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In the following questions, where appropriate, suppose (X1, Y1), . . . , (Xn, Yn) are i.i.d. and take
values in X ×Y. We will take X = Rp, Y = {−1, 1} and the loss ℓ will be misclassification loss,
unless it is specified that a regression setting is being considered, in which case the loss will
typically be squared error. Assume that the computational complexity of inverting M ∈ Rm×m

is O(m3), and forming BC where B ∈ Ra×b and C ∈ Rb×c is O(abc).

1. Show that
R(h)−R(h0) = E{1{h(X )̸=h0(X)}|2η(X)− 1|}

where

h0(x) =

{
1 if η(x) > 1/2

−1 otherwise

and η(x) := P(Y = 1 |X = x).

2. In each of the settings below, find a classifier that minimises the risk corresponding to the
loss functions given.

(a) Consider the weighted misclassification loss ℓ : {−1, 1}2 → R given by ℓ(−1,−1) =
ℓ(1, 1) = 0 and ℓ(−1, 1) = α, ℓ(1,−1) = β where α, β > 0.

(b) Suppose Y = {1, . . . ,K} and loss ℓ : Y × Y → R satisfies

ℓ(y′, y) =

{
0 if y = y′

1 otherwise.

3. Let ĥ = ĥD be a hypothesis trained on data D = (Xi, Yi)
n
i=1 formed of iid copies of an

independent random pair (X,Y ). Define h̃X1:n(x) := E(ĥD(x) |X1:n).

(a) Show that

E[{Y−ĥD(X)}2 |X = x] = E{E(Y |X = x)−h̃X1:n(x)}2+E{ĥD(x)−h̃X1:n(x)}2+Var(Y |X = x).

(b) Show that considering squared error loss,

ER(ĥD)− ER(h̃X1:n) = E{ĥD(X)− h̃X1:n(X)}2.

4. Consider performing OLS regression using a set of d basis functions (φ1, . . . , φd) := φ
using data (Xi, Yi)

n
i=1. Assume that the matrix Φ ∈ Rn×d with ith row φ(Xi) ∈ Rd has

full column rank.

(a) Show that the OLS coefficient vector β̂ ∈ Rd may be obtained in O(nd2) operations.

(b) Show that the leave-one-out cross-validation score

1

n

n∑
i=1

{Yi − φ(Xi)
⊤β̂−i}2

may be computed in O(nd2) operations. Here β̂−i ∈ Rd is the OLS coefficient vector
when performing regression using a dataset with the ith point removed. [Use the
matrix identity

(A− bb⊤)−1 = A−1 +
A−1bb⊤A−1

1− b⊤A−1b
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wheneverA ∈ Rp×p is invertible, b ∈ Rp and b⊤A−1b ̸= 1. Also assume φ(Xi)
⊤(Φ⊤Φ)−1φ(Xi) <

1, which holds provided each matrix formed of Φ with a row removed has full column
rank.] [Hint: Consider first computing (Φ⊤Φ)−1φ(Xi) ∈ Rd for all i = 1, . . . , n. ]

5. Consider a regression setting as in the previous question with Φ ∈ Rn×d and φ defined as
above. For λ ≥ 0, consider ĥλ given by ĥλ(x) = φ(x)⊤β̂λ with

β̂λ := argmin
β∈Rd

{∥Y1:n − Φβ∥22 + λ∥β∥22}.

(a) Show that β̂λ = (Φ⊤Φ+ λI)−1Φ⊤Y1:n.

(b) Suppose Var(Y1 |X1 = x) > 0 is constant in x and φ(x) is not the zero vector. Show
that for all x, λ 7→ Var(ĥλ(x) |X1:n) is strictly decreasing.

6. In this question we investigate an alternative splitting criterion for a regression tree, based
on maximising a likelihood assuming that the Yi have a Poisson distribution conditional
on Xi. Specifically, consider the first split and where p = 1 with X1 < · · · < Xn. Show
that

max
γL,γR

∏
i≤m

(γYi
L e−γL)×

∏
i>m

(γYi
R e−γR)

may be maximised over m with O(n) computational cost.

7. The piecewise constant function produced by a regression tree may not always approximate
the underlying true regression function well. Here we imagine we have an additional
univariate predictor T1, . . . , Tn ∈ R which we permit to contribute to the fit in a linear
fashion. Specifically, consider ERM with squared error loss over class

H :=

(t, x) 7→ tβ +

J∑
j=1

γj1Rj (x) : β ∈ R, γ ∈ RJ

 ;

here the Rj are fixed (for simplicity, unlike in the case of regression trees) and partition
Rp and moreover all Ij := {i : Xi ∈ Rj} are non-empty and have been pre-computed.
Assume that T1:n ∈ Rn is not in the span of {(1Rj (Xi))

n
i=1 : j = 1, . . . , J}. Show that the

ERM may be computed in O(n) time. [Hint: Use the matrix identity that for M ∈ Rp×p,
b ∈ Rp and a ∈ R,(

a b⊤

b M

)−1

=

(
s−1 −s−1b⊤M−1

−s−1M−1b M−1 + s−1M−1bb⊤M−1

)
,

where s := a− b⊤M−1b > 0 provided the matrix on the left is indeed invertible. ]

8. Consider the regression setting with squared error loss and let H = {x 7→ β⊤x : β ∈ Rp}.
Let ΣXX := Var(X) ∈ Rp×p and ΣXY = Cov(X,Y ) ∈ Rp. Suppose ΣXX is positive
definite, EX = 0 and EY 2 < ∞. Show that h∗ := argminh∈HR(h) is given by h∗(x) =
x⊤β∗ where β∗ = Σ−1

XXΣXY .

9. Suppose |H| is finite and there exists h∗ ∈ H with R(h∗) = 0. Show that with probability
at least 1− δ, every empirical risk minimiser ĥ satisfies

R(ĥ) ≤ log |H|+ log(1/δ)

n
.

[Hint: Argue that R̂(ĥ) = 0 and use the fact that 1− ϵ ≤ e−ϵ.]
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10. This question applies concentration inequalities to study the problem of (potentially high-

dimensional) covariance matrix estimation. Suppose Zi
i.i.d.∼ Np(0,Σ) for i = 1, . . . , n

where Σ ∈ Rp×p is a covariance matrix with Σjj = 1 for j = 1, . . . , p. The maximum
likelihood estimate of Σ is Σ̂ := 1

n

∑n
i=1 ZiZ

⊤
i .

(a) Suppose V and W are mean-zero and jointly Gaussian with Var(V ) = Var(W ) = 1
and Cov(V,W ) = ρ. Show that

EeαVW = [{1− α(1 + ρ)}{1 + α(1− ρ)}]−1/2

for α ∈ (−1/2, 1/2). [Hint: Express VW as a difference of two independent scaled χ2
1

random variables and use the fact that the mgf of a χ2
1 random variable is 1/

√
1− 2α

for α < 1/2.]

(b) Using the fact that

e−αρ[{1− α(1 + ρ)}{1 + α(1− ρ)}]−1/2 ≤ e2α
2

whenever |α| < 1/4 and ρ ∈ [−1, 1], show that for fixed j, k ∈ {1, . . . , p} and t ∈ (0, 1),

P(|Σ̂jk − Σjk| ≥ t) ≤ 2e−nt2/8.

Conclude that with probability at least 1− 2/p,

max
j,k

|Σ̂jk − Σjk| ≤ 5

√
log(p)

n
.
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