
Example sheet 1

1 Conditional expectation

Exercise 1.1. Let X and Y be integrable random variables and suppose that

E[X|Y ] = Y and E[Y |X] = X a.s.

Show that X = Y a.s.

Hint: Consider quantities like E[(X − Y )1(X > c, Y ≤ c)] + E[(X − Y )1(X ≤ c, Y ≤ c)].

Exercise 1.2. Let X, Y be two independent Bernoulli random variables with parameter
p ∈ (0, 1). Let Z = 1(X + Y = 0). Compute E[X|Z] and E[Y |Z].

Exercise 1.3. Let X, Y be two independent exponential random variables of parameter θ.
Let Z = X + Y , then check that the distribution of Z is gamma with parameter (2, θ),
whose density with respect to the Lebesgue measure is θ2xe−θx1(x ≥ 0). Show that for any
non-negative measurable h,

E[h(X)|Z] =
1

Z

∫ Z

0

h(u) du.

Conversely, let Z be a random variable with a Γ(2, θ) distribution, and suppose that X is
a random variable whose conditional distribution given Z is uniform on [0, Z]. Namely, for
every Borel non-negative function h

E[h(X)|Z] =
1

Z

∫ Z

0

h(u) du a.s.

Show that X and Z −X are independent, with exponential law.

Exercise 1.4. Let X ≥ 0 be a random variable on a probability space (Ω,F ,P) and let
G ⊆ F be a sub-σ-algebra.

1. Show that X > 0 implies that E[X|G] > 0 up to an event of zero probability.

2. Show that {E[X|G] > 0} is the smallest G-measurable event that contains the event
{X > 0} up to zero probability events.
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Exercise 1.5. Suppose given a, b > 0, and let X, Y be two random variables with values in
Z+ and R+ respectively, whose distribution is given by the formula

P(X = n, Y ≤ t) = b

∫ t

0

(ay)n

n!
exp(−(a+ b)y) dy.

Let n ∈ Z+ and h : R+ → R+ be a measurable function, compute E[h(Y )|X = n]. Then
compute E[Y/(X + 1)],E[1(X = n)|Y ] and E[X|Y ].

Exercise 1.6 (Conditional independence). Let G ⊆ F be a sub-σ-algebra. Two ran-
dom variables X, Y are said to be independent conditionally on G if for every non-negative
measurable f, g,

E[f(X)g(Y )|G] = E[f(X)|G]E[g(Y )|G] a.s.

What are two random variables independent conditionally on {∅,Ω}? On F?

Show that X, Y are independent conditionally on G if and only if for every non-negative
G-measurable random variable Z, and every f, g non-negative measurable functions,

E[f(X)g(Y )Z] = E[f(X)ZE[g(Y )|G]],

and this if and only for every measurable non-negative g,

E[g(Y )|G ∨ σ(X)] = E[g(Y )|G].

Exercise 1.7. Give an example of a random variable X and two σ-algebras H and G such
that X is independent of H and G is independent of H, nevertheless

E[X|σ(G,H)] 6= E[X|G].

Hint: Consider coin tosses.

2 Discrete-time martingales

Exercise 2.1. Let (Xn, n ≥ 0) be an integrable process with values in a countable subset
E ⊂ R. Show that X is a martingale with respect to its natural filtration if and only if for
every n and every i0, . . . , in ∈ E, we have

E[Xn+1|X0 = i0, . . . , Xn = in] = in.

Exercise 2.2. A process C = (Cn, n ≥ 0) is called previsible, if Cn is Fn−1-measurable, for
all n ≥ 1. Let C be a previsible process and X a martingale (resp. supermartingale). We set

Yn =
∑
k≤n

Ck(Xk −Xk−1), for all n ≥ 0.

Show that if C is bounded then (Yn, n ≥ 0) is a martingale (if Cn ≥ 0 for all n and bounded
then it is a supermartingale).

We write Yn = (C •X)n and call it the martingale transform of X by C. It is the discrete
analogue of the stochastic integral

∫
C dX. More on that in the “Stochastic calculus” course

next term.
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Exercise 2.3. Let (Xn, n ≥ 1) be a sequence of independent random variables with respec-
tive laws given by

P(Xn = −n2) =
1

n2
and P

(
Xn =

n2

n2 − 1

)
= 1− 1

n2
.

Let Sn = X1 + . . .+Xn. Show that Sn/n→ 1 a.s. as n→∞ and deduce that (Sn, n ≥ 0) is
a martingale which converges to +∞.

Exercise 2.4. Let (Ω,F , (Fn),P) be a filtered probability space. Let A ∈ Fn for some n
and let m,m′ ≥ n. Show that m1(A) +m′1(Ac) is a stopping time.

Show that an adapted process (Xn, n ≥ 0) with respect to some filtered probability space
is a martingale if and only if it is integrable, and for every bounded stopping time T ,
E[XT ] = E[X0].

Exercise 2.5. Let X be a martingale (resp. supermartingale) on some filtered probability
space, and let T be an a.s. finite stopping time. Prove that E[XT ] = E[X0] (resp. E[XT ] ≤
E[X0]) if either one of the following conditions holds:

1. X is bounded (∃M > 0 : ∀n ≥ 0, |Xn| ≤M a.s.)

2. X has bounded increments (∃M > 0 : ∀n ≥ 0, |Xn+1 −Xn| ≤M a.s.) and E[T ] <∞.

Exercise 2.6. Let T be an (Fn, n ≥ 0)-stopping time such that for some integer N > 0 and
ε > 0,

P(T ≤ N + n|Fn) ≥ ε, for every n ≥ 0.

Show that E[T ] <∞.
Hint: Find bounds for P(T > kN).

Exercise 2.7. Your winnings per unit stake on game n are εn, where the εn are independent
random variables with

P(εn = 1) = p and P(εn = −1) = q,

where p ∈ (1/2, 1) and q = 1 − p. Your stake Cn on game n must lie between 0 and Zn−1,
where Zn−1 is your fortune at time n− 1. Your object is to maximize the expected ‘interest
rate’ E[log(ZN/Z0)], where N is a given integer representing the length of the game, and
Z0, your fortune at time 0, is a given constant. Let Fn = σ(ε1, . . . , εn). Show that if C
is any previsible strategy, that is Cn is Fn−1-measurable for all n, then logZn − nα is a
supermartingale, where α denotes the entropy

α = p log p+ q log q + log 2,

so that E[log(Zn/Z0)] ≤ Nα, but that, for a certain strategy, logZn − nα is a martingale.
What is the best strategy?

Exercise 2.8 (Polya’s urn). At time 0, an urn contains 1 black ball and 1 white ball. At
each time 1, 2, 3, . . ., a ball is chosen at random from the urn and is replaced together with
a new ball of the same colour. Just after time n, there are therefore n + 2 balls in the urn,
of which Bn + 1 are black, where Bn is the number of black balls chosen by time n. Let
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Mn = (Bn + 1)/(n + 2) the proportion of black balls in the urn just after time n. Prove
that, relative to a natural filtration which you should specify, M is a martingale. Show that
it converges a.s. and in Lp for all p ≥ 1 to a [0, 1]-valued random variable X∞.

Show that for every k, the process

(Bn + 1)(Bn + 2) . . . (Bn + k)

(n+ 2)(n+ 3) . . . (n+ k + 1)
, n ≥ 1

is a martingale. Deduce the value of E[Xk
∞], and finally the law of X∞.

Reobtain this result by showing directly