheet 1) that the minimiser α̂ satisfies Kα̂ = K(K +
λI)−1Y . Thus (1.19) is indeed an alternative way of expressing kernel ridge regression.

Viewing the result in the opposite direction gives a more “sensational” perspective. If
you had set out trying to minimise Q1, it might appear completely hopeless as H could be
infinite-dimensional. However, somewhat remarkably we see that this reduces to finding
the coefficients α̂i which solve the simple(r) optimisation problem Q2.

The result also tells us how to form predictions: given a new observation x, our predic-
tion for f(x) is

f̂(x) =
n∑
i=1

α̂ik(x, xi).

1.5 Kernel ridge regression

We have seen how the kernel trick allows us to solve a potentially infinite-dimensional
version of ridge regression. This may seem impressive, but ultimately we should judge
kernel ridge regression on its statistical properties e.g. predictive performance. Consider a
setting where

Yi = f 0(xi) + εi, E(ε) = 0, Var(ε) = σ2I.

We shall assume that f 0 ∈ H where H is an RKHS with reproducing kernel k. By scaling
σ2, we may assume ‖f 0‖H ≤ 1. Let K be the kernel matrix Kij = k(xi, xj) with eigenvalues
d1 ≥ d2 ≥ · · · ≥ dn ≥ 0. We will see that the predictive performance depends delicately
on these eigenvalues.

Let f̂λ be the estimated regression function from kernel ridge regression with kernel k:

f̂λ = arg min
f∈H

{ n∑
i=1

{Yi − f(xi)}2 + λ‖f‖2
H

}
.
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Theorem 7. The mean squared prediction error (MSPE) may be bounded above in the
following way:

1

n
E
{ n∑

i=1

{f 0(xi)− f̂λ(xi)}2

}
≤ σ2

n

n∑
i=1

d2
i

(di + λ)2
+

λ

4n
(1.20)

≤ σ2

n

1

λ

n∑
i=1

min(di/4, λ) +
λ

4n
.

Proof. We know from the representer theorem that(
f̂λ(x1), . . . , f̂λ(xn)

)T
= K(K + λI)−1Y.

You will show on the example sheet that(
f 0(x1), . . . , f 0(xn)

)T
= Kα,

for some α ∈ Rn, and moreover that ‖f 0‖2
H ≥ αTKα. Let the eigendecomposition of K be

given by K = UDUT with Dii = di and define θ = UTKα. We see that n times the LHS
of (1.20) is

E‖K(K + λI)−1(Uθ + ε)− Uθ‖2
2 = E‖DUT (UDUT + λI)−1(Uθ + ε)− θ‖2

2

= E‖D(D + λI)−1(θ + UT ε)− θ‖2
2

= ‖{D(D + λI)−1 − I}θ‖2
2 + E‖D(D + λI)−1UT ε‖2

2.

To compute the second term, we use the ‘trace trick’:

E‖D(D + λI)−1UT ε‖2
2 = E[{D(D + λI)−1UT ε}TD(D + λI)−1UT ε]

= E[tr{D(D + λI)−1UT εεTUD(D + λI)−1}]
= σ2tr{D(D + λI)−1D(D + λI)−1}

= σ2

n∑
i=1

d2
i

(di + λ)2
.

For the first term, we have

‖{D(D + λI)−1 − I}θ‖2
2 =

n∑
i=1

λ2θ2
i

(di + λ)2
.

Now as θ = DUTα, note that θi = 0 when di = 0. Let D+ be the diagonal matrix with ith
diagonal entry equal to D−1

ii if Dii > 0 and 0 otherwise. Then∑
i:di>0

θ2
i

di
= ‖
√
D+θ‖2

2 = αTKUD+UTKα = αTUDD+DUTα = αTKα ≤ 1.
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By Hölder’s inequality we have

n∑
i=1

λ2θ2
i

(di + λ)2
=
∑
i:di>0

θ2
i

di

diλ
2

(di + λ)2
≤ max

i=1,...,n

diλ
2

(di + λ)2
≤ λ/4,

using the inequality (a+ b)2 ≥ 4ab in the final line. Finally note that

d2
i

(di + λ)2
≤ min{1, d2

i /(4diλ)} = min(λ, di/4)/λ.

To interpret this result further, it will be helpful to express it in terms of µ̂i := di/n
(the eigenvalues of K/n) and γ := λ/n. We have

1

n
E
{ n∑

i=1

{f 0(xi)− f̂nγ(xi)}2

}
≤ σ2

γn

1

n

n∑
i=1

min(µ̂i/4, γ) + γ/4 =: δn(γ). (1.21)

Here we have treated the xi as fixed, but we could equally well think of them as
random. Consider a setup where the xi are i.i.d. and independent of ε. If we take a further
expectation on the RHS of (1.21), our result still holds true (the µ̂i are random in this
setting). Ideally we would like to then replace Emin(µ̂i/4, γ) with a quantity more directly
related to the kernel k.

Mercer’s theorem is helpful in this regard. This guarantees (under some mild conditions)
an eigendecomposition for kernels, which are somewhat like infinite-dimensional analogues
of symmetric positive semi-definite matrices. Under certain technical conditions, we may
write

k(x, x′) =
∞∑
j=1

µjej(x)ej(x
′) (1.22)

where writing p(x) for the density of each xi, the eigenfunctions ej and corresponding
eigenvalues µj ≥ 0 satisfy

∑∞
j=1 µj <∞ and obey the integral equation

µjej(x
′) =

∫
X
k(x, x′)ej(x)p(x)dx.

The ej form an orthonormal basis of H in the sense that∫
X
ek(x)ej(x)p(x)dx = 1{k=j}.

One can show that for all γ > 0,

E
(

1

n

n∑
i=1

min(µ̂i/4, γ)

)
≤ 1

n

∞∑
j=1

min(µj/4, γ).
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Theorem 8. Provided the eigendecomposition (1.22) holds, there exists γn such that for
fixed σ2 > 0,

1

n
E
{ n∑

i=1

{f 0(xi)− f̂γn(xi)}2

}
= o(n−1/2).

Proof. Let φ : [0,∞)→ [0,∞) be given by

φ(γ) :=
∞∑
j=1

min(µj, γ).

Observe that φ is increasing and as
∑∞

j=1 µj <∞, limγ↓0 φ(γ) = 0 (indeed, note that given
an arbitrary ε > 0, there exists M such that

∑∞
j=M µj ≤ ε, but then φ(γ) ≤ Mγ + ε → ε

as γ ↓ 0). Let γn = n−1/2
√
φ(n−1/2) so γn = o(n−1/2). Thus for n sufficiently large

φ(γn) ≤ φ(n−1/2), whence for such n we have

inf
γ>0
{φ(γ)/(nγ) + γ} ≤ φ(γn)

nγn
+ γn

≤ 2
√
φ(n−1/2)/

√
n = o(n−1/2).

Sobolev kernel. When k is the Sobolev kernel and p(x) is the uniform density on [0, 1],
one can show that the eigenvalues satisfy

µj/4 =
1

π2(2j − 1)2
.

Thus
∞∑
i=1

min(µi/4, γn) ≤ γn
2

(
1√
π2γn

+ 1

)
+

1

π2

∫ ∞
{(π2γn)−1/2+1}/2

1

(2x− 1)2
dx

=
√
γn/π + γn/2 = O(

√
γn)

as γn → 0. Putting things together, we see that

Eδn(γn) = O

(
σ2

nγ
1/2
n

+ γn

)
.

Thus an optimal γn ∼ (σ2/n)2/3 gives an error rate of order (σ2/n)2/3.

1.6 Other kernel machines

Thus far we have we have only considered applying the kernel trick to ridge regression,
which as we have seen has attractive theoretical properties as a regression method. However
the kernel trick and the representer theorem are much more generally applicable. In settings
where the Yi are not continuous but are in {−1, 1} (e.g. labels for spam and ham, fraud
and not fraud etc.), popular approaches include kernel logistic regression and the support
vector machine (SVM) [Cortes and Vapnik, 1995].
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1.6.1 The support vector machine

Consider first the simple case where the data in the two classes {xi}i:Yi=1 and {xi}i:Yi=−1

are separable by a hyperplane through the origin, so there exists β ∈ Rp with ‖β‖2 = 1
such that Yiβ

Txi > 0 for all i. Note β would then be a unit normal vector to a plane that
separates the two classes.

There may be an infinite number of planes that separate the classes, in which case
it seems sensible to use the plane that maximises the margin between the two classes.
Consider therefore the following optimisation problem,

max
β∈Rp,M>0

M

subject to Yix
T
i β/‖β‖2 ≥M, i = 1, . . . , n, (1.23)

or equivalently,
min

β∈Rp,M>0
1/M2 subject to (1.23).

Note that by normalising β above we need not impose the constraint that ‖β‖2 = 1.
Suppose now that the classes are not separable. One way to handle this is to replace

the constraint Yix
T
i β/‖β‖2 ≥ M with a penalty for how far over the margin boundary

xi is. We would like the penalty to be zero if xi is on the correct side of the boundary
(i.e. when Yix

T
i β/‖β‖2 ≥ M), and should be equal to the distance over the boundary,

M − Yix
T
i β/‖β‖2 otherwise. It will in fact be more convenient to penalise according to

1− YixTi β/(‖β‖2M) in the latter case, which is the distance measured in units of M . This
penalty is invariant to β undergoing any positive scaling, so we may set ‖β‖2 = 1/M , thus
eliminating M from the objective function. Adding the penalty we then arrive at

arg min
β∈Rp

‖β‖2
2 + λ

n∑
i=1

(1− YixTi β)+,
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where (·)+ denotes the positive part. Replacing λ with 1/λ we can write the objective in
the more familiar-looking form

arg min
β∈Rp

n∑
i=1

(1− YixTi β)+ + λ‖β‖2
2.

Thus far we have restricted ourselves to hyperplanes through the origin but we would more
generally want to consider any translate of these i.e. any hyperplane. This can be achieved
by allowing ourselves to translate the xi by an arbitrary vector b, giving

arg min
β∈Rp,b∈Rp

n∑
i=1

(1− Yi(xi − b)Tβ)+ + λ‖β‖2
2,

or equivalently

(µ̂, β̂) = arg min
(µ,β)∈R×Rp

n∑
i=1

{1− Yi(xTi β + µ)}+ + λ‖β‖2
2. (1.24)

This final objective defines the support vector classifier ; given a new observation x predic-
tions are obtained via sgn(µ̂+ xT β̂).

Note that the objective in (1.24) may be re-written as

(µ̂, f̂) = arg min
(µ,f)∈R×H

n∑
i=1

[1− Yi{f(xi) + µ}]+ + λ‖f‖2
H, (1.25)

where H is the RKHS corresponding to the linear kernel. The representer theorem (more
specifically the variant in question 10 of example sheet 1) shows that (1.25) for an arbitrary
RKHS with kernel k and kernel matrix K is equivalent to the support vector machine

(µ̂, α̂) = arg min
(µ,α)∈R×Rn

n∑
i=1

[1− Yi{KT
i α + µ}]+ + λαTKα.

Predictions at a new x are given by

sgn

(
µ̂+

n∑
i=1

α̂ik(x, xi)

)
.

1.6.2 Logistic regression

Recall that standard logistic regression may be motivated by assuming

log

(
P(Yi = 1)

P(Yi = −1)

)
= xTi β

0
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and picking β̂ to maximise the log-likelihood. This leads to (see example sheet) the fol-
lowing optimisation problem:

arg min
β∈Rp

n∑
i=1

log{1 + exp(−YixTi β)}.

The ‘kernelised’ version is given by

arg min
f∈H

{ n∑
i=1

log[1 + exp{−Yif(xi)}] + λ‖f‖2
H

}
,

where H is an RKHS. As in the case of the SVM, the representer theorem gives a finite-
dimensional optimisation that is equivalent to the above.

1.7 Large-scale kernel machines

We introduced the kernel trick as a computational device that avoided performing cal-
culations in a high or infinite dimensional feature space and, in the case of kernel ridge
regression reduced computation down to forming the n × n matrix K and then inverting
K + λI. This can be a huge saving, but when n is very large, this can present serious
computational difficulties. Even if p is small, the O(n3) cost of inverting K+λI may cause
problems. What’s worse, the fitted regression function is a sum over n terms:

f̂(·) =
n∑
i=1

α̂ik(xi, ·).

Even to evaluate a prediction at a single new observation requires O(n) computations
unless α̂ is sparse.

In recent years, there has been great interest in speeding up computations for kernel
machines. We will discuss one exciting approach based on random feature expansions.
Given a kernel k, the key idea is to develop a random map

φ̂ : X → Rb

with b small such that E{φ̂(x)T φ̂(x′)} = k(x, x′). In a sense we are trying to reverse the
kernel trick by approximating the kernel using a random feature map. To increase the
quality of the approximation of the kernel, we can consider

x 7→ 1√
L

(φ̂1(x), . . . , φ̂L(x)) ∈ RLb

with each (φ̂l(x))Ll=1 being i.i.d. for each x. Let Φ be the matrix with ith row given by

(φ̂1(xi), . . . , φ̂L(xi))/
√
L. We may then run our learning algorithm replacing the initial
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matrix of predictors X with Φ. For example, when performing ridge regression, we can
compute

(ΦTΦ + λI)−1ΦTY,

which would require O(nL2b2 + L3b3) operations: a cost linear in n. Predicting a new
observation would cost O(Lb).

