Example sheet 2

1 Discrete-time martingales

Exercise 1.1. Let (X,,,n > 0) be a sequence of [0, 1]-valued random variables, which satisfy
the following property. First, Xy = a a.s. for some a € (0,1) and for n > 0,

P(Xn_t,_l:% fn)a

where F,, = 0(X,0 < k < n). Here, we have denoted P(A|G) = E[1(A)|G].
1. Prove that (X,,n > 0) is a martingale that converges in L? for every p > 1.

2. Check that E[(X,.; — X,,)?] = E[X,(1 — X,,)]/4. Then determine E[X, (1 — X)] and
deduce that law of X .

X, +1

]—"n> :1—Xn:1—IP’<Xn+1:

Exercise 1.2. Let (X,,,n > 0) be a martingale in £2. Show that its increments (X,,41 — X, :
n > 0) are pairwise orthogonal, i.e. for all n # m the increments satisfy

E[(Xot1 — Xo) (X1 — X)] = 0.

Conclude that X is bounded in £? if and only if
D E[(Xn1 — X0)?] < o0
n>0

Exercise 1.3 (Wald’s identity). Let (X,,n > 0) be a sequence of independent and identi-
cally distributed real integrable random variables. We let S,, = X7 + ...+ X,, (with Sy = 0)
be the associated random walk and 7" an (F,)-stopping time, where F,, = o(Xy, k < n).

1. Show that if the variables X; are non-negative, then
E[S1] = E[T]E[X,].
2. Show that if E[T] < oo, then
E[S7] = E[T]E[X,].

3. Suppose that E[X;] = 0 and set T, = inf{n > 0: S,, > a}, for some a > 0. Show that
E[T,] = oc.

4. Suppose that P(X; = +1) =2/3 =1—-P(X; = —1) and set T, = inf{n > 0: 5, > a},
for some a > 0. Find E[T,]. (You cannot assume that E[T,] < c0.)
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Exercise 1.4 (Gambler’s ruin). Suppose that X, Xy, ... are independent random vari-
ables with
P(X =+1)=p, P(X =-1) =g,

where p € (0,1), ¢ = 1 —p and p # ¢q. Suppose that a and b are integers with 0 < a < b.
Define
Spi=a+Xi+---+X,, T:=inf{n:S,=0o0r S, =b}.

Let F, = o(Xy,...,X,). Prove that

Sn
M, = (%) and N, = S, —n(p — q)

define martingales M and N. Deduce the values of P(Sy = 0) and E[T7].

Exercise 1.5 (Azuma—Hoeffding Inequality). (a) Show that if Y is a random variable
with values in [—c, ¢] and with E[Y] = 0, then, for § € R,

1
E[e?] < coshfc < exp (5 0202> :

(b) Prove that if M is a martingale, with M, = 0 and such that for some sequence (¢, : n € N)
of positive constants, |M, — M, 41| < ¢, for all n, then, for x > 0,

1 n
]P’(supMk > :U) < exp(—§ x2/20i>
k=1

k<n
Hint for (a). Let f(z) :=exp(0z), z € [—¢,c]. Then, since f is convex,

) < 5710+ 5.7 1),

ct+y
2c

Hint for (b). Optimize over 6.

Exercise 1.6. Let f : [0,1] — R be Lipschitz, that is, suppose that, for some K < oo and
all z,y € [0,1]

[f(z) = f(y)] < K|z —yl.
Denote by f, the simplest piecewise linear function agreeing with f on {k27™ : k =
0,1,...,2"}. Set M,, = f!. Show that M, converges a.e. and in £' and deduce that f
is the indefinite integral of a bounded function.

Exercise 1.7 (Doob’s decomposition of submartingales). Let (X,,,n > 0) be a sub-
martingale.

1. Show that there exists a unique martingale M,, and a unique previsible process (A4,,n > 0)
(i.e. A, is F,_1 measurable) such that Ag = 0, A is increasing and X = M + A.

2. Show that M, A are bounded in £! if and only if X is, and that A, < oo a.s. in this case
(and even that E[A,] < 00), where A, is the increasing limit of A, as n — oo.

Exercise 1.8. Let (X,,,n > 0) be a UI submartingale.
1. Show that if X = M + A is the Doob decomposition of X, then M is UI.
2. Show that for every pair of stopping times S,T with S < T,

E[Xr|Fs] > Xs.



2 Continuous-time processes

Exercise 2.1 (Gaussian processes). A real-valued process (X;,t > 0) is called a Gaussian
process if for every t; < ty < ... < t;, the random vector (X, ..., X;,) is a Gaussian random
vector. Show that the law of a Gaussian process is uniquely characterized by the numbers
E[X;],t > 0 and Cov(X§, X;) for s, > 0.

Exercise 2.2. Let T' ~ E()). Define

1—eM ift<T

0 ift<T
th{ E—U{Zs-sﬁt}»Mt—{1 ift >T.

1 ift>T"
Prove that E[|M;|] < oo, and that E[M;;{T" > r}| = E[M;{T > r}] for r < s < ¢, and
hence deduce that M, is a cadlag martingale with respect to the filtration {F;}.
Is M bounded in £'? Is M uniformly integrable? Is Mp_ in £17?

Exercise 2.3. Let T' be a random variable with values in (0, 00) and with strictly positive
continuous density f on (0, 00) and distribution function F'(¢) = P(T < t). Define

t
f(s)
Ay = ————ds, 0<t< .
' o 1—F(s)
By expressing the distribution function of Ay, G(t) = P(Ar < t), in terms of the inverse
function A~! of A, or otherwise, deduce that A; has the exponential distribution of mean 1.

Define Z; and F; as in Exercise 2.2 above, and prove that M; = Z, — A;xr is a cadlag
martingale relative to {F;}. The function A, is called the hazard function for T.



