Example sheet 4

1 Brownian motion

Exercise 1.1. (i) Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion in \mathbb{R}^{2} starting from (x, y). Compute the distribution of B_{T}, where

$$
T=\inf \left\{t \geq 0: B_{t} \notin H\right\}
$$

and where H is the upper half plane $\{(x, y): y>0\}$.
(ii) Show that, for any bounded continuous function $u: \bar{H} \rightarrow \mathbb{R}$, harmonic in H, with $u(x, 0)=f(x)$ for all $x \in \mathbb{R}$, we have

$$
u(x, y)=\int_{\mathbb{R}} f(s) \frac{1}{\pi} \frac{y}{(x-s)^{2}+y^{2}} d s
$$

Exercise 1.2 (Brownian bridge). Let $\left(B_{t}, 0 \leq t \leq 1\right)$ be a standard Brownian motion in 1 dimension. We let $\left(Z_{t}^{y}=y t+\left(B_{t}-t B_{1}\right), 0 \leq t \leq 1\right)$ for any $y \in \mathbb{R}$ and call it the Brownian bridge from 0 to y. Let W_{0}^{y} be the law of $\left(Z_{t}^{y}, 0 \leq t \leq 1\right)$ on $\mathcal{C}([0,1])$. Show that for any non-negative measurable function $F: \mathcal{C}([0,1]) \rightarrow \mathbb{R}_{+}$for $f(y)=W_{0}^{y}(F)$, we have

$$
\mathbb{E}\left[F(B) \mid B_{1}\right]=f\left(B_{1}\right) \text { a.s. }
$$

Hint: Find a simple argument entailing that B_{1} is independent of process $\left(B_{t}-t B_{1}, 0 \leq t \leq\right.$ 1).

Explain why we can interpret W_{0}^{y} as the law of a Brownian motion "conditioned to hit y at time 1".
Exercise 1.3. Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion in \mathbb{R}^{3}. Set $R_{t}=1 /\left|B_{t}\right|$. Show that
(i) $\left(R_{t}, t \geq 1\right)$ is bounded in \mathcal{L}^{2},
(ii) $\mathbb{E}\left[R_{t}\right] \rightarrow 0$ as $t \rightarrow \infty$,
(iii) $\left(R_{t}\right)_{t>0}$ is a supermartingale.

Exercise 1.4. Fix $t \geq 0$. Show that, almost surely, Brownian motion in one dimension is not differentiable at t.
Exercise 1.5. Let $(\xi(s))_{s \leq t}$ be a standard Brownian motion in $d \geq 1$ dimensions. Set $W(t)=\cup_{s \leq t} \mathcal{B}(\xi(s), r)$, where $\mathcal{B}(x, r)$ stands for a ball centred at x of radius r, for $r>0$.
Show that if $d=1$, then for all t

$$
\mathbb{E}\left[\operatorname{vol}(W(t)]=2 r+\sqrt{\frac{8 t}{\pi}}\right.
$$

2 Poisson random measures

Exercise 2.1. Let $N, Y_{n}, n \in \mathbb{N}$, be independent random variables, with $N \sim P(\lambda), \lambda<\infty$ and $\mathbb{P}\left(Y_{n}=j\right)=p_{j}$, for $j=1, \ldots, k$ and all n. Set

$$
N_{j}=\sum_{n=1}^{N} \mathbf{l}\left(Y_{n}=j\right)
$$

Show that N_{1}, \ldots, N_{k} are independent random variables with $N_{j} \sim P\left(\lambda p_{j}\right)$ for all j.
Exercise 2.2. Let $E=\mathbb{R}_{+}$and $\mu=\theta \mathbf{l}(t \geq 0) d t$. Let M be a Poisson random measure on \mathbb{R}_{+}with intensity measure μ and let $\left(T_{n}\right)_{n \geq 1}$ and $T_{0}=0$ be a sequence of random variables such that $\left(T_{n}-T_{n-1}, n \geq 1\right)$ are independent exponential random variables with parameter $\theta>0$. Show that

$$
\left(N_{t}=\sum_{n \geq 1} \mathbf{l}\left(T_{n} \leq t\right), t \geq 0\right) \quad \text { and } \quad\left(N_{t}^{\prime}=M([0, t]), t \geq 0\right)
$$

have the same distribution.
Exercise 2.3. Prove that the Poisson law with parameter $\lambda>0$ is the weak limit of the Binomial law with parameters $(n, \lambda / n)$ as $n \rightarrow \infty$.

Exercise 2.4 (The bus paradox). Why do we always feel we are waiting a very long time before buses arrive? This exercise gives an indication of why... well, if buses arrive according to a Poisson process.

1. Suppose buses are circulating in a city day and night since ever, the counterpart being that drivers do not officiate with a timetable. Rather, the times of arrival of buses at a given bus-stop are the atoms of a Poisson measure on \mathbb{R} with intensity $\theta d t$, where $d t$ is Lebesgue measure on \mathbb{R}. A customer arrives at a fixed time t at the bus-stop. Let S, T be the two consecutive atoms of the Poisson measure satisfying $S<t<T$. Show that the average time $\mathbb{E}[T-S]$ that elapses between the arrivals of the last bus before time t and the first bus after time t is $2 / \theta$. Explain why this is twice the average time between consecutive buses. Can you see why this is so?
2. Suppose that buses start circulating at time 0 , so that arrivals of buses at the station are now the jump times of a Poisson process with intensity θ on \mathbb{R}_{+}. If the customer arrives at time t, show that the average elapsed time between the bus before (time S) and after his arrival (time T) is $\theta^{-1}\left(2-e^{-\theta t}\right)$ (with the convention $S=0$ if no atom has fallen in $[0, t]$).