The work of Rahimi and Recht [2007] proposes a construction of such a random map-
ping φ̂ for shift-invariant kernels, that is kernels for which there exists a function h with
k(x, x′) = h(x − x′) for all x, x′ ∈ X = Rp. A useful property of such kernels is given by
Bochner’s theorem.

Theorem 9 (Bochner’s theorem). Let k : Rp × Rp → R be a continuous kernel. Then k
is shift-invariant if and only if there exists some c > 0 and distribution F on Rp such that
when W ∼ F

k(x, x′) = cEei(x−x′)TW = cE cos((x− x′)TW ).

To make use of this theorem, first observe the following. Let u ∼ U [−π, π], x, y ∈ R.
Then

2E cos(x+ u) cos(y + u) = 2E{(cosx cosu− sinx sinu)(cos y cosu− sin y sinu)}.

Now as u
d
= −u, E cosu sinu = E cos(−u) sin(−u) = −E cosu sinu = 0. Also of course

cos2 u+ sin2 u = 1 so E cos2 u = E sin2 u = 1/2. Thus

2E cos(x+ u) cos(y + u) = cos x cos y + sinx sin y = cos(x− y).

Given a shift-invariant kernel k with associated distribution F , suppose W ∼ F and
let u ∼ U [−π, π] independently. Define

φ̂(x) =
√

2c cos(W Tx+ u).

Then

Eφ̂(x)φ̂(x′) = 2cE[E{cos(W Tx+ u) cos(W Tx′ + u)|W}]
= cE cos((x− x′)TW ) = k(x, x′).

As a concrete example of this approach, let us take the Gaussian kernel k(x, x′) = exp{−‖x−
x′‖2

2/(2σ
2)}. Note that if W ∼ N(0, σ−2I), it has characteristic function E(eit

TW ) =
e−‖t‖

2
2/(2σ

2) so we may take φ̂(x) =
√

2 cos(W Tx+ u).
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Chapter 2

The Lasso and beyond

2.1 Model selection

Let us revisit the linear model Y = Xβ0 + ε where E(ε) = 0, Var(ε) = σ2I. In many
modern datasets, there are reasons to believe there are many more variables present than
are necessary to explain the response. Let S be the set S = {k : β0

k 6= 0} and suppose
s := |S| � p.

The MSPE of OLS is

1

n
E‖Xβ0 −Xβ̂OLS‖2

2 =
1

n
E{(β0 − β̂OLS)TXTX(β0 − β̂OLS)}

=
1

n
E[tr{(β0 − β̂OLS)(β0 − β̂OLS)TXTX}]

=
1

n
tr[E{(β0 − β̂OLS)(β0 − β̂OLS)T}XTX]

=
1

n
tr(Var(β̂OLS)XTX) =

p

n
σ2.

If we could identify S and then fit a linear model using just these variables, we’d obtain
an MSPE of σ2s/n which could be substantially smaller than σ2p/n. Furthermore, it can
be shown that parameter estimates from the reduced model are more accurate. The smaller
model would also be easier to interpret.

We now briefly review some classical model selection strategies.

Best subset regression

A natural approach to finding S is to consider all 2p possible regression procedures each
involving regressing the response on a different sets of explanatory variables XM where
M is a subset of {1, . . . , p}. We can then pick the best regression procedure using cross-
validation (say). For general design matrices, this involves an exhaustive search over all
subsets, so this is not really feasible for p > 50.
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Forward selection

This can be seen as a greedy way of performing best subsets regression. Given a target
model size m (the tuning parameter), this works as follows.

1. Start by fitting an intercept only model.

2. Add to the current model the predictor variable that reduces the residual sum of
squares the most.

3. Continue step 2 until m predictor variables have been selected.

2.2 The Lasso estimator

The Least absolute shrinkage and selection operator (Lasso) [Tibshirani, 1996] estimates
β0 by β̂L

λ , where (µ̂L, β̂L
λ ) minimise

1

2n
‖Y − µ1−Xβ‖2

2 + λ‖β‖1 (2.1)

over (µ, β) ∈ R× Rp. Here ‖β‖1 is the `1-norm of β: ‖β‖1 =
∑p

k=1 |βk|.
Like ridge regression, β̂L

λ shrinks the OLS estimate towards the origin, but there is
an important difference. The `1 penalty can force some of the estimated coefficients to be
exactly 0. In this way the Lasso can perform simultaneous variable selection and parameter
estimation. As we did with ridge regression, we can centre and scale the X matrix, and
also centre Y and thus remove µ from the objective. Define

Qλ(β) =
1

2n
‖Y −Xβ‖2

2 + λ‖β‖1. (2.2)

Now the minimiser(s) of Qλ(β) will also be the minimiser(s) of

‖Y −Xβ‖2
2 subject to ‖β‖1 ≤ ‖β̂L

λ‖1.

Similarly, with the Ridge regression objective, we know that β̂R
λ minimises ‖Y − Xβ‖2

2

subject to ‖β‖2 ≤ ‖β̂R
λ ‖2.

Now the contours of the OLS objective ‖Y − Xβ‖2
2 are ellipsoids centred at β̂OLS,

while the contours of ‖β‖2
2 are spheres centred at the origin, and the contours of ‖β‖1 are

‘diamonds’ centred at 0.
The important point to note is that the `1 ball {β ∈ Rp : ‖β‖1 ≤ ‖β̂L

λ‖1} has corners
where some of the components are zero, and it is likely that the OLS contours will intersect
the `1 ball at such a corner.
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2.2.1 Prediction error of the Lasso (slow rate)

A remarkable property of the Lasso is that even when p � n, it can still perform well in
terms of prediction error. Suppose the columns of X have been centred and scaled (as we
will always assume from now on unless stated otherwise) and assume the normal linear
model (where we have already centred Y ),

Y = Xβ0 + ε− ε̄1 (2.3)

where ε ∼ Nn(0, σ2I).

Theorem 10. Let β̂ be any Lasso solution when

λ = Aσ

√
log(p)

n
.

With probability at least 1− 2p−(A2/2−1)

1

n
‖X(β0 − β̂)‖2

2 ≤ 4Aσ

√
log(p)

n
‖β0‖1.

Proof. From the definition of β̂ we have

1

2n
‖Y −Xβ̂‖2

2 + λ‖β̂‖1 ≤
1

2n
‖Y −Xβ0‖2

2 + λ‖β0‖1.

Rearranging,
1

2n
‖X(β0 − β̂)‖2

2 ≤
1

n
εTX(β̂ − β0) + λ‖β0‖1 − λ‖β̂‖1.

Now |εTX(β̂ − β0)| ≤ ‖XT ε‖∞‖β̂ − β0‖1. Let Ω = {‖XT ε‖∞/n ≤ λ}. Lemma 14 below
shows that P(Ω) ≥ 1− 2p−(A2/2−1). Working on the event Ω, we obtain

1

2n
‖X(β0 − β̂)‖2

2 ≤ λ‖β0 − β̂‖1 + λ‖β0‖1 − λ‖β̂‖1,

1

n
‖X(β0 − β̂)‖2

2 ≤ 4λ‖β0‖1, by the triangle inequality.

2.2.2 Concentration inequalities I

The proof of Theorem 10 relies on a lower bound for the probability of the event Ω. A
union bound gives

P(‖XT ε‖∞/n > λ) = P(∪pj=1|XT
j ε|/n > λ)

≤
p∑
j=1

P(|XT
j ε|/n > λ).
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Now XT
j ε/n ∼ N(0, σ2/n), so if we obtain a bound on the tail probabilities of normal

distributions, the argument above will give a bound for P(Ω).
Motivated by the need to bound normal tail probabilities, we will briefly discuss the

topic of concentration inequalities that provide such bounds for much wider classes of
random variables. Concentration inequalities are vital for the study of many modern
algorithms and in our case here, they will reveal that the attractive properties of the Lasso
presented in Theorem 10 hold true for a variety of non-normal errors.

We begin our discussion with the simplest tail bound, Markov’s inequality, which states
that given a non-negative random variable W ,

P(W ≥ t) ≤ E(W )

t
.

This immediately implies that given a strictly increasing function ϕ : R→ [0,∞) and any
random variable W ,

P(W ≥ t) = P{ϕ(W ) ≥ ϕ(t)} ≤ E(ϕ(W ))

ϕ(t)
.

Applying this with ϕ(t) = eαt (α > 0) yields the so-called Chernoff bound :

P(W ≥ t) ≤ inf
α>0

e−αtEeαW .

Consider the case when W ∼ N(0, σ2). Recall that

EeαW = eα
2σ2/2. (2.4)

Thus

P(W ≥ t) ≤ inf
α>0

eα
2σ2/2−αt = e−t

2/(2σ2).

Note that to arrive at this bound, all we required was (an upper bound on) the moment
generating function (mgf) of W (2.4).

Sub-Gaussian variables

Definition 3. We say a random variable W is sub-Gaussian if there exists σ > 0 such
that

Eeα(W−EW ) ≤ eα
2σ2/2

for all α ∈ R. We then say that W is sub-Gaussian with parameter σ.

Proposition 11 (Sub-Gaussian tail bound). If W is sub-Gaussian with parameter σ then

P(W − EW ≥ t) ≤ e−t
2/(2σ2).
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As well as Gaussian random variables, the sub-Gaussian class includes bounded random
variables.

Lemma 12 (Hoeffding’s lemma). If W takes values in [a, b], then W is sub-Gaussian with
parameter (b− a)/2.

The following proposition shows that analogously to how a linear combination of jointly
Gaussian random variables is Gaussian, a linear combination of sub-Gaussian random
variables is also sub-Gaussian.

Proposition 13. Let (Wi)
n
i=1 be a sequence of independent sub-Gaussian random vari-

ables with parameters (σi)
n
i=1 and let γ ∈ Rn. Then γTW is sub-Gaussian with parameter(∑

i γ
2
i σ

2
i

)1/2

.

Proof. Wlog, we may assume EWi = 0 for all i. We have

E exp
(
α

n∑
i=1

γiWi

)
=

n∏
i=1

E exp(αγiWi)

≤
n∏
i=1

exp(α2γ2
i σ

2
i /2)

= exp
(
α2

n∑
i=1

γ2
i σ

2
i /2
)
.

We can now prove a more general version of the probability bound required for Theo-
rem 10.

Lemma 14. Suppose (εi)
n
i=1 are independent, mean-zero and sub-Gaussian with common

parameter σ. Note that this includes ε ∼ Nn(0, σ2I). Let λ = Aσ
√

log(p)/n. Then

P(‖XT ε‖∞/n ≤ λ) ≥ 1− 2p−(A2/2−1).

Proof.

P(‖XT ε‖∞/n > λ) ≤
p∑
j=1

P(|XT
j ε|/n > λ).

But ±XT
j ε/n are both sub-Gaussian with parameter (σ2‖Xj‖2

2/n
2)1/2 = σ/

√
n. Thus the

RHS is at most
2p exp(−A2 log(p)/2) = 2p1−A2/2.

2.2.3 Some facts from optimisation theory and convex analysis

In order to study the Lasso in detail, it will be helpful to review some basic facts from
optimisation and convex analysis.
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Convexity

A set C ⊆ Rd is convex if

x, y ∈ C ⇒ (1− t)x+ ty ∈ C for all t ∈ (0, 1).

Given C ⊆ Rd, We say a function f : C → R is convex if C is convex and

f
(
(1− t)x+ ty

)
≤ (1− t)f(x) + tf(y)

for all x, y ∈ C and t ∈ (0, 1). It is strictly convex if the inequality is strict for all x, y ∈ C
with x 6= y. In the following, C ⊆ Rd is a convex set.

Proposition 15. (i) Let f1, . . . , fm : C → R be convex functions. Then if c1, . . . , cm ≥
0, c1f1 + · · ·+ cmfm : C → R is a convex function.

(ii) If f : C → R, and A : Rm → Rd is an affine function (so A(x) = Mx + b for
M ∈ Rd×m and b ∈ Rd) then g : D → R, where D = {x ∈ Rm : A(x) ∈ C} given by
g(x) = f(A(x)) is convex.

(iii) If f : C → R is convex with C open and f is twice continuously differentiable on C,
then

(a) f is convex iff. its Hessian H(x) is positive semi-definite for all x ∈ C,

(b) f is strictly convex if H(x) is positive definite for all x ∈ C.

