
Mathematics of Machine Learning
Rajen D. Shah r.shah@statslab.cam.ac.uk

1 Introduction

Consider a pair of random variables (X, Y) ∈ X × Y with joint distribution P0, where X
is to be thought of as an input or vector of predictors, and Y as an output or response.
For instance X may represent a collection of disease risk factors (e.g. BMI, age, genetic
indicators etc.) for a subject randomly selected from a population and Y may represent
their disease status; or X could represent the number or bedrooms and other facilities in
a randomly selected house, and Y could be its price. In the former case we may take
Y = {−1, 1}, and this setting is known as the (two-class) classification setting. The latter
case where Y ∈ R is an instance of a regression setting. We will take X = Rp unless
otherwise specified. We refer to Y as the output, or response, and X as the input and its
components as predictors or variables.

It is of interest to predict the random Y from X; we may attempt to do this via a
(measurable) function h : X → Y , known in the machine learning literature as a hypothesis.
To measure the quality of such a prediction we will introduce a loss function

` : Y × Y → R.

In the classification setting, loss ` given by the misclassification error is particularly rele-
vant:

`(h(x), y) =

{
0 if h(x) = y,

1 otherwise.

In this context h is also referred to as a classifier. In regression settings, the use of squared
error `(h(x), y) = (h(x) − y)2 is common, and we will take this to be the case unless
specified otherwise. We will aim to pick a hypothesis h such that the risk

R(h) :=

∫
(x,y)∈X×Y

`(h(x), y) dP0(x, y)

is small1. For a deterministic h, R(h) = E`(h(X), Y).
Recall that the function h that minimises the risk in a regression setting is x 7→

E(Y |X = x), which we refer to as the regression function.
A classifier h0 that minimises the misclassification risk is known as a Bayes classifier,

and its risk is called the Bayes risk. A key function in the classification context is

η(x) := P(Y = 1 |X = x),

which is also known as the regression function here.

1Note that this is a different definition from the ‘risk’ you may have seen in Principles of Statistics.

1

Proposition 1. A Bayes classifier h0 is given by2

h0(x) =

{
1 if η(x) > 1/2

−1 otherwise.

In most settings of interest, the joint distribution P0 of (X, Y), which determines the op-
timal h, will be unknown. Instead we will suppose we have i.i.d. copies (X1, Y1), . . . , (Xn, Yn)
of the pair (X, Y), known as training data. Our task is to use this data to construct a
classifier ĥ such that R(ĥ) or ER(ĥ) is small.

Important point: R(ĥ) is a random variable depending on the random training data:

R(ĥ) = E(`(ĥ(X), Y) |X1, Y1, . . . , Xn, Yn).

A (classical) statistics approach to classification may attempt to model P0 up to some
unknown parameters, estimate these parameters (e.g. by maximum likelihood), and thereby
obtain an estimate of the regression function. We will take a different approach and assume
that we are given a class H of hypotheses from which to pick our ĥ. Possible choices of H
in the context of regression include for instance

� H = {h : h(x) = µ+ x>β where µ ∈ R, β ∈ Rp};

� H =
{
h : h(x) = µ+

∑d
j=1 ϕj(x)βj where µ ∈ R, β ∈ Rd

}
for a given set of what

are known in this context as basis functions ϕ1, . . . , ϕd : X → R;

� H =
{
h : h(x) =

∑d
j=1wjϕj(x) where w ∈ Rd, ϕj ∈ B

}
for a given class B of func-

tions ϕ : X → R.

In the classification setting, we may consider versions of the above composed with the sgn
function e.g. H = {h : h(x) = sgn(µ+ x>β) where µ ∈ R, β ∈ Rp}.

Technical note: In this course we will take sgn(0) = −1. (It does not matter much
whether we take sgn(0) = ±1, but we need to specify a choice in order that the h listed
above are well-defined.)

Non-examinable material is enclosed in *stars*.

1.1 Brief review of conditional expectation

For many of the mathematical arguments in this course we will need to manipulate condi-
tional expectations.

2When η(x) = 1/2, we can equally well take h0(x) = ±1 and achieve the same misclassification error.

2

Recall that if Z ∈ R and W = (W1, . . . ,Wd)
> ∈ Rd are random variables with joint

probability density function (pdf) fZ,W with respect to measure µ, then the conditional
pdf fZ|W of Z given W satisfies

fZ|W (z|w) =

{
fZ,W (z, w)/fW (w) if fW (w) 6= 0

0 otherwise,

where fW is the marginal pdf of W . When one or more of Z and W are discrete, we
typically work with probability mass functions.

Suppose E|Z| < ∞. Then the conditional expectation function E(Z |W = w) is given
by

g(w) := E(Z |W = w) =

∫
zfZ|W (z|w)µ(dz). (1.1)

We write E(Z |W) for the random variable g(W) (note this is a function of W , not Z).
This is not a fully general definition of conditional expectation (for that see the Stochas-

tic Financial Models course) and we will not use it. We will however make frequent use of
the following properties of conditional expectation.

(i) Role of independence: If Z and W are independent, then E(Z |W) = EZ. If
additionally for a random variable U , W is independent of (Z,U), then E(Z |U,W) =
E(Z |U).

(ii) Tower property: Let f : Rd → Rm be a (measurable) function. Then

E{E(Z |W) | f(W)} = E{Z | f(W)}.

In particular, taking f ≡ c ∈ R and using (i) gives us that E{E(Z |W)} = E(Z) (as
f(W) is a constant it is independent of any random variable).

(iii) Fixing what is known: We have

E{f(W1, . . . ,Wd) |W1 = w1, . . . ,Wr = wr}
=E{f(w1, . . . , wr,Wr+1, . . . ,Wd) |W1 = w1, . . . ,Wr = wr},

provided the r.h.s. is well-defined. In particular, if EZ2 <∞ and g : Rd → R is such
that E[{g(W)}2] <∞, then E{g(W)Z |W} = g(W)E(Z |W), a property sometimes
referred to as ‘taking out what is known’.

(iv) Best least squares predictor: With the conditions in (iii) above, we have

E{Z − g(W)}2 = E{Z − E(Z |W)}2 + E{E(Z |W)− g(W)}2. (1.2)

Indeed, using the tower property,

E{Z − g(W)}2 = E{Z − E(Z |W) + E(Z |W)− g(W)}2

= E{Z − E(Z |W)}2 + E{E(Z |W)− g(W)}2

+ 2EE[{Z − E(Z |W)}{E(Z |W)− g(W)} |W],

3

but by ‘taking what is known’, half the final term is

E[{E(Z |W)− g(W)}E{Z − E(Z |W) |W}︸ ︷︷ ︸
=0

] = 0.

Property (iv) verifies that the h : X → R minimising R(h) under squared loss is h0(x) =
E(Y |X = x).

Probabilistic results can be ‘applied conditionally’, for example:

Conditional Jensen. Recall that f : R→ R is a convex function if

tf(x) + (1− t)f(y) ≥ f
(
tx+ (1− t)y

)
for all x, y ∈ R and t ∈ (0, 1).

The conditional version of Jensen’s inequality states that if f : R → R is convex and
random variable Z has E|f(Z)| <∞, then

E
(
f(Z) |W

)
≥ f

(
E(Z |W)

)
.

1.2 Bayes risk

Proof of Proposition 1. We have R(h) = P(Y 6= h(X)) = EP(Y 6= h(X) |X), so h0(x)
must minimise over h(x)

P(Y 6= h(X) |X = x) = P(Y = 1, h(x) = −1 |X = x) + P(Y = −1, h(x) = 1 |X = x)

= P(Y = 1 |X = x)1{h(x)=−1} + P(Y = −1 |X = x)1{h(x)=1}

= 1{h(x)=−1}η(x) + 1{h(x)=1}(1− η(x)).

When η(x) > 1 − η(x) and so η(x) > 1/2, we must have h0(x) = 1, and similarly when
η(x) < 1/2, we must have h0(x) = −1. If η(x) = 1/2, then the above is constant so any
h(x) minimises this.

1.3 Empirical risk minimisation

Empirical risk minimisation replaces the expectation over the unknown P0 in the definition
of the risk with the empirical distribution, and seeks to minimise the resulting objective
over h ∈ H:

R̂(h) :=
1

n

n∑
i=1

`(h(Xi), Yi), ĥ ∈ arg min
h∈H

R̂(h).

R̂(h) is the empirical risk or training error of h and ĥ is the empirical risk minimiser
(ERM).

4

Example 1. Consider the regression setting with Y = R, squared error loss and H =
{x 7→ µ + x>β for µ ∈ R, β ∈ Rp}. Then empirical risk minimisation is equivalent to
ordinary least squares, i.e. we have

ĥ(x) = µ̂+ β̂>x where (µ̂, β̂) ∈ arg min
(µ,β)∈R×Rp

1

n

n∑
i=1

(Yi − µ−X>i β)2.

We can consider applying this more generally where

H =

{
x 7→

d∑
j=1

ϕj(x)βj where β ∈ Rd

}

and ϕj : Rp → R for j = 1, . . . , d. For instance in the case where p = 1, we could have
ϕj(x) = xj−1. Then forming matrix Φ ∈ Rn×d with entries Φij = ϕj(Xi) assumed to
be of full column rank, and writing ϕ(x) = (ϕ1(x), . . . , ϕd(x)), we have that the ERM
ĥ : x 7→ β̂>ϕ(x) where

β̂ = (Φ>Φ)−1Φ>Y1:n (1.3)

and Y1:n := (Y1, . . . , Yn)>. 4

A good choice for the class H will result in a low generalisation error R(ĥ). This is a
measure of how well we can expect the ERM ĥ to predict a new data point (X, Y) ∼ P0

given only knowledge of X. To understand the competing factors that drive this sort of
quantity, it is helpful to consider the case of squared error loss where, as we shall see, this
may be related to a sum of bias and variance terms.

1.4 Bias–variance tradeoff

Let us consider ĥ = ĥD trained on data D = (Xi, Yi)
n
i=1 formed of iid copies of an indepen-

dent random pair (X, Y). We first consider its expected performance in terms of squared
error at X. To this end, it is helpful to introduce

h̄ : x 7→ E(ĥD(x)),

i.e. the average over the training data of ĥD, and the related function

h̃X1:n : x 7→ E(ĥD(x) |X1:n).

Recall property (iv) of conditional expectations, that for random variables Z,W ∈ R×W
and f :W → R, we have

E{Z − f(W)}2 = E{Z − E(Z |W)}2 + E{E(Z |W)− f(W)}2.

5

Using, this we have

E[{Y − ĥD(X)}2 |X]

= E[{Y − E(Y |X,D)︸ ︷︷ ︸
=E(Y |X)

}2 |X] + E[{E(Y |X)− ĥD(X)}2 |X]

= Var(Y |X) + E[{ĥD(X)− E(ĥD(X) |X)︸ ︷︷ ︸
=h̄(X)

}2 |X] + E[{E(Y |X)− h̄(X)}2 |X]. (1.4)

Thus, taking expectations:

ER(ĥD) = E{E(Y |X)− h̄(X)}2︸ ︷︷ ︸
squared bias

+EVar(ĥD(X) |X)︸ ︷︷ ︸
variance of ĥ

+ EVar(Y |X)︸ ︷︷ ︸
irreducible variance

. (1.5)

If ĥ were an ERM over class H, we would expect a rich class of hypotheses to result in a
smaller squared bias term. However, the variance would likely increase as empirical risk
minimisation may fit to the realised Y1, . . . , Yn closely and so ĥD would be very sensitive
to the training data D.

To see this tradeoff more clearly, it is instructive to consider a related decomposition
to (1.4) involving h̃: we have

E[{Y−ĥD(X)}2 |X = x] = E{E(Y |X = x)−h̃X1:n(x)}2+E{ĥD(x)−h̃X1:n(x)}2+Var(Y |X = x).

