
Example sheet 2

1 Discrete-time martingales

Exercise 1.1. Let (Xn, n ≥ 0) be a sequence of [0, 1]-valued random variables, which satisfy
the following property. First, X0 = a a.s. for some a ∈ (0, 1) and for n ≥ 0,

P

(
Xn+1 =

Xn

2

∣∣∣∣∣Fn
)

= 1−Xn = 1− P

(
Xn+1 =

Xn + 1

2

∣∣∣∣∣Fn
)
,

where Fn = σ(Xk, 0 ≤ k ≤ n). Here, we have denoted P(A|G) = E[1(A)|G].

1. Prove that (Xn, n ≥ 0) is a martingale that converges in Lp for every p ≥ 1.

2. Check that E[(Xn+1 − Xn)2] = E[Xn(1 − Xn)]/4. Then determine E[X∞(1 − X∞)] and
deduce that law of X∞.

Exercise 1.2. Let (Xn, n ≥ 0) be a martingale in L2. Show that its increments (Xn+1−Xn :
n ≥ 0) are pairwise orthogonal, i.e. for all n 6= m the increments satisfy

E[(Xn+1 −Xn)(Xm+1 −Xm)] = 0.

Conclude that X is bounded in L2 if and only if∑
n≥0

E[(Xn+1 −Xn)2] <∞.

Exercise 1.3 (Wald’s identity). Let (Xn, n ≥ 0) be a sequence of independent and identi-
cally distributed real integrable random variables. We let Sn = X1 + . . .+Xn (with S0 = 0)
be the associated random walk and T an (Fn)-stopping time, where Fn = σ(Xk, k ≤ n).

1. Show that if the variables Xi are non-negative, then

E[ST ] = E[T ]E[X1].

2. Show that if E[T ] <∞, then

E[ST ] = E[T ]E[X1].

3. Suppose that E[X1] = 0 and set Ta = inf{n ≥ 0 : Sn ≥ a}, for some a > 0. Show that
E[Ta] =∞.

4. Suppose that P(X1 = +1) = 2/3 = 1 − P(X1 = −1) and set Ta = inf{n ≥ 0 : Sn ≥ a},
for some a > 0. Find E[Ta]. (You cannot assume that E[Ta] <∞.)
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Exercise 1.4 (Gambler’s ruin). Suppose that X1, X2, . . . are independent random vari-
ables with

P(X = +1) = p, P(X = −1) = q,

where p ∈ (0, 1), q = 1 − p and p 6= q. Suppose that a and b are integers with 0 < a < b.
Define

Sn := a+X1 + · · ·+Xn, T := inf{n : Sn = 0 or Sn = b}.
Let Fn = σ(X1, . . . , Xn). Prove that

Mn :=

(
q

p

)Sn

and Nn = Sn − n(p− q)

define martingales M and N . Deduce the values of P(ST = 0) and E[T ].

Exercise 1.5 (Azuma–Hoeffding Inequality). (a) Show that if Y is a random variable
with values in [−c, c] and with E[Y ] = 0, then, for θ ∈ R,

E[eθY ] ≤ cosh θc ≤ exp

(
1

2
θ2c2

)
.

(b) Prove that if M is a martingale, withM0 = 0 and such that for some sequence (cn : n ∈ N)
of positive constants, |Mn −Mn−1| ≤ cn for all n, then, for x > 0,

P
(

sup
k≤n

Mk ≥ x
)
≤ exp

(
−1

2
x2
/ n∑

k=1

c2k

)
.

Hint for (a). Let f(z) := exp(θz), z ∈ [−c, c]. Then, since f is convex,

f(y) ≤ c− y
2c

f(−c) +
c+ y

2c
f(c).

Hint for (b). Optimize over θ.

Exercise 1.6. Let f : [0, 1] → R be Lipschitz, that is, suppose that, for some K < ∞ and
all x, y ∈ [0, 1]

|f(x)− f(y)| ≤ K|x− y|.
Denote by fn the simplest piecewise linear function agreeing with f on {k2−n : k =
0, 1, . . . , 2n}. Set Mn = f ′n. Show that Mn converges a.e. and in L1 and deduce that f
is the indefinite integral of a bounded function.

Exercise 1.7 (Doob’s decomposition of submartingales). Let (Xn, n ≥ 0) be a sub-
martingale.
1. Show that there exists a unique martingale Mn and a unique previsible process (An, n ≥ 0)
(i.e. An is Fn−1 measurable) such that A0 = 0, A is increasing and X = M + A.
2. Show that M,A are bounded in L1 if and only if X is, and that A∞ <∞ a.s. in this case
(and even that E[A∞] <∞), where A∞ is the increasing limit of An as n→∞.

Exercise 1.8. Let (Xn, n ≥ 0) be a UI submartingale.
1. Show that if X = M + A is the Doob decomposition of X, then M is UI.
2. Show that for every pair of stopping times S, T with S ≤ T ,

E[XT |FS] ≥ XS.
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2 Continuous-time processes

Exercise 2.1 (Gaussian processes). A real-valued process (Xt, t ≥ 0) is called a Gaussian
process if for every t1 < t2 < . . . < tk, the random vector (Xt1 , . . . , Xtk) is a Gaussian random
vector. Show that the law of a Gaussian process is uniquely characterized by the numbers
E[Xt], t ≥ 0 and Cov(Xs, Xt) for s, t ≥ 0.

Exercise 2.2. Let T ∼ E(λ). Define

Zt =

{
0 if t < T
1 if t ≥ T

, Ft = σ{Zs : s ≤ t}, Mt =

{
1− eλt if t < T
1 if t ≥ T .

Prove that E[|Mt|] < ∞, and that E[Mt; {T > r}] = E[Ms; {T > r}] for r ≤ s ≤ t, and
hence deduce that Mt is a cadlag martingale with respect to the filtration {Ft}.

Is M bounded in L1? Is M uniformly integrable? Is MT− in L1?

Exercise 2.3. Let T be a random variable with values in (0,∞) and with strictly positive
continuous density f on (0,∞) and distribution function F (t) = P(T ≤ t). Define

At =

∫ t

0

f(s)

1− F (s)
ds, 0 ≤ t <∞.

By expressing the distribution function of AT , G(t) = P(AT ≤ t), in terms of the inverse
function A−1 of A, or otherwise, deduce that AT has the exponential distribution of mean 1.

Define Zt and Ft as in Exercise 2.2 above, and prove that Mt = Zt − At∧T is a cadlag
martingale relative to {Ft}. The function At is called the hazard function for T .
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