Example sheet 2

1 Discrete-time martingales

Exercise 1.1. Let $\left(X_{n}, n \geq 0\right)$ be a sequence of $[0,1]$-valued random variables, which satisfy the following property. First, $X_{0}=a$ a.s. for some $a \in(0,1)$ and for $n \geq 0$,

$$
\mathbb{P}\left(\left.X_{n+1}=\frac{X_{n}}{2} \right\rvert\, \mathcal{F}_{n}\right)=1-X_{n}=1-\mathbb{P}\left(\left.X_{n+1}=\frac{X_{n}+1}{2} \right\rvert\, \mathcal{F}_{n}\right)
$$

where $\mathcal{F}_{n}=\sigma\left(X_{k}, 0 \leq k \leq n\right)$. Here, we have denoted $\mathbb{P}(A \mid \mathcal{G})=\mathbb{E}[\mathbf{l}(A) \mid \mathcal{G}]$.

1. Prove that $\left(X_{n}, n \geq 0\right)$ is a martingale that converges in \mathcal{L}^{p} for every $p \geq 1$.
2. Check that $\mathbb{E}\left[\left(X_{n+1}-X_{n}\right)^{2}\right]=\mathbb{E}\left[X_{n}\left(1-X_{n}\right)\right] / 4$. Then determine $\mathbb{E}\left[X_{\infty}\left(1-X_{\infty}\right)\right]$ and deduce that law of X_{∞}.

Exercise 1.2. Let $\left(X_{n}, n \geq 0\right)$ be a martingale in \mathcal{L}^{2}. Show that its increments $\left(X_{n+1}-X_{n}\right.$: $n \geq 0$) are pairwise orthogonal, i.e. for all $n \neq m$ the increments satisfy

$$
\mathbb{E}\left[\left(X_{n+1}-X_{n}\right)\left(X_{m+1}-X_{m}\right)\right]=0
$$

Conclude that X is bounded in \mathcal{L}^{2} if and only if

$$
\sum_{n \geq 0} \mathbb{E}\left[\left(X_{n+1}-X_{n}\right)^{2}\right]<\infty
$$

Exercise 1.3 (Wald's identity). Let $\left(X_{n}, n \geq 0\right)$ be a sequence of independent and identically distributed real integrable random variables. We let $S_{n}=X_{1}+\ldots+X_{n}\left(\right.$ with $\left.S_{0}=0\right)$ be the associated random walk and T an $\left(\mathcal{F}_{n}\right)$-stopping time, where $\mathcal{F}_{n}=\sigma\left(X_{k}, k \leq n\right)$.

1. Show that if the variables X_{i} are non-negative, then

$$
\mathbb{E}\left[S_{T}\right]=\mathbb{E}[T] \mathbb{E}\left[X_{1}\right]
$$

2. Show that if $\mathbb{E}[T]<\infty$, then

$$
\mathbb{E}\left[S_{T}\right]=\mathbb{E}[T] \mathbb{E}\left[X_{1}\right]
$$

3. Suppose that $\mathbb{E}\left[X_{1}\right]=0$ and set $T_{a}=\inf \left\{n \geq 0: S_{n} \geq a\right\}$, for some $a>0$. Show that $\mathbb{E}\left[T_{a}\right]=\infty$.
4. Suppose that $\mathbb{P}\left(X_{1}=+1\right)=2 / 3=1-\mathbb{P}\left(X_{1}=-1\right)$ and set $T_{a}=\inf \left\{n \geq 0: S_{n} \geq a\right\}$, for some $a>0$. Find $\mathbb{E}\left[T_{a}\right]$. (You cannot assume that $\mathbb{E}\left[T_{a}\right]<\infty$.)

Exercise 1.4 (Gambler's ruin). Suppose that X_{1}, X_{2}, \ldots are independent random variables with

$$
\mathbb{P}(X=+1)=p, \mathbb{P}(X=-1)=q,
$$

where $p \in(0,1), q=1-p$ and $p \neq q$. Suppose that a and b are integers with $0<a<b$. Define

$$
S_{n}:=a+X_{1}+\cdots+X_{n}, T:=\inf \left\{n: S_{n}=0 \text { or } S_{n}=b\right\} .
$$

Let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. Prove that

$$
M_{n}:=\left(\frac{q}{p}\right)^{S_{n}} \text { and } N_{n}=S_{n}-n(p-q)
$$

define martingales M and N. Deduce the values of $\mathbb{P}\left(S_{T}=0\right)$ and $\mathbb{E}[T]$.
Exercise 1.5 (Azuma-Hoeffding Inequality). (a) Show that if Y is a random variable with values in $[-c, c]$ and with $\mathbb{E}[Y]=0$, then, for $\theta \in \mathbb{R}$,

$$
\mathbb{E}\left[e^{\theta Y}\right] \leq \cosh \theta c \leq \exp \left(\frac{1}{2} \theta^{2} c^{2}\right)
$$

