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Two types of sparsity

(a) Signal sparsity

(b) Data sparsity

Sparsity

High-dimensional
data

Large-scale
data
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High-dimensional data

Consider a regression setting:

n observations of a response Yi .
p covariates xi = (xi1, . . . , xip)T . Let X be the n × p design matrix
whose i th row is xi .

In the classical setting, p < n. Here we have in mind p � n, and p
perhaps in the order of thousands or more.

Such high-dimensional data is becoming increasingly common in many
modern statistical applications e.g. gene expression data, GWAS.

Rajen Shah (Cambridge) Sparsity 18 May 2015 3 / 41



Ridge regression (Hoerl and Kennard, 1970)

p > n: OLS coefficients will not be unique. We need to regularise.

Ridge regression solves a penalised optimisation:

(µ̂Rλ , β̂
R
λ ) = arg min

(µ,β)∈R×Rp

{‖Y − µ1− Xβ‖22 + λ‖β‖22}.

Equivalent form after centring Y and X:

β̂
R
λ = (XTX + λI)−1XTY

= XT (XXT + λI)−1Y.
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Optimality of ridge regression

Linear model: Y = Xβ∗ + ε with ε ∼ Nn(0, σ2I)

Bayesian interpretation of ridge regression:

Prior of Np(0, λ−1/σ2I) on β∗ (σ2 treated known).

β̂
R

λ is the posterior mean.

Ridge regression is optimal in terms of mean-squared error under a
Np(0, λ−1/σ2) prior on β∗.
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The Lasso (Tibshirani, 1996)

The Lasso solves

(µ̂Lλ, β̂
L
λ) = arg min

(µ,β)∈R×Rp

{‖Y − µ1− Xβ‖22/(2n) + λ‖β‖1}.

‖β‖1 =

p∑
k=1

|βk |.
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Performance of ridge regression in practice

Gene expression data, n = 71 observations of p = 4088 predictors.
Response is riboflavin production by Bacillus subtilis.
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(b) Lasso regression
(Tibshirani, 1996)
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Performance of ridge regression in practice

Prostate cancer gene expression data. 52 tumour samples, 50 normal
samples (n = 102) with p = 6033 predictors.

2 3 4 5 6

0.
6

0.
8

1.
0

1.
2

1.
4

log(λ)

B
in

om
ia

l D
ev

ia
nc

e

(a) Ridge regression

−5 −4 −3 −2 −1

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

log(λ)
B

in
om

ia
l D

ev
ia

nc
e

(b) Lasso regression
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Signal sparsity

Typically for high-dimensional data, the Lasso beats ridge regression
in terms of prediction error.

The normal prior on β∗ is often not appropriate.

Often there is a belief that most of the predictors are irrelevant for
determining the response i.e. β∗ is sparse.

Figure: Schematic of signal Xβ∗
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Best subsets regression

If the signal is sparse, best subsets regression may seem natural.

arg min
(µ,β)∈R×Rp

{
‖Y − µ1− Xβ‖22 + λ

p∑
k=1

1{βk 6=0}

}
.

Optimisation problem typically infeasible for p > 50 as problem is not
convex.

The Lasso solves the closest convex approximation to the objective above.
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Constrained form of Lasso

Note that if

(µ̂Lλ, β̂
L
λ) = arg min

(µ,β)∈R×Rp

{‖Y − µ1− Xβ‖22/(2n) + λ‖β‖1}

then (µ̂Lλ, β̂
L
λ) minimises

‖Y − µ1− Xβ‖22

subject to ‖β‖1 ≤ ‖β̂
L
λ‖1.
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`q balls

Consider penalty functions ∝ ‖β‖q =
(∑p

k=1 β
q
k

)1/q
and p = 2.
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Lasso coefficients are sparse
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Figure: Contours of ‖Y − Xβ‖22 are ellipses centred at β̂
OLS

.

Rajen Shah (Cambridge) Sparsity 18 May 2015 13 / 41



Lasso coefficients are sparse

Figure: Contours of ‖Y − Xβ‖22 are ellipses centred at β̂
OLS

.
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Ridge regression coefficients are always non-zero
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Benefits of sparse coefficients

Typically a sparse model fits well for high-dimensional data.

Sparse models can be easier to interpret.

In order to predict the response for a new observation, we only need
measurements of a few covariates.

Inner product xT β̂ for new data point x ∈ Rp fast to compute.

Rajen Shah (Cambridge) Sparsity 18 May 2015 16 / 41



Benefits of sparse coefficients

Typically a sparse model fits well for high-dimensional data.

Sparse models can be easier to interpret.

In order to predict the response for a new observation, we only need
measurements of a few covariates.

