The schedules for Mathematics of Machine Learning changed in 2023 to remove some material on the bounded differences inequality, but also changed in the following ways:

- IB Statistics became a formal prerequisite so linear regression can be used in examples (the relevant material is here: https://www.statslab.cam.ac.uk/~rds37/teaching/ machine_learning/Notation.pdf).
- 'Bias-variance decomposition' was explicitly added.

From past exams then, the following questions should be accessible:

- 2023: All questions.
- 2022: Paper 1 31J, Paper 4 30J
- 2021: Paper 1 31J, Paper 2 31J
- 2020: Paper 2 30J, Paper 4 30J

I have added four more Tripos style questions below that you may wish to attempt. [Note these are not necessarily of precisely the standard difficulty of Tripos questions.]

1. What does it mean for a random variable $W \in \mathbb{R}$ to be sub-Gaussian with parameter $\sigma>0$? State an upper bound on $\mathbb{P}(W-\mathbb{E} W>t)$ for $t>0$.
Show that if W_{1}, \ldots, W_{n} are independent and sub-Gaussian with parameter σ, then $\sum_{i=1}^{n} W_{i} / n$ is sub-Gaussian with parameter σ / \sqrt{n}.
State Hoeffding's Lemma.
Now suppose matrix $X \in[-1,1]^{n \times p}$ with $p \geq 2$ has independent rows with $\mathbb{E}\left(X_{i j} X_{i k}\right)=$ $\Sigma_{j k}$ for all i, j, k where $\Sigma \in \mathbb{R}^{p \times p}$. Let $\hat{\Sigma}=X^{T} X / n$. Show that with probability at least $1-2 p^{-2}$,

$$
\max _{j, k}\left|\hat{\Sigma}_{j k}-\Sigma_{j k}\right| \leq 2 \sqrt{2 \log (p) / n}
$$

2. Suppose we have input-output pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{p} \times\{-1,1\}$. Consider the empirical risk minimisation problem using hinge loss and hypothesis class

$$
\mathcal{H}=\left\{x \mapsto x^{T} \beta: \beta \in C \subseteq \mathbb{R}^{p}\right\},
$$

where C is a non-empty closed convex set. Write down the objective function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ of the optimisation problem and briefly explain why it is convex.
Now take $C=\left\{x \in \mathbb{R}^{p}: x_{j} \geq 0\right.$ for $\left.j=1, \ldots, p\right\}$. Write down the (sub)gradient descent procedure for minimising f over $\beta \in C$ giving explicit forms for any subgradients and projections used.
Let $\hat{\beta} \in C$ be a minimiser f over C and suppose that $\max _{i=1, \ldots, n}\left\|x_{i}\right\|_{2} \leq M$. Prove that the output $\bar{\beta}$ of your procedure with k iterations initialised at a $\beta_{1} \in \mathbb{R}^{p}$ and implemented with a fixed step size η you should specify satisfies

$$
f(\bar{\beta})-f(\hat{\beta}) \leq \frac{M\left\|\hat{\beta}-\beta_{1}\right\|_{2}}{\sqrt{k}} .
$$

[You may use standard properties of convex functions and projections onto closed convex sets without proof.]
3. Given a hypothesis class \mathcal{H} of functions $h: \mathcal{X} \rightarrow \mathbb{R}$ and i.i.d. input-output pairs $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in$ $\mathcal{X} \times\{-1,1\}$, define the Rademacher complexity $\mathcal{R}_{n}(\mathcal{H})$.
Now suppose

$$
\mathcal{H}=\left\{x \mapsto \sum_{j=1}^{d} \beta_{j} \phi_{j}(x): \beta \in \mathbb{R}^{d} \text { and } \sum_{j=1}^{d} \gamma_{j}^{2} \beta_{j}^{2} \leq \lambda^{2}\right\} .
$$

where $\phi_{j}: \mathcal{X} \rightarrow \mathbb{R}$ and $\gamma_{j}>0$ for $j=1, \ldots, d$. Let $C^{2}=\mathbb{E}\left(\sum_{j=1}^{d}\left\{\phi_{j}\left(X_{1}\right) / \gamma_{j}\right\}^{2}\right)$. Show that

$$
\mathcal{R}_{n}(\mathcal{H}) \leq \frac{\lambda C}{\sqrt{n}} .
$$

Let R_{ϕ} and \hat{R}_{ϕ} be the risk and empirical risk respectively for logistic loss, and let h^{*} and \hat{h} be the respective minimisers over \mathcal{H} (so \hat{h} is the empirical risk minimiser). Show that

$$
\mathbb{E} R_{\phi}(\hat{h})-R_{\phi}\left(h^{*}\right) \leq \frac{2 \lambda C}{\log (2) \sqrt{n}} .
$$

4. Let \mathcal{F} be a family of functions $f: \mathcal{Z} \rightarrow\{a, b\}$ with $a \neq b$. Given $z_{1: n} \in \mathcal{Z}^{n}$, what is the empirical Rademacher complexity $\hat{\mathcal{R}}\left(\mathcal{F}\left(z_{1: n}\right)\right)$ of \mathcal{H} ? What is meant by the $V C$ dimension $\operatorname{VC}(\mathcal{F})$ of \mathcal{F} ?
Now suppose $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathbb{R}^{p} \times\{-1,1\}$ are i.i.d. input-output pairs and consider performing empirical risk minimisation with misclassification loss over a class of classifiers \mathcal{H}. Let R and \hat{R} denote the risk and empirical risk respectively. State an upper bound of $\mathbb{E} \sup _{h \in \mathcal{H}}(R(h)-\hat{R}(h))$ in terms of the Rademacher complexity $\mathcal{R}_{n}(\mathcal{F})$ of a class \mathcal{F} related to \mathcal{H} in a way you should specify.
Let \mathcal{B} be a family of functions $\phi: \mathbb{R} \rightarrow\{-1,1\}$ given by

$$
\mathcal{B}=\{u \mapsto \operatorname{sgn}(u-a), u \mapsto \operatorname{sgn}(a-u): a \in \mathbb{R}\} .
$$

Compute $\operatorname{VC}(\mathcal{B})$. Let $u_{1}, \ldots, u_{n} \in \mathbb{R}$ and state an upper bound on $\left|\mathcal{B}\left(u_{1: n}\right)\right|$.
Now for $\boldsymbol{\phi}=\left(\phi_{1}, \ldots, \phi_{p}\right) \in \mathcal{B}^{p}$ define \mathcal{H}_{ϕ} by

$$
\mathcal{H}_{\phi}=\left\{v \mapsto \operatorname{sgn}\left(\beta_{1} \phi_{1}\left(v_{1}\right)+\cdots+\beta_{p} \phi_{p}\left(v_{p}\right)\right): \beta_{1}, \ldots, \beta_{p} \in \mathbb{R}\right\} .
$$

Fix $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$, and derive an upper bound on $\left|\mathcal{H}_{\phi}\left(x_{1: n}\right)\right|$.
Let $\mathcal{H}:=\cup_{\phi \in \mathcal{B}^{p}} \mathcal{H}_{\phi}$ and show that

$$
\left|\mathcal{H}\left(x_{1: n}\right)\right| \leq(n+1)^{3 p} .
$$

Finally conclude that

$$
\mathbb{E} \sup _{h \in \mathcal{H}}(R(h)-\hat{R}(h)) \leq 2 \sqrt{\frac{6 p \log (n+1)}{n}} .
$$