We examine the middle term in more detail, and consider the special case where ĥD is the
ERM of Example 1 given by (1.3), that is ĥD(x) = ϕ(x)>(Φ>Φ)−1Φ>Y1:n with ϕ(x) ∈ Rd.
To facilitate our analysis, let us assume that Var(Y |X = x) =: σ2 is constant in x. Then
we have

E[{ĥD(x)− h̃X1:n(x)}2 |X1:n]

= E[{ϕ(x)>(Φ>Φ)−1Φ>(Y1:n − E(Y1:n |X1:n))}2 |X1:n]

= ϕ(x)>(Φ>Φ)−1Φ>E[{Y1:n − E(Y1:n |X1:n)}{Y1:n − E(Y1:n |X1:n)}> |X1:n]Φ(Φ>Φ)−1ϕ(x).

Note that by property (i) of conditional expectations, E(Yj |X1:n) = E(Yj |Xj) and also,

E[{Yj − E(Yj |Xj)}{Yk − E(Yk |Xk)} |X1:n] = E[{Yj − E(Yj |Xj)}{Yk − E(Yk |Xk)} |Xj, Xk]

= E(YjYk |Xj, Xk)− E(Yj |Xj)E(Yk |Xk),

using the tower property in the final line. Now if j 6= k,

E(YjYk |Xj, Xk) = E{E(YjYk |Yj, Xj, Xk) |Xj, Xk} (tower property)

= E{YjE(Yk |Yj, Xj, Xk) |Xj, Xk} (taking out what is known)

= E{YjE(Yk |Xk) |Xj, Xk} (property (i))

= E(Yj |Xj)E(Yk |Xk) (taking out what is known and (i)).

6

Thus E[{Y1:n − E(Y1:n |X1:n)}{Y1:n − E(Y1:n |X1:n)}> |X1:n] = σ2I, and so

E[{ĥD(x)− h̃X1:n(x)}2 |X1:n] = σ2ϕ(x)>(Φ>Φ)−1ϕ(x).

Consider now averaging this over the training points x = X1, . . . , Xn. Noting that ϕ(Xi)
is the ith row of Φ, we may compute, using the ‘trace trick’ (and that trace is invariant to
cyclic permutations),

1

n

n∑
i=1

σ2tr{ϕ(Xi)
>(Φ>Φ)−1ϕ(Xi)} =

σ2

n
tr

(n∑
i=1

ϕ(Xi)ϕ(Xi)
>

︸ ︷︷ ︸
=Φ>Φ

(Φ>Φ)−1

)

=
σ2d

n
.

Thus the variance term increases linearly with d, while the squared bias should decrease
when adding further basis functions ϕj.

At least two questions may arise at this stage: how should we choose the number of
basis functions in practice in order to obtain a small expected risk? And, particularly in
multivariate settings, what are sensible ways of choosing the basis functions themselves?
We turn to the first of these questions next.

1.5 Cross-validation

The question of selecting the appropriate number of basis functions in a linear regression
may be seen as a special case of the following problem: given a number of competing
machine learning methods, select from these (ideally) the best one i.e. one that trades off
bias and variance most favourably. In the case of linear regression, each regression using a
given set of basis functions may be thought of as one of the competing methods.

Now let ĥ(1), . . . , ĥ(m) be a collection of machine learning methods: for instance ĥ(j)

could correspond to performing linear regression using basis functions ϕ1, . . . , ϕj. Each

ĥ(j) takes as its argument i.i.d. training data (Xi, Yi)
n
i=1 =: D ∈ (X × Y)n and outputs a

hypothesis, so ĥ
(j)
D : X → R. Given a loss function ` with associated risk R, we may ideally

want to pick a ĥ(j) such that the risk

R(ĥ
(j)
D) = E{`(ĥ(j)

D (X), Y) |D} (1.6)

is minimised. Here (X, Y) ∈ X × Y is independent of D and has the same distribution as
(X1, Y1). This ĥ(j) is such that conditional on the original training data, it minimises the
expected loss on a new observation drawn from the same distribution as the training data.

A less ambitious goal is to find a j to minimise the expected risk

ER(ĥ
(j)
D) = E[E{`(ĥ(j)

D (X), Y) |D}] (1.7)

where compared with (1.6), we have taken a further expectation over the training data D.

7

We still have no way of computing (1.7) directly, but we can attempt to estimate it.
The idea of v-fold cross-validation is to split the data into v groups or folds of roughly
equal size. Let D−k be all the data except that in the kth fold, and let Ak ⊂ {1, . . . , n}
be the observation indices corresponding to the kth fold. For each j we apply ĥ(j) to data
D−k to obtain hypothesis ĥ

(j)
−k := ĥ

(j)
D−k

. We choose the value of j that minimises

CV(j) :=
1

n

v∑
k=1

∑
i∈Ak

`(ĥ
(j)
−k(Xi), Yi). (1.8)

Writing ĵ for the minimiser, we may take final selected hypothesis to be ĥ
(ĵ)
D .

Note that for each i ∈ Ak,

E`(ĥ(j)
−k(Xi), Yi) = E[E{`(ĥ(j)

−k(Xi), Yi)|D−k}]. (1.9)

This is precisely the expected loss in (1.7) but with training data D replaced with a training
data set of smaller size. If all the folds have the same size, then CV(j) is an average of
n identically distributed quantities, each with expected value as in (1.9). However, the
quantities being averaged are not independent as they share the same data.

Thus cross-validation gives a biased estimate of the expected prediction error. The
amount of the bias depends on the size of the folds, the case when the v = n typically
giving the least bias—this is known as leave-one-out cross-validation. The quality of the
estimate, though, may be worse as the quantities being averaged in (1.8) will tend to be
positively correlated. Typical choices of v are 5 or 10.

2 Popular machine learning methods I

2.1 Decision trees

We now have a way to select an appropriate subset of basis functions to use from a larger
collection, but how should we choose this collection in the first place? Decision trees (also
known as regression trees in the regression context we study here; there are also variants
for classification which we will not discuss) form a highly popular class of methods for
doing this in a data-driven fashion.

Regression trees use a set of basis functions consisting of indicator functions on rectan-
gular regions and take the form

T (x) =
J∑
j=1

γj1Rj
(x); (2.1)

here Rj are rectangular regions that form a partition of Rp and the γj are coefficients in
R.

The regions and coefficients are typically computed from data (Xi, Yi)
n
i=1 using the

following recursive binary partitioning algorithm.

8

1. Input maximum number of regions J . Initialise R̂ = {Rp}.

2. We now split one of the regions in R̂ using an axis aligned split such that a particular
splitting criterion is minimised. In the regression case, it often makes sense to aim
to minimise the overall residual sum of squares (RSS) as follows.

(a) For each region R ∈ R̂ such that I := {i : Xi ∈ R} has |I| > 1, perform
the following. For each j = 1, . . . , p, let Sj be the set of mid-points between
adjacent {Xij}i∈I . Find the predictor ĵR and split point ŝR to minimise over
j ∈ {1, . . . , p} and s ∈ Sj,

min
γL∈R

∑
i∈I:Xij≤s

(Yi − γL)2 + min
γR∈R

∑
i∈I:Xij>s

(Yi − γR)2

︸ ︷︷ ︸
RSS on I when splitting at s

− min
c∈R

∑
i∈I

(Yi − c)2

︸ ︷︷ ︸
RSS on I without splitting

. (2.2)

(b) Let R̂ be the region yielding the lowest value of (2.2) and define

R̂L = {x ∈ R̂ : xĵR̂
≤ ŝR̂}, R̂R = R̂ \ R̂L.

Refine the partition via R̂ ← (R̂ \ {R̂}) ∪ {R̂L, R̂R}.

3. Repeat step 2 until |R̂| = J .

4. Writing R̂ = {R̂1, . . . , R̂J}, let Îj = {i : Xi ∈ R̂j} and

γ̂j =
1

|Îj|

∑
i∈Îj

Yi.

Output T̂ : Rp → R such that T̂ (x) =
∑J

j=1 γ̂j1{x∈R̂j}.

Note that T̂ is the ERM over the class of functions{
T : T (x) =

J∑
j=1

γj1R̂j
(x) : γ ∈ RJ

}
,

with the regions R̂1, . . . , R̂J fixed. Note that although the regions were constructed in a
data-driven fashion, they were chosen greedily to minimise the RSS at each stage. Thus in
general, the fitted T̂ will not coincide the the RSS-minimising function of the form (2.1).

The fitted T̂ can be conveniently visualised in terms of a tree as indicated in Figure 1b.
The regions R̂j correspond to the so-called leaves, those bottom nodes with only a single
edge emanating from them.

At first sight, it might appear that the minimisation in 2 (a) is computationally intensive
as it involves both a loop over j and for each s ∈ Sj performing a least squares regression.

9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

2

3

4

5

6

(a) Rectangular regions constructed using the regression tree
algorithm fitted to a dataset with two predictors with num-
bers indicating the order in which the splits were made.
Also shown are the contours of the true regression function
E(Y |X = x).

x2 < 0.48

x2 < 0.25 x1 < 0.5

x2 < 0.9 x2 < 0.7

x1 < 0.77

0.77
100%

0.24
47%

0.066
26%

0.45
22%

1.2
53%

0.89
27%

0.78
22%

1.4
5%

1.6
26%

1.2
12%

2
14%

1.7
7%

2.2
7%

yes no

(b) Visualisation of the fitted regression tree. The percentages
give the proportion of data in the corresponding region and
also given is the average of the responses corresponding to
those points.

To see how the computations may be arranged efficiently, let us consider, for notational
simplicity, the first split, so I = {1, . . . , n}, and where p = 1.

Suppose that the {Xi}ni=1 are sorted so X1 < X2 < · · · < Xn. The minimisation
problem above is equivalent to finding m to minimise Qm + Pm where

Qm := min
γL∈R

∑
i≤m

(Yi − γL)2 and Pm := min
γR∈R

∑
i>m

(Yi − γR)2.

Note that

Qm =
∑
i≤m

(
Yi −

1

m

∑
i≤m

Yi

)2

=
∑
i≤m

Y 2
i −

1

m

(∑
i≤m

Yi

)2

,

with a similar decomposition for Pm. Thus

Pm +Qm =
n∑
i=1

Y 2
i −

1

m

(∑
i≤m

Yi

)2

− 1

n−m

(∑
i>m

Yi

)2

.

As the first term does not depend on m, we may equivalently maximise

1

m

(∑
i≤m

Yi

)2

+
1

n−m

(∑
i>m

Yi

)2

over m. Let Am :=
∑

i≤m Yi and Bm :=
∑

i>m Yi. Then Am+1 = Am + Ym+1 and Bm+1 =
Bm−Ym+1. Thus all A1, . . . , An−1 and B1, . . . , Bn−1 may be computed in O(n) operations.

10

Thus we may compute the display above for all m = 1, . . . , n− 1 in O(n) operations, and
hence we may minimise it over m with the same cost.

In order to use a decision tree is practice, one must choose the number of regions J : a
large J might result in overfitting, while a small J may result in a large bias. Choosing J
may be done via cross-validation. An alternative (typically preferred) approach is to grow
a very large tree, and then collapse regions together according to a pruning strategy; we
do not discuss this here.

2.2 Random forests

Whilst decision trees as above are a useful machine learning method in their own right,
they have a few disadvantages:

� The piecewise constant estimated regression functions they fit, while useful for visu-
alisation purposes (see Figure 1b) might not always deliver the best prediction error
particularly when the true regression function varies smoothly with the predictors.

� The process of building a tree is greedy and unstable. As a consequence, small
changes in the training data may lead to a very different tree; that is a fitted tree
can have high variance (over the training data).

The Random forest procedure is a highly successful algorithm that aims to remedy these
two deficiencies, though as we shall see, it does sacrifice interpretability of the fitted re-
gression function.