The Lagrangian method

Consider an optimisation problem of the form

minimise f(x), subject to g(x) = 0, x ∈ C ⊆ Rd, (2.5)

where g : C → Rb. Suppose the optimal value is c∗ ∈ R. The Lagrangian for this problem
is defined as

L(x, θ) = f(x) + θTg(x)

where θ ∈ Rb. Note that

inf
x∈C

L(x, θ) ≤ inf
x∈C:g(x)=0

L(x, θ) = c∗

for all θ. The Lagrangian method involves finding a θ = θ∗ such that the minimising x = x∗

on the LHS satisfies g(x∗) = 0. This x∗ must then be a minimiser in the original problem
(2.5).
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Subgradients

Definition 4. Given convex C ⊆ Rd, a vector v ∈ Rd is a subgradient of a convex function
f : C → R at x if

f(y) ≥ f(x) + vT (y − x) for all y ∈ C.
The set of subgradients of f at x is called the subdifferential of f at x and denoted ∂f(x).

In order to make use of subgradients, we will require the following two facts:

Proposition 16. Let f : C → R be convex, and suppose f is differentiable at x ∈ int(C).
Then ∂f(x) = {∇f(x)}.

Proposition 17. Let f, g : C → R be convex with int(C) 6= ∅ and let α > 0. Then

∂(αf)(x) = α∂f(x) = {αv : v ∈ ∂f(x)},
∂(f + g)(x) = ∂f(x) + ∂g(x) = {v + w : v ∈ ∂f(x), w ∈ ∂g(x)}. (2.6)

The following easy (but key) result is often referred to in the statistical literature as the
Karush–Kuhn–Tucker (KKT) conditions, though it is actually a much simplified version
of them.

Proposition 18. Given convex f : C → R, x∗ ∈ arg min
x∈C

f(x) if and only if 0 ∈ ∂f(x∗).

Proof.

f(y) ≥ f(x∗) for all y ∈ C ⇔ f(y) ≥ f(x∗) + 0T (y − x) for all y ∈ C
⇔ 0 ∈ ∂f(x∗).

Let us now compute the subdifferential of the `1-norm. First note that ‖ · ‖1 : Rd → R
is convex. Indeed it is a norm so the triangle inequality gives ‖tx + (1 − t)y‖1 ≤ t‖x‖1 +
(1− t)‖y‖1. We introduce some notation that will be helpful here and throughout the rest
of the course.

For x ∈ Rd and A = {k1, . . . , km} ⊆ {1, . . . , d} with k1 < · · · < km, by xA we will mean
(xk1 , . . . , xkm)T . Similarly if X has d columns we will write XA for the matrix

XA = (Xk1 · · ·Xkm).

Further in this context, by Ac, we will mean {1, . . . , d}\A. Additionally, when in subscripts
we will use the shorthand −j = {j}c and −jk = {j, k}c. Note these column and component
extraction operations will always be considered to have taken place first before any further
operations on the matrix, so for example XT

A = (XA)T . Finally, define

sgn(x1) =


−1 if x1 < 0

0 if x1 = 0

1 if x1 > 0,

and
sgn(x) = (sgn(x1), . . . , sgn(xd))

T .
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Proposition 19. For x ∈ Rd let A = {j : xj 6= 0}. Then

∂‖x‖1 = {v ∈ Rd : ‖v‖∞ ≤ 1 and vA = sgn(xA)}

Proof. With a view to applying (2.6) For j = 1, . . . , d, let

gj : Rd → R
x 7→ |xj|.

Then ‖ · ‖ =
∑

j gj(·) so by Proposition 17, ∂‖x‖1 =
∑

j ∂gj(x). When x has xj 6= 0, gj
is differentiable at x so by Proposition 16 ∂gj(x) = {sgn(xj)ej} where ej is the jth unit
vector. When xj = 0, if v ∈ ∂gj(x) we must have

gj(y) ≥ gj(x) + vT (y − x) for all y ∈ Rd,

so
|yj| ≥ vT (y − x) for all y ∈ Rd. (2.7)

we claim that the above holds iff. vj ∈ [−1, 1] and v−j = 0. For the ‘if’ direction, note
that vT (y − x) = vjyj ≤ |yj|. Conversely, set y−j = x−j + v−j and yj = 0 in (2.7) to get
0 ≥ ‖v−j‖2

2, so v−j = 0. Then take y with y−j = x−j and yj = sgn(vj) to get 1 ≥ |vj|.
Forming the set sum of the subdifferentials as in (2.6) then gives the result.

2.2.4 Lasso solutions

Equipped with these tools from convex analysis, we can now fully characterise the solutions
to the Lasso. We have that β̂L

λ is a Lasso solution if and only if 0 ∈ ∂Qλ(β̂
L
λ ), which is

equivalent to
1

n
XT (Y −Xβ̂L

λ ) = λν̂,

for ν̂ with ‖ν̂‖∞ ≤ 1 and writing Ŝλ = {k : β̂L
λ,k 6= 0}, ν̂Ŝλ = sgn(β̂L

λ,Ŝλ
).

Lasso solutions need not be unique (e.g. if X has duplicate columns), though for most
reasonable design matrices, Lasso solutions will be unique. We will often tacitly assume
Lasso solutions are unique in the statement of our theoretical results. It is however straight-
forward to show that the Lasso fitted values are unique.

Proposition 20. Fix λ ≥ 0 and suppose β(1) and β(2) are two Lasso solutions. Then
Xβ(1) = Xβ(2).

Proof. Suppose β(1) and β(2) both give an optimal objective value of c∗. Now by strict
convexity of ‖ · ‖2

2,

‖Y −Xβ(1)/2−Xβ(2)/2‖2
2 ≤ ‖Y −Xβ(1)‖2

2/2 + ‖Y −Xβ(2)‖2
2/2,
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with equality if and only if Xβ(1) = Xβ(2). Since ‖ · ‖1 is also convex, we see that

c∗ ≤ Qλ(β
(1)/2 + β(2)/2)

= ‖Y −Xβ(1)/2−Xβ(2)/2‖2
2/(2n) + λ‖β(1)/2 + β(2)/2‖1

≤ ‖Y −Xβ(1)‖2
2/(4n) + ‖Y −Xβ(2)‖2

2/(4n) + λ‖β(1)/2 + β(2)/2‖1

≤ {‖Y −Xβ(1)‖2
2/(4n) + λ‖β(1)‖1/2}+ {‖Y −Xβ(2)‖2

2/(4n) + λ‖β(2)‖1/2}
= Q(β(1))/2 +Q(β(2))/2 = c∗.

Equality must prevail throughout this chain of inequalities, so Xβ(1) = Xβ(2).

Define the equicorrelation set Êλ to be the set of k such that

1

n
|XT

k (Y −Xβ̂L
λ )| = λ.

Note that Êλ is well-defined since it only depends on the fitted values, which (as we have
just shown) are unique. By the KKT conditions, the equicorrelation set contains the set
of non-zeroes of all Lasso solutions. Note that if rank(XÊλ

) = |Êλ| then the Lasso solution

must be unique: indeed if β(1) and β(2) are two Lasso solutions, then as

XÊλ
(β

(1)

Êλ
− β(2)

Êλ
) = 0

by linear independence of the columns of XÊλ
, β

(1)

Êλ
= β

(2)

Êλ
.

2.2.5 Variable selection

Consider now the “noiseless” version of the high-dimensional linear model (2.3), Y = Xβ0.
The case with noise can be dealt with by similar arguments to those we will use below
when we work on an event that ‖XT ε‖∞/n is small (see example sheet).

Let S = {k : β0
k 6= 0}, N = {1, . . . , p} \ S and assume wlog that S = {1, . . . , s}, and

also that rank(XS) = s.

Theorem 21. Let λ > 0 and define ∆ = XT
NXS(XT

SXS)−1sgn(β0
S). If ‖∆‖∞ ≤ 1 and for

k ∈ S,
|β0
k| > λ|sgn(β0

S)T [{ 1
n
XT
SXS}−1]k|, (2.8)

then there exists a Lasso solution β̂L
λ with sgn(β̂L

λ ) = sgn(β0). As a partial converse, if

there exists a Lasso solution β̂L
λ with sgn(β̂L

λ ) = sgn(β0), then ‖∆‖∞ ≤ 1.

Remark 1. We can interpret ‖∆‖∞ as the maximum in absolute value over k ∈ N of the
dot product of sgn(β0

S) and (XT
SXS)−1XT

SXk, the coefficient vector obtained by regressing
Xk on XS. The condition ‖∆‖∞ ≤ 1 is known as the irrepresentable condition.
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Proof. Fix λ > 0 and write β̂ = β̂L
λ and Ŝ = {k : β̂k 6= 0} for convenience. The KKT

conditions for the Lasso give
1

n
XTX(β0 − β̂) = λν̂

where ‖ν̂‖∞ ≤ 1 and ν̂Ŝ = sgn(β̂Ŝ). We can expand this into

1

n

(
XT
SXS XT

SXN

XT
NXS XT

NXN

)(
β0
S − β̂S
−β̂N

)
= λ

(
ν̂S
ν̂N

)
. (2.9)

We prove the converse first. If sgn(β̂) = sgn(β0) then ν̂S = sgn(β0
S) and β̂N = 0. The

top block of (2.9) gives
β0
S − β̂S = λ( 1

n
XT
SXS)−1sgn(β0

S).

Substituting this into the bottom block, we get

λ 1
n
XT
NXS( 1

n
XT
SXS)−1sgn(β0

S) = λν̂N .

Thus as ‖ν̂N‖∞ ≤ 1, we have ‖∆‖∞ ≤ 1.
For the positive statement, we need to find a β̂ and ν̂ such that sgn(β̂S) = sgn(β0

S) and

β̂N = 0, for which the KKT conditions hold. We claim that taking

(β̂S, β̂N) = (β0
S − λ( 1

n
XT
SXS)−1sgn(β0

S), 0)

(ν̂S, ν̂N) = (sgn(β0
S), ∆)

satisfies (2.9). We only need to check that sgn(β0
S) = sgn(β̂S), but this follows from

(2.8).

2.2.6 Prediction and estimation

Consider once more the model Y = Xβ0+ε−ε̄1 where the components of ε are independent
mean-zero sub-Gaussian random variables with common parameter σ. Let S, s and N be
defined as in the previous section. As we have noted before, in an artificial situation where
S is known, we could apply OLS on XS and have an MSPE of σ2s/n. Under a so-called
compatibility condition on the design matrix, we can obtain a similar MSPE for the Lasso.

Definition 5. Given a matrix of predictors X ∈ Rn×p and support set S 6= ∅, define the
compatibility factor

φ2 = inf
δ∈Rp:δS 6=0, ‖δN‖1≤3‖δS‖1

1
n
‖Xδ‖2

2
1
s
‖δS‖2

1

,

where s = |S| and we take φ ≥ 0. The compatibility condition is that φ2 > 0.

Note that if XTX/n has minimum eigenvalue cmin > 0 (so necessarily p ≤ n), then
φ2 > cmin. Indeed by the Cauchy–Schwarz inequality,

‖δS‖1 = sgn(δS)T δS ≤
√
s‖δS‖2 ≤

√
s‖δ‖2.
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Thus

φ2 ≥ inf
δ 6=0

1
n
‖Xδ‖2

2

‖δ‖2
2

= cmin.

Although in the high-dimensional setting we would have cmin = 0, the fact that the infimum
in the definition of φ2 is over a restricted set of δ can still allow φ2 to be positive even in
this case, as we discuss after the presentation of the theorem.

Theorem 22. Suppose the compatibility condition holds and let λ∗ = Aσ
√

log(p)/n for

A > 2
√

2. Then with probability at least 1− 2p−(A2/8−1), we have that for all λ ≥ λ∗,

1

n
‖X(β0 − β̂L

λ )‖2
2 + λ‖β0 − β̂L

λ‖1 ≤
16λ2s

φ2
.

In particular, if β̃ is the Lasso estimate with λ = λ∗, then

1

n
‖X(β0 − β̃)‖2

2 ≤
16A2 log(p)

φ2

σ2s

n
, and ‖β0 − β̃‖1 ≤

16Aσs

φ2

√
log p

n
.

Proof. Let us fix λ ≥ λ∗, and write β̂ = β̂L
λ . As in Theorem 10 we start with the “basic

inequality”:
1

2n
‖X(β̂ − β0)‖2

2 + λ‖β̂‖1 ≤
1

n
εTX(β̂ − β0) + λ‖β0‖1.

We work on the event Ω = {2‖XT ε‖∞/n ≤ λ∗} where after applying Hölder’s inequality,
we get

1

n
‖X(β̂ − β0)‖2

2 + 2λ‖β̂‖1 ≤ λ‖β̂ − β0‖1 + 2λ‖β0‖1. (2.10)

Lemma 14 shows that P(Ω) ≥ 1− 2p−(A2/8−1).
To motivate the rest of the proof, consider the following idea. We know

1

n
‖X(β̂ − β0)‖2

2 ≤ 3λ‖β̂ − β0‖1.

