In the following questions, where appropriate, suppose $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are i.i.d. and take values in $\mathcal{X} \times \mathcal{Y}$. We will take $\mathcal{X}=\mathbb{R}^{p}, \mathcal{Y}=\{-1,1\}$ and the loss ℓ will be misclassification loss, unless it is specified that a regression setting is being considered, in which case the loss will typically be squared error. Assume that the computational complexity of inverting $M \in \mathbb{R}^{m \times m}$ is $O\left(m^{3}\right)$, and forming $B C$ where $B \in \mathbb{R}^{a \times b}$ and $C \in \mathbb{R}^{b \times c}$ is $O(a b c)$.

1. Show that

$$
R(h)-R\left(h_{0}\right)=\mathbb{E}\left\{\mathbb{1}_{\left\{h(X) \neq h_{0}(X)\right\}}|2 \eta(X)-1|\right\}
$$

where

$$
h_{0}(x)= \begin{cases}1 & \text { if } \eta(x)>1 / 2 \\ -1 & \text { otherwise }\end{cases}
$$

and $\eta(x):=\mathbb{P}(Y=1 \mid X=x)$.
2. In each of the settings below, find a classifier that minimises the risk corresponding to the loss functions given.
(a) Consider the weighted misclassification loss $\ell:\{-1,1\}^{2} \rightarrow \mathbb{R}$ given by $\ell(-1,-1)=$ $\ell(1,1)=0$ and $\ell(-1,1)=\alpha, \ell(1,-1)=\beta$ where $\alpha, \beta>0$.
(b) Suppose $\mathcal{Y}=\{1, \ldots, K\}$ and loss $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ satisfies

$$
\ell\left(y^{\prime}, y\right)= \begin{cases}0 & \text { if } y=y^{\prime} \\ 1 & \text { otherwise }\end{cases}
$$

3. Let $\hat{h}=\hat{h}_{D}$ be a hypothesis trained on data $D=\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ formed of iid copies of an independent random pair (X, Y). Define $\tilde{h}_{X_{1: n}}(x):=\mathbb{E}\left(\hat{h}_{D}(x) \mid X_{1: n}\right)$.
(a) Show that

$$
\mathbb{E}\left[\left\{Y-\hat{h}_{D}(X)\right\}^{2} \mid X=x\right]=\mathbb{E}\left\{\mathbb{E}(Y \mid X=x)-\tilde{h}_{X_{1: n}}(x)\right\}^{2}+\mathbb{E}\left\{\hat{h}_{D}(x)-\tilde{h}_{X_{1: n}}(x)\right\}^{2}+\operatorname{Var}(Y \mid X=x) .
$$

(b) Show that considering squared error loss,

$$
\mathbb{E} R\left(\hat{h}_{D}\right)-\mathbb{E} R\left(\tilde{h}_{X_{1: n}}\right)=\mathbb{E}\left\{\hat{h}_{D}(X)-\tilde{h}_{X_{1: n}}(X)\right\}^{2}
$$

4. Consider performing OLS regression using a set of d basis functions $\left(\varphi_{1}, \ldots, \varphi_{d}\right):=\varphi$ using data $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$. Assume that the matrix $\Phi \in \mathbb{R}^{n \times d}$ with i th row $\varphi\left(X_{i}\right) \in \mathbb{R}^{d}$ has full column rank.
(a) Show that the OLS coefficient vector $\hat{\beta} \in \mathbb{R}^{d}$ may be obtained in $O\left(n d^{2}\right)$ operations.
(b) Show that the leave-one-out cross-validation score

$$
\frac{1}{n} \sum_{i=1}^{n}\left\{Y_{i}-\varphi\left(X_{i}\right)^{\top} \hat{\beta}_{-i}\right\}^{2}
$$

may be computed in $O\left(n d^{2}\right)$ operations. Here $\hat{\beta}_{-i} \in \mathbb{R}^{d}$ is the OLS coefficient vector when performing regression using a dataset with the i th point removed. [Use the matrix identity

$$
\left(A-b b^{\top}\right)^{-1}=A^{-1}+\frac{A^{-1} b b^{\top} A^{-1}}{1-b^{\top} A^{-1} b}
$$

