
MATHEMATICS OF MACHINE LEARNING Part II
Revision Sheet RDS/Lent 2024

The schedules for Mathematics of Machine Learning changed in 2023 to remove some material
on the bounded differences inequality, but also changed in the following ways:

� IB Statistics became a formal prerequisite so linear regression can be used in examples
(the relevant material is here: https://www.statslab.cam.ac.uk/~rds37/teaching/

machine_learning/Notation.pdf).

� ‘Bias–variance decomposition’ was explicitly added.

From past exams then, the following questions should be accessible:

� 2023: All questions.

� 2022: Paper 1 31J, Paper 4 30J

� 2021: Paper 1 31J, Paper 2 31J

� 2020: Paper 2 30J, Paper 4 30J

I have added four more Tripos style questions below that you may wish to attempt. [Note these
are not necessarily of precisely the standard difficulty of Tripos questions.]

1. What does it mean for a random variable W ∈ R to be sub-Gaussian with parameter
σ > 0? State an upper bound on P(W − EW > t) for t > 0.

Show that if W1, . . . ,Wn are independent and sub-Gaussian with parameter σ, then∑n
i=1Wi/n is sub-Gaussian with parameter σ/

√
n.

State Hoeffding’s Lemma.

Now suppose matrix X ∈ [−1, 1]n×p with p ≥ 2 has independent rows with E(XijXik) =
Σjk for all i, j, k where Σ ∈ Rp×p. Let Σ̂ = XTX/n. Show that with probability at least
1− 2p−2,

max
j,k
|Σ̂jk − Σjk| ≤ 2

√
2 log(p)/n.

2. Suppose we have input–output pairs (x1, y1), . . . , (xn, yn) ∈ Rp × {−1, 1}. Consider the
empirical risk minimisation problem using hinge loss and hypothesis class

H = {x 7→ xTβ : β ∈ C ⊆ Rp},

where C is a non-empty closed convex set. Write down the objective function f : Rp → R
of the optimisation problem and briefly explain why it is convex.

Now take C = {x ∈ Rp : xj ≥ 0 for j = 1, . . . , p}. Write down the (sub)gradient descent
procedure for minimising f over β ∈ C giving explicit forms for any subgradients and
projections used.

Let β̂ ∈ C be a minimiser f over C and suppose that maxi=1,...,n ‖xi‖2 ≤ M . Prove that
the output β̄ of your procedure with k iterations initialised at a β1 ∈ Rp and implemented
with a fixed step size η you should specify satisfies

f(β̄)− f(β̂) ≤ M‖β̂ − β1‖2√
k

.

[You may use standard properties of convex functions and projections onto closed convex
sets without proof.]
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3. Given a hypothesis classH of functions h : X → R and i.i.d. input–output pairs (X1, Y1), . . . , (Xn, Yn) ∈
X × {−1, 1}, define the Rademacher complexity Rn(H).

Now suppose

H =
{
x 7→

d∑
j=1

βjφj(x) : β ∈ Rd and
d∑
j=1

γ2j β
2
j ≤ λ2

}
.

where φj : X → R and γj > 0 for j = 1, . . . , d. Let C2 = E
(∑d

j=1{φj(X1)/γj}2
)

. Show

that

Rn(H) ≤ λC√
n
.

Let Rφ and R̂φ be the risk and empirical risk respectively for logistic loss, and let h∗ and

ĥ be the respective minimisers over H (so ĥ is the empirical risk minimiser). Show that

ERφ(ĥ)−Rφ(h∗) ≤ 2λC

log(2)
√
n
.

4. Let F be a family of functions f : Z → {a, b} with a 6= b. Given z1:n ∈ Zn, what is the
empirical Rademacher complexity R̂(F(z1:n)) of H? What is meant by the VC dimension
VC(F) of F?

Now suppose (X1, Y1), . . . , (Xn, Yn) ∈ Rp × {−1, 1} are i.i.d. input–output pairs and con-
sider performing empirical risk minimisation with misclassification loss over a class of
classifiers H. Let R and R̂ denote the risk and empirical risk respectively. State an upper
bound of E suph∈H(R(h)− R̂(h)) in terms of the Rademacher complexity Rn(F) of a class
F related to H in a way you should specify.

Let B be a family of functions φ : R→ {−1, 1} given by

B = {u 7→ sgn(u− a), u 7→ sgn(a− u) : a ∈ R}.

Compute VC(B). Let u1, . . . , un ∈ R and state an upper bound on |B(u1:n)|.
Now for φ = (φ1, . . . , φp) ∈ Bp define Hφ by

Hφ = {v 7→ sgn(β1φ1(v1) + · · ·+ βpφp(vp)) : β1, . . . , βp ∈ R}.

Fix x1, . . . , xn ∈ Rp, and derive an upper bound on |Hφ(x1:n)|.
Let H := ∪φ∈BpHφ and show that

|H(x1:n)| ≤ (n+ 1)3p.

Finally conclude that

E sup
h∈H

(R(h)− R̂(h)) ≤ 2

√
6p log(n+ 1)

n
.
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