Example sheet 1

1 Conditional expectation

Exercise 1.1. Let X and Y be integrable random variables and suppose that

$$
\mathbb{E}[X \mid Y]=Y \quad \text { and } \quad \mathbb{E}[Y \mid X]=X \quad \text { a.s. }
$$

Show that $X=Y$ a.s.
Hint: Consider quantities like $\mathbb{E}[(X-Y) \mathbb{1}(X>c, Y \leq c)]+\mathbb{E}[(X-Y) \mathbf{l}(X \leq c, Y \leq c)]$.
Exercise 1.2. Let X, Y be two independent Bernoulli random variables with parameter $p \in(0,1)$. Let $Z=\mathbf{l}(X+Y=0)$. Compute $\mathbb{E}[X \mid Z]$ and $\mathbb{E}[Y \mid Z]$.

Exercise 1.3. Let X, Y be two independent exponential random variables of parameter θ. Let $Z=X+Y$, then check that the distribution of Z is gamma with parameter $(2, \theta)$, whose density with respect to the Lebesgue measure is $\theta^{2} x e^{-\theta x} \mathbf{l}(x \geq 0)$. Show that for any non-negative measurable h,

$$
\mathbb{E}[h(X) \mid Z]=\frac{1}{Z} \int_{0}^{Z} h(u) d u
$$

Conversely, let Z be a random variable with a $\Gamma(2, \theta)$ distribution, and suppose that X is a random variable whose conditional distribution given Z is uniform on $[0, Z]$. Namely, for every Borel non-negative function h

$$
\mathbb{E}[h(X) \mid Z]=\frac{1}{Z} \int_{0}^{Z} h(u) d u \text { a.s. }
$$

Show that X and $Z-X$ are independent, with exponential law.
Exercise 1.4. Let $X \geq 0$ be a random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mathcal{G} \subseteq \mathcal{F}$ be a sub- σ-algebra.

1. Show that $X>0$ implies that $\mathbb{E}[X \mid \mathcal{G}]>0$ up to an event of zero probability.
2. Show that $\{\mathbb{E}[X \mid \mathcal{G}]>0\}$ is the smallest \mathcal{G}-measurable event that contains the event $\{X>0\}$ up to zero probability events.

Exercise 1.5. Suppose given $a, b>0$, and let X, Y be two random variables with values in \mathbb{Z}_{+}and \mathbb{R}_{+}respectively, whose distribution is given by the formula

$$
\mathbb{P}(X=n, Y \leq t)=b \int_{0}^{t} \frac{(a y)^{n}}{n!} \exp (-(a+b) y) d y
$$

Let $n \in \mathbb{Z}_{+}$and $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a measurable function, compute $\mathbb{E}[h(Y) \mid X=n]$. Then compute $\mathbb{E}[Y /(X+1)], \mathbb{E}[\mathbf{l}(X=n) \mid Y]$ and $\mathbb{E}[X \mid Y]$.
Exercise 1.6 (Conditional independence). Let $\mathcal{G} \subseteq \mathcal{F}$ be a sub- σ-algebra. Two random variables X, Y are said to be independent conditionally on \mathcal{G} if for every non-negative measurable f, g,

$$
\mathbb{E}[f(X) g(Y) \mid \mathcal{G}]=\mathbb{E}[f(X) \mid \mathcal{G}] \mathbb{E}[g(Y) \mid \mathcal{G}] \text { a.s. }
$$

What are two random variables independent conditionally on $\{\varnothing, \Omega\}$? On \mathcal{F} ?
Show that X, Y are independent conditionally on \mathcal{G} if and only if for every non-negative \mathcal{G}-measurable random variable Z, and every f, g non-negative measurable functions,

$$
\mathbb{E}[f(X) g(Y) Z]=\mathbb{E}[f(X) Z \mathbb{E}[g(Y) \mid \mathcal{G}]]
$$

and this if and only for every measurable non-negative g,

$$
\mathbb{E}[g(Y) \mid \mathcal{G} \vee \sigma(X)]=\mathbb{E}[g(Y) \mid \mathcal{G}]
$$

Exercise 1.7. Give an example of a random variable X and two σ-algebras \mathcal{H} and \mathcal{G} such that X is independent of \mathcal{H} and \mathcal{G} is independent of \mathcal{H}, nevertheless

$$
\mathbb{E}[X \mid \sigma(\mathcal{G}, \mathcal{H})] \neq \mathbb{E}[X \mid \mathcal{G}]
$$

Hint: Consider coin tosses.