If we could obtain

3λ‖β̂ − β0‖1 ≤
cλ√
n
‖X(β̂ − β0)‖2

for some constant c > 0, then we would have that ‖X(β̂ − β0)‖2
2/n ≤ c2λ2 and also

3λ‖β0 − β̂‖1 ≤ c2λ2.
Returning to the actual proof, write a = ‖X(β̂ − β0)‖2

2/(nλ). Then from (2.10) we can
derive the following string of inequalities:

a+ 2(‖β̂N‖1 + ‖β̂S‖1) ≤ ‖β̂S − β0
S‖1 + ‖β̂N‖1 + 2‖β0

S‖1

a+ ‖β̂N‖1 ≤ ‖β̂S − β0
S‖1 + 2‖β0

S‖1 − 2‖β̂S‖1

a+ ‖β̂N − β0
N‖1 ≤ 3‖β0

S − β̂S‖1

a+ ‖β̂ − β0‖1 ≤ 4‖β0
S − β̂S‖1,
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the final inequality coming from adding ‖β0
S − β̂S‖1 to both sides.

Now using the compatibility condition with β = β̂ − β0 we have

1

n
‖X(β̂ − β0)‖2

2 + λ‖β0 − β̂‖1 ≤ 4λ‖β0
S − β̂S‖1

≤ 4λ

φ

√
s

n
‖X(β̂ − β0)‖2. (2.11)

From this we get
1√
n
‖X(β̂ − β0)‖2 ≤

4λ
√
s

φ
,

and substituting this into the RHS of (2.11) gives the result.

2.2.7 The compatibility condition

How strong is the compatibility condition? In order to answer this question, we shall think
of X as random and try to understand what conditions on the population covariance matrix
Σ0 := E(XTX/n) imply that X satisfies a compatibility condition with high probability.
To this end let us define

φ2
Σ(S) = inf

δ:‖δS‖1 6=0,‖δN‖1≤3‖δS‖1

δTΣδ

‖δS‖2
1/|S|

= |S| inf
δ:‖δS‖1=1,‖δN‖1≤3

δTΣδ,

where Σ ∈ Rp×p. Note then our φ2 = φ2
Σ̂

(S) where Σ̂ := XTX/n and S is the support set

of β0. The following result shows that if Σ is close to a matrix Θ for which φ2
Θ(S) > 0,

then also φ2
Σ(S) > 0.

Lemma 23. Suppose φ2
Θ(S) > 0 and maxjk |Σjk − Θjk| ≤ φ2

Θ(S)/(32|S|). Then φ2
Σ(S) ≥

φ2
Θ(S)/2.

Proof. In the following we suppress dependence on S and write s := |S|. Let B := {δ :
‖δS‖1 = 1, ‖δN‖1 ≤ 3}. Take δ ∈ B. The we have

sδTΣδ = sδTΘδ − sδT (Θ− Σ)δ ≥ φ2
Θ − s|δT (Σ−Θ)δ|.

Furthermore,

|δT (Θ− Σ)δ| ≤ ‖δ‖1‖(Θ− Σ)δ‖∞ (Hölder)

≤ φ2
Θ

32s
‖δ‖2

1 (Hölder again)

and ‖δ‖1 = ‖δN‖1 + ‖δS‖1 ≤ 4. Thus

sδTΣδ ≥ φ2
Θ − φ2

Θ/2 = φ2
Θ/2.

Taking infima over δ ∈ B gives the result.

We would like to apply the result above with Θ = Σ0, and use it to argue that if Σ0

satisfies the compatibility condition, then so will Σ̂ with high probability. In order to do
this, we need to argue that the event that maxjk |Σ̂jk − Σ0

jk| is small occurs with high
probability. We can obtain such a result with the aid of concentration inequalities.
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2.2.8 Concentration inequalities II

When trying to understand the concentration properties of Σ̂jk, it will be helpful to have a
tail bound for a product of sub-Gaussian random variables. Bernstein’s inequality, which
applies to random variables satisfying the condition below, is helpful in this regard.

Definition 6 (Bernstein’s condition). We say that the random variable W satisfies Bern-
stein’s condition with parameter (σ, b) where σ, b > 0 if

E(|W − EW |k) ≤ 1

2
k!σ2bk−2 for k = 2, 3, . . . .

Proposition 24 (Bernstein’s inequality). Let W1,W2, . . . be independent random variables
with E(Wi) = µ. Suppose each Wi satisfies Bernstein’s condition with parameter (σ, b).
Then

E(eα(Wi−µ)) ≤ exp

(
α2σ2/2

1− b|α|

)
for all |α| < 1/b

P
(

1

n

n∑
i=1

Wi − µ ≥ t

)
≤ exp

(
− nt2

2(σ2 + bt)

)
for all t > 0.

Proof. Fix i and let W = Wi. We have

E(eα(W−µ)) = E

(
1 + α(W − µ) +

∞∑
k=2

αk(W − µ)k

k!

)

≤ E

(
1 +

∞∑
k=2

|α|k|W − µ|k

k!

)

= 1 +
∞∑
k=2

|α|kE(|W − µ|k)
k!

≤ 1 +
σ2α2

2

∞∑
k=2

|α|k−2bk−2

= 1 +
σ2α2

2

1

1− |α|b
≤ exp

(
α2σ2/2

1− b|α|

)
,

provided |α| < 1/b and using the inequality eu ≥ 1+u in the final line. For the probability
bound, first note that

E exp

( n∑
i=1

α(Wi − µ)/n

)
=

n∏
i=1

E exp{α(Wi − µ)/n}

≤ exp

(
n

(α/n)2σ2/2

1− b|α/n|

)
for |α|/n < 1/b. Then we use the Chernoff method, though without minimising over α > 0:
instead we set α/n = t/(bt+ σ2) ∈ (0, 1/b).
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Lemma 25. Let W,Z be mean-zero and sub-Gaussian with parameters σW and σZ respec-
tively. Then the product WZ satisfies Bernstein’s condition with parameter (8σWσZ , 4σWσZ).

Proof. In order to use Bernstein’s inequality (Proposition 24) we first obtain bounds on
the moments of W and Z. Note that W 2k =

∫∞
0
1{x<W 2k}dx. Thus by Fubini’s theorem

E(W 2k) =

∫ ∞
0

P(W 2k > x)dx

= 2k

∫ ∞
0

t2k−1P(|W | > t)dt substituting t2k = x

≤ 4k

∫ ∞
0

t2k−1 exp{−t2/(2σ2
W )}dt by Proposition 11

= 4kσ2
W

∫ ∞
0

(2σ2
Wx)k−1e−xdx substituting t2/(2σ2

W ) = x

= 2k+1σ2k
Wk!.

Next note that for any random variable Y ,

E|Y − EY |k = 2kE|Y/2− EY/2|k

≤ 2k−1(E|Y |k + |EY |k) by Jensen’s inequality applied to t 7→ |t|k,
≤ 2kE|Y |k.

Therefore

E(|WZ − EWZ|k) ≤ 2kE|WZ|k

≤ 2k(EW 2k)1/2(EZ2k)1/2 by Cauchy–Schwarz

≤ 2k2k+1σkWσ
k
Zk!

=
k!

2
(8σWσZ)2(4σWσZ)k−2.

2.2.9 Random design

We now show that we can expect the compatibility condition to hold with high probability.
To make the result more readily interpretable, we shall state it in an asymptotic frame-
work. Imagine a sequence of design matrices with n and p growing, each with their own
compatibility condition. We will however suppress the asymptotic regime in the notation.

Theorem 26. Suppose the rows of X are i.i.d. and each entry of X is mean-zero sub-
Gaussian with parameter v. Let Σ̂ := XTX/n and Σ0 := E(Σ̂). Suppose s

√
log(p)/n→ 0

(and s, p, n > 1) as n→∞. Let

φ2
Σ̂,s

= min
S:|S|=s

φ2
Σ̂

(S)

φ2
Σ0,s = min

S:|S|=s
φ2

Σ0(S),

and suppose φ2
Σ0,s > c for a constant c > 0. Then P(φ2

Σ̂,s
≥ φ2

Σ0,s/2)→ 1 as n→∞.
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Proof. In view of Lemma 23, we need only show that

P(max
jk
|Σ̂jk − Σ0

jk| ≥ φ2
Σ0,s/(32s))→ 0.

Let t = φ2
Σ0,s/(32s). By a union bound and then Lemma 25 we have

P(max
jk
|Σ̂jk − Σ0

jk| ≥ φ2
Σ0,s/(32s)) < p2 max

jk
P
(∣∣∣ n∑

i=1

XijXik/n− Σ0
jk

∣∣∣ ≥ t
)

≤ 2 exp

(
− nt2

2(64v4 + 4v2t))
+ 2 log p

)
≤ 2 exp(−c′n/s2 + 2 log p) (2.12)

for a constant c′ > 0. To justify the last line, observe that any constant C > 0

(φ2
Σ0,s)

2

C + φ2
Σ0,s/s

≥ min
u≥c

u2

C + u
= min

u≥c
u

(
1− C

u+ C

)
= c

(
1− C

c+ C

)
> 0.

Thus returning to (2.12), we see that this tends to zero as log p = o(n/s2), which completes
the proof.

Corollary 27. Consider the setup of Theorem 26 and suppose additionally that the rows
of X are independent with distribution Np(0,Σ

0). Suppose the diagonal entries of Σ0 are
bounded above and the minimum eigenvalue of Σ0, cmin is bounded away from 0. Then
P(φ2

Σ̂,s
≥ cmin/2)→ 1.

2.2.10 Computation

One of the most efficient ways of computing Lasso solutions is to use a optimisation tech-
nique called coordinate descent. This is a quite general way of minimising a function
f : Rd → R and works particularly well for functions of the form

f(x) = g(x) +
d∑
j=1

hj(xj)

where g is convex and differentiable and each hj : R→ R is convex (and so continuous). We
start with an initial guess of the minimiser x(0) (e.g. x(0) = 0) and repeat for m = 1, 2, . . .

x
(m)
1 = arg min

x1∈R
f(x1, x

(m−1)
2 , . . . , x

(m−1)
d )

x
(m)
2 = arg min

x2∈R
f(x

(m)
1 , x2, x

(m−1)
3 , . . . , x

(m−1)
d )

...

x
(m)
d = arg min

xd∈R
f(x

(m)
1 , x

(m)
2 , . . . , x

(m)
d−1, xd).
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Tseng [2001] proves that provided A0 = {x : f(x) ≤ f(x(0))} is compact, then every
converging subsequence of x(m) will converge to a minimiser of f .

Corollary 28. Suppose A0 is compact. Then

(i) There exists a minimiser of f , x∗ and f(x(m))→ f(x∗).

(ii) If x∗ is the unique minimiser of f then x(m) → x∗.

*Proof*. Function f is continuous and so attains its infimum on the compact set A0.
Suppose f(x(m)) 9 f(x∗). Then there exists ε > 0 and a subsequence (x(mj))∞j=0 such

that f(x(mj)) ≥ f(x∗) + ε for all j. Note that since f(x(m)) ≤ f(x(m−1)), we know that
x(m) ∈ A0 for all m. Thus if A0 is compact then any subsequence of (x(m))∞m=0 has a further
subsequence that converges by the Bolzano–Weierstrass theorem. Let x̃ be the limit of the
converging subsequence of (x(mj))∞j=0. Then f(x̃) ≥ f(x∗) + ε, contradicting the result of
Tseng [2001]. Thus (i) holds. The proof of (ii) is similar.

We can replace individual coordinates by blocks of coordinates and the same result
holds. That is if x = (x1, . . . , xB) where now xb ∈ Rdb and

f(x) = g(x) +
B∑
b=1

hb(xb)

with g convex and differentiable and each hb : Rdb → R convex, then block coordinate
descent can be used.

One of the reasons that coordinate descent is so effective for solving the Lasso is that
the coordinatewise optimisations are very simple and have closed form solutions. To see
this, suppose at the mth iteration we are optimising for variable k. Let us write

R := Y −
k−1∑
j=1

Xjβ̂
(m)
j −

p∑
j=k+1

Xjβ̂
(m−1)
j .

We have that

β̂
(m)
k = arg min

β∈R

{
1

2n
‖R− βXk‖2

2 + λ|β|
}

A minimiser β̂
(m)
k is characterised by the subgradient optimality condition:

− 1

n
XT
k R + β̂

(m)
k + λν̂ = 0,

where ν̂ ∈ [−1, 1] and if β̂
(m)
k 6= 0, ν̂ = sgn(β̂

(m)
k ). Rearranging, we have

β̂
(m)
k =

1

n
XT
k R− λν̂,
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and we may check that this is satisfied by

β̂
(m)
k = Sλ(X

T
k R/n),

where St(u) := sgn(u)(|u| − t)+ is the soft-thresholding operator. Note that β̂
(m)
k is the

unique minimiser as the coordinatewise objective is strictly convex.
We often want to solve the Lasso on a grid of λ values λ0 > · · · > λL (for the purposes

of cross-validation for example). To do this, we can first solve for λ0, and then solve at
subsequent grid points by using the solution at the previous grid points as an initial guess
(known as a warm start). An active set strategy can further speed up computation. This
works as follows: For l = 1, . . . , L

1. Initialise Al = {k : β̂L
λl−1,k

6= 0}.