whenever $A \in \mathbb{R}^{p \times p}$ is invertible, $b \in \mathbb{R}^{p}$ and $b^{\top} A^{-1} b \neq 1$. Also assume $\varphi\left(X_{i}\right)^{\top}\left(\Phi^{\top} \Phi\right)^{-1} \varphi\left(X_{i}\right)<$ 1, which holds provided each matrix formed of Φ with a row removed has full column rank.] [Hint: Consider first computing $\left(\Phi^{\top} \Phi\right)^{-1} \varphi\left(X_{i}\right) \in \mathbb{R}^{d}$ for all $i=1, \ldots, n$.]
5. Consider a regression setting as in the previous question with $\Phi \in \mathbb{R}^{n \times d}$ and φ defined as above. For $\lambda \geq 0$, consider \hat{h}_{λ} given by $\hat{h}_{\lambda}(x)=\varphi(x)^{\top} \hat{\beta}_{\lambda}$ with

$$
\hat{\beta}_{\lambda}:=\underset{\beta \in \mathbb{R}^{d}}{\operatorname{argmin}}\left\{\left\|Y_{1: n}-\Phi \beta\right\|_{2}^{2}+\lambda\|\beta\|_{2}^{2}\right\} .
$$

(a) Show that $\hat{\beta}_{\lambda}=\left(\Phi^{\top} \Phi+\lambda I\right)^{-1} \Phi^{\top} Y_{1: n}$.
(b) Suppose $\operatorname{Var}\left(Y_{1} \mid X_{1}=x\right)>0$ is constant in x and $\varphi(x)$ is not the zero vector. Show that for all $x, \lambda \mapsto \operatorname{Var}\left(h_{\lambda}(x) \mid X_{1: n}\right)$ is strictly decreasing.
6. In this question we investigate an alternative splitting criterion for a regression tree, based on maximising a likelihood assuming that the Y_{i} have a Poisson distribution conditional on X_{i}. Specifically, consider the first split and where $p=1$ with $X_{1}<\cdots<X_{n}$. Show that

$$
\max _{\gamma_{L}, \gamma_{R}} \prod_{i \leq m}\left(\gamma_{L}^{Y_{i}} e^{-\gamma_{L}}\right) \times \prod_{i>m}\left(\gamma_{R}^{Y_{i}} e^{-\gamma_{R}}\right)
$$

may be maximised over m with $O(n)$ computational cost.
7. The piecewise constant function produced by a regression tree may not always approximate the underlying true regression function well. Here we imagine we have an additional univariate predictor $T_{1}, \ldots, T_{n} \in \mathbb{R}$ which we permit to contribute to the fit in a linear fashion. Specifically, consider ERM with squared error loss over class

$$
\mathcal{H}:=\left\{(t, x) \mapsto t \beta+\sum_{j=1}^{J} \gamma_{j} \mathbb{1}_{R_{j}}(x): \beta \in \mathbb{R}, \gamma \in \mathbb{R}^{J}\right\} ;
$$

here the R_{j} are fixed (for simplicity, unlike in the case of regression trees) and partition \mathbb{R}^{p} and moreover all $I_{j}:=\left\{i: X_{i} \in R_{j}\right\}$ are non-empty and have been pre-computed. Assume that $T_{1: n} \in \mathbb{R}^{n}$ is not in the span of $\left.\left\{\mathbb{1}_{R_{j}}\left(X_{i}\right)\right)_{i=1}^{n}: j=1, \ldots, J\right\}$. Show that the ERM may be computed in $O(n)$ time. [Hint: Use the matrix identity that for $M \in \mathbb{R}^{p \times p}$, $b \in \mathbb{R}^{p}$ and $a \in \mathbb{R}$,

$$
\left(\begin{array}{ll}
a & b^{\top} \\
b & M
\end{array}\right)^{-1}=\left(\begin{array}{cc}
s^{-1} & -s^{-1} b^{\top} M^{-1} \\
-s^{-1} M^{-1} b & M^{-1}+s^{-1} M^{-1} b b^{\top} M^{-1}
\end{array}\right),
$$

