Example sheet 1

1 Conditional expectation

Exercise 1.1. Let X and Y be integrable random variables and suppose that
E[X|Y]=Y and E}Y|X]=X as.

Show that X =Y as.

Hint: Consider quantities like E[(X —Y)1L(X > ¢, Y <¢)] +E[(X —Y)L(X <¢ Y <¢)].

Exercise 1.2. Let X,Y be two independent Bernoulli random variables with parameter
pe (0,1). Let Z=1(X+Y =0). Compute E[X|Z] and E[Y|Z].

Exercise 1.3. Let X,Y be two independent exponential random variables of parameter 6.
Let Z = X 4+ Y, then check that the distribution of Z is gamma with parameter (2,6),
whose density with respect to the Lebesgue measure is §?ze=%1(x > 0). Show that for any
non-negative measurable h,

E[h(X)|Z] = % /O h(u) du.

Conversely, let Z be a random variable with a I'(2, 0) distribution, and suppose that X is
a random variable whose conditional distribution given Z is uniform on [0, Z]. Namely, for
every Borel non-negative function h

E[h(X)|Z] = %/0 h(u) du a.s.

Show that X and Z — X are independent, with exponential law.

Exercise 1.4. Let X > 0 be a random variable on a probability space (2, F,[P) and let
G C F be a sub-c-algebra.

1. Show that X > 0 implies that E[X|G] > 0 up to an event of zero probability.

2. Show that {E[X|G] > 0} is the smallest G-measurable event that contains the event
{X > 0} up to zero probability events.



Exercise 1.5. Suppose given a,b > 0, and let X, Y be two random variables with values in
Z, and R, respectively, whose distribution is given by the formula

IP’(X:n,Ygt):b/t (ay)"

o n!

exp(—(a + b)y) dy.
Let n € Z; and h : R, — Ry be a measurable function, compute E[h(Y)|X = n|. Then
compute E[Y/(X + 1), E[L(X =n)|Y] and E[X|Y].

Exercise 1.6 (Conditional independence). Let G C F be a sub-c-algebra. Two ran-
dom variables X, Y are said to be independent conditionally on G if for every non-negative
measurable f, g,

E[f(X)g(Y)|g] = E[f(X)|GE[g(Y)|F] a.s.
What are two random variables independent conditionally on {&,Q2}? On F?

Show that X,Y are independent conditionally on G if and only if for every non-negative
G-measurable random variable Z, and every f, g non-negative measurable functions,

E[f(X)g(Y)Z] = E[f(X)ZE[g(Y)|F]],
and this if and only for every measurable non-negative g,
Elg(Y)IG Vv o(X)] = E[g(Y)[]].

Exercise 1.7. Give an example of a random variable X and two o-algebras H and G such
that X is independent of H and G is independent of H, nevertheless

E[X]|o(g,H)] # E[X|G].

Hint: Consider coin tosses.

2 Discrete-time martingales

Exercise 2.1. Let (X,,n > 0) be an integrable process with values in a countable subset
E C R. Show that X is a martingale with respect to its natural filtration if and only if for
every n and every 1g,...,i, € I/, we have

E[Xn+1|XO == ?:07 e ;Xn = ’ln] - Zn

Exercise 2.2. A process C' = (C,,,n > 0) is called previsible, if C,, is JF,_j-measurable, for
all n > 1. Let C be a previsible process and X a martingale (resp. supermartingale). We set

Yo=Y Cu(X) — Xi_y), for all n > 0.

k<n

Show that if C' is bounded then (Y,,n > 0) is a martingale (if C;, > 0 for all n and bounded
then it is a supermartingale).

We write Y,, = (C o X),, and call it the martingale transform of X by C. It is the discrete
analogue of the stochastic integral [ C'dX. More on that in the “Stochastic calculus” course
next term.



Exercise 2.3. Let (X,,,n > 1) be a sequence of independent random variables with respec-
tive laws given by

1 n? 1
_ 2y __ _ _
]P’(Xn——n)—ﬁ and P(Xn_nz—l)_l_ﬁ'
Let S, = X1 +...4+ X,. Show that S,,/n — 1 a.s. as n — oo and deduce that (S,,n > 0) is
a martingale which converges to 4oc0.