2. Perform coordinate descent only on coordinates in Al obtaining a solution β̂ (all
components β̂k with k /∈ Al are set to zero).

3. Let V = {k : |XT
k (Y −Xβ̂)|/n > λl}, the set of coordinates which violate the KKT

conditions when β̂ is taken as a candidate solution.

4. If V is empty, we set β̂L
λl

= β̂. Else we update Al = Al ∪ V and return to 2.

2.3 Extensions of the Lasso

2.3.1 The square-root Lasso

Consider the normal linear model

Y = Xβ0 + ε, (2.13)

where ε ∼ Nn(0, σ2I). A misgiving one might have about the theoretical results on the
Lasso is that they rely on knowledge of the unknown σ in that the λ concerned takes the
form Aσ

√
log(p)/n.

Now given a Lasso estimate β̂L
λ for β0, a sensible estimate of σ is given by

σ̂L
λ :=

1√
n
‖Y −Xβ̂L

λ‖2.

Indeed, this is supported by the following general result.

Lemma 29. Suppose Y = f + ε where error ε ∈ Rn is such that ε1, . . . , εn are i.i.d. with
Eε1 = 0 and Varε1 = σ2 > 0. Consider an asymptotic regime where n increases, and
suppose f̂ ∈ Rn is an estimate of f such that there exists sequence an → 0 with

P(‖f̂ − f‖2
2/n ≤ an)→ 1.
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Then setting

σ̂ :=
1√
n
‖Y − f̂‖2,

there exists sequence bn → 0 such that

P
(∣∣∣σ
σ̂
− 1
∣∣∣ ≤ bn

)
→ 1.

Given this estimate, a sensible tuning parameter to choose for the Lasso would be
Aσ̂L

λ

√
log(p)/n, which would lead to a new estimate of β0, which could then in turn give

a new estimate of σ. Iterating this process amounts to performing a block coordinate
descent optimisation (alternating between optimising over β and σ) of the following convex
objective function,

Qsq
γ (β, σ) :=

1

2nσ
‖Y −Xβ‖2

2 +
σ

2
+ γ‖β‖1,

with γ = A
√

log(p)/n and initial value for σ given by σ̂L
λ . Corollary 28 indicates that this

will lead to a minimiser of Qsq
γ . However, a more direct route to the minimiser is offered

by the so-called square-root Lasso β̂sq
γ [Belloni et al., 2011, Sun and Zhang, 2012], which

minimises
1√
n
‖Y −Xβ‖2 + γ‖β‖1. (2.14)

Note that the display above is equal to minσ>0Q
sq
γ (β, σ) provided Y 6= Xβ.

The square-root Lasso is not really a new estimator for β0, but rather a particular
reparametrisation of the Lasso solution path, as may be deduced by comparing its KKT
conditions with those of the (regular) Lasso. Let us write σ̂sq

γ := ‖Y − Xβ̂sq
γ ‖2/

√
n. We

have, provided σ̂sq
γ > 0, that

1

nσ̂sq
γ
XT (Y −Xβ̂sq

γ ) = γν̂sq
γ ,

1

n
XT (Y −Xβ̂L

λ ) = λν̂L
λ ,

where ‖ν̂sq
γ ‖∞ ≤ 1, and ν̂sq

γ agrees in sign with β̂sq
γ on its active set (and similarly for ν̂L

λ ).

Thus any Lasso solution β̂L
λ is a square-root Lasso solution β̂sq

γ with γ = λ/σ̂L
λ , provided

σ̂L
λ > 0. Conversely, any β̂sq

γ is equal to a Lasso solution β̂L
λ with λ = γσ̂sq

γ , provided
σ̂sq
γ > 0.

The next result formalises the way in which the square-root Lasso does not rely on
knowledge of σ.

Theorem 30. Consider the normal linear model (2.13) and let β̂ be a square-root Lasso
estimate with γ = B

√
log(p)/n where B > 2

√
2. Consider an asymptotic regime where

n, p → ∞, s log(p)/n → 0 and the compatibility factor φ2 is bounded away from 0. Then
with probability tending to 1,

1

n
‖X(β0 − β̂)‖2

2 ≤
17B2 log p

φ2

sσ2

n
and ‖β0 − β̂‖1 ≤

17Bσs

φ2

√
log p

n
.
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Proof. We would like to argue that β̂ is a Lasso solution with λ ≈ Aσ
√

log(p)/n, and then
apply Theorem 22. This relies on σ̂ := σ̂sq

γ satisfying σ̂ ≈ σ. For this, we might like to

apply Lemma 29, but this requires β̂ having good prediction properties, which is among
the properties we are trying to show!

To circumvent these difficulties, we will find Lasso solutions with tuning parameters
λ1 < λ2 for which the corresponding square-root Lasso tuning parameters satisfy

γ1 :=
λ1

σ̂L
λ1

≤ γ ≤ λ2

σ̂L
λ2

=: γ2.

Given such λ1 and λ2, we claim that

λ1 ≤ σ̂γ ≤ λ2, (2.15)

so β̂ is a Lasso solution with a tuning parameter sandwiched between λ1 and λ2. Indeed,
λ1 = γ1σ̂

sq
γ1

as σ̂sq
γ1

= σ̂L
λ1

, and since γ1 ≤ γ by assumption, we have σ̂sq
γ1
≤ σ̂. To show the

final point, observe that writing β̃ := β̂L
λ1

= β̂sq
γ1

,

1√
n
‖Y −Xβ̃‖2 + γ1‖β̃‖1 ≤

1√
n
‖Y −Xβ̂‖2 + γ1‖β̂‖1 (2.16)

1√
n
‖Y −Xβ̂‖2 + γ‖β̂‖1 ≤

1√
n
‖Y −Xβ̃‖2 + γ‖β̃‖1.

These imply
γ1‖β̃‖1 + γ‖β̂‖1 ≤ γ1‖β̂‖1 + γ‖β̃‖1,

so
(γ − γ1)(‖β̃‖1 − ‖β̂‖1) ≥ 0

from which we deduce that ‖β̃‖1 ≥ ‖β̂‖1. Substituting this in (2.16), we see that σ̂sq
γ1
≤ σ̂

as required. Thus λ1 ≤ σ̂γ, and similarly σ̂γ ≤ λ2.
Now let us take λj = σAj

√
log(p)/n for 2

√
2 < A1 < B < A2 where 17B2 ≥ 16A2

2

(which we note also implies 17B ≥ 16A). Now we know that (see example sheet) there

exists a sequence an → 0 such that on a sequence of events Ω
(1)
n with P(Ω

(1)
n )→ 1,

1− an ≤
σ

σ̂L
λj

≤ 1 + an,

for j = 1, 2. Thus on Ω
(1)
n ,

γ1 ≤ (1 + an)A1

√
log p

n
< γ and γ2 ≥ (1− an)A2

√
log p

n
> γ,

for n sufficiently large, and so (2.15) holds for such n. Applying Theorem 22 with λ∗ = λ1,

we see that on a sequence of events Ω
(2)
n with P(Ω

(2)
n )→ 1, we have

1

n
‖X(β0 − β̂L

λ )‖2
2 + λ‖β0 − β̂L

λ‖1 ≤
16sλ2

φ2
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for all λ ≥ λ1. Then on Ω
(1)
n ∩ Ω

(2)
n (which has P(Ω

(1)
n ∩ Ω

(2)
n ) → 1), additionally (2.15)

holds, and so
1

n
‖X(β0 − β̂)‖2

2 + σ̂γ‖β0 − β̂‖1 ≤
16sσ̂2γ2

φ2
.

The result follows from noting that on Ω
(1)
n , σ̂γ ≤ λ2 ≤ 17σB

√
log(p)/n/16 and λ2

2 ≤
17σ2B2 log(p)/(16n).

2.3.2 Other loss functions

We can add an `1 penalty to many other log-likelihoods, or more generally other loss
functions besides the squared-error loss that arises from the normal linear model. For
Lasso-penalised generalised linear models, such as logistic regression, similar theoretical
results to those we have obtained are available and computations can proceed in a similar
fashion to above.

2.3.3 Structural penalties

The Lasso penalty encourages the estimated coefficients to be shrunk towards 0 and some-
times exactly to 0. Other penalty functions can be constructed to encourage different types
of sparsity.

Group Lasso

Suppose we have a partition G1, . . . , Gq of {1, . . . , p} (so ∪qk=1Gk = {1, . . . , p}, Gj ∩Gk = ∅
for j 6= k). The group Lasso penalty [Yuan and Lin, 2006] is given by

λ

q∑
j=1

mj‖βGj‖2.

The multipliers mj > 0 serve to balance cases where the groups are of very different sizes;
typically we choose mj =

√
|Gj|. This penalty encourages either an entire group G to

have β̂G = 0 or β̂k 6= 0 for all k ∈ G. Such a property is useful when groups occur through
coding for categorical predictors or when expanding predictors using basis functions.

Fused Lasso

If there is a sense in which the coefficients are ordered, so β0
j is expected to be close to

β0
j+1, a fused Lasso penalty [Tibshirani et al., 2005] may be appropriate. This takes the

form

λ1

p−1∑
j=1

|βj − βj+1|+ λ2‖β‖1,
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where the second term may be omitted depending on whether shrinkage towards 0 is
desired. As an example, consider the simple setting where Yi = µ0

i + εi, and it is thought
that the (µ0

i )
n
i=1 form a piecewise constant sequence. Then one option is to minimise over

µ ∈ Rn, the following objective

1

n
‖Y − µ‖2

2 + λ
n−1∑
i=1

|µi − µi+1|.

2.3.4 Reducing the bias of the Lasso

One potential drawback of the Lasso is that the same shrinkage effect that sets many
estimated coefficients exactly to zero also shrinks all non-zero estimated coefficients towards
zero. One possible solution is to take Ŝλ = {k : β̂L

λ,k 6= 0} and then re-estimate β0
Ŝλ

by OLS

regression on XŜλ
.

Another option is to re-estimate using the Lasso on XŜλ
; this procedure is known as

the relaxed Lasso [Meinshausen, 2007]. The adaptive Lasso [Zou, 2006] takes an initial
estimate of β0, β̂init (e.g. from the Lasso) and then performs weighted Lasso regression:

β̂adapt
λ = arg min

β∈Rp:βŜc
init

=0

{
1

2n
‖Y −Xβ‖2

2 + λ
∑
k∈Ŝinit

|βk|
|β̂init
k |

}
,

where Ŝinit = {k : β̂init
k 6= 0}.

Yet another approach involves using a family of non-convex penalty functions pλ,γ :
[0,∞)→ [0,∞) and attempting to minimise

1

2n
‖Y −Xβ‖2

2 +

p∑
k=1

pλ,γ(|βk|).

A prominent example is the minimax concave penalty (MCP) [Zhang, 2010] which takes

p′λ(u) =

(
λ− u

γ

)
+

.

One disadvantage of using a non-convex penalty is that there may be multiple local minima
which can make optimisation problematic. However, typically if the non-convexity is not
too severe, coordinate descent can produce reasonable results.
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Chapter 3

Graphical models

So far we have considered the problem of relating a particular response to a potentially
large collection of explanatory variables. In some settings however, we do not have a
distinguished response variable and instead we would like to better understand relationships
between all our measured variables. One simple way of formalising the relatedness between
variables is to measure their correlation, or (marginal) dependence. However, this does
not always lead to the most interpretable results as many pairs of variables may exhibit
dependence with one another without there being a very meaningful relationship between
them.

3.1 Conditional independence

Conditional dependence is often a better property on which to base our desired notion of
relatedness, and is defined as follows.

Definition 7. If X, Y and Z are random vectors with a joint density fXY Z (w.r.t. a
product measure µ) then we say X is conditionally independent of Y given Z, and write

X ⊥⊥ Y |Z

if
fXY |Z(x, y|z) = fX|Z(x|z)fY |Z(y|z) whenever fZ(z) > 0,

and if not we say X and Y are conditionally dependent given Z and write X 6⊥⊥ Y |Z.
Equivalently,

X ⊥⊥ Y |Z ⇐⇒ fX|Y Z(x|y, z) = m(x, z)

for some (integrable) function m whenever fY Z(y, z) > 0, and moreover this m will then
be the conditional density fX|Z .

The interpretation of the conditional independenceX ⊥⊥ Y |Z is that ‘knowing Z renders
X irrelevant for learning about Y ’.
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3.1.1 Conditional independence graphs

It is convenient to represent the conditional independence relationships between variables
through graphs.

Definition 8. An undirected graph is a pair G = (V,E) where V is a set of vertices or
nodes and E ⊆ {{j, k} : j 6= k and j, k ∈ V } is a set of edges.

Example 3.1.1. We can represent the undirected graph on 4 vertices with edge set E =
{{1, 2}, {2, 4}} as follows.

1

3

2

4

Let Z = (Z1, . . . , Zp)
T be a collection of random variables. The graphs we consider

will always have V = {1, . . . , p} so V indexes the random variables. We use the following
notation: −k and −jk when in subscripts denote the sets {1, . . . , p} \ {k} and {1, . . . , p} \
{j, k} respectively.