Consider the regression setting where Yi ∈ R and we are using squared error loss. Let T̂D
be a decision tree trained on data D := (Xi, Yi)

n
i=1. Also let T̄ be given by T̄ (x) = ET̂D(x)

and let (X, Y) be independent of D with (X, Y)
d
= (X1, Y1).

Recall the decomposition of the expected risk (1.5) in Section 1.4:

ER(T̂D) = E{E(Y |X)− T̄ (X)}2︸ ︷︷ ︸
squared bias

+EVar(T̂D(X) |X)︸ ︷︷ ︸
variance of the tree

+ EVar(Y |X)︸ ︷︷ ︸
irreducible variance

.

If the number of regions J used by T̂D is large, some of these regions will contain only
small numbers of observations in them so the corresponding coefficients γ̂j will by highly

variable and consequently EVar(T̂D(X) |X) will tend to be large. On the other hand, the
squared bias above and hence R(T̄) may be low as a large J would allow T̄ to approximate
x 7→ E(Y |X = x) well.

Random forest effectively attempts to ‘estimate’ T̄ and so improve upon the variance
of a single tree. If we had multiple independent datasets D1, . . . , DB, we could form an
unbiased estimate via

∑B
b=1 T̂Db

. Random forest samples the data D with replacement to
form new datasets D∗1, . . . , D

∗
B and performs the following.

1. For each b = 1, . . . , B, grow a decision tree T̂ (b) := T̂D∗b but when searching for
the best predictor to split on, randomly sample (without replacement) mtry of the p
predictors and choose the best split from among these variables.

11

2. Output frf = 1
B

∑B
b=1 T̂

(b).

One reason for sampling predictors is to try to make the T̂ (b) more independent. To see why
this would be useful, suppose for b1 6= b2 and some x ∈ Rp that Corr(T̂ (b1)(x), T̂ (b2)(x)) =
ρ ≥ 0. Then

Var(frf(x)) =
1

B
Var(T̂ (1)(x)) +

ρB(B − 1)

B2
Var(T̂ (1)(x))

=
1− ρ
B

Var(T̂ (1)(x)) + ρVar(T̂ (1)(x)).

Whilst the first term can be made small for large B, the second term does not depend
on B, so we would like ρ to be small. The extra randomisation in the form of sampling
predictors can help to achieve this, and we would expect Var(frf(x)) to decrease3 with mtry.
On the other hand, we would expect the squared bias to increase as mtry is decreased. An
appropriate value of mtry may be selected using cross-validation.

3 Statistical learning theory

In a regression setting, using OLS with a set of d basis functions as in Example 1 to give
ĥD (where D = (X1:n, Y1:n) is the training data) yields

ER(ĥD)− ER(h̃X1:n) ≈ σ2d

n
, (3.1)

assuming σ2 := Var(Y |X = x) is constant in x (see example sheet and the discussion in
Section 1.4).

Our goal now is to study a roughly analogous quantity to the LHS of (3.1) in the
classification setting. For an ERM ĥ over a class H, in general, x 7→ E(ĥD(x) |X1:n) will
not be a classifier. Instead, we may compare the risk or expected risk of ĥD = ĥ to

h∗ := arg min
h∈H

R(h),

the best4 hypothesis in H.
The quantity R(ĥ) − R(h∗) is sometimes known as the excess risk. Some questions of

interest are:

� How does the ‘complexity’ of H influence the excess risk?

� How does a change in the size n of the data affect the excess risk?

3In actual fact, the story may not be quite so simple as it is not entirely clear how Var(T̂ (1)(x)) will
behave as mtry is varied.

4If there is no h∗ that achieves the associated infimum, we can consider an approximate minimiser with
R(h∗) < infh∈HR(h) + ε for arbitrary ε > 0 and all our analysis to follow will carry through. In fact

similar reasoning is applicable to the ERM ĥ.

12

Statistical learning theory is the branch of machine learning devoted to these sorts of
considerations and in this course we aim to provide an introduction to some of the key
ideas in this area. Our starting point is the following decomposition of the excess risk:

R(ĥ)−R(h∗) = R(ĥ)− R̂(ĥ) + R̂(ĥ)− R̂(h∗)︸ ︷︷ ︸
≤0

+R̂(h∗)−R(h∗)

≤ sup
h∈H
{R(h)− R̂(h)}+ R̂(h∗)−R(h∗).

We wish to bound either the tail probability or the expectation of the excess risk. To
motivate the developments to follow, consider the former case, for which it would be
helpful to upper bound

P
(

sup
h∈H
{R(h)− R̂(h)} > t

)
for a given t ≥ 0. Consider, for the time being, the setting where |H| is finite; ultimately
we would like to tackle the case where |H| is infinite. A union bound gives

P
(

max
h∈H
{R(h)− R̂(h)} > t

)
= P(∪h∈H{R(h)− R̂(h) > t})

≤
∑
h∈H

P(R(h)− R̂(h) > t). (3.2)

Now for each fixed h ∈ H,

R(h)− R̂(h) =
1

n

n∑
i=1

[E{`(h(Xi), Yi)} − `(h(Xi), Yi)]

is an average of n i.i.d. mean-zero random variables. The central limit theorem (CLT) would
suggest that

√
n{R(h) − R̂(h)} should behave like a N(0,Var(`(h(X1), Y1)))-distributed

random variable. However, in order to make use of this to bound (3.2), we would need a
uniform limiting result for all h ∈ H. In order to trade off bias and variance favourably,
we may wish to increase the complexity of H, i.e. the size of |H|, for large n, so it is not
at all clear that such a uniform result should hold. Moreover, in order for (3.2) to be
small, we would need to consider t fairly large, so we would need such a limiting result
to provide a good approximation in the far right tail of the distribution of

√
n{R(h) −

R̂(h)}. Such desiderata go far beyond what is offered by the CLT, and instead we turn to
concentration inequalities, an important area of probability theory that (for example) can
provide nonasymptotic tail bounds that mimic what we would have liked to obtain from
the CLT, for averages of certain types of independent random variables.

3.1 Sub-Gaussianity and Hoeffding’s inequality

We begin our discussion of concentration inequalities with the simplest tail bound, Markov’s
inequality. Let W be a non-negative random variable. Taking expectations of both sides

13

of t1{W≥t} ≤ W for t > 0, we obtain after dividing through by t

P(W ≥ t) ≤ E(W)

t
.

This immediately implies that given a strictly increasing function ϕ : R→ (0,∞) and any
random variable W ,

P(W ≥ t) = P
(
ϕ(W) ≥ ϕ(t)

)
≤ E(ϕ(W))

ϕ(t)
.

Applying this with ϕ(t) = eαt (α > 0) yields the so-called Chernoff bound :

P(W ≥ t) ≤ inf
α>0

e−αtEeαW .

Example 2. Consider the case when W ∼ N(0, σ2). Recall that

EeαW = eα
2σ2/2. (3.3)

Thus for t ≥ 0,

P(W ≥ t) ≤ inf
α>0

eα
2σ2/2−αt = e−t

2/(2σ2). (3.4)

4

Note that to arrive at this bound, all we required was (an upper bound on) the moment
generating function (mgf) of W (3.3). This motivates the following definition.

Definition 1. We say a random variable W is sub-Gaussian with parameter σ > 0 if

Eeα(W−EW) ≤ eα
2σ2/2 for all α ∈ R.

From (3.4) we immediately have the following result.

Proposition 2. If W is sub-Gaussian with parameter σ > 0, then

P(W − EW ≥ t) ≤ e−t
2/(2σ2) for all t ≥ 0.

Note that if W is sub-Gaussian with parameter σ > 0, then

� it is also sub-Gaussian with parameter σ′ for any σ′ ≥ σ;

� −W is also sub-Gaussian with parameter σ > 0. This means we have from (3.4) that

P(|W − EW | ≥ t) ≤ P(W − EW ≥ t) + P(−(W − EW) ≥ t) ≤ 2e−t
2/(2σ2).

� Also W − c is sub-Gaussian with parameter σ for any deterministic c ∈ R.

14

Gaussian random variables are sub-Gaussian, but the sub-Gaussian class is much broader
than this.

Example 3. A Rademacher random variable ε takes values {−1, 1} with equal probability.
It is sub-Gaussian with parameter σ = 1:

Eeαε =
1

2
(e−α + eα) =

1

2

(∞∑
k=0

(−α)k

k!
+
∞∑
k=0

αk

k!

)
=
∞∑
k=0

α2k

(2k)!

≤
∞∑
k=0

α2k

2kk!
= eα

2/2 (using (2k)! ≥ 2kk!). (3.5)

4

Recall that we are interested in the concentration properties of 1{h(Xi)6=Yi}−P(h(Xi) 6=
Yi), which in particular is bounded.

Lemma 3 (Hoeffding’s lemma). If W takes values in [a, b], then W is sub-Gaussian with
parameter σ = (b− a)/2.

Proof. We will prove a weaker result here with σ = b− a. Let W ′ be an independent copy
of W . We have

Eeα(W−EW) = Eeα(W−EW ′)

= EeE{α(W−W ′) |W} using E(W ′) = E(W ′ |W) and E(W |W) = W

≤ Eeα(W−W ′) (Jensen conditional on W and tower property.).

Now W −W ′ d= −(W −W ′)
d
= ε(W −W ′) where ε ∼ Rademacher with ε independent of

(W,W ′). (Here “
d
=” means “equal in distribution”.) Thus

Eeα(W−EW) ≤ Eeαε(W−W ′) = E{E(eαε(W−W
′) |W,W ′)}.

We now apply our previous result (3.5) conditionally on (W,W ′) to obtain

EeαW ≤ Eeα2(W−W ′)2/2 ≤ Eeα2(b−a)2/2

as |W −W ′| ≤ b− a.

The introduction of an independent copy W ′ and a Rademacher random variable here
is an example of a symmetrisation argument ; we will make use of this technique again later
in the course.

The following proposition shows that somewhat analogously to how a linear combina-
tion of jointly Gaussian random variables is Gaussian, a linear combination of independent
sub-Gaussian random variables is also sub-Gaussian.

15

Proposition 4. Suppose W1, . . . ,Wn are independent and each Wi is sub-Gaussian with

parameter σi. Then for γ ∈ Rn, γ>W is sub-Gaussian with parameter
(∑

i γ
2
i σ

2
i

)1/2

.

Proof.

E exp
(
α

n∑
i=1

γi(Wi − EWi)
)

=
n∏
i=1

E exp
(
αγi(Wi − EWi)

)
≤

n∏
i=1

exp(α2γ2
i σ

2
i /2)

= exp
(
α2

n∑
i=1

γ2
i σ

2
i /2
)
.

As an application of the results above, suppose W1, . . . ,Wn are independent, and ai ≤
Wi ≤ bi almost surely for all i. Then

P

(
1

n

n∑
i=1

(Wi − EWi) ≥ t

)
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
for t ≥ 0, (3.6)

which is known as Hoeffding’s inequality.
As well as implying concentration around the mean, the bound on the mgf satisfied

by sub-Gaussian random variables also offers a bound on the expected maximum of d
sub-Gaussians.

Proposition 5. Suppose W1, . . . ,Wd are all mean-zero and sub-Gaussian with parameter
σ > 0 (but are not necessarily independent). Then

Emax
j
Wj ≤ σ

√
2 log(d).

Proof. Let α > 0. By convexity of x 7→ exp(αx) and Jensen’s inequality we have

exp(αEmax
j
Wj) ≤ E exp(αmax

j
Wj) = Emax

j
exp(αWj).

Now

E max
j=1,...,d

exp(αWj) ≤
d∑
j=1

E exp(αWj) ≤ deα
2σ2/2.

Thus

Emax
j
Wj ≤

log(d)

α
+
ασ2

2
.

Optimising over α > 0 yields the result.

16

3.2 Finite hypothesis classes

Recall that

R(ĥ)−R(h∗) = R(ĥ)− R̂(ĥ) + R̂(ĥ)− R̂(h∗)︸ ︷︷ ︸
≤0

+R̂(h∗)−R(h∗)

≤ sup
h∈H
{R(h)− R̂(h)}+ R̂(h∗)−R(h∗).