Exercise 2.4. Let (2, F,(F,),P) be a filtered probability space. Let A € F,, for some n
and let m, m' > n. Show that m1(A) + m’/L(A°) is a stopping time.

Show that an adapted process (X,,n > 0) with respect to some filtered probability space
is a martingale if and only if it is integrable, and for every bounded stopping time 7,
E[X7] = E[X].

Exercise 2.5. Let X be a martingale (resp. supermartingale) on some filtered probability
space, and let 7" be an a.s. finite stopping time. Prove that E[X7] = E[X(| (resp. E[X7]| <
E[Xo]) if either one of the following conditions holds:

1. X is bounded (IM >0: Vn >0, |X,| < M as.)
2. X has bounded increments (IM > 0: Vn > 0,|X,11 — X,,| < M a.s.) and E[T] < oc.

Exercise 2.6. Let T be an (F,,n > 0)-stopping time such that for some integer N > 0 and
e >0,
P(T' < N +n|F,) > ¢, for every n > 0.

Show that E[T] < oco.
Hint: Find bounds for P(T" > kN).

Exercise 2.7. Your winnings per unit stake on game n are €,,, where the ¢, are independent
random variables with
P(e, =1)=p and P(e, = —1) =g,

where p € (1/2,1) and ¢ = 1 — p. Your stake C,, on game n must lie between 0 and Z,, 1,
where Z,_1 is your fortune at time n — 1. Your object is to maximize the expected ‘interest
rate’ E[log(Zn/Zy)], where N is a given integer representing the length of the game, and
Zp, your fortune at time 0, is a given constant. Let F,, = o(eq,...,&,). Show that if C
is any previsible strategy, that is C), is JF,,_j-measurable for all n, then log Z, — na is a
supermartingale, where o denotes the entropy

a = plogp+ qlogq + log 2,

so that E[log(Z,/Zy)] < Na, but that, for a certain strategy, log Z, — na is a martingale.
What is the best strategy?

Exercise 2.8 (Polya’s urn). At time 0, an urn contains 1 black ball and 1 white ball. At
each time 1,2,3, ..., a ball is chosen at random from the urn and is replaced together with
a new ball of the same colour. Just after time n, there are therefore n + 2 balls in the urn,
of which B, + 1 are black, where B, is the number of black balls chosen by time n. Let
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M, = (B, + 1)/(n + 2) the proportion of black balls in the urn just after time n. Prove
that, relative to a natural filtration which you should specify, M is a martingale. Show that
it converges a.s. and in £? for all p > 1 to a [0, 1}-valued random variable X ..

Show that for every k, the process

(B, +1)(B, +2)...(B,+ k) -
m+2)(n+3)...(n+k+1)"
is a martingale. Deduce the value of E[X% ], and finally the law of X.
Reobtain this result by showing directly that P(B, = k) = (n+1)"! for 0 < k < n.
Prove that for 0 < § < 1, (N,(#)).>0 is a martingale, where

N, (0) - (n+1)!

=P (1 — )"
B,!(n — B,)! ( )

Exercise 2.9 (Bayes’ urn). A random number © is chosen uniformly between 0 and 1, and
a coin with probability © of heads is minted. The coin is tossed repeatedly. Let B,, be the
number of heads in n tosses. Prove that (B,) has exactly the same probabilistic structure
as the (B,,) sequence in Exercise 2.8. Prove that N, () is a conditional density function of
O given By, Bs, ..., B,.

Exercise 2.10 (ABRACADABRA). At each of times 1,2, 3, .. ., a monkey types a capital
letter at random, the sequence of letters typed forming a sequence of independent random
variables, each chosen uniformly from amongst the 26 possible capital letters.

Just before each time n = 1,2, ..., a new gambler arrives on the scene. He bets $1 that
the n'h letter will be A.
If he loses, he leaves. If he wins, he receives $26 all of which he bets on the event that
the (n + 1) letter will be B.
If he loses, he leaves. If he wins, he bets his whole current fortune $262 that
the (n + 2)™ letter will be R

and so on through the ABRACADABRA sequence. Let T' be the first time by which the
monkey has produced the consecutive sequence ABRACADABRA. Prove, by a martingale
argument, that

E[T] = 26" + 26 + 26.



