
Example sheet 4

1 Brownian motion

Exercise 1.1. (i) Let (Bt)t≥0 be a Brownian motion in R2 starting from (x, y). Compute
the distribution of BT , where

T = inf{t ≥ 0 : Bt 6∈ H}

and where H is the upper half plane {(x, y) : y > 0}.
(ii) Show that, for any bounded continuous function u : H → R, harmonic in H, with
u(x, 0) = f(x) for all x ∈ R, we have

u(x, y) =

∫
R
f(s)

1

π

y

(x− s)2 + y2
ds.

Exercise 1.2 (Brownian bridge). Let (Bt, 0 ≤ t ≤ 1) be a standard Brownian motion in 1
dimension. We let (Zy

t = yt+ (Bt − tB1), 0 ≤ t ≤ 1) for any y ∈ R and call it the Brownian
bridge from 0 to y. Let W y

0 be the law of (Zy
t , 0 ≤ t ≤ 1) on C([0, 1]). Show that for any

non-negative measurable function F : C([0, 1])→ R+ for f(y) = W y
0 (F ), we have

E[F (B)|B1] = f(B1) a.s.

Hint: Find a simple argument entailing that B1 is independent of process (Bt− tB1, 0 ≤ t ≤
1).
Explain why we can interpret W y

0 as the law of a Brownian motion “conditioned to hit y at
time 1”.

Exercise 1.3. Let (Bt)t≥0 be a standard Brownian motion in R3. Set Rt = 1/|Bt|. Show
that
(i)(Rt, t ≥ 1) is bounded in L2,

(ii) E[Rt]→ 0 as t→∞,

(iii) (Rt)t>0 is a supermartingale.

Exercise 1.4. Fix t ≥ 0. Show that, almost surely, Brownian motion in one dimension is
not differentiable at t.

Exercise 1.5. Let (ξ(s))s≤t be a standard Brownian motion in d ≥ 1 dimensions. Set
W (t) = ∪s≤tB(ξ(s), r), where B(x, r) stands for a ball centred at x of radius r, for r > 0.

Show that if d = 1, then for all t

E[vol(W (t)] = 2r +

√
8t

π
.
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2 Poisson random measures

Exercise 2.1. Let N, Yn, n ∈ N, be independent random variables, with N ∼ P (λ), λ <∞
and P(Yn = j) = pj, for j = 1, . . . , k and all n. Set

Nj =
N∑
n=1

1(Yn = j).

Show that N1, . . . , Nk are independent random variables with Nj ∼ P (λpj) for all j.

Exercise 2.2. Let E = R+ and µ = θ1(t ≥ 0) dt. Let M be a Poisson random measure on
R+ with intensity measure µ and let(Tn)n≥1 and T0 = 0 be a sequence of random variables
such that (Tn − Tn−1, n ≥ 1) are independent exponential random variables with parameter
θ > 0. Show that(

Nt =
∑
n≥1

1(Tn ≤ t), t ≥ 0

)
and (N ′t = M([0, t]), t ≥ 0)

have the same distribution.

Exercise 2.3. Prove that the Poisson law with parameter λ > 0 is the weak limit of the
Binomial law with parameters (n, λ/n) as n→∞.

Exercise 2.4 (The bus paradox). Why do we always feel we are waiting a very long time
before buses arrive? This exercise gives an indication of why... well, if buses arrive according
to a Poisson process.

1. Suppose buses are circulating in a city day and night since ever, the counterpart being
that drivers do not officiate with a timetable. Rather, the times of arrival of buses at a given
bus-stop are the atoms of a Poisson measure on R with intensity θ dt, where dt is Lebesgue
measure on R. A customer arrives at a fixed time t at the bus-stop. Let S, T be the two
consecutive atoms of the Poisson measure satisfying S < t < T . Show that the average time
E[T −S] that elapses between the arrivals of the last bus before time t and the first bus after
time t is 2/θ. Explain why this is twice the average time between consecutive buses. Can
you see why this is so?

2. Suppose that buses start circulating at time 0, so that arrivals of buses at the station are
now the jump times of a Poisson process with intensity θ on R+. If the customer arrives at
time t, show that the average elapsed time between the bus before (time S) and after his
arrival (time T ) is θ−1(2− e−θt) (with the convention S = 0 if no atom has fallen in [0, t]).
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