In the case where H is finite, Proposition 5 can be used to obtain a bound on the expected
excess risk. We can also obtain the following tail bound.

Theorem 6. Consider the classification setting with misclassification loss. Suppose H is
finite. Then with probability at least 1− δ, the ERM ĥ satisfies

R(ĥ)−R(h∗) ≤
√

2(log |H|+ log(1/δ))

n
.

Proof. For each h, R̂(h) is an average of i.i.d. quantities of the form `(h(Xi), Yi) taking
values in [0, 1]. For t > 0,

P(R(ĥ)−R(h∗) > t) = P(R(ĥ)−R(h∗) > t, ĥ 6= h∗)

≤ P(R(ĥ)− R̂(ĥ) > t/2, ĥ 6= h∗) + P(R̂(h∗)−R(h∗) > t/2).

We can immediately apply Hoeffding’s inequality to the second term to obtain

P(R̂(h∗)−R(h∗) ≥ t/2) ≤ exp(−nt2/2).

However the complicated dependence among the summands in R̂(ĥ) prevents this line of
attack for bounding the first term. To tackle this issue, we first note that when ĥ 6= h∗,

R(ĥ)− R̂(ĥ) ≤ max
h∈H−

{R(h)− R̂(h)},

where H− := H \ {h∗}. We then have using a union bound,

P(max
h∈H−

{R(h)− R̂(h)} ≥ t/2) = P(∪h∈H−{R(h)− R̂(h) ≥ t/2})

≤
∑
h∈H−

P(R(h)− R̂(h) ≥ t/2)

≤ |H−| exp(−nt2/2).

Thus
P(R(ĥ)−R(h∗) > t) ≤ |H| exp(−nt2/2).

Writing δ := |H| exp(−nt2/2) and then expressing t in terms of δ gives the result.

17

Example 4. Consider a simple classification setting with Xi ∈ [0, 1)2. Let us partition
[0, 1)2 intom2 disjoint squaresR1, . . . , Rm2 ⊂ [0, 1)2 of the form [r/m, (r+1)/m)×[s/m, (s+
1)/m) for r, s = 0, . . . ,m− 1. Let

Ȳj := sgn

(∑
i:Xi∈Rj

Yi

)
and define the ‘histogram classifier’

ĥhist(x) :=
m2∑
j=1

Ȳj1Rj
(x).

Then ĥhist is equivalent to the ERM over hypothesis class H consisting of the 2m
2

clas-
sifiers each corresponding to a way of assigning labels in {−1, 1} to each of the regions
R1, . . . , Rm2 . The result above tells us that the generalisation error of ĥhist satisfies

R(ĥhist)−R(h∗) ≤
√

2m2 log 2 + 2 log(1/δ)

n
.

[In fact it can be shown that the approximation error R(h∗) − R(h0) → 0 if m → ∞ for
any given P0. Combining with the above, we then see that choosing e.g. m = n1/3 we can
approach the Bayes risk for n sufficiently large.] 4

3.3 Rademacher complexity

Whilst a union bound in combination with Hoeffding’s inequality and Proposition 5 were
enough to give bounds on the risk and expected risk respectively in the case where |H| <∞,
we will need some new ideas to tackle the case where |H| = ∞. In this course, we
will consider bounds on the expected risk; in fact, using a more powerful concentration
inequality, the so-called bounded differences inequality, this analysis may be extended to
give high probability bounds on the risk as well, but we do not pursue this here.

Recall our setup: H is a (now possibly infinite) hypothesis class and we have

ER(ĥ)−R(h∗) ≤ EG where G := sup
h∈H
{R(h)− R̂(h)}.

Let us write Zi = (Xi, Yi) for i = 1, . . . , n and

F := {(x, y) 7→ −`(h(x), y) : h ∈ H}. (3.7)

Then we have

G = sup
f∈F

1

n

n∑
i=1

{f(Zi)− Ef(Zi)}.

The following definitions apply to a general function class F not necessarily coming from
(3.7).

18

Definition 2. Let F be a class of real-valued functions f : Z → R and let z1, . . . , zn ∈ Z.

� Let
F(z1:n) := {(f(z1), . . . , f(zn)) : f ∈ F},

be the class of ‘behaviours’ of F on z1:n.

� Define the empirical Rademacher complexity

R̂(F(z1:n)) := E

(
sup
f∈F

1

n

n∑
i=1

εif(zi)

)
, (3.8)

where ε1, . . . , εn are i.i.d. Rademacher random variables. Note that R̂(F(z1:n)) is
well-defined in that the right-hand side of (3.8) only depends on F(z1:n).

Given i.i.d. random variables Z1, . . . , Zn taking values in Z, we sometimes view the
empirical Rademacher complexity as a random variable:

R̂(F(Z1:n)) := E

(
sup
f∈F

1

n

n∑
i=1

εif(Zi)
∣∣∣Z1:n

)
.

Some intuition: Consider a classification problem with inputs Z1, . . . , Zn and com-
pletely random labels ε1, . . . , εn. The empirical Rademacher complexity then captures
how closely aligned the ‘predictions’ f(Zi) are to the random labels.

� Define the Rademacher complexity of F , Rn(F) := ER̂(F(Z1:n)).

Theorem 7. Let F be a class of real-valued functions f : Z → R and let Z1, . . . , Zn be
i.i.d. random variables taking values in Z. Then

E

(
sup
f∈F

1

n

n∑
i=1

{f(Zi)− Ef(Zi)}

)
≤ 2Rn(F).

Before we prove Theorem 7, let us reflect on what it might achieve. Considering our
main problem of bounding EG, a key challenge is that it depends in a complicated way
on the unknown P0. Key point: R̂(F(z1:n)) does not depend on P0, and it is conceivable
that we could obtain useful upper bounds of R̂(F(z1:n)) that are uniform in z1:n ∈ Zn. We
then immediately get a bound on Rn(F) = E{R̂(F(Z1:n))} that is independent of P0. We
now turn to the proof of Theorem 7, which uses a symmetrisation technique.

Proof of Theorem 7. Let us introduce an independent copy (Z ′1, . . . , Z
′
n) of (Z1, . . . , Zn).

We have

sup
f∈F

1

n

n∑
i=1

{f(Zi)− Ef(Zi)} = sup
f∈F

1

n

n∑
i=1

E{f(Zi)− f(Z ′i) |Z1:n} (independence of Z1:n and Z ′1:n)

≤ E

(
sup
f∈F

1

n

n∑
i=1

{f(Zi)− f(Z ′i)}
∣∣∣∣Z1:n

)
.

19

Note we have used the fact that for any collection of random variables Vt, supt′ EVt′ ≤
E supt Vt; this may easily be verified by removing the supremum over t′ and noting that
the resulting inequality must hold for all t′. Now let ε1, . . . , εn be i.i.d. Rademacher random
variables, independent of Z1:n and Z ′1:n. Then

sup
f∈F

1

n

n∑
i=1

{f(Zi)− f(Z ′i)}
d
= sup

f∈F

1

n

n∑
i=1

εi{f(Zi)− f(Z ′i)}

≤ sup
f∈F

1

n

n∑
i=1

εif(Zi) + sup
g∈F

1

n

n∑
i=1

{−εig(Zi)}.

Noting that ε1:n
d
= −ε1:n, we have

E

(
sup
f∈F

1

n

n∑
i=1

{f(Zi)− f(Z ′i)}

)
≤ E

(
sup
f∈F

2

n

n∑
i=1

εif(Zi)

)
= 2Rn(F).

An immediate consequence of Theorem 7 is the following bound on the expected risk
(note we do not require the loss to be misclassification loss here).

Theorem 8 (Expected risk bound based on Rademacher complexity). Let F := {(x, y) 7→
`(h(x), y) : h ∈ H}. Then

ER(ĥ)−R(h∗) ≤ 2Rn(F).

Proof. From the above and Theorem 7, we have ER(ĥ)−R(h∗) ≤ 2Rn(−F), where −F =

{−f : f ∈ F}. However, as for Rademacher random variables ε1, . . . , εn, ε1:n
d
= −ε1:n, we

have Rn(−F) = Rn(F).

3.4 VC dimension

All we need to do in order to bound the expected risk is to obtain bounds on the Rademacher
complexity. There are various ways of tackling this problem in general. Here, we will
explore an approach suited to the classification setting with misclassification loss and
F := {(x, y) 7→ `(h(x), y) : h ∈ H}. Our bounds will be in terms of the number |F(z1:n)| of
behaviours of the function class F on n points z1:n. Observe first that |F(z1:n)| = |H(x1:n)|
where zi = (xi, yi). Indeed, there is a bijection

(`(h(xi), yi))
n
i=1 ↔ (h(xi))

n
i=1 .

Lemma 9. We have R̂(F(z1:n)) ≤
√

2 log(|F(z1:n)|)/n =
√

2 log(|H(x1:n)|)/n.

Proof. Let d = |F(z1:n)| and let F ′ := {f1, . . . , fd} be such that F(z1:n) = F ′(z1:n) (so each
fj has a unique behaviour on z1:n). For j = 1, . . . , d, let

Wj =
1

n

n∑
i=1

εifj(zi),

20

where ε1:n are i.i.d. Rademacher random variables. Then R̂(F(z1:n)) = EmaxjWj. By
Lemma 3 and Proposition 4, each Wj is sub-Gaussian with parameter 1/

√
n. Thus we may

apply Proposition 5 on the expected maximum of sub-Gaussian random variables to give
the result.

As each h(xi) ∈ {−1, 1}, we always have |H(x1:n)| ≤ 2n. Considering the result above,
an interesting case then is when |H(x1:n)| is growing slower than exponentially in n, e.g.
growing polynomially in n.

Definition 3. Let H be a class of functions h : X → {a, b} with a 6= b (e.g. {a, b} =
{−1, 1}) with |H| ≥ 2.

� We say H shatters x1:n ∈ X n if |H(x1:n)| = 2n.

� Define also s(H, n) := maxx1:n∈Xn |H(x1:n)|; this is known as the shattering coefficient.

� The VC dimension VC(H) is the largest integer n such that some x1:n is shattered
by H, or ∞ if no such n exists. Equivalently, VC(H) = sup{n ∈ N : s(H, n) = 2n}.

If |H(x1:n)| = 2n, then |H(x1:m)| = 2m for all 1 ≤ m ≤ n. Thus to show VC(H) = n we
need to (i) exhibit an x1:n that is shattered (usually the easier part), and (ii) show that
no x1:n+1 can be shattered. Note that as no set of points that are not distinct can be
shattered, we can always restrict attention to sets of distinct points.

Example 5. Let X = R and consider H = {ha,b : ha,b(x) = 1[a,b)(x) : a, b,∈ R}. Con-
sider n distinct points x1, . . . , xn. These divide up the real line into n + 1 intervals
(−∞, x1], (x1, x2], . . . , (xn−1, xn], (xn,∞). Now if a and a′ are in the same interval, and
b and b′ are in the same interval, then (ha,b(xi))

n
i=1 = (ha′,b′(xi))

n
i=1. Thus every possible

behaviour (ha,b(xi))
n
i=1 can be obtained by picking one of the n + 1 intervals for each of a

and b, so
s(H, n) ≤ (n+ 1)2.

Now consider VC(H). Any x1:2 can be shattered, but with three points x1 < x2 < x3, we
can never have h(x1) = h(x3) = 1 but h(x2) = 0. Thus VC(H) = 2. 4

It is a bit tedious to determine the shattering coefficient individually for each H and
see whether it grows polynomially; we would like a more streamlined approach. Observe
that in the previous example, we have s(H, n) ≤ (n + 1)VC(H). The usefulness of the VC
dimension, named after its inventors Vladmir Vapnik and Alexey Chervonenkis, is due to
the remarkable fact that this is true more generally. The result below is known as the
Sauer–Shelah lemma.