Inner product xT β̂ for new data point x ∈ Rp fast to compute.

Rajen Shah (Cambridge) Sparsity 18 May 2015 16 / 41



Benefits of sparse coefficients

Typically a sparse model fits well for high-dimensional data.

Sparse models can be easier to interpret.

In order to predict the response for a new observation, we only need
measurements of a few covariates.

Inner product xT β̂ for new data point x ∈ Rp fast to compute.

Rajen Shah (Cambridge) Sparsity 18 May 2015 16 / 41



Benefits of sparse coefficients

Typically a sparse model fits well for high-dimensional data.

Sparse models can be easier to interpret.

In order to predict the response for a new observation, we only need
measurements of a few covariates.

Inner product xT β̂ for new data point x ∈ Rp fast to compute.

Rajen Shah (Cambridge) Sparsity 18 May 2015 16 / 41



Prediction error for the Lasso

Consider the normal linear model

Y = Xβ∗ + ε ε ∼ Nn(0, σ2I).

Theorem

Let β̂ be the Lasso solution when

λ = Aσ

√
log(p)

n
.

With probability at least 1− p−(A
2/2−1)

1

n
‖X(β∗ − β̂)‖22 ≤ 4Aσ

√
log(p)

n
‖β∗‖1.
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A faster rate

Under assumptions on X which in particular prevent columns from being
too correlated with each other, we have a stronger result. Suppose β∗ has
s non-zero components.

Theorem

Let β̂ be the Lasso solution when

λ = Aσ
√

log(p)/n

With probability at least 1− p−(A
2/8−1),

1

n
‖X(β∗ − β̂)‖22 + λ‖β̂ − β∗‖1 ≤

16λ2s

φ2
=

16A2 log(p)

φ2
σ2s

n
,

where φ2 is a constant depending on the design.
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Extensions

`1-penalised generalised linear models.

Structural penalties e.g. the group Lasso (Yuan & Lin, 2006):
G1 ∪ · · · ∪ Gq = {1, . . . , p}, multipliers m1, . . . ,mq,

λ

q∑
j=1

mj‖βGj
‖2.

‘De-biasing’ the Lasso e.g. using non-convex penalty functions.

Inference.

Rajen Shah (Cambridge) Sparsity 18 May 2015 19 / 41



Extensions

`1-penalised generalised linear models.

Structural penalties e.g. the group Lasso (Yuan & Lin, 2006):
G1 ∪ · · · ∪ Gq = {1, . . . , p}, multipliers m1, . . . ,mq,

λ

q∑
j=1

mj‖βGj
‖2.

‘De-biasing’ the Lasso e.g. using non-convex penalty functions.

Inference.

Rajen Shah (Cambridge) Sparsity 18 May 2015 19 / 41



Extensions

`1-penalised generalised linear models.

Structural penalties e.g. the group Lasso (Yuan & Lin, 2006):
G1 ∪ · · · ∪ Gq = {1, . . . , p}, multipliers m1, . . . ,mq,

λ

q∑
j=1

mj‖βGj
‖2.

‘De-biasing’ the Lasso e.g. using non-convex penalty functions.

Inference.

Rajen Shah (Cambridge) Sparsity 18 May 2015 19 / 41



Extensions

`1-penalised generalised linear models.

Structural penalties e.g. the group Lasso (Yuan & Lin, 2006):
G1 ∪ · · · ∪ Gq = {1, . . . , p}, multipliers m1, . . . ,mq,

λ

q∑
j=1

mj‖βGj
‖2.

‘De-biasing’ the Lasso e.g. using non-convex penalty functions.

Inference.

Rajen Shah (Cambridge) Sparsity 18 May 2015 19 / 41



Large-scale data

Large p, large n.

Data is not the only relevant resource to consider. The computational
budget is also an issue (both memory and computing power).

In many large-scale applications, the design matrix X is sparse.
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Text analysis

Given a collection of documents, construct variables which count the
number of occurrences of different words. Can add variables giving the
frequency of consecutive pairs of words (bigrams) or consecutive triples of
words (trigrams).

“statistics” ”multivariate analysis” ”Big Data” · · ·
Doc 1 4 0 4 · · ·
Doc 2 3 2 4 · · ·
Doc 3 0 0 1 · · ·

...
...

...
...

. . .
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Dimension reduction

Our computational budget may mean that OLS and Ridge regression
are computationally infeasible.

The computer science literature has a variety of algorithms to form a
low-dimensional “sketch” of the design matrix i.e. a mapping

X 7→ S

n × p n × L, L� p.

