In the following questions, where appropriate, suppose $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are i.i.d. and consider loss ℓ to be misclassification loss, unless specified otherwise.

1. Show that if $|\mathcal{H}|$ is finite, then

$$
\mathbb{E} R(\hat{h})-R\left(h^{*}\right) \leq \sqrt{\frac{\log |\mathcal{H}|}{2 n}} .
$$

2. N participants of a machine learning competition are given training data with which to develop classifiers. To decide the winner, the classifiers are applied to n new i.i.d. datapoints (the so-called test data). Give a value of n such that we can be sure with probability at least $1-\delta$ that the risk of the winning classifier is within ϵ of the minimum risk across the submitted classifiers.
3. Let \mathcal{F} be the set of all polynomials of degree at most 2 on $\mathcal{X}=\mathbb{R}^{p}$. Show that $\mathrm{VC}(\mathcal{H}) \leq$ $\binom{p+2}{2}$, where $\mathcal{H}=\{\operatorname{sgn} \circ f: f \in \mathcal{F}\}$.
4. Given a collection of sets \mathcal{A}, let $\mathcal{H}=\left\{\mathbb{1}_{A}: A \in \mathcal{A}\right\}$.
(a) Show that $\mathrm{VC}(\mathcal{H}) \leq 6$ when \mathcal{A} is the set of (filled) ellipses in \mathbb{R}^{2}.
(b) Show that $\operatorname{VC}(\mathcal{H})=2 p$ when $\mathcal{A}=\left\{\prod_{j=1}^{p}\left[a_{j}, b_{j}\right]: a_{1}, b_{1}, \ldots, a_{p}, b_{p} \in \mathbb{R}\right\}$.
(c) Show that $\operatorname{VC}(\mathcal{H})=\infty$ when \mathcal{A} is the set of (filled) convex polygons in \mathbb{R}^{2} and $\mathcal{H}=\left\{\mathbb{1}_{A}: A \in \mathcal{A}\right\}$.
5. Let $\mathcal{H}=\left\{x \mapsto \operatorname{sgn}\left(\beta^{\top} x\right): \beta \in \mathbb{R}^{p}\right\}$. Show that $\operatorname{VC}(\mathcal{H})=p$.
6. Let $\mathcal{H}_{1}, \mathcal{H}_{2}$ be classes of functions $f: \mathcal{X} \rightarrow\{a, b\}$ where $a \neq b$. Show that $s\left(\mathcal{H}_{1} \cup \mathcal{H}_{2}, n\right) \leq$ $s\left(\mathcal{H}_{1}, n\right)+s\left(\mathcal{H}_{2}, n\right)$.
7. Let W_{1}, \ldots, W_{n} be i.i.d. \mathbb{R}^{p}-valued random vectors and let $F: \mathbb{R}^{p} \rightarrow[0,1]$ be given by

$$
F\left(t_{1}, \ldots, t_{p}\right)=\mathbb{P}\left(W_{11} \leq t_{1}, \ldots, W_{1 p} \leq t_{p}\right)
$$

Define function $\hat{F}: \mathbb{R}^{p} \rightarrow[0,1]$ by

$$
\hat{F}\left(t_{1}, \ldots, t_{p}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{A}\left(W_{i}\right)
$$

where $A=\prod_{j=1}^{p}\left(-\infty, t_{j}\right]$. Show that

$$
\mathbb{E} \sup _{t \in \mathbb{R}^{p}}|F(t)-\hat{F}(t)| \leq 2 \sqrt{\frac{2\{p \log (n+1)+\log 2\}}{n}} .
$$

[Hint: Consider $\mathcal{H}:=\left\{\mathbb{1}_{A}: A=\prod_{j=1}^{p}\left(-\infty, t_{j}\right], t_{j} \in \mathbb{R}\right\}$, and $\mathcal{H}_{-}:=\{-h: h \in \mathcal{H}\}$, and use question 6.]
8. Let $\varphi_{1}, \ldots, \varphi_{d}: \mathcal{X} \rightarrow \mathbb{R}$ be functions and let \mathcal{H} be the class of all hypotheses $h: \mathcal{X} \rightarrow$ $\{-1,1\}$ of the form

$$
h(x)=\operatorname{sgn}\left(\sum_{j \in A} \beta_{j} \varphi_{j}(x)\right)
$$

where $A \subseteq\{1, \ldots, d\}$ with $|A|=s$ and $\beta_{j} \in \mathbb{R}$ for all j. Show that

$$
\mathcal{R}_{n}(\mathcal{F}) \leq \sqrt{\frac{2 s}{n}} \sqrt{\log (n+1)+\log d}
$$