Definition 9. The conditional independence graph (CIG) of a distribution P on Rp is the
graph G = (V,E) where given Z ∼ P ,

{j, k} ∈ E ⇐⇒ Zj 6⊥⊥ Zk |Z−jk.

3.1.2 *Conditional independence graphs and causality*

In the following subsection, which is *non-examinable*, we explain how edges in a condi-
tional independence graph may be thought of as having a causal basis; in order to do this,
we will need to introduce some further concepts.

Definition 10. A graph is a pair G = (V,E) where E ⊆ {(j, k) : j 6= k and j, k ∈ V }. Let
j, k ∈ V .

If (j, k) ∈ E, we write j → k.

� If (j, k) ∈ E and (j, k) /∈ E, we say edge (j, k) is directed and write j → k. A graph
where all edges are directed is called a directed graph.

� A directed cycle is a collection of vertices j1, . . . , jm with j1 → j2, . . . , jm−1 →
jm, jm → j1.

� A directed acyclic graph (DAG) is a directed graph with no cycles.

� Say j is a parent of k and k is a child of j if j → k. The set of parents of k will be
denoted pa(k).
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Example 3.1.2. We can represent the directed graph on 4 vertices withE = {(1, 3), (2, 1), (3, 4), (2, 3)}
as follows.

1

3

2

4

Here pa(3) = {1, 2}. As there are no directed cycles, this is a DAG.

We will make use of the following property of DAGs.

Proposition 31. Given a DAG G with vertex set V = {1, . . . , p}, we say that a permuta-
tion π of V is a topological (or causal) ordering of the variables if for all j ∈ V ,

if k ∈ pa(j) then π(k) < π(j)

Every DAG has a topological ordering.

Proof. We use induction on the number of nodes p. Clearly the result is true when p = 1.
Now we show that in any DAG, we can find a node with no parents. Pick any node

and move to one of its parents, if possible. Then move to one of the new node’s parents,
and continue in this fashion. This procedure must terminate since no node can be visited
twice, or we would have found a cycle. The final node we visit must therefore have no
parents, which we call a source node.

Suppose then that p ≥ 2, and we know that all DAGs with p−1 nodes have a topological
ordering. Find a source s (wlog s = p) and form a new DAG G̃ with p−1 nodes by removing
the source (and all edges emanating from it). Note we keep the labelling of the nodes in
this new DAG the same. This smaller DAG must have a topological order π̃. A topological
ordering π for our original DAG is then given by π(s) = 1 and π(k) = π̃(k)+1 for k 6= s.

Having established the notion of a DAG, we can introduce structural equation models,
which provide a formalism for understanding causal relationships.

Definition 11. A structural equation model (SEM) S for a distribution P on Rp is a
collection of p equations where random vector Z ∈ Rp defined via

Zk = hk(ZPk , εk), k = 1, . . . , p (3.1)

is such that Z ∼ P . Here

� ε1, . . . , εp are all independent random variables;

� Pk ⊆ {1, . . . , p} \ {k} are such that the graph with edges given by Pk being pa(k) is
a DAG; if Pk = ∅, then the RHS of (3.1) is understood to be hk(εk).
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Note that the condition that the graph concerned is a DAG ensures that Z is well-
defined given ε. Indeed, one can generate the components of Z according to the topological
ordering π of the DAG: assuming without loss of generality that π−1(j) = j for all j, we
would generate Z via

Z1 = h1(ε1), Z2 = h2(Zpa(2), ε2), . . . , Zp = hp(Zpa(p), εp).

Note that, for each j, Zpa(j) will be generated before Zj. In this way the SEM (3.1) is
a recipe for for generating draws from the distribution P . The significance of this SEM
is that were it to represent the true mechanism by which data with distribution P were
generated, we can reason about how the distribution might change if we intervene on the
system by, for example, setting a particular variable k to a given value a. We can expect
that the new distribution will be determined by the modified SEM where the equation
Zk = hk(ZPk , εk) is replaced by Zk = a, with the remaining equations unchanged. In this
sense, an SEM can encode causal relationships between variables.

In general, there may be many SEMs that give rise to a given joint distribution P .
However, we do have the following result connecting conditional independence graphs and
structural equation models which formalises the sense in which the edges of a conditional
independence graph may be thought of as having some causal basis.

Proposition 32. Let Z ∈ Rp have density f . If Zj 6⊥⊥ Zk |Z−jk, then the DAG associated
with any SEM for f must have that either j → k, k → j, or there exists v ∈ {1, . . . , p} \
{j, k} with j → v ← k.

Proof. Suppose we do not have any of j → k, k → j, or j → v ← k for some v ∈
{1, . . . , p} \ {j, k}, so k /∈ pa(j), j /∈ pa(k) and pa(j) ∩ pa(k) = ∅. Without loss of
generality, suppose that for a topological ordering π we have π−1(l) = l for all l. Then

f(z1, . . . , zp) = fZ1(z1)

p∏
l=2

fZl |Z1,...,Zl−1
(zl | z1, . . . , zl−1)

= fZ1(z1)

p∏
l=2

fZl |Zpa(l)
(zl | zpa(l)),

as 1, . . . , l − 1 come before l in the topological order. Now note that the RHS may be
expressed as g(zj, z−jk)× h(zk, z−jk) for functions g, h as for any l, none of the arguments
of fZl |Zpa(l)

(zl | zpa(l)) involve both zj and zk. Thus Zj ⊥⊥ Zk |Z−jk (see example sheet) as
required.

3.2 Gaussian graphical models

We have seen that the CIG may be a useful way of formalising whether variables are
related to one another, particularly if one is interested in causal relationships. Estimating
the CIG given samples from P is however a difficult task in general, though in the case
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where P is multivariate Gaussian, things simplify considerably as we shall see. We begin
with some notation. For a matrix M ∈ Rp×p, and sets A,B ⊆ {1, . . . , p}, let MA,B be the
|A| × |B| submatrix of M consisting of those rows and columns of M indexed by the sets
A and B respectively. The submatrix extraction operation is always performed first (so
e.g. MT

k,−k = (Mk,−k)
T ).

3.2.1 Normal conditionals

Now let Z ∼ Np(µ,Σ) with Σ positive definite. Note ΣA,A is also positive definite for any
A.

Proposition 33.

ZA|ZB = zB ∼ N|A|(µA + ΣA,BΣ−1
B,B(zB − µB), ΣA,A − ΣA,BΣ−1

B,BΣB,A)

Proof. Idea: write ZA = MZB+(ZA−MZB) with matrixM ∈ R|A|×|B| such that ZA−MZB
and ZB are independent, i.e. such that

Cov(ZB, ZA −MZB) = ΣB,A − ΣB,BM
T = 0.

This occurs when we take MT = Σ−1
B,BΣB,A. Because ZA −MZB and ZB are indepen-

dent, the distribution of ZA −MZB conditional on ZB = zB is equal to its unconditional
distribution. Now

E(ZA −MZB) = µA − ΣA,BΣ−1
B,BµB

Var(ZA −MZB) = ΣA,A + ΣA,BΣ−1
B,BΣB,BΣ−1

B,BΣB,A − 2ΣA,BΣ−1
B,BΣB,A

= ΣA,A − ΣA,BΣ−1
B,BΣB,A.

Since MZB is a function of ZB and ZA − MZB is normally distributed, we have the
result.

3.2.2 Nodewise regression

Specialising to the case where A = {k} and B = Ac we see that when conditioning on
Z−k = z−k, we may write

Zk = mk + zT−kΣ
−1
−k,−kΣ−k,k + εk,

where

mk = µk − Σk,−kΣ
−1
−k,−kµ−k

εk|Z−k = z−k ∼ N(0, Σk,k − Σk,−kΣ
−1
−k,−kΣ−k,k).

Note that if the jth element of the vector of coefficients Σ−1
−k,−kΣ−k,k is zero, then the

distribution of Zk conditional on Z−k will not depend at all on the jth component of Z−k.
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Then if that jth component was Zj′ , we would have that Zk|Z−k = z−k has the same
distribution as Zk|Z−j′k = z−j′k, so Zk ⊥⊥ Zj|Z−j′k.

Thus given x1, . . . , xn
i.i.d.∼ Z and writing

X =

x
T
1
...
xTn

 ,

we may estimate the coefficient vector Σ−1
−k,−kΣ−k,k by regressing Xk on X{k}c and including

an intercept term.
The technique of neighbourhood selection [Meinshausen and Bühlmann, 2006] involves

performing such a regression for each variable, using the Lasso. There are two options for
populating our estimate of the CIG with edges based on the Lasso estimates. Writing Ŝk
for the selected set of variables when regressing Xk on X{k}c , we can use the “OR” rule

and put an edge between vertices j and k if and only if k ∈ Ŝj or j ∈ Ŝk. An alternative is

the “AND” rule where we put an edge between j and k if and only if k ∈ Ŝj and j ∈ Ŝk.
Another popular approach to estimating the CIG works by exploiting a connection

between the CIG and the precision matrix, as we explain below.

3.2.3 The precision matrix and conditional independence

The following facts about blockwise inversion of matrices will help us to interpret the mean
and variance in Proposition 33.

Proposition 34. Let M ∈ Rp×p be a symmetric positive definite matrix and suppose

M =

(
P QT

Q R

)
with P and R square matrices. The Schur complement of R is P − QTR−1Q =: S. We
have that S is positive definite and

M−1 =

(
S−1 −S−1QTR−1

−R−1QS−1 R−1 +R−1QS−1QTR−1

)
.

Furthermore det(M) = det(S)det(R).

Let Ω = Σ−1 be the precision matrix. Note that Σk,k − Σk,−kΣ
−1
−k,−kΣ−k,k = Ω−1

kk , and

more generally that Var(ZA|ZAc) = Ω−1
A,A. Also, we see that Σ−1

−k,−kΣ−k,k = −Ω−1
kk Ω−k,k, so

(Σ−1
−k,−kΣ−k,k)j = 0⇔

{
Ωj,k = 0 for j < k

Ωj+1,k = 0 for j ≥ k.

Thus
Zk ⊥⊥ Zj|Z−jk ⇔ Ωjk = 0.

This motivates another approach to estimating the CIG.
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3.2.4 The Graphical Lasso

Recall that the density of Np(µ,Σ) is

f(z) =
1

(2π)p/2det(Σ)1/2
exp

(
− 1

2
(z − µ)TΣ−1(z − µ)

)
.

The log-likelihood of (µ,Σ) based on an i.i.d. sample x1, . . . , xn is

`(µ,Ω) =
n

2
log det(Ω)− 1

2

n∑
i=1

(xi − µ)TΩ(xi − µ).

Write

X̄ =
1

n

n∑
i=1

xi, S =
1

n

n∑
i=1

(xi − X̄)(xi − X̄)T .

Then

n∑
i=1

(xi − µ)TΩ(xi − µ) =
n∑
i=1

(xi − X̄ + X̄ − µ)TΩ(xi − X̄ + X̄ − µ)

=
n∑
i=1

(xi − X̄)TΩ(xi − X̄) + n(X̄ − µ)TΩ(X̄ − µ)

+ 2
n∑
i=1

(xi − X̄)TΩ(X̄ − µ).

Also,

n∑
i=1

(xi − X̄)TΩ(xi − X̄) =
n∑
i=1

tr{(xi − X̄)TΩ(xi − X̄)}

=
n∑
i=1

tr{(xi − X̄)(xi − X̄)TΩ}

= ntr(SΩ).

Thus
`(µ,Ω) = −n

2
{tr(SΩ)− log det(Ω) + (X̄ − µ)TΩ(X̄ − µ)}

and
max
µ∈Rp

`(µ,Ω) = −n
2
{tr(SΩ)− log det(Ω)}.

Hence the maximum likelihood estimate of Ω, Ω̂ML can be obtained by solving

min
Ω:Ω�0

{− log det(Ω) + tr(SΩ)},
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where Ω � 0 means Ω is positive definite. One can show that the objective is convex and
{Ω : Ω � 0} is convex. As

∂

∂Ωjk

log det(Ω) = (Ω−1)kj = (Ω−1)jk,

∂

∂Ωjk

tr(SΩ) = Skj = Sjk,

if X has full column rank so S is positive definite, Ω̂ML = S−1.
The graphical Lasso [Yuan and Lin, 2007] penalises the log-likelihood for Ω and solves

min
Ω:Ω�0

{− log det(Ω) + tr(SΩ) + λ‖Ω‖1},

where ‖Ω‖1 =
∑

j,k |Ωjk|; this results in a sparse estimate of the precision matrix from
which an estimate of the CIG can be constructed. Often the ‖Ω‖1 is modified such that
the diagonal elements are not penalised.
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Chapter 4

High-dimensional inference

Statistics is not just about providing estimates of quantities of interest: we would also
like to quantify uncertainty about these estimates. For instance, we would like to provide
confidence intervals for regression coefficients in high-dimensional linear regression models,
or test for the presence of a given edge in a conditional independence graph. These are
challenging questions, but in the last several years there have been some breakthroughs on
these fronts. In the next sections, we will aim to cover the main ideas in these exciting
developments. Finally we will consider the important question of how to aggregate the
outcomes of large numbers of hypothesis tests, a task which is referred to as multiple
testing, and which continues to be an area of active research.