The idea is then to perform the regression on S rather than the larger
X.
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Linear model with sparse design

target Y ∈ Rn︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


=

sparse X ∈ Rn×p︷ ︸︸ ︷

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗



β∗ ∈ Rp︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


+

noise ε ∈ Rn︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


Non-zero entries are marked with ∗.
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Linear model with sparse design

Can we safely reduce our sparse p-dimensional problem to a (possibly
dense) L-dimensional one with L� p?

sparse X ∈ Rn×p︷ ︸︸ ︷

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗



β∗ ∈ Rp︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


≈

dense S ∈ Rn×L︷ ︸︸ ︷

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



b∗ ∈ RL︷ ︸︸ ︷
∗
∗
∗
∗
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Sketching methods

PCA may be too expensive to compute.

Random projections e.g. S = XA, A p× L with i.i.d. Gaussian entries.

b-bit min-wise hashing (Li and König, 2011).

Dimension reduction for a binary X
Based on earlier technique of min-wise hashing (Broder, 1997).
Impressive empirical results.

Shah & Meinshausen (2015) study a variant, random-sign hashing
that also deals with continuous data.

Rajen Shah (Cambridge) Sparsity 18 May 2015 25 / 41



Sketching methods

PCA may be too expensive to compute.

Random projections e.g. S = XA, A p× L with i.i.d. Gaussian entries.

b-bit min-wise hashing (Li and König, 2011).

Dimension reduction for a binary X
Based on earlier technique of min-wise hashing (Broder, 1997).
Impressive empirical results.

Shah & Meinshausen (2015) study a variant, random-sign hashing
that also deals with continuous data.

Rajen Shah (Cambridge) Sparsity 18 May 2015 25 / 41



Random-sign hashing

X =



π1 1 2 3 4

1 3
6 2

3 1
2 5

2 4

 7→ H =


1
2
2
1
1

 S′ =


1
6
1
2
4


First columns of H and S′ generated by the random permutation π1 of the
variables.
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Random-sign hashing

X =



π1 2 3 1 4

1 3
6 2
1 3

2 5
4 2

 7→ H =


2
3
3
2
2

 S′ =


1
6
1
2
4


First columns of H and S′ generated by the random permutation π1 of the
variables.
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Random-sign hashing

X =



π2 3 1 4 2

3 1
6 2
1 3
5 2

2 4

 7→ H =


1 4
2 3
2 3
1 3
1 1

 S′ =


1 3
6 6
1 1
2 5
4 2
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Random-sign hashing

Choose random sign assignments {1, . . . , p} → {−1, 1} : k 7→ Ψkl

independently for all columns l = 1, . . . , L.

Suppose Ψ11 = +, Ψ21 = − and Ψ42 = −, Ψ32 = +, Ψ12 = −.

H =


1 4
2 3
2 3
1 3
1 1

 , S′ =


1 3
6 6
1 1
2 5
4 2

 7→ S =


1 −3
−6 6
−1 1
2 5
4 −2
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Random-sign hashing: summary

We get n × L matrices H, and S given by

Hil =arg min
k∈zi

πl(k)

Sil =ΨHil lXiHil
,

where Ψhl is the random sign of the hth variable in the l th permutation.
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Approximation error

Can we construct a b∗ ∈ RL such that Xβ∗ is close to Sb∗ on average i.e.
such that E‖Xβ∗ − Sb∗‖22 is small?

sparse X ∈ Rn×p︷ ︸︸ ︷

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗



β∗ ∈ Rp︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


≈

dense S ∈ Rn×L︷ ︸︸ ︷

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



b∗ ∈ RL︷ ︸︸ ︷
∗
∗
∗
∗
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Approximation error

Is there a b∗ such that we have unbiasedness E(Slb
∗
l ) = Xβ∗/L?

sparse X ∈ Rn×p︷ ︸︸ ︷

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗



β∗ ∈ Rp︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


?
=

1

L
Eπ,ψ



Sl ∈ Rn×1︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗


b∗l ∈ R︷ ︸︸ ︷(
∗
)
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Approximation error

Assume for now that there are q ≤ p non-zero entries in each row of
X. Unequal row sparsity can also be dealt with.

Consider one permutation with min-hash value Hi for i = 1, . . . , n
and random signs ψk , k = 1, . . . , p.

Eπ,ψ



S∈Rn×1︷ ︸︸ ︷
ψH1X1H1

ψH2X2H2

. . .

. . .

. . .


=:b∗∈R1︷ ︸︸ ︷(

q

p∑
k=1

β∗kψk

)


=
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Approximation error

Assume for now that there are q ≤ p non-zero entries in each row of
X. Unequal row sparsity can also be dealt with.

Consider one permutation with min-hash value Hi for i = 1, . . . , n
and random signs ψk , k = 1, . . . , p.

