MATHEMATICS OF MACHINE LEARNING Part 11
Revision Sheet RDS/Lent 2024

The schedules for Mathematics of Machine Learning changed in 2023 to remove some material
on the bounded differences inequality, but also changed in the following ways:

e [B Statistics became a formal prerequisite so linear regression can be used in examples
(the relevant material is here: https://www.statslab.cam.ac.uk/~rds37/teaching/
machine_learning/Notation.pdf).

e ‘Bias—variance decomposition’ was explicitly added.

From past exams then, the following questions should be accessible:
e 2023: All questions.

e 2022: Paper 1 31J, Paper 4 30J

e 2021: Paper 1 31J, Paper 2 31J

e 2020: Paper 2 30J, Paper 4 30J

I have added four more Tripos style questions below that you may wish to attempt. [Note these
are not necessarily of precisely the standard difficulty of Tripos questions.]

1. What does it mean for a random variable W € R to be sub-Gaussian with parameter
o > 07 State an upper bound on P(W —EW > t) for t > 0.

Show that if Wyq,..., W, are independent and sub-Gaussian with parameter o, then
>, Wi/n is sub-Gaussian with parameter o//n.
State Hoeffding’s Lemma.

Now suppose matrix X € [—1,1]"*P with p > 2 has independent rows with E(X;;X;;) =
Yk, for all 4, j,k where ¥ € RP*P. Let ¥ = XTX/n. Show that with probability at least

1- 2p727
max |85 — Sjel < 2¢/2log(p)/n.

2. Suppose we have input—output pairs (z1,41),. .., (Zn,yn) € RP x {—1,1}. Consider the
empirical risk minimisation problem using hinge loss and hypothesis class

H=A{zx—2T5:5eCCRP},

where C' is a non-empty closed convex set. Write down the objective function f : RP — R
of the optimisation problem and briefly explain why it is convex.

Now take C' = {z € RP : z; > 0 for j = 1,...,p}. Write down the (sub)gradient descent
procedure for minimising f over 8 € C' giving explicit forms for any subgradients and
projections used.

Let B € C be a minimiser f over C' and suppose that max;=1 ., |zi|l2 < M. Prove that
the output B of your procedure with k iterations initialised at a 81 € RP and implemented
with a fixed step size n you should specify satisfies

M5 = Bill2
N

[You may use standard properties of convex functions and projections onto closed convez
sets without proof.]

F(B) = f(B) <


https://www.statslab.cam.ac.uk/~rds37/teaching/machine_learning/Notation.pdf
https://www.statslab.cam.ac.uk/~rds37/teaching/machine_learning/Notation.pdf

3. Given a hypothesis class H of functions h : X — R and i.i.d. input—output pairs (X1,Y7),...,(Xn, Ys) €
X x {—1,1}, define the Rademacher complexity R, (H).

Now suppose

d d
H = {x Y Bidi(x): feR and 34267 < /\2}.
=1 i=1

where ¢ : X - Rand~; > 0for j =1,....d. Let C>=E (z;.’zl{qu(xl)/fyj}?). Show
that

Let Ry and R¢ be the risk and empirical risk respectively for logistic loss, and let h* and
h be the respective minimisers over H (so h is the empirical risk minimiser). Show that

__2¢
~ log(2)y/n’

4. Let F be a family of functions f : Z — {a,b} with a # b. Given z1., € Z", what is the
empirical Rademacher complexity R(F (z1.n)) of H? What is meant by the VC dimension
VC(F) of F7?

Now suppose (X1,Y1),...,(Xp,Y,) € RP x {—1,1} are i.i.d. input—output pairs and con-
sider performing empirical risk minimisation with misclassification loss over a class of
classifiers . Let R and R denote the risk and empirical risk respectively. State an upper
bound of Esupy,cy,(R(h) — R(h)) in terms of the Rademacher complexity R, (F) of a class
F related to H in a way you should specify.

ERy(h) — Ry(h")

Let B be a family of functions ¢ : R — {—1,1} given by
B ={uw sgn(u—a), urssgn(a—u):ac R}

Compute VC(B). Let uq,...,u, € R and state an upper bound on |B(u1.,)].
Now for ¢ = (¢1,...,¢p) € BP define Hgy by

He = {v > sgn(Big1(v1) + -+ + Bpdp(vp)) : B1,-- -, Bp € R}

Fix x1,...,2, € RP, and derive an upper bound on [Hg(21:n)|-

Let H := UgeprHe and show that

H(z1n)] < (n+ 1)
Finally conclude that

Esup(R(h) — R(h)) < 2,/ P8 T
heH n