2 Discrete-time martingales

Exercise 2.1. Let $\left(X_{n}, n \geq 0\right)$ be an integrable process with values in a countable subset $E \subset \mathbb{R}$. Show that X is a martingale with respect to its natural filtration if and only if for every n and every $i_{0}, \ldots, i_{n} \in E$, we have

$$
\mathbb{E}\left[X_{n+1} \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right]=i_{n}
$$

Exercise 2.2. A process $C=\left(C_{n}, n \geq 0\right)$ is called previsible, if C_{n} is \mathcal{F}_{n-1}-measurable, for all $n \geq 1$. Let C be a previsible process and X a martingale (resp. supermartingale). We set

$$
Y_{n}=\sum_{k \leq n} C_{k}\left(X_{k}-X_{k-1}\right), \text { for all } n \geq 0
$$

Show that if C is bounded then $\left(Y_{n}, n \geq 0\right)$ is a martingale (if $C_{n} \geq 0$ for all n and bounded then it is a supermartingale).
We write $Y_{n}=(C \bullet X)_{n}$ and call it the martingale transform of X by C. It is the discrete analogue of the stochastic integral $\int C d X$. More on that in the "Stochastic calculus" course next term.

Exercise 2.3. Let $\left(X_{n}, n \geq 1\right)$ be a sequence of independent random variables with respective laws given by

$$
\mathbb{P}\left(X_{n}=-n^{2}\right)=\frac{1}{n^{2}} \text { and } \mathbb{P}\left(X_{n}=\frac{n^{2}}{n^{2}-1}\right)=1-\frac{1}{n^{2}}
$$

Let $S_{n}=X_{1}+\ldots+X_{n}$. Show that $S_{n} / n \rightarrow 1$ a.s. as $n \rightarrow \infty$ and deduce that $\left(S_{n}, n \geq 0\right)$ is a martingale which converges to $+\infty$.

Exercise 2.4. Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{n}\right), \mathbb{P}\right)$ be a filtered probability space. Let $A \in \mathcal{F}_{n}$ for some n and let $m, m^{\prime} \geq n$. Show that $m \mathbf{l}(A)+m^{\prime} \mathbf{\perp}\left(A^{c}\right)$ is a stopping time.
Show that an adapted process $\left(X_{n}, n \geq 0\right)$ with respect to some filtered probability space is a martingale if and only if it is integrable, and for every bounded stopping time T, $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{0}\right]$.

Exercise 2.5. Let X be a martingale (resp. supermartingale) on some filtered probability space, and let T be an a.s. finite stopping time. Prove that $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{0}\right]$ (resp. $\mathbb{E}\left[X_{T}\right] \leq$ $\left.\mathbb{E}\left[X_{0}\right]\right)$ if either one of the following conditions holds:

1. X is bounded $\left(\exists M>0: \forall n \geq 0,\left|X_{n}\right| \leq M\right.$ a.s. $)$
2. X has bounded increments $\left(\exists M>0: \forall n \geq 0,\left|X_{n+1}-X_{n}\right| \leq M\right.$ a.s. $)$ and $\mathbb{E}[T]<\infty$.

Exercise 2.6. Let T be an $\left(\mathcal{F}_{n}, n \geq 0\right)$-stopping time such that for some integer $N>0$ and $\varepsilon>0$,

$$
\mathbb{P}\left(T \leq N+n \mid \mathcal{F}_{n}\right) \geq \varepsilon, \text { for every } n \geq 0
$$