(b) Prove that if M is a martingale, with $M_{0}=0$ and such that for some sequence ($c_{n}: n \in \mathbb{N}$) of positive constants, $\left|M_{n}-M_{n-1}\right| \leq c_{n}$ for all n, then, for $x>0$,

$$
\mathbb{P}\left(\sup _{k \leq n} M_{k} \geq x\right) \leq \exp \left(-\frac{1}{2} x^{2} / \sum_{k=1}^{n} c_{k}^{2}\right)
$$

Hint for (a). Let $f(z):=\exp (\theta z), z \in[-c, c]$. Then, since f is convex,

$$
f(y) \leq \frac{c-y}{2 c} f(-c)+\frac{c+y}{2 c} f(c) .
$$

Hint for (b). Optimize over θ.
Exercise 1.6. Let $f:[0,1] \rightarrow \mathbb{R}$ be Lipschitz, that is, suppose that, for some $K<\infty$ and all $x, y \in[0,1]$

$$
|f(x)-f(y)| \leq K|x-y|
$$

Denote by f_{n} the simplest piecewise linear function agreeing with f on $\left\{k 2^{-n}: k=\right.$ $\left.0,1, \ldots, 2^{n}\right\}$. Set $M_{n}=f_{n}^{\prime}$. Show that M_{n} converges a.e. and in \mathcal{L}^{1} and deduce that f is the indefinite integral of a bounded function.
Exercise 1.7 (Doob's decomposition of submartingales). Let ($X_{n}, n \geq 0$) be a submartingale.

1. Show that there exists a unique martingale M_{n} and a unique previsible process $\left(A_{n}, n \geq 0\right)$ (i.e. A_{n} is \mathcal{F}_{n-1} measurable) such that $A_{0}=0, A$ is increasing and $X=M+A$.
2. Show that M, A are bounded in \mathcal{L}^{1} if and only if X is, and that $A_{\infty}<\infty$ a.s. in this case (and even that $\mathbb{E}\left[A_{\infty}\right]<\infty$), where A_{∞} is the increasing limit of A_{n} as $n \rightarrow \infty$.

Exercise 1.8. Let $\left(X_{n}, n \geq 0\right)$ be a UI submartingale.

1. Show that if $X=M+A$ is the Doob decomposition of X, then M is UI.
2. Show that for every pair of stopping times S, T with $S \leq T$,

$$
\mathbb{E}\left[X_{T} \mid \mathcal{F}_{S}\right] \geq X_{S}
$$

2 Continuous-time processes

Exercise 2.1 (Gaussian processes). A real-valued process $\left(X_{t}, t \geq 0\right)$ is called a Gaussian process if for every $t_{1}<t_{2}<\ldots<t_{k}$, the random vector $\left(X_{t_{1}}, \ldots, X_{t_{k}}\right)$ is a Gaussian random vector. Show that the law of a Gaussian process is uniquely characterized by the numbers $\mathbb{E}\left[X_{t}\right], t \geq 0$ and $\operatorname{Cov}\left(X_{s}, X_{t}\right)$ for $s, t \geq 0$.

Exercise 2.2. Let $T \sim E(\lambda)$. Define

$$
Z_{t}=\left\{\begin{array}{ll}
0 & \text { if } t<T \\
1 & \text { if } t \geq T
\end{array}, \quad \mathcal{F}_{t}=\sigma\left\{Z_{s}: s \leq t\right\}, \quad M_{t}= \begin{cases}1-e^{\lambda t} & \text { if } t<T \\
1 & \text { if } t \geq T\end{cases}\right.
$$

Prove that $\mathbb{E}\left[\left|M_{t}\right|\right]<\infty$, and that $\mathbb{E}\left[M_{t} ;\{T>r\}\right]=\mathbb{E}\left[M_{s} ;\{T>r\}\right]$ for $r \leq s \leq t$, and hence deduce that M_{t} is a cadlag martingale with respect to the filtration $\left\{\mathcal{F}_{t}\right\}$.
Is M bounded in \mathcal{L}^{1} ? Is M uniformly integrable? Is M_{T-} in \mathcal{L}^{1} ?
Exercise 2.3. Let T be a random variable with values in $(0, \infty)$ and with strictly positive continuous density f on $(0, \infty)$ and distribution function $F(t)=\mathbb{P}(T \leq t)$. Define

$$
A_{t}=\int_{0}^{t} \frac{f(s)}{1-F(s)} d s, \quad 0 \leq t<\infty
$$

By expressing the distribution function of $A_{T}, G(t)=\mathbb{P}\left(A_{T} \leq t\right)$, in terms of the inverse function A^{-1} of A, or otherwise, deduce that A_{T} has the exponential distribution of mean 1 .

Define Z_{t} and \mathcal{F}_{t} as in Exercise 2.2 above, and prove that $M_{t}=Z_{t}-A_{t \wedge T}$ is a cadlag martingale relative to $\left\{\mathcal{F}_{t}\right\}$. The function A_{t} is called the hazard function for T.