Lemma 10 (Sauer–Shelah). Let H be a class with finite VC dimension d. Then

s(H, n) ≤ (n+ 1)d.

21

What is striking about this result is that whilst we know from the definition that for all
n > d, s(H, n) < 2n, it is not immediately obvious that we cannot have s(H, n) = 2n − 1,
or s(H, n) = 1.8n for n > d. The result shows that beyond d the growth of s(H, n) is
radically different in that it is polynomial. The important consequence of this is that from
Lemma 9 we have

Rn(F) ≤
√

2VC(H) log(n+ 1)

n
,

where F is the loss class associated with H.

Proof of Lemma 10. We will prove the following stronger result. Fix x1:n ∈ X n and let xQ
for any non-empty Q = {i1, . . . , i|Q|} ⊆ {1, . . . , n} be (xi1 , . . . , xi|Q|). Then we claim that there
are at least |H(x1:n)| − 1 non-empty sets Q ⊆ {1, . . . , n} such that H shatters xQ.

That this implies the statement of the lemma may be seen from the following reasoning. Take
x1:n to be such that |H(x1:n)| = s(H, n). As VC(H) = d, by definition no xQ with |Q| > d can
be shattered, so from the claim,

|H(x1:n)| − 1 ≤ (# of shattered sets xQ) ≤
min(d,n)∑
i=1

(
n

i

)
.

But then assuming wlog that n ≥ d, we have

d∑
i=1

(
n

i

)
≤ n+ n2 + · · ·+ nd

≤ nd +

(
d

1

)
nd−1 +

(
d

2

)
nd−2 + · · ·+

(
d

d− 1

)
n+

(
d

d

)
− 1 = (n+ 1)d − 1.

It remains to prove the claim, which we do by induction on |H(x1:n)|. Wlog assume the
functions in H map to {−1, 1}. The claim when |H(x1:n)| = 1 is clearly true (the statement
is vacuous in this case). Now take k ≥ 1 and suppose the result is true for all n ∈ N and
x1:n ∈ X n and H with |H(x1:n)| ≤ k. We will show the result holds at k + 1. Take any n ∈ N,
x1:n ∈ X n and H with |H(x1:n)| = k + 1. Let xj be such that H+ := {h ∈ H : h(xj) = 1} and
H− := {f ∈ H : h(xj) = −1} are both non-empty (which is possible as |H(x1:n)| ≥ 2). Then

|H+(x1:n)|+ |H−(x1:n)| = |H(x1:n)| = k + 1.

Let X− and X+ be the sets of subvectors xQ that are shattered by H− and H+ respectively.
By the induction hypothesis, |X−|+ |X+| ≥ k− 1. Clearly if xQ ∈ X− ∪X+, xQ can be shattered
by H ⊃ H1,H+. Now none of the subvectors in X− ∪ X+ can have xj as a component as then
the subvector could not be shattered (each subfamily of hypotheses has all h(xj) taking the same
value). But then when xQ ∈ X− ∩ X+, it must be the case that both xQ and xQ∪{j} (which are
distinct) can be shattered by H. Also xj itself is shattered by H. Thus we see that the number
of sets shattered by H is at least

1 + |X− ∪ X+|+ |X− ∩ X+| = 1 + |X−|+ |X+| ≥ 1 + (k − 1) = k,

thereby completing the induction step.

22

Example 6. Let X = Rp and consider H = {1A : A ∈ A} where A =
{∏p

j=1(−∞, aj] :

a1, . . . , ap ∈ R
}

. To compute VC(H), first note that the set of standard basis vectors
e1, . . . , ep ∈ Rp is shattered as for any I ⊆ {1, . . . , p}, we may take aj = 1 if j ∈ I and
aj = 0 otherwise; then

ej ∈
p∏

k=1

(−∞, ak] ⇔ j ∈ I.

Next take x1, . . . , xp+1 ∈ Rp and let πj be the jth coordinate function, so πj(xi) = xij,
where xij is the jth component of xi. Then by the pigeonhole principle, there must be
some xk∗ that is not the unique maximiser of any of the πj over x1, . . . , xp+1. But then for
each j = 1, . . . , p, there exists some xkj such that xkjj ≥ xk∗j, so for h ∈ H we can never
have h(xk∗) = 0 and h(xk) = 1 for all k 6= k∗. Thus VC(H) = p. 4

An important class of hypotheses H is based on functions that form a vector space.
Let F be a vector space of functions f : X → R, e.g. consider X = Rp and

F = {x 7→ x>β : β ∈ Rp}.

From F form a class of hypotheses

H = {h : h(x) = sgn(f(x)) where f ∈ F}. (3.9)

The following Proposition bounds the VC dimension of H.

Proposition 11. Consider hypothesis class H given by (3.9) where F is a vector space of
functions. Then

VC(H) ≤ dim(F).

Proof. Let d = dim(F) + 1 and take x1:d ∈ X d. We need to show that x1:d cannot be
shattered by H. Consider the linear map L : F → Rd given by

L(f) = (f(x1), . . . , f(xd)) ∈ Rd.

The rank of L is at most dim(F) = d−1 < d. Therefore, there must exist non-zero γ ∈ Rd

orthogonal to everything in the image L(F) i.e.∑
i:γi>0

γif(xi) +
∑
i:γi≤0

γif(xi) = 0 for all f ∈ F , (3.10)

where wlog at least one component of γ is strictly positive. Let I+ = {i : γi > 0} and
I− = {i : γi ≤ 0}. Then it is not possible to have

h(xi) = 1⇒ f(xi) > 0 for all i ∈ I+,

h(xi) = −1⇒ f(xi) ≤ 0 for all i ∈ I−,

(recall we are taking sgn(0) := −1) as otherwise the LHS of (3.10) would be strictly
positive. Thus x1:d cannot be shattered so VC(H) ≤ d− 1 as required.

23

4 Computation for empirical risk minimisation

The results of the previous section have given us a good understanding of the theoretical
properties of the ERM ĥ corresponding to a given hypothesis class. We have not yet
discussed whether ĥ can be computed in practice, and how to do so; these questions are
the topic of this chapter.

For a general hypothesis class H, computation of the ERM ĥ can be arbitrarily hard.
Things simplify greatly if computing ĥ may be equivalently phrased in terms of minimising
a convex function over a convex set.

4.1 Basic properties of convex sets

Recall that a set C ⊆ Rd is convex if

x, y ∈ C ⇒ (1− t)x+ ty ∈ C for all t ∈ (0, 1).

The intersection of an arbitrary collection of convex sets is convex, so if for each α ∈ I,
the set Cα ∈ Rd is convex, then ∩α∈ICα is convex (see Example Sheet 2).

Definition 4. .

� For a set S ⊆ Rd, the convex hull convS is the intersection of all convex sets con-
taining S.

� A point v ∈ Rd is a convex combination of v1, . . . , vm ∈ Rd if

v = α1v1 + · · ·+ αmvm

where α1, . . . , αm ≥ 0 and
∑m

j=1 αj = 1.

Lemma 12. For S ⊆ Rd, v ∈ convS if and only if v is a convex combination of some set
of points in S.

Proof. Let D be the set of all convex combinations of sets of points from S. We want to
show D ⊇ convS and D ⊆ convS. Showing the former is a task on Example Sheet 2; we
show the latter relation D ⊆ convS.

Now intersections of convex sets are convex, so convS is convex. Thus clearly a convex
combination of any v1, v2 ∈ S is in convS. Suppose then that for m ≥ 2, any convex
combination of m points from S is in convS. Take v1, . . . , vm+1 ∈ S and α1, . . . , αm+1 ≥ 0
with

∑m+1
j=1 αj = 1. Consider v =

∑m+1
j=1 vjαj. If αm+1 = 1, v = vm+1 ∈ S ⊆ convS.

Otherwise, writing t =
∑m

j=1 αj, we have t > 0 and αm+1 = 1− t so

v = t
(α1

t
v1 + · · ·+ αm

t
vm︸ ︷︷ ︸

∈ convS by the
induction hypothesis

)
+ (1− t)vm+1 ∈ convS.

24

Lemma 13. Let S ⊆ Rd. For any linear map L : Rd → Rn, convL(S) = L(convS).

Proof. u ∈ convL(S) iff. there exist v1, . . . , vm ∈ S and α1, . . . , αm ≥ 0 such that
∑m

j=1 αj =
1 and

u =
∑
j

αjL(vj).

But the RHS is L
(∑

j αjvj

)
∈ L(convS) and u ∈ L(convS) iff. u takes this form.

4.2 Basic properties of convex functions

In the following, let C ⊆ Rd be a convex set. A function f : C → R is convex if

f
(
(1− t)x+ ty

)
≤ (1− t)f(x) + tf(y) for all x, y ∈ C and t ∈ (0, 1).

Then −f is a concave function. It is strictly convex if the inequality is strict for all x, y ∈ C,
x 6= y and t ∈ (0, 1). For example, any norm ‖ ·‖ : Rd → [0,∞) is convex as by the triangle
inequality, for all t ∈ (0, 1),

‖(1− t)x+ ty‖ ≤ ‖(1− t)x‖+ ‖ty‖ = (1− t)‖x‖+ t‖y‖.

Convex functions exhibit a “local to global phenomenon”: for example local minima
are necessarily global minima. Indeed, if x ∈ C is a local minimum, so for all y ∈ C,
f((1− t)x+ ty) ≥ f(x) for all t > 0 sufficiently small, then by convexity

f(x) ≤ f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y),

so f(x) ≤ f(y) for all y ∈ C. On the other hand, non-convex functions can have many
local minima whose objective values are far from the global minimum, which can make
them very hard to optimise.

We collect together several useful properties of convex functions in the following propo-
sition.

Proposition 14. In the following, let C ⊆ Rd be a convex set and let f : C → R be a
convex function, unless specified otherwise.

New convex functions from old:

(i) Let g : C → R be a (strictly) convex function. Then if a, b > 0, af + bg is a (strictly)
convex function.

(ii) Let A ∈ Rd×m and b ∈ Rd and take C = Rd. Then g : Rm → R given by g(x) =
f(Ax− b) is a convex function.

(iii) Suppose fα : C → R is convex for all α ∈ I where I is some index set, and define
g(x) := supα∈I fα(x). Then

25

(a) D := {x ∈ C : g(x) <∞} is convex and

(b) function g restricted to D is convex.

Consequences of convexity:

(iv) For all M ∈ R, the sublevel set {x ∈ C : f(x) ≤M} is convex.

(v) If f is differentiable at x ∈ int(C) then f(y) ≥ f(x) +∇f(x)>(y − x) for all y ∈ C.
In particular, ∇f(x) = 0⇒ x minimises f .

(vi) If f is a strictly convex function, then any minimiser is unique.

(vii) If C = convD, then supx∈C f(x) = supx∈D f(x).

Checking convexity:

(viii) If f : Rd → R is twice continuously differentiable then

(a) f is convex iff. its Hessian matrix H(x) at x is positive semi-definite for all x,

(b) f is strictly convex if H(x) is positive definite for all x.

4.3 Convex surrogates

In the classification setting, one problem with using misclassification loss is that the ERM
optimisation can be intractable for many hypothesis classes. For example, taking H based
on half-spaces, the ERM problem minimises over β ∈ Rp the following objective:

1

n

n∑
i=1

1{sgn(X>i β)6=Yi} ≈
1

n

n∑
i=1

1(−∞,0](YiX
>
i β)

(ignoring when X>i β = 0). The RHS is not convex and in fact not continuous due to
the indicator function. If 1(−∞,0] above were somehow replaced with a convex function,
we know from Proposition 14 (i) & (ii) that the resulting objective would be a convex
function of β. The minimising β̂ may still be able to deliver classification performance via
x 7→ sgn(x>β̂) that is comparable to that of the ERM provided the convex function is a
sufficiently good approximation to an indicator function.