where $\mathcal{F}=\{(x, y) \mapsto \ell(h(x), y): h \in \mathcal{H}\}$ and ℓ is misclassification loss.
9. (a) Let $f, g: C \rightarrow \mathbb{R}$ be convex functions. Then if $a, b \geq 0, a f+b g$ is a convex function.
(b) Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function and fix $A \in \mathbb{R}^{d \times m}$ and $b \in \mathbb{R}^{d}$. Then $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ given by $g(x)=f(A x-b)$ is a convex function.
(c) Let $C_{\alpha} \subseteq \mathbb{R}^{d}$ be convex for all $\alpha \in I$ where I is some index set. Then $\cap_{\alpha \in I} C_{\alpha}$ is convex.
(d) If $f: C \rightarrow \mathbb{R}$ is convex, then for each $M \in \mathbb{R}, D:=\{x \in C: f(x) \leq M\}$ is convex.
(e) Suppose $f_{\alpha}: C \rightarrow \mathbb{R}$ is convex for all $\alpha \in I$ where I is some index set, and define $g(x):=\sup _{\alpha \in I} f_{\alpha}(x)$. Then
i. $D:=\{x \in C: g(x)<\infty\}$ is convex and
ii. function g restricted to D is convex.
10. Let $S \subseteq \mathbb{R}^{d}$ be a set of points.
(a) Show that if D is the set of convex combinations of sets of points in S, then $D \supseteq$ conv S.
(b) Let $S \subseteq C \subseteq \mathbb{R}^{d}$ be a convex set and let $f: C \rightarrow \mathbb{R}$ be convex. Show that $\sup _{x \in \operatorname{conv} S} f(x)=\sup _{x \in S} f(x)$. [Hint: Use Qu. 9 (d).]
11. Use 10 (b) to prove that for any $A \subseteq \mathbb{R}^{n}, \hat{\mathcal{R}}(A)=\hat{\mathcal{R}}(\operatorname{conv} A)$.
12. (Harder) Suppose function $\phi: \mathbb{R} \rightarrow[0, \infty)$ is convex and differentiable at 0 with $\phi^{\prime}(0)<0$. This question quantifies the fact that if for $f: \mathcal{X} \rightarrow \mathbb{R}$ the ϕ-risk is small, then the misclassification risk of $h:=\operatorname{sgn} \circ f$ will be small.
(a) Let $C_{\eta}(\alpha):=\eta \phi(\alpha)+(1-\eta) \phi(-\alpha)$ and define

$$
H(\eta):=\inf _{\alpha \in \mathbb{R}} C_{\eta}(\alpha) \quad \text { for } \eta \in[0,1]
$$

Show that

$$
\mathbb{E} H(\eta(X)) \geq \inf _{g \in \mathcal{G}} R_{\phi}(g)
$$

where $\eta(x):=\mathbb{P}(Y=1 \mid X=x)$ is the regression function and \mathcal{G} is the set of all functions $g: \mathcal{X} \rightarrow \mathbb{R}$ (you may ignore any measurability issues). (In fact equality holds in the display above.) [Hint: Show that given $\epsilon>0$ there exists $g \in \mathcal{G}$ such that $\mathbb{E} H(\eta(X))+\epsilon \geq R_{\phi}(g)$.]
(b) Show that $\phi(0)=\inf _{\alpha: \alpha(2 \eta-1) \leq 0} C_{\eta}(\alpha)$.
(c) Define

$$
\psi(\theta):=\phi(0)-H((1+\theta) / 2) \quad \text { for } \theta \in[0,1] .
$$

Show that $\psi(0)=0$ and ψ is convex. [Hint: For the last part use $Q u$. 9 (e).]
(d) Show that

$$
\psi(|2 \eta-1|)=\phi(0)-H(\eta) .
$$

(e) Let h_{0} be a Bayes classifier. Show that

$$
\psi\left(R(h)-R\left(h_{0}\right)\right) \leq \mathbb{E}\left\{\mathbb{1}_{\left\{h(X) \neq h_{0}(X)\right\}} \psi(|2 \eta(X)-1|)\right\} .
$$

[Hint: Use Qu. 1 of Ex. Sheet 1.]
(f) Show finally that

$$
\psi\left(R(h)-R\left(h_{0}\right)\right) \leq R_{\phi}(f)-\inf _{f} R_{\phi}(f) .
$$

[Hint: Argue that $\mathbb{1}_{\left\{h(X) \neq h_{0}(X)\right\}} \inf _{\alpha: \alpha(2 \eta(X)-1) \leq 0} C_{\eta(X)}(\alpha) \leq C_{\eta(X)}(f(X))$.]