where $s:=a-b^{\top} M^{-1} b>0$ provided the matrix on the left is indeed invertible.]
8. Consider the regression setting with squared error loss and let $\mathcal{H}=\left\{x \mapsto \beta^{\top} x: \beta \in \mathbb{R}^{p}\right\}$. Let $\Sigma_{X X}:=\operatorname{Var}(X) \in \mathbb{R}^{p \times p}$ and $\Sigma_{X Y}=\operatorname{Cov}(X, Y) \in \mathbb{R}^{p}$. Suppose $\Sigma_{X X}$ is positive definite, $\mathbb{E} X=0$ and $\mathbb{E} Y^{2}<\infty$. Show that $h^{*}:=\operatorname{argmin}_{h \in \mathcal{H}} R(h)$ is given by $h^{*}(x)=$ $x^{\top} \beta^{*}$ where $\beta^{*}=\Sigma_{X X}^{-1} \Sigma_{X Y}$.
9. Suppose $|\mathcal{H}|$ is finite and there exists $h^{*} \in \mathcal{H}$ with $R\left(h^{*}\right)=0$. Show that with probability at least $1-\delta$, every empirical risk minimiser \hat{h} satisfies

$$
R(\hat{h}) \leq \frac{\log |\mathcal{H}|+\log (1 / \delta)}{n} .
$$

[Hint: Argue that $\hat{R}(\hat{h})=0$ and use that $1-\epsilon \leq e^{-\epsilon}$.]
10. Let random variable W be sub-Gaussian with parameter $\sigma>0$.
(a) Show that $\operatorname{Var}(W) \leq \sigma^{2}$. [You may use the fact that $\mathbb{E}\left(\sum_{r=3}^{\infty} \alpha^{r-2} W^{r} / r\right.$! $) \rightarrow 0$ as $\alpha \rightarrow 0$. If you took Probability \& Measure, you may prove this.]
(b) Suppose $\sigma_{*}=\inf \{\sigma>0: W$ is sub-Gaussian with parameter $\sigma\}$. Is it true that $\operatorname{Var}(W)=\sigma_{*}^{2} ?$
11. This question applies concentration inequalities to study the problem of (potentially highdimensional) covariance matrix estimation. Suppose $Z_{i} \stackrel{\text { i.i.d. }}{\sim} N_{p}(0, \Sigma)$ for $i=1, \ldots, n$ where $\Sigma \in \mathbb{R}^{p \times p}$ is a covariance matrix with $\Sigma_{j j}=1$ for $j=1, \ldots, p$. The maximum likelihood estimate of Σ is $\hat{\Sigma}:=\frac{1}{n} \sum_{i=1}^{n} Z_{i} Z_{i}^{\top}$.
(a) Suppose V and W are mean-zero and jointly Gaussian with $\operatorname{Var}(V)=\operatorname{Var}(W)=1$ and $\operatorname{Cov}(V, W)=\rho$. Show that

$$
\mathbb{E} e^{\alpha V W}=[\{1-\alpha(1+\rho)\}\{1+\alpha(1-\rho)\}]^{-1 / 2}
$$

for $\alpha \in(-1 / 2,1 / 2)$. [Hint: Express $V W$ as a difference of two independent scaled χ_{1}^{2} random variables and use the fact that the mgf of a χ_{1}^{2} random variable is $1 / \sqrt{1-2 \alpha}$ for $\alpha<1 / 2$.]
(b) Using the fact that

$$
e^{-\alpha \rho}[\{1-\alpha(1+\rho)\}\{1+\alpha(1-\rho)\}]^{-1 / 2} \leq e^{2 \alpha^{2}}
$$

whenever $|\alpha|<1 / 4$ and $\rho \in[-1,1]$, show that for fixed $j, k \in\{1, \ldots, p\}$ and $t \in(0,1)$,

$$
\mathbb{P}\left(\left|\hat{\Sigma}_{j k}-\Sigma_{j k}\right| \geq t\right) \leq 2 e^{-n t^{2} / 8}
$$

Conclude that with probability at least $1-2 / p$,

$$
\max _{j, k}\left|\hat{\Sigma}_{j k}-\Sigma_{j k}\right| \leq 5 \sqrt{\frac{\log (p)}{n}}
$$