These considerations motivate the following changes to the classification framework
that we have been studying thus far.

� Rather than performing ERM over a set of classifiers, let us consider a family H of
functions h : X → R. Each h ∈ H determines a classifier via x 7→ sgn(h(x)).

� We will consider loss functions ` : R× R→ [0,∞) of the form

`(h(x), y) = φ(yh(x))

26

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

u

φ
(u

)

0−1 loss
hinge loss
logistic loss
exponential loss

where φ : R→ [0,∞) is convex. We will refer to the corresponding risk as the φ-risk
and denote it by Rφ(h) := Eφ(Y h(X)). Note formally we will be taking Y = R (even
though the data (Yi)

n
i=1 are in {−1, 1}). Similarly write

R̂φ(h) :=
1

n

n∑
i=1

φ(Yih(Xi))

for the corresponding empirical φ-risk.

Common choices of φ include the following:

� Hinge loss: φ(u) = max(1− u, 0).

� Exponential loss: φ(u) = e−u.

� Logistic loss: φ(u) = log2(1 + e−u) = log(1 + e−u)/ log(2).

For the strategy of using a surrogate loss to be useful, ERM with the surrogate loss should
hopefully mimic using misclassification loss. For example, we would ideally like the hφ,0
that minimises Rφ (assuming it exists) to be such that x 7→ sgn(hφ,0(x)) is (equivalent to)
the Bayes classifier x 7→ sgn(η(x)−1/2). To understand when this is the case, we introduce
the following definitions.

The conditional φ-risk of h is

E(φ(Y h(X)) |X = x) = η(x)φ(h(x)) + (1− η(x))φ(−h(x)),

where recall η(x) = P(Y = 1|X = x). It will be helpful to consider this in terms of a generic
conditional probability η ∈ [0, 1] and generic value α ∈ R of h(x). We thus introduce

Cη(α) := ηφ(α) + (1− η)φ(−α).

The following definition encapsulates our idea of sgn ◦ hφ,0 achieving the optimal Bayes
misclassification risk, but also allows for the possibility that infhRφ(h) is not attained.

27

Definition 5. We say φ : R → [0,∞) is classification calibrated if for any η ∈ [0, 1] with
η 6= 1/2,

inf
α∈R

Cη(α) < inf
α:α(2η−1)≤0

Cη(α).

In words, the equation above says that the infimal generic conditional φ-risk is strictly
less than the infimum where α (playing the role of h(x)) is forced to disagree in sign with
the Bayes classifier. The following result tells us when the favourable case of classification
calibration occurs for convex φ.

Theorem 15. Let φ : R → [0,∞) be convex. Then φ is classification calibrated if it is
differentiable at 0 and φ′(0) < 0.

Proof. Note that Cη is convex and differentiable at 0 with

C ′η(0) = (2η − 1)φ′(0).

Suppose η > 1/2, so C ′η(0) < 0. Then from Proposition 14 (iv),

Cη(α) ≥ Cη(0) + C ′η(0)α ≥ Cη(0)

for α ≤ 0. Also as

0 > C ′η(0) = lim
α↓0

Cη(α)− Cη(0)

α
,

for some α∗ > 0 we have Cη(α
∗) < Cη(0) ≤ infα≤0Cη(α). Next note that C1/2+θ(α) =

C1/2−θ(−α) for θ ∈ [0, 1/2], so similarly when η < 1/2, there exists some α∗ < 0 with
Cη(α

∗) < Cη(0) ≤ infα≥0Cη(α). Thus in both cases infα∈RCη(α) ≤ Cη(α
∗) < infα:α(2η−1)≤0Cη(α).

We thus see that the popular choices of φ above are all classification calibrated.

4.4 Rademacher complexity revisited

One remaining issue is whether we can obtain guarantees on when the expected φ-risk is
small. Theorem 8 gives us a bound in terms of the Rademacher complexity of

F = {(x, y) 7→ φ(yh(x)) : h ∈ H}.

Our bounds for Rn(F) involving shattering coefficients and VC dimension relied heavily
on the use of misclassification loss. We will need a different approach here. One useful step
would be to relate Rn(F) to Rn(H) which is potentially simpler to handle. The following
result, which is sometimes known as the contraction lemma, helps in this regard.

Lemma 16 (Contraction lemma). Let r = supx∈X ,h∈H |h(x)|. Suppose there exists L ≥ 0
with |φ(u) − φ(u′)| ≤ L|u − u′| for all u, u′ ∈ [−r, r], so φ is Lipschitz with constant L
on [−r, r]. Then for any (x1, y1), . . . , (xn, yn) ∈ X × {−1, 1}, writing zi = (xi, yi), we have
R̂(F(z1:n)) ≤ LR̂(H(x1:n)), so in particular Rn(F) ≤ LRn(H).

28

Proof. Let (x1, y1), . . . , (xn, yn) ∈ X×{−1, 1} and let ε1, . . . , εn be a sequence of i.i.d. Rademacher
random variables. Then writing zi = (xi, yi), we have

R̂(F(z1:n)) = E

(
sup
h∈H

1

n

n∑
i=1

εiφ(yih(xi))

)
.

Let us consider z1:n as fixed and, for any i, write ε−i for the sequence ε1:n with εi removed. We
claim that for any (suitable) function A : H× {−1, 1}n−1,

E sup
h∈H

(
1

n
εiφ(yih(xi)) +A(h, ε−i)

)
≤ E sup

h∈H

(
L

n
εih(xi) +A(h, ε−i)

)
. (4.1)

Applying this with i = 1 and

A(h, ε−1) =
1

n

n∑
i=2

εiφ(yih(xi)),

we get

E sup
h∈H

(
1

n
ε1φ(y1h(x1)) +

1

n

n∑
i=2

εiφ(yih(xi))

)
≤ E sup

h∈H

(
L

n
ε1h(x1) +

1

n

n∑
i=2

εiφ(yih(xi))

)
. (4.2)

Next applying (4.1) with i = 2 and

A(h, ε−2) =
1

n

n∑
i=3

εiφ(yih(xi)) +
L

n
ε1h(x1),

we get that the RHS of (4.2) is at most

E sup
h∈H

(
L

n

2∑
i=1

εih(xi) +
1

n

n∑
i=3

εiφ(yih(xi))

)
.

Continuing this argument yields the result. It remains to prove the claim, which we do now. We
have

E sup
h∈H

(
1

n
εiφ(yih(xi)) +A(h, ε−i)

∣∣∣ ε−i)
=

1

2n

[
sup
h∈H
{φ(yih(xi)) + nA(h, ε−i)}+ sup

h∈H
{−φ(yih(xi)) + nA(h, ε−i)}

]
=

1

2n

[
sup
h,g∈H

{φ(yih(xi))− φ(yig(xi))︸ ︷︷ ︸
≤L|h(xi)−g(xi)|

+nA(h, ε−i) + nA(g, ε−i)}
]
.

But by symmetry,

sup
h,g∈H

{L|h(xi)− g(xi)|+ nA(h, ε−i) + nA(g, ε−i)}

= sup
h,g∈H

[L{h(xi)− g(xi)}+ nA(h, ε−i) + nA(g, ε−i)]

= sup
h∈H
{Lh(xi) + nA(h, ε−i)}+ sup

h∈H
{−Lh(xi) + nA(h, ε−i)}.

29

Hence

E sup
h∈H

(
1

n
εiφ(yih(xi)) +A(h, ε−i)

∣∣∣ ε−i) ≤ E sup
h∈H

(
L

n
εih(xi) +A(h, ε−i)

∣∣∣ ε−i)
Taking expectations proves the claim.

Corollary 17. Consider the setup of Lemma 16. Then with ĥ the ERM with φ-loss (so in a
classification setup, the corresponding classifier would be sgn ◦ ĥ), and h∗ ∈ arg min

h∈H
Rφ(h),

ERφ(ĥ)−Rφ(h∗) ≤ 2LRn(H).

In order for the result above to be applicable, we need H to be such that Rn(H) is
finite. This will not necessarily hold for our example where X = Rp of

H = {x 7→ x>β : β ∈ Rp}.

However, if we constrain the norm of the β and X is a bounded subset of Rp, we can
achieve this. Such considerations lead to two hugely important classes of machine learning
methods, those based on constraining the `2-norm and those constraining the `1-norm.

4.5 `2-constraint

Suppose X = {x ∈ Rp : ‖x‖2 ≤ C} and consider

H = {x 7→ x>β : β ∈ Rp and ‖β‖2 ≤ λ} (4.3)

for λ > 0. Then we have that for any x1:n ∈ X n,

R̂(H(x1:n)) =
1

n
E

(
sup

β:‖β‖2≤λ

n∑
i=1

εix
>
i β

)

=
λ

n
E
∥∥∥ n∑
i=1

εixi

∥∥∥
2

(Cauchy–Schwarz)

≤ λ

n

(
E
∥∥∥ n∑
i=1

εixi

∥∥∥2

2

)1/2

,

where the last inequality follows due to concavity of
√
· and Jensen’s inequality. Now for

i 6= j, E(εix
>
i xjεj) = 0, so

E
∥∥∥ n∑
i=1

εixi

∥∥∥2

2
=

n∑
i=1

‖xi‖2
2 ≤ nC2.

Thus
R̂(H(x1:n)) ≤ λC/

√
n.

In fact, more generally if X = Rp but E‖Xi‖2
2 ≤ C, we have

Rn(H) ≤ λC√
n
.

30

Example 7. Take φ to be the hinge loss and H given by (4.3); the corresponding ERM
ĥ is then known as the support vector classifier. Note that the hinge loss is Lipschitz with
constant 1. From Corollary 17,

ERφ(ĥ)−Rφ(h∗) ≤ 2λC√
n

4

4.6 `1-constraint

The `1-norm of a vector u is ‖u‖1 :=
∑

i |ui|. Suppose now that

H = {x 7→ x>β : β ∈ Rp and ‖β‖1 ≤ λ}.

To compute the Rademacher complexity of H, we can make use of the following.

Lemma 18. For any A ⊆ Rn, R̂(A) = R̂(convA).

Proof. See example sheet.

Note that here

R̂(A) := E

(
sup
a∈A

1

n

n∑
i=1

εiai

)
,

where ε1, . . . , εn are i.i.d. Rademacher random variables.
To use this, observe that if β has ‖β‖1 = λ, then writing

β = λ

p∑
j=1

|βj|
λ

sgn(βj)ej,

we see that β ∈ convS where S = ∪pj=1{λej,−λej} and ej is the jth standard basis vector.
Next if ‖β‖1 ≤ λ, then

β =
λ+ ‖β‖1

2λ

λ

‖β‖1

β︸ ︷︷ ︸
∈convS

+
λ− ‖β‖1

2λ

(−λ)

‖β‖1

β︸ ︷︷ ︸
∈convS

∈ convS

as convS is convex. Then given x1, . . . , xn, let L : Rp → Rn be the linear map given by

L(β) = (x>1 β, . . . , x
>
nβ)>.

Then H(x1:n) = L(convS) = convL(S) from Lemma 13. Thus from Lemma 18 we have

R̂(H(x1:n)) = R̂(L(S))

=
λ

n
E
(

max
j=1,...,p

∣∣∣ n∑
i=1

εixij

∣∣∣)

31

where ε1, . . . , εn are i.i.d. Rademacher random variables. Now by Proposition 4, each
±
∑

i εixij is sub-Gaussian with parameter(n∑
i=1

x2
ij

)1/2

.

Thus from Proposition 5 we have

R̂(H(x1:n)) ≤ λ

n
×
(n∑

i=1

x2
ij

)1/2

×
√

2 log |S| =
(

1

n

n∑
i=1

x2
ij

)1/2
λ√
n

√
2 log(2p).

Now if X = [−C,C]p, we have (using E(U2) ≥ (EU)2) that

R̂(H(x1:n)) ≤ λC√
n

√
2 log(2p).