Eπ,ψ




ψH1X1H1

ψH2X2H2

. . .

. . .

. . .


︸ ︷︷ ︸

S

(
q

p∑
k=1

β∗kψk

)
︸ ︷︷ ︸

=:b∗


=


∑p

k=1 X1kβ
∗
kqP(H1 = k)∑p

k=1 X2kβ
∗
kqP(H2 = k)
. . .
. . .
. . .
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Approximation error

Assume for now that there are q ≤ p non-zero entries in each row of
X. Unequal row sparsity can also be dealt with.

Consider one permutation with min-hash value Hi for i = 1, . . . , n
and random signs ψk , k = 1, . . . , p.

Eπ,ψ




ψH1X1H1

ψH2X2H2

. . .

. . .

. . .


︸ ︷︷ ︸

S

(
q

p∑
k=1

β∗kψk

)
︸ ︷︷ ︸

=:b∗


=


∑p

k=1 X1kβ
∗
kqP(H1 = k)∑p

k=1 X2kβ
∗
kqP(H2 = k)
. . .
. . .
. . .


= Xβ∗ (unbiased).
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Approximation error

Theorem

Let b∗ ∈ RL be defined by

b∗l =
q

L

p∑
k=1

β∗kΨklwπl (k),

where w is a vector of weights. Then there is a choice of w, such that:

(i) The approximation is unbiased: Eπ,Ψ(Sb∗) = Xβ∗.

(ii) If ‖X‖∞ ≤ 1, then 1
nEπ,Ψ(‖Sb∗ − Xβ∗‖22) ≤ 2q‖β∗‖22/L.
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Row scaling

In some applications e.g. text analysis, may assume the signal is

κ(δi )xTi β
∗

where δi is the row sparsity, and κ is a scaling function.

Example: When X is binary κ(δ) = 1/
√
δ effectively scales all xi to

have same `2-norm.

With a different b∗, it is possible to approximate κ(δi )xTi β
∗.

Example

Eπ,Ψ[{
√
δmin/δix

T
i β
∗ − sTi b∗}2] ≤ qmin‖β∗‖2

L
log{4 log(L)/δmin}

where qmin is the minimal number of non-zeroes in xi ; δmin is the
minimal row sparsity.
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Interaction models

Let f∗ ∈ Rn be given by

f ∗i =

p∑
k=1

Xikθ
∗,(1)
k +

p∑
k,k1=1

Xik1{Xik1
=0}Θ

∗,(2)
k,k1

, i = 1, . . . , n.

Assume ‖X‖∞ ≤ 1. Previous results hold if ‖β∗‖2 is replaced by

`(Θ∗) := ‖θ∗,(1)‖2 + 2

(
q
∑

k,k1,k2

∣∣∣Θ∗,(2)kk1
Θ
∗,(2)
kk2

∣∣∣ )1/2

.

Theorem

There exists b∗ ∈ RL such that

(i) Eπ,Ψ(Sb∗) = f∗;

(ii) Eπ,Ψ(‖Sb∗ − f∗‖22)/n ≤ 2q`2(Θ∗)/L.

If there are a finite number of non-zero interaction terms with finite value,
the approximation error becomes very small if L� q2.
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Linear model

Assume model
Y = α∗1 + Xβ∗ + ε.

Random noise ε ∈ Rn satisfies E(εi ) = 0, E(ε2i ) = σ2 and
Cov(εi , εj) = 0 for i 6= j .

We give bounds on a mean-squared prediction error (MSPE) of the
form

MSPE((α̂, b̂)) := Eε,π,Ψ
(
‖α∗1 + Xβ∗ − α̂1− Sb̂‖22

)
/n.
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Ordinary least squares

Theorem

Let (α̂, b̂) be the least squares estimator and let L∗ =
√

2qn‖β∗‖2/σ. We
have

MSPE((α̂, b̂)) ≤ 2 max

{
L

L∗
,
L∗

L

}
σ

√
2q

n
‖β∗‖2 +

σ2

n
.

Suppose more predictors are added to the design matrix but their
associated coefficients are all 0, so ‖β∗‖2 = O(1). The MSPE only
increases like

√
q compared to the factor of p we would see if OLS

were used.

Additionally assume n = O(q) (ensures MSPE is bounded
asymptotically). Then L∗ = O(q). This could be a substantial
reduction over p.
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Discussion

Signal sparsity: useful assumption for high-dimensional data.

The Lasso (Tibshirani, 1996) has been central to developments in the
field.

Remaining challenges: different sorts of structural sparsity;
computation; inference.

Data sparsity: often present in large-scale data.

Several CS algorithms for dimension reduction that may be of interest
to statisticians.

Thank you for listening
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