Show that $\mathbb{E}[T]<\infty$.
Hint: Find bounds for $\mathbb{P}(T>k N)$.
Exercise 2.7. Your winnings per unit stake on game n are ε_{n}, where the ε_{n} are independent random variables with

$$
\mathbb{P}\left(\varepsilon_{n}=1\right)=p \text { and } \mathbb{P}\left(\varepsilon_{n}=-1\right)=q
$$

where $p \in(1 / 2,1)$ and $q=1-p$. Your stake C_{n} on game n must lie between 0 and Z_{n-1}, where Z_{n-1} is your fortune at time $n-1$. Your object is to maximize the expected 'interest rate' $\mathbb{E}\left[\log \left(Z_{N} / Z_{0}\right)\right]$, where N is a given integer representing the length of the game, and Z_{0}, your fortune at time 0 , is a given constant. Let $\mathcal{F}_{n}=\sigma\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$. Show that if C is any previsible strategy, that is C_{n} is \mathcal{F}_{n-1}-measurable for all n, then $\log Z_{n}-n \alpha$ is a supermartingale, where α denotes the entropy

$$
\alpha=p \log p+q \log q+\log 2
$$

so that $\mathbb{E}\left[\log \left(Z_{n} / Z_{0}\right)\right] \leq N \alpha$, but that, for a certain strategy, $\log Z_{n}-n \alpha$ is a martingale. What is the best strategy?

Exercise 2.8 (Polya's urn). At time 0, an urn contains 1 black ball and 1 white ball. At each time $1,2,3, \ldots$, a ball is chosen at random from the urn and is replaced together with a new ball of the same colour. Just after time n, there are therefore $n+2$ balls in the urn, of which $B_{n}+1$ are black, where B_{n} is the number of black balls chosen by time n. Let
$M_{n}=\left(B_{n}+1\right) /(n+2)$ the proportion of black balls in the urn just after time n. Prove that, relative to a natural filtration which you should specify, M is a martingale. Show that it converges a.s. and in \mathcal{L}^{p} for all $p \geq 1$ to a $[0,1]$-valued random variable X_{∞}.
Show that for every k, the process

$$
\frac{\left(B_{n}+1\right)\left(B_{n}+2\right) \ldots\left(B_{n}+k\right)}{(n+2)(n+3) \ldots(n+k+1)}, n \geq 1
$$

is a martingale. Deduce the value of $\mathbb{E}\left[X_{\infty}^{k}\right]$, and finally the law of X_{∞}.
Reobtain this result by showing directly that $\mathbb{P}\left(B_{n}=k\right)=(n+1)^{-1}$ for $0 \leq k \leq n$.
Prove that for $0<\theta<1,\left(N_{n}(\theta)\right)_{n \geq 0}$ is a martingale, where

$$
N_{n}(\theta):=\frac{(n+1)!}{B_{n}!\left(n-B_{n}\right)!} \theta^{B_{n}}(1-\theta)^{n-B_{n}} .
$$

Exercise 2.9 (Bayes' urn). A random number Θ is chosen uniformly between 0 and 1 , and a coin with probability Θ of heads is minted. The coin is tossed repeatedly. Let B_{n} be the number of heads in n tosses. Prove that $\left(B_{n}\right)$ has exactly the same probabilistic structure as the $\left(B_{n}\right)$ sequence in Exercise 2.8. Prove that $N_{n}(\theta)$ is a conditional density function of Θ given $B_{1}, B_{2}, \ldots, B_{n}$.

Exercise 2.10 (ABRACADABRA). At each of times $1,2,3, \ldots$, a monkey types a capital letter at random, the sequence of letters typed forming a sequence of independent random variables, each chosen uniformly from amongst the 26 possible capital letters.

Just before each time $n=1,2, \ldots$, a new gambler arrives on the scene. He bets $\$ 1$ that

$$
\text { the } n^{\text {th }} \text { letter will be } A \text {. }
$$

If he loses, he leaves. If he wins, he receives $\$ 26$ all of which he bets on the event that

$$
\text { the }(n+1)^{\text {th }} \text { letter will be } B \text {. }
$$

If he loses, he leaves. If he wins, he bets his whole current fortune $\$ 26^{2}$ that

$$
\text { the }(n+2)^{\text {th }} \text { letter will be } R
$$

and so on through the ABRACADABRA sequence. Let T be the first time by which the monkey has produced the consecutive sequence ABRACADABRA. Prove, by a martingale argument, that

$$
\mathbb{E}[T]=26^{11}+26^{4}+26
$$