4.1 The debiased Lasso

Consider the normal linear model Y = Xβ0 + ε where ε ∼ Nn(0, σ2I). In the low-
dimensional setting whereX has full column rank, the fact that β̂OLS−β0 ∼ Np(0, σ

2(XTX)−1)
allows us to form confidence intervals for components of β0

j and perform hypothesis tests
for null H0 : β0

j = 0, for example.

One might hope that studying the distribution of β̂L
λ − β0 would enable us to perform

these tasks in the high-dimensional setting when p � n. However, the distribution of
β̂L
λ−β0 is intractable and due to the bias of the Lasso, it depends delicately on the unknown
β0, making it unsuitable as a basis for constructing confidence intervals or hypothesis tests.

Whilst several methods have been proposed over the years, typically they have involved
placing conditions on the unknown β0, other than the usual assumption of sparsity. Given
that the task is to perform inference for β0, such conditions are undesirable. The recently
developed debiased Lasso [Zhang and Zhang, 2014, Van de Geer et al., 2014] cleverly avoids
these issues by attempting to remove enough of the bias of the Lasso to allow for a Gaussian
limiting distribution. The construction may be motivated as follows.

Suppose, for the time being, that X ∈ Rn×p is low-dimensional (i.e. p < n) and
moreover has full column rank. Let Rj ∈ Rn be the vector of residuals from regressing
Xj ∈ Rn onto X−j ∈ Rn×(p−1) using OLS. Then an alternative representation of the
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ordinary least squares coefficients is given by β̂OLS
j = RT

j Y/R
T
j Xj, and moreover1

RT
j Xj

σ‖Rj‖2

(β̂OLS
j − β0

j ) ∼ N(0, 1).

This may be seen as a consequence of the fact that for any β ∈ Rp,

βj =
RT
j Xβ

RT
j Xj

. (4.1)

Indeed, Rj is orthogonal to the column space of X−j and so RT
j Xβ = RT

j Xjβj. We may

exploit this fact to remove the bias of any given estimator β̃ of β0 as follows:

β̃j +
RT
j (Y −Xβ̃)

RT
j Xj

= β̃j +
RT
j X(β0 − β̃)

RT
j Xj︸ ︷︷ ︸

=β0
j−β̃j by (4.1)

+
RT
j ε

RT
j Xj︸ ︷︷ ︸

∼N(0,σ2‖Rj‖22/(RTj Xj)2)

. (4.2)

This debiasing procedure is of no real use in low dimensions as the above simply recovers
β̂OLS
j given any initial β̃. However for high-dimensional settings, we may replace all OLS

regressions in (4.2) with (square-root) Lasso regressions to give a genuinely new estimate
of β0

j , and this is known as the debiased Lasso. We will study a version of the debiased
Lasso using square-root Lasso regressions given by

b̂j := β̂sq
j +

(Xj −X−j θ̂sq
j )T (Y −Xβ̂sq)

(Xj −X−j θ̂sq
j )TXj

,

where

β̂sq := arg min
β∈Rp

{
1√
n
‖Y −Xβ‖2 + γ‖β‖1

}
,

θ̂sq
j := arg min

θ∈Rp−1

{
1√
n
‖Xj −X−jθ‖2 + γ‖θ‖1

}
,

and we have suppressed the dependence of the square-root Lasso estimates on the tuning
parameter γ.

Theorem 35. Let γ = A
√

log p/n. Suppose Xj −X−j θ̂sq
j 6= 0 for all j = 1, . . . , p. Then

under the normal linear model Y = Xβ0 + ε with ε ∼ Nn(0, σ2I), we have that for each j,

(Xj −X−j θ̂sq
j )TXj

σ‖Xj −X−j θ̂sq
j ‖2

(b̂j − β0
j ) = δj + ζj,

where ζ ∈ Rp is mean-zero and Gaussian with Var(ζj) = 1 and δ ∈ Rp satisfies

‖δ‖∞ ≤ A
√

log p‖β0 − β̂sq‖1/σ.
1Note that RT

j Xj = ‖Rj‖22 in the case of OLS residuals, so some of the formulae may be simplified.
However, such an equality does not hold when considering Lasso residuals, so in order to maintain the
analogy with the debiased Lasso, we have left the RT

j Xj terms unsimplified.
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Proof. Now
Y −Xβ̂sq = Xj(β

0
j − β̂

sq
j ) +X−j(β

0
−j − β̂

sq
−j) + ε.

Note that

(Xj −X−j θ̂sq)TXj(β
0
j − β̂

sq
j )

(Xj −X−j θ̂sq
j )TXj

= β0
j − β̂

sq
j ,

so

(Xj −X−j θ̂sq
j )TXj

σ‖Xj −X−j θ̂sq
j ‖2

(b̂j − β0
j ) =

(Xj −X−j θ̂sq
j )TX−j(β

0
−j − β̂

sq
−j)

σ‖Xj −X−j θ̂sq
j ‖2︸ ︷︷ ︸

=:δj

+
(Xj −X−j θ̂sq)T ε

σ‖Xj −X−j θ̂sq
j ‖2︸ ︷︷ ︸

=:ζj

.

Note that ζ is thus mean-zero, Gaussian, and has Var(ζj) = 1. Meanwhile

σ|δj| =

∣∣∣∣∣(β0
−j − β̂

sq
−j)

T
XT
−j(Xj −X−j θ̂sq

j )

‖Xj −X−j θ̂sq
j ‖2

∣∣∣∣∣
≤
√
n‖β0

−j − β̂
sq
−j‖1

‖XT
−j(Xj −X−j θ̂sq

j )‖∞
‖Xj −X−j θ̂sq

j ‖2

≤ A
√

log p‖β0 − β̂sq‖1,

applying Hölder’s inequality, and appealing to the KKT condtions of the square-root Lasso.

Theorem 30 shows that under reasonable conditions we can expect that ‖β0 − β̂sq‖1 ≤
const. × σs

√
log(p)/n where s is the sparsity level, and so δ will be negligible in an

asymptotic regime where s log(p)/
√
n→ 0.

Theorem 35 suggests the following approximate (1−α)-level confidence interval for β0
j :

Ĉj :=

[
b̂j − zα/2

σ̂‖Xj −X−j θ̂sq
j ‖2

XT
j (Xj −X−j θ̂sq

j )
, b̂j + zα/2

σ̂‖Xj −X−j θ̂sq
j ‖2

XT
j (Xj −X−j θ̂sq

j )

]
,

where zα/2 is the upper α/2 point of a standard Gaussian distribution and

σ̂ :=
1√
n
‖Y −Xβ̂sq‖2.

One outstanding question regarding Theorem 35 is how large we can expect the factor

XT
j (Xj −X−j θ̂sq

j )

‖Xj −X−j θ̂sq
j ‖2

(4.3)
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to be; the magnitude of this determines the size of β0
j we can hope to detect with the

debiased Lasso. Note the low-dimensional analogue is XT
j Rj/‖Rj‖2 = ‖Rj‖2. To un-

derstand this quantity better, consider a random design setting where we have a normal
linear model Xj = X−jθ

0
j +ξ with θ0

j ∈ Rp−1 and ξ ∼ Nn(0, v2I). Then Lemma 29 suggests
‖Rj‖2/

√
n ≈ v and so we can expect that approximately we have

√
n(β̂OLS

j − β0
j ) ∼̇ N(0, σ2/v2).

Turning to the high-dimensional setting, we can show (see example sheet) that the quantity
in (4.3) divided by

√
n is in fact equal to

1√
n
‖Xj −X−j θ̂sq

j ‖2 + γ‖θ̂sq
j ‖1

provided ‖Xj−X−j θ̂sq
j ‖2 6= 0. If θ0

j is sufficiently sparse, we can expect γ‖θ̂sq
j ‖1 ≈ γ‖θ0

j‖1 ≈
0, and ‖Xj −X−j θ̂sq

j ‖2/
√
n ≈ v owing to Lemma 29, thus giving the analogous result that

approximately √
n(b̂j − β0

j ) ∼̇ N(0, σ2/v2).

4.2 Basic asymptotic statistics

Definition 12. Let W1,W2, . . . and W be real-valued random variables.

� We say the Wn converge in distribution to W with distribution function F , and write

Wn
d→ W , if for all t ∈ R at which F is continuous,

P(Wn ≤ t)→ F (t) as n→∞.

� We say the Wn converge in probability to W and write Wn
p→ W if for all ε > 0,

P(|Wn −W | > ε)→ 0.

One can show that if Wn
p→ W , then Wn

d→ W (so convergence in probability is a
stronger notion of convergence). However, they coincide if W = c ∈ R is deterministic i.e.

if Wn
d→ c, then Wn

p→ c.

Lemma 36. Let the sequence Wn and W be as above. Then Wn
p→ W if and only if there

exists a sequence an → 0 such that

P(|Wn −W | ≤ an)→ 1.

*Proof*. Suppose Wn
p→ W . We know that given any ε, δ > 0, there exists N(ε, δ) such

that for all n ≥ N(ε, δ),
P(|Wn −W | > ε) ≤ δ.
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We may take (N(1/j, 1/j))∞j=1 to be an increasing sequence with N(1, 1) = 1, and then
define for each n ∈ N,

an :=
1

max{j : N(1/j, 1/j) ≤ n}
.

Then an → 0. Moreover, if an = 1/j for some j, then n ≥ N(1/j, 1/j), so

P(|Wn −W | > an) = P(|Wn −W | > 1/j) ≤ 1/j = an ≤ an.

The other direction is clear.

Lemma 37 (Weak law of large numbers (WLLN)). If W1,W2, . . . are i.i.d. real-valued
random variables and E(W1) = µ <∞, then as n→∞,

1

n

n∑
i=1

Wi
p→ µ.

Proof. We only prove this with the additional assumption that Var(W1) <∞. Given ε > 0,
by Markov’s inequality,

P

((
1

n

n∑
i=1

Wi − µ
)2

> ε

)
≤ 1

ε
Var

(
1

n

n∑
i=1

Wi

)
= ε−1Var(W1)/n→ 0.

Theorem 38 (Central limit theorem (CLT)). Consider the setup of Lemma 37. We have

√
n

(
1

n

n∑
i=1

Wi − µ

)
d→ N(0, 1).

Theorem 39 (Continuous mapping theorem (CMT)). Suppose the sequence of random

variables (Wn)∞n=1 is such that Wn
p→ W . Let f : R→ R be continuous at every point in a

set C with P(W ∈ C) = 1. Then f(Wn)
p→ f(W ).

Lemma 40 (Slutsky’s lemma). Let (Un)∞n=1 and (Wn)∞n=1 be sequences of random variables

where Un
d→ U and Wn

p→ c for random variable U ∈ R and deterministic c ∈ R. Then

1. Un +Wn
d→ U + c,

2. UnWn
d→ Uc,

3. Un/Wn
d→ U/c if c 6= 0.
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Proof of Lemma 29

Recall our setup that Y = f + ε where error ε ∈ Rn is such that ε1, . . . , εn are i.i.d. with
Eε1 = 0 and Varε1 = σ2 > 0. We consider an asymptotic regime where n increases, and
suppose f̂ ∈ Rn is an estimate of f such that there exists sequence an → 0 with

P(‖f̂ − f‖2
2/n ≤ an)→ 1.

Then setting

σ̂ :=
1√
n
‖Y − f̂‖2,

we claim there exists sequence bn → 0 such that

P
(∣∣∣σ
σ̂
− 1
∣∣∣ ≤ bn

)
→ 1.

Proof. From Lemma 36, we see that the assumption of Lemma 29 is equivalent to ‖f̂ −
f‖2

2/n
p→ 0. Similarly, the conclusion is that σ/σ̂

p→ 1. Moreover, applying Slutsky’s lemma
with Un = σ, Wn = σ̂ and noting that convergence in distribution implies convergence in
probability when the limit is deterministic, we see that this follows from σ̂

p→ σ, which we
now show.

We have

σ̂2 =
1

n
‖f − f̂‖2

2︸ ︷︷ ︸
p→0

+
1

n
‖ε‖2

2︸ ︷︷ ︸
p→σ2 by WLLN

+
2

n
εT (f − f̂). (4.4)

Now by the Cauchy–Schwarz inequality,

1

n
|εT (f − f̂)| ≤ 1√

n
‖ε‖2

1√
n
‖f − f̂‖2

p→ 0,

by the WLLN, the CMT, and Slutsky’s lemma. Thus returning to (4.4) and applying

Slutsky once more, we see that σ̂2 p→ σ2 whence (by the CMT) σ̂
p→ σ as required.