Example 8. Take φ to be the hinge loss and H as above. Suppose X = [−1, 1]p. Then
from Corollary 17,

ERφ(ĥ)−Rφ(h∗) ≤ 2λ

√
2 log(2p)

n
.

In contrast, withH given by the `2-constraint (4.3) we would have a bound of order λ
√
p/n.

Some notable differences are as follows.

� The dimension p contributes a factor of order
√

log(p) in the `1 constraint case versus√
p is the `2 constraint case.

� Write H1 and H2 for the `1 and `2 constrained hypothesis classes with norm con-
straints λ1 and λ2 respectively. Suppose that β0 ∈ Rp is such that h0 : x 7→ x>β0

minimises Rφ over {x 7→ x>β : β ∈ Rp}.

– If

β0 =

(
1
√
p
, . . . ,

1
√
p

)>
,

in order that β0 ∈ H1,H2, we require λ1 ≥
√
p and λ2 ≥ 1. These choices give

expected excess risk bounds of order

`1 :

√
p log p

n
, `2 :

√
p

n
.

– If

β0 =
(1√

s
, . . . ,

1√
s︸ ︷︷ ︸

s of these

, 0, . . . , 0
)>
,

the corresponding risk bounds would be

`1 :

√
s log p

n
, `2 :

√
p

n
.

32

Conclusion: If every predictor is equally important, the `2 hypothesis class will
tend to perform better. If only the s predictors are important and s is small, the `1

approach can perform well.

4

4.7 Projections on to convex sets

Empirical risk minimisation (with a convex surrogate) over the `2 and `1 constraint classes
discussed above involves minimising a convex function subject to the minimiser being in a
convex set. In order to perform this optimisation it will be helpful to project points on to
convex constraint sets.

Proposition 19. Let C ⊆ Rd be a closed convex set. Then for each x ∈ Rd, the minimiser
of ‖x− z‖2 over z ∈ C exists and is unique. Moreover writing

πC(x) = argminz∈C‖x− z‖2,

we have that for all x ∈ Rd,

(x− πC(x))>(z − πC(x)) ≤ 0 for all z ∈ C, (4.4)

‖πC(x)− πC(z)‖2 ≤ ‖x− z‖2 for all z ∈ Rd. (4.5)

Proof. Existence: Let µ = infz∈C ‖x− z‖2. Write B = {w : ‖w − x‖2 ≤ µ+ 1}. Then

inf
z∈C
‖x− z‖2 = inf

z∈C∩B
‖x− z‖2,

and the RHS is an infimum of a continuous function on a closed and bounded set, so the
infimum is achieved at π = πC(x), say.
Uniqueness: For each fixed x, z 7→ ‖x−z‖2

2 is a strictly convex function, so any minimiser
over the convex set C must be unique (see example sheet).
(4.4): We have (1− t)π + tz ∈ C for all t ∈ [0, 1], so

‖x− π‖2
2 ≤ ‖x− π + t(π − z)‖2

2

= ‖x− π‖2
2 − 2t(x− π)>(z − π) + t2‖π − z‖2

2,

whence

(x− π)>(z − π) ≤ t

2
‖π − z‖2

2 for all t ∈ (0, 1].

Letting t→ 0 shows (4.4).
(4.5): From (4.4) we have

(x− πC(x))>(πC(z)− πC(x)) ≤ 0

(z − πC(z))>(πC(x)− πC(z)) ≤ 0.

33

Adding these we have

‖πC(x)− πC(z)‖2
2 ≤ (πC(x)− πC(z))>(x− z)

≤ ‖πC(x)− πC(z)‖2‖z − x‖2 (Cauchy–Schwarz).

Dividing both sides by ‖πC(x)− πC(z)‖2 thus gives the result.

Definition 6. We call πC(x) above the projection of x on C.

4.8 Subgradients

For a convex function f : Rd → R differentiable at x ∈ Rd, we have that

f(z) ≥ f(x) +∇f(x)>(z − x) for all z ∈ Rd,

so in particular there is a hyperplane passing through (x, f(x)) that lies below the function.
This also holds true more generally at points where f may not be differentiable with ∇f(x)
above replaced by a subgradient.

Definition 7. A vector g ∈ Rd is a subgradient of a convex function f : Rd → R at x if

f(z) ≥ f(x) + g>(z − x) for all z ∈ Rd.

The set of subgradients of f at x is called the subdifferential of f at x and denoted ∂f(x).

Proposition 20. If f : Rd → R is convex, ∂f(x) is non-empty for all x ∈ Rd.

Proof. The set C = {(z, y) ∈ Rd × R : y ≥ f(z)} (known as the epigraph of f) is closed and
convex. Take a sequence w1, w2, . . . ∈ Rd+1 such that wk /∈ C for each k and wk → (x, f(x)) as
k →∞. Then for each k, there exists vk ∈ Rd+1 where

v>k w < v>k wk for all w ∈ C. (4.6)

Indeed taking vk = wk−πC(wk), from Proposition 19, we have that v>k (w−πC(wk)) ≤ 0, so then

v>k w ≤ v>k πC(wk) = vkwk − ‖vk‖22 < vkwk.

We can rescale the vk such that ‖vk‖2 = 1, and (4.6) will be maintained. With this modification,
we have that the sequence vk lies in the closed unit ball. Thus by the Bolzano–Weierstrass
theorem, there exists a convergent subsequence vkj → v = (−g̃, α) as j →∞. Then in particular

−g̃>z + αy ≤ −g̃>x+ αf(x) for all (z, y) ∈ C.

Clearly this is only possible if α < 0, so dividing by −α and setting g = g̃/α and y = f(z) we
obtain

f(z) + g>z ≥ f(x) + g>x for all z.

To compute subgradients, the following facts will be helpful.

34

Proposition 21. Let f : Rd → R be convex, and suppose f is differentiable at x. Then
∂f(x) = {∇f(x)}.

Proof. Suppose g ∈ Rd is a subgradient of f at x. Then, for any z ∈ Rd, we have

∇f(x)>z = lim
t↓0

f(x+ tz)− f(x)

t
≥ g>z.

In particular, taking z = g − ∇f(x), we have ‖∇f(x) − g‖22 ≤ 0, so we must have ∇f(x) = g.

Proposition 22 (Subgradient calculus). Let f, f1, f2 : Rd → R be convex. Then

(i) ∂(αf)(x) = {αg : g ∈ ∂f(x)} for α > 0,

(ii) ∂(f1 + f2)(x) = {g1 + g2 : g1 ∈ ∂f1(x), g2 ∈ ∂f2(x)}.

Also if h : Rm → R is given by h(x) = f(Ax+ b) where A ∈ Rd×m and b ∈ Rd, then

(iii) ∂h(x) = {A>g : g ∈ ∂f(Ax+ b)}.

Example 9. Consider

f(β) =
1

n

n∑
i=1

max(1− yix>i β, 0).

Let φ(u) = max(1− u, 0). Then

∂φ(u) =

{0} if u > 1,

[−1, 0] if u = 1,

{−1} if u < 1.

By Proposition 22 (iii) writing hi(β) = max(1− yix>i β, 0), we have ∂hi(β) = {−yixit : t ∈
[0, 1]} when yix

>
i β = 1. From Proposition 22 (i) and (ii), we see that ∂f(β) consists of

sums of the form − 1
n

∑n
i=1 yixiti where each ti may be 0, 1 or anything in [0, 1] depending

on the value of yix
>
i β. 4

4.9 Gradient descent

Suppose we wish to minimise a function f that is differentiable at a point β with gradient
g = ∇f(β). A first-order Taylor expansion gives f(z) ≈ f(β) + g>(z − β), so for small
η > 0,

min
δ:‖δ‖2=1

f(β + ηδ) ≈ f(β) + η min
δ:‖δ‖2=1

g>δ.

Thus to minimise the linear approximation of f at β, one should move in the direction of
the negative gradient.

The procedure of (projected) gradient descent for minimising f over a closed convex
set C uses this intuition to produce a sequence of iterates β1, β2, . . . aiming to have f(βs)
close to a minimum f(β̂) for large s.

35

Algorithm 1 Gradient descent

Input: β1 ∈ C; number of iterations k ∈ N; sequence of positive step sizes (ηs)
k−1
s=1

for s = 1 to k − 1 do
Compute gs ∈ ∂f(βs)
zs+1 = βs − ηsgs
βs+1 = πC(zs+1)

end for
return β̄ = 1

k

∑k
s=1 βs

Theorem 23. Suppose β̂ is a minimiser of convex function f : Rp → R over a closed
convex set C ⊆ Rp. Suppose supβ∈C ‖β‖2 ≤ R <∞ and supβ∈C supg∈∂f(β) ‖g‖2 ≤ L <∞.

Then if ηs ≡ η = 2R/(L
√
k), the output β̄ of the gradient descent algorithm above satisfies

f(β̄)− f(β̂) ≤ 2LR√
k
.

Proof. We have

f(βs)− f(β̂) ≤ g>s (βs − β̂) (definition of subgradient)

= −1

η
(zs+1 − βs)>(βs − β̂)

=
1

2η
{‖βs − zs+1‖2

2 + ‖βs − β̂‖2
2 − ‖zs+1 − β̂‖2

2}. (4.7)

From Proposition 19, ‖πC(z)− πC(x)‖2 ≤ ‖z − x‖2, so in particular

‖zs+1 − β̂‖2
2 ≥ ‖βs+1 − β̂‖2

2.

Using this and (4.7),

f(βs)− f(β̂) ≤ 1

2η
{η2‖gs‖2

2 + ‖βs − β̂‖2
2 − ‖βs+1 − β̂‖2

2}. (4.8)

Now ‖gs‖2 ≤ L. Also β1 ∈ C, so by the triangle inequality, ‖β1 − β̂‖2
2 ≤ 4R2. Thus

summing we get

1

k

k∑
s=1

f(βs)− f(β̂) ≤ ηL2

2
+

1

2ηk

(
‖β1 − β̂‖2

2 − ‖βk+1 − β̂‖2
2

)
≤ ηL2

2
+

2R2

ηk
.

Taking the minimising η = 2R/(L
√
k) and using Jensen’s inequality to give f(β̄) ≤

1
k

∑k
s=1 f(βs), we get the result.

36

Example 10. Consider ERM with hinge loss, X = {x ∈ Rp : ‖x‖2 ≤ C} and the `2-
constrained hypothesis class H = {x 7→ x>β : ‖β‖2 ≤ λ}. Then a subgradient of the
objective function f at β takes the form

g = − 1

n

n∑
i=1

yixiti where ti ∈ [0, 1].

Thus ‖g‖2 ≤ C by the triangle inequality. From Theorem 23 we see that the output of
gradient descent with step size η = 2λ/(C

√
k) satisfies f(β̄)− f(β̂) ≤ 2Cλ/

√
k. 4

4.10 Stochastic gradient descent

One issue with gradient descent is that the gradients themselves may be computationally
expensive to compute: in the case of ERM the gradient is a sum of n terms corresponding
to each data point, and so computing the gradient typically involves a sweep over the entire
dataset at each iteration.

Stochastic gradient descent can circumvent this issue in the case of minimising convex
functions of the form f(β) = Ef̃(β;U), where

� f̃ : Rp × U → R is such that β 7→ f̃(β;u) is convex for all u ∈ U ,

� U is a random variable taking values in U .

This encompasses empirical risk minimisation. Indeed let U be uniformly distributed on
{1, . . . , n}. Then the ERM objective function with H = {hβ : β ∈ C} may be written as

1

n

n∑
i=1

`(hβ(xi), yi) = E`(hβ(xU), yU) = Ef̃(β;U).

Note we are thinking of the data (x1, y1), . . . , (xn, yn) as fixed; only U is random.