4.3 Conditional independence testing

The debiased Lasso may be viewed as part of a wider theme involving using modern re-
gression methods (in our case the Lasso) within methods for classical inferential problems
(in our case forming a confidence interval for a regression coefficient). The use of such
flexible regressions can often substantially weaken the assumptions required by more clas-
sical techniques. One important problem that can benefit from such an approach is that
of testing conditional independence.
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Suppose X ∈ Rn, Y ∈ Rn and Z ∈ Rn×p have components or rows respectively that
are i.i.d. Consider the first observation (x1, y1, z1) ∈ R × R × Rp. One way of connect-
ing regression with the problem of conditional independence testing is via the following
observation:

x1 ⊥⊥ y1 | z1 =⇒ E[{x1 − E(x1 | z1)}{y1 − E(y1 | z1)}] = 0 (4.5)

provided Ex2
1, Ey2

1 < ∞. In other words, the population level residuals from regressing
each of x1 and y1 on z1 are uncorrelated. To see this, observe that in fact as E(x1y1 | z1) =
E(x1 | z1)E(y1 | z1), under conditional independence, we have

E[{x1 − E(x1 | z1)}{y1 − E(y1 | z1)} | z1] = 0,

so (4.5) follows from the tower property. The relationship in (4.5) suggests regressing each
of X and Y on Z, and constructing a test statistic based on the products of the residuals.
Suppose that

x1 = f(z1) + ε1 and y1 = g(z1) + ξ1, (4.6)

where f(z1) := E(x1 | z1), g(z1) := E(y1 | z1), and so under conditional independence
E(ε1ξ1) = 0. Suppose additionally that ε1 ⊥⊥ z1 and ξ1 ⊥⊥ z1, so when x1 ⊥⊥ y1 | z1,

Var(ε1ξ1) = E{E(ε2
1ξ

2
1 | z1)} = E{E(ε2

1 | z1)E(ξ2
1 | z1)} = Var(ε1)Var(ξ1).

Given fitted regression functions f̂ and ĝ from regressing X and Y respectively on Z,
consider

τN :=
1

n

n∑
i=1

{xi − f̂(zi)}{yi − ĝ(zi)}.

Define εi := xi − f(zi) and ξi := yi − g(zi). If f and g are estimated sufficiently well by f̂
and ĝ, then the ith summand above will be close to εiξi. Under the null these quantities
are mean-zero and i.i.d., so the CLT suggests we can expect

√
nτN to have a Gaussian

distribution. To obtain a standard normal limit, we should normalise by the square root
of Var(

√
nτN) ≈ Var(ε1ξ1) = Var(ε1)Var(ξ1). Lemma 29 suggests we could estimate this

using

τ 2
D :=

(
1

n

n∑
i=1

{xi − f̂(zi)}2

)(
1

n

n∑
i=1

{yi − ĝ(zi)}2

)
,

and so take as our final test statistic

T :=
√
n
τN
τD
.

The result below formalises our intuition that provided

MSPEf := E

(
1

n

n∑
i=1

{f(zi)− f̂(zi)}2

)
and MSPEg := E

(
1

n

n∑
i=1

{g(zi)− ĝ(zi)}2

)
decay sufficiently fast, the test statistic will have an asymptotic standard normal distribu-
tion under the null.
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Theorem 41. Consider model (4.6) and suppose 0 < Var(ε1) <∞ and 0 < Var(ξ1) <∞.
Suppose MSPEf → 0, MSPEg → 0 and MSPEfMSPEg = o(n−1). Then under the null

that x1 ⊥⊥ y1 | z1, we have T
d→ N(0, 1).

Proof. Let us consider τN first. Writing xi = f(zi) + εi and similarly for yi, we have

nτN =
n∑
i=1

{f(zi)− f̂(zi) + εi}{g(zi)− ĝ(zi) + ξi}

=
n∑
i=1

{f(zi)− f̂(zi)}{g(zi)− ĝ(zi)}+
n∑
i=1

εi{g(zi)− ĝ(zi)}

+
n∑
i=1

ξi{f(zi)− f̂(zi)}+
n∑
i=1

εiξi

=: A1 + A2 + A3 + A4.

By the CLT,
A4√
n

d→ N(0,Var(ε1)Var(ξ1)).

Now by the triangle inequality and the Cauchy–Schwarz inequality,

E|A1| ≤
n∑
i=1

E{|f(zi)− f̂(zi)||g(zi)− ĝ(zi)|}

≤
n∑
i=1

[E{f(zi)− f̂(zi)}2]1/2[E{g(zi)− ĝ(zi)}2]1/2

≤

(
n∑
i=1

E{f(zi)− f̂(zi)}2

)1/2( n∑
i=1

E{g(zi)− ĝ(zi)}2

)1/2

.

Thus, by Markov’s inequality, given δ > 0,

P(|A1|/
√
n > δ) ≤ δ−1

√
n
E|A1| ≤

√
nMSPEfMSPEg → 0,

by assumption, so A1/
√
n

p→ 0. Turning to A2, observe that

E(εiεj{g(zi)− ĝ(zi)}{g(zj)− ĝ(zj)} |Y, Z) = {g(zi)− ĝ(zi)}{g(zj)− ĝ(zj)}E(εiεj |Y, Z).

As E(εiεj |Y, Z) = E(εiεj |Z), the above display is 0 if i 6= j. Therefore given δ > 0, by
Markov’s inequality and the above,

P(|A2|/
√
n > δ) = P(A2

2/n > δ2) ≤ δ−2

n
E(A2

2)

=
δ−2

n

n∑
i=1

E[ε2
i {g(zi)− ĝ(zi)}2]

= δ−2Var(ε1)MSPEg → 0,
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by assumption, so A2/
√
n

p→ 0. Similarly A3/
√
n

p→ 0. Thus by Slustky’s lemma,
√
nτN

d→
N(0,Var(ε1)Var(ξ1)).

We now show that τD
p→
√

Var(ε1)Var(ξ1). Note that by Markov’s inequality, given
δ > 0,

P

(
1

n

n∑
i=1

{f(zi)− f̂(zi)}2 > δ

)
≤ δ−1MSPEf → 0,

so
1

n

n∑
i=1

{f(zi)− f̂(zi)}2 p→ 0,

and similarly
1

n

n∑
i=1

{g(zi)− ĝ(zi)}2 p→ 0.

Then applying Lemma 29, we see that

1

n

n∑
i=1

{xi − f̂(zi)}2 p→ Var(ε1) and
1

n

n∑
i=1

{xi − f̂(zi)}2 p→ Var(ξ1).

Thus applying Slutsky’s lemma and the CMT shows that τD
p→
√

Var(ε1)Var(ξ1) and so

T
d→ N(0, 1) as required.

Corollary 42. Consider the setup of Theorem 41 where f and g lie in RKHS H with
reproducing kernel k satisfying an eigendecomposition of the form (1.22), and f̂ and ĝ are
kernel ridge regression estimates using kernel k and optimal choices of tuning parameters.

Then T
d→ N(0, 1).

Proof. This follows from Theorem 41 and Theorem 8.

4.4 Multiple testing

In many modern applications, we may be interested in testing many hypotheses simulta-
neously. Suppose we are interested in testing null hypotheses H1, . . . , Hm and Hi, i ∈ I0

are the true null hypotheses with |I0| = m0 (we do not mention the alternative hypotheses
explicitly). We will suppose we have available p-values p1, . . . , pm for each of the hypotheses
so

P(pi ≤ α) ≤ α

for all α ∈ [0, 1], i ∈ I0. A multiple testing procedure takes as input the vector of p-values,
and outputs a subset R ⊆ {1, . . . ,m} of rejected hypotheses. Let N = |R ∩ I0| be the
number of falsely rejected hypotheses, and let R = |R| be the number of rejections.
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4.4.1 Family-wise error rate control

Traditional approaches to multiple testing have sought to control the familywise error rate
(FWER) defined by

FWER = P(N ≥ 1)

at a prescribed level α; i.e. find procedures for which FWER ≤ α. The simplest such
procedure is the Bonferroni correction, which rejects Hi if pi ≤ α/m.

Theorem 43. Using Bonferroni correction,

P(N ≥ 1) ≤ E(N) ≤ m0α

m
≤ α.

Proof. The first inequality comes from Markov’s inequality. Next

E(N) = E
(∑

i∈I0

1{pi≤α/m}

)
=
∑
i∈I0

P(pi ≤ α/m)

≤ m0α

m
.

A more sophisticated approach is the closed testing procedure. Given our family of
hypotheses {Hi}mi=1, define the closure of this family to be

{HI : I ⊆ {1, . . . ,m}, I 6= ∅}
where HI = ∩i∈IHi is known as an intersection hypothesis (HI is the hypothesis that all
Hi i ∈ I are true).

Suppose that for each I, we have an α-level test φI taking values in {0, 1} for testing
HI (we reject if φI = 1), so under HI ,

PHI (φI = 1) ≤ α.

The φI are known as local tests.
The closed testing procedure [Marcus et al., 1976] is defined as follows:

Reject HI if and only if for all J ⊇ I,

HJ is rejected by the local test φJ .

Typically we only make use of the individual hypotheses that are rejected by the procedure
i.e. those rejected HI where I is a singleton.

We consider the case of 4 hypotheses as an example. Suppose the underlined hypotheses
are rejected by the local tests.

H1234

H123 H124 H134 H234

H12 H13 H14 H23 H24 H34

H1 H2 H3 H4
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� Here H1 is rejected by the closed testing procedure.

� H2 is not rejected by the closed testing procedure as H24 is not rejected by the local
test.

� H23 is rejected by the closed testing procedure.

Theorem 44. The closed testing procedure makes no false rejections with probability at
least 1− α. In particular it controls the FWER at level α.

Proof. Assume I0 is not empty (as otherwise no rejection can be false anyway). The
procedure makes a false rejection only if φI0 = 1, but this will occur with probability at
most α.

Different choices for the local tests give rise to different testing procedures. Holm’s
procedure [Holm, 1979] takes φI to be the Bonferroni test i.e.

φI =

{
1 if mini∈I pi ≤ α

|I|

0 otherwise.

It can be shown (see example sheet) that Holm’s procedure amounts to ordering the
p-values p1, . . . , pm as p(1) ≤ · · · ≤ p(m) with corresponding hypothesis tests H(1), . . . , H(m),
so (i) is the index of the ith smallest p-value, and then performing the following.

Step 1. If p(1) ≤ α/m reject H(1), and go to step 2. Otherwise accept H(1), . . . , H(m) and
stop.

Step i. If p(i) ≤ α/(m−i+1), reject H(i) and go to step i+1. Otherwise accept H(i), . . . , H(m).

Step m. If p(m) ≤ α, reject H(m). Otherwise accept H(m).

The p-values are visited in ascending order and rejected until the first time a p-value exceeds
a given critical value. This sort of approach is known (slightly confusingly) as a step-down
procedure.

4.4.2 The False Discovery Rate

A different approach to multiple testing does not try to control the FWER, but instead
attempts to control the false discovery rate (FDR) defined by

FDR = E(FDP)

FDP =
N

max(R, 1)
,

where FDP is the false discovery proportion. Note the maximum in the denominator is
to ensure division by zero does not occur. The FDR was introduced in Benjamini and
Hochberg [1995], and it is now widely used across science, particularly biostatistics.
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The Benjamini–Hochberg procedure attempts to control the FDR at level α and works
as follows. Let

k̂ = max

{
i : p(i) ≤

iα

m

}
.

Reject H(1), . . . , H(k̂) (or perform no rejections if k̂ is not defined).

Theorem 45. Suppose that for each i ∈ I0, pi is independent of {pj : j 6= i}. Then the
Benjamini–Hochberg procedure controls the FDR at level α; in fact FDR ≤ αm0/m.

Proof. For each i ∈ I0, let Ri denote the number of rejections we get by applying a modified
Benjamini–Hochberg procedure to

p\i := {p1, p2, . . . , pi−1, pi+1, . . . , pm}
with cutoff

k̂i = max

{
j : p

\i
(j) ≤

α(j + 1)

m

}
,

where p
\i
(j) is the jth smallest p-value in the set p\i.

For r = 1, . . . ,m and i ∈ I0, note that{
pi ≤

αr

m
, R = r

}
=

{
pi ≤

αr

m
, p(r) ≤

αr

m
, p(s) >

αs

m
for all s > r

}
=

{
pi ≤

αr

m
, p
\i
(r−1) ≤

αr

m
, p
\i
(s−1) >

αs

m
for all s > r

}
=

{
pi ≤

αr

m
, Ri = r − 1

}
.

Thus

FDR = E
(

N

max(R, 1)

)
=

m∑
r=1

E
(
N

r
1{R=r}

)
=

m∑
r=1

1

r
E
(∑

i∈I0

1{pi≤αr/m}1{R=r}

)

=
m∑
r=1

1

r

∑
i∈I0

P(pi ≤ αr/m, R = r)

=
m∑
r=1

1

r

∑
i∈I0

P(pi ≤ αr/m)P(Ri = r − 1)

≤ α

m

∑
i∈I0

m∑
r=1

P(Ri = r − 1)

=
αm0

m
.
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