Algorithm 2 Stochastic gradient descent

Input: β1 ∈ C; number of iterations k ∈ N; sequence of positive step sizes (ηs)
k−1
s=1 , i.i.d.

copies U1, . . . , Uk−1 of U
for s = 1 to k − 1 do

Compute g̃s ∈ ∂f̃(βs;Us) (to be interpreted as g̃s ∈ h(βs) where h(β) = f̃(β;Us))
zs+1 = βs − ηsg̃s
βs+1 = πC(zs+1)

end for
return β̄ = 1

k

∑k
s=1 βs

The key point to note is that computing g̃s involves just a single data point (xUs , yUs).

37

Theorem 24. Suppose β̂ is a minimiser of f as above over a closed convex set C ⊆ Rp.

Suppose supβ∈C ‖β‖2 ≤ R < ∞ and supβ∈C E
(

supg̃∈∂f̃(β;U) ‖g̃‖2
2

)
≤ L2 < ∞. Then if

ηs ≡ η = 2R/(L
√
k), the output β̄ of the stochastic gradient descent algorithm above

satisfies

Ef(β̄)− f(β̂) ≤ 2LR√
k
.

Proof. Let gs = E(g̃s|βs). Then gs ∈ ∂f(βs). Indeed we have f̃(β;Us) ≥ f̃(βs;Us)+ g̃>s (β−
βs) for all β. Note Us is independent of βs so taking expectations conditional on βs shows
gs ∈ ∂f(βs). Then arguing as in the proof of Theorem 23,

f(βs)− f(β̂) ≤ g>s (βs − β̂)

= E(g̃s(βs − β̂) | βs)

= −1

η
E{(zs+1 − βs)>(βs − β̂) | βs}

=
1

2η
E{‖βs − zs+1‖2

2 + ‖βs − β̂‖2
2 − ‖zs+1 − β̂‖2

2 | βs}

≤ 1

2η
E{η2‖g̃s‖2

2 + ‖βs − β̂‖2
2 − ‖βs+1 − β̂‖2

2 | βs} (Prop. 19).

Taking expectations and summing we get

E

(
1

k

k∑
s=1

f(βs)

)
− f(β̂) ≤ ηL2

2
+

2R2

ηk
.

Taking η = 2R/(L
√
k) and using Jensen’s inequality we get the result.

5 Popular machine learning methods II

5.1 Adaboost

Empirical risk minimisation is a technique for finding a single good hypothesis from a given
hypothesis class. Alternatively, we could attempt to find a good weighted combination of
hypotheses. Specifically, given a base set B of classifiers h : X → {−1, 1} such that
h ∈ B ⇒ −h ∈ B, consider the class

H =

{
M∑
m=1

βmhm : βm ≥ 0, hm ∈ B for m = 1, . . . ,M

}
.

The class H is clearly richer than base class B, and the construction above turns out to
be a useful way of creating a more complex hypothesis class from a simpler one, with the
tuning parameter M controlling the complexity. Performing ERM over H, however, can

38

be computationally challenging. The Adaboost algorithm can be motivated as a greedy
empirical risk minimisation procedure over H with exponential loss. As we shall see, one
attractive feature of the algorithm is that it only relies on being able to perform ERM over
the simpler class B given different weighted versions of the data.

Given a tuning parameter M , Adaboost first sets f̂0 to be the function x 7→ 0 and then
performs the following for m = 1, . . . ,M :

(β̂m, ĥm) = arg min
β≥0,h∈B

1

n

n∑
i=1

exp[−Yi{f̂m−1(Xi) + βh(Xi)}]

f̂m = f̂m−1 + β̂mĥm.

The final classification is performed according to sgn◦f̂M . Let us examine the minimisation
above in more detail. Set w

(m)
i = n−1 exp(−Yif̂m−1(Xi)). Then

1

n

n∑
i=1

exp[−Yi{f̂m−1(Xi) + βh(Xi)}] = eβ
n∑
i=1

w
(m)
i 1{h(Xi)6=Yi} + e−β

n∑
i=1

w
(m)
i 1{h(Xi)=Yi}

= (eβ − e−β)
n∑
i=1

w
(m)
i 1{h(Xi)6=Yi} + e−β

n∑
i=1

w
(m)
i .

Provided no h ∈ B perfectly classifies the data so

errm(h) :=

∑n
i=1w

(m)
i 1{h(Xi)6=Yi}∑n
i=1w

(m)
i

> 0 for all h ∈ B,

we have that
ĥm = arg min

h∈B
errm(h),

and β̂m satisfies (eβ̂m + e−β̂m)errm(ĥm) = e−β̂m . Letting x = eβ̂m and a = errm(ĥm), we
have

(x2 + 1)a = 1

so x =
√

1/a− 1

i.e. β̂m =
1

2
log

(
1− errm(ĥm)

errm(ĥm)

)
.

If M is large, the weighted empirical risk minimisation step to produce the ĥm must be
performed many times. In order for this approach to be practical, we need B to be such
that this optimisations can be done very fast. More generally, the ĥm need not be formed
through ERM but may be the output of some machine learning method.

Example 11. Let X = Rp and consider the class of decision stumps

B = {ha,j,1(x) = sgn(xj − a), ha,j,2(x) = sgn(a− xj) : a ∈ R, j = 1, . . . , p}.

Assuming that for each j, we know the order of the {Xij}ni=1, weighted ERM over this class
may be performed in O(np) operations (see example sheet). 4

39

5.2 Gradient boosting

Consider the following thought experiment. Let us imagine applying gradient descent
directly to minimise R(h) = E`(h(X), Y). This would involve the following steps.

1. Start with an initial guess f0 : X → R.

2. For m = 1, . . . ,M , iteratively compute

gm(x) =
∂E(`(θ, Y)|X = x)

∂θ

∣∣∣∣
fm−1(x)

= E
(
∂`(θ, Y)

∂θ

∣∣∣
fm−1(x)

∣∣∣∣X = x

)
assuming sufficient regularity conditions.

3. Update fm = fm−1 − ηgm, where η > 0 is a small step length.

If we want to create a version of the ‘algorithm’ above that works with finite data
(X1, Y1), . . . , (Xn, Yn), we need to find a way of approximating the conditional expectation
function

x 7→ E
(
∂`(θ, Y)

∂θ

∣∣∣
fm−1(x)

∣∣∣∣X = x

)
.

Recall from (iv) on page 3, that this minimises

E
(
∂`(θ, Y)

∂θ

∣∣∣
fm−1(X)

− h(X)

)2

(5.1)

among all (measurable) functions h : X → R under suitable conditions. This observation
motivates the following algorithm known as gradient boosting, where we try to minimise
an empirical version of (5.1) using regression, thereby approximating the conditional ex-
pectation. This regression is performed using some base regression method that takes as
input some training data D and outputs a hypothesis ĥD : X → R. In what follows, the
loss ` may correspond to a differentiable convex surrogate or least squares loss for example.
When ` is least squares loss, we have

Wi =
∂

∂θ
(Yi − θ)2

∣∣∣
θ=f̂m−1(Xi)

= −2(Yi − f̂m−1(Xi)),

so Wi is proportional to the negative residuals.
In the next step of Algorithm 3, we regress these residuals back onto our X1:n using

regression method ĥ.

Example 12. When ` is least squares, one choice of ĥD is the ERM over the class

{x 7→ µ+ xjβ : µ ∈ R, β ∈ R, j = 1, . . . , p}

given data D. Gradient boosting then amounts to repeatedly regressing the residuals onto
the predictor that has the largest (in absolute value) sample correlation with them, and
adding η times the fitted regression function to the current fit f̂m (see example sheet).

40

Algorithm 3 Gradient boosting

Input: Data X1:n, Y1:n; η > 0; base regression method ĥ; stopping iteration M
Compute µ̂ = arg min

µ∈R

1
n

∑n
i=1 `(µ, Yi) and set f0(x) = µ̂

for m = 1 to M do
Compute Wi = ∂

∂θ
`(θ, Yi)|θ=f̂m−1(Xi)

Apply ĥ to data X1:n,W1:n to give ĝm = ĥ(X1:n,W1:n) : X → R
Update f̂m = f̂m−1 − ηĝm

end for
return f̂M (or sgn ◦ f̂M in the classification setting)

5.3 Feedforward neural networks

In recent years, (artificial) neural networks have been shown to be very successful for a
variety of learning tasks. The class of feedforward neural networks are based around a
particular class of hypotheses h : X = Rp → R with general form

h(x) = A(d) ◦ g ◦ A(d−1) ◦ g ◦ · · · ◦ g ◦ A(2) ◦ g ◦ A(1)(x)

where

� d is known as the depth of the network;

� A(k)(v) = β(k)v + µ(k) where v ∈ Rmk , β(k) ∈ Rmk+1×mk , µ(k) ∈ Rmk+1 with m1 = p
and md+1 = 1;

� g : Rm → Rm applies (for any given m) a so-called activation function ψ : R → R
elementwise i.e. for v = (v1, . . . , vm)>, g(v) = (ψ(v1), . . . , ψ(vm))>. The activation
function is nonlinear and typical choices include

(i) u 7→ max(u, 0) (known as a rectified linear unit (ReLU))

(ii) u 7→ 1/(1 + e−u) (sigmoid).

This cascade of alternating linear and nonlinear compositions can be visualised in the form
of a graph. Here we have set h(0) := x and for k = 1, . . . , d − 1, x(k) = A(k)(h(k−1)),
h(k) = g(x(k)). The intermediate outputs h(1), . . . , h(d−1) are known as hidden layers and
x(d) = A(d)(h(d−1)) = h(x) is sometimes known as the output layer. The parameters
(β(k), µ(k))dk=1 are typically fitted to data (x1, y1), . . . , (xn, yn) ∈ Rp × {−1, 1} with empir-
ical risk minimisation using a surrogate loss φ. Despite the resulting optimisation being
highly nonconvex, stochastic gradient descent has been shown empirically to be extremely
effective in selecting good parameters. A key factor in their success has been the fact that
the gradients involved can be computed quickly due to the compositional nature of the
hypotheses using the chain rule.

41

Suppose φ and ψ are differentiable. At an observation (x, y) = (xUs , yUs) we first com-
pute all the intermediate quantities h(l) and x(l) given the current values of the parameters.
Let z = φ(yh(x)) = φ(yx(d)). We then compute, in order

∂z

∂x(d)
= yφ′(yx(d))

∂z

∂µ(d)
=

∂z

∂x(d)
,

∂z

∂β
(d)
1k

=
∂z

∂x(d)
h

(d−1)
k (5.2)

∂z

∂h
(d−1)
j

=
∂z

∂x(d)
β

(d)
1j

∂z

∂x
(d−1)
j

=
∂z

∂h
(d−1)
j

ψ′(x
(d−1)
j)

∂z

∂µ
(d−1)
j

=
∂z

∂x
(d−1)
j

,
∂z

∂β
(d−1)
jk

=
∂z

∂x
(d−1)
j

h
(d−2)
k (5.3)

∂z

∂h
(d−2)
j

=

md∑
k=1

∂z

∂x
(d−1)
k

β
(d−1)
kj ,

....

This process is known as back propogation. Note only (5.2) and (5.3) out of the equations
presented above are directly used in the SGD update step; the remaining equations simply
facilitate computation of the gradient with respect to the (β(k), µ(k))dk=1.

42

	Introduction
	Brief review of conditional expectation
	Bayes risk
	Empirical risk minimisation
	Bias–variance tradeoff
	Cross-validation

	Popular machine learning methods I
	Decision trees
	Random forests

	Statistical learning theory
	Sub-Gaussianity and Hoeffding's inequality
	Finite hypothesis classes
	Rademacher complexity
	VC dimension

	Computation for empirical risk minimisation
	Basic properties of convex sets
	Basic properties of convex functions
	Convex surrogates
	Rademacher complexity revisited
	2-constraint
	1-constraint
	Projections on to convex sets
	Subgradients
	Gradient descent
	Stochastic gradient descent

	Popular machine learning methods II
	Adaboost
	Gradient boosting
	Feedforward neural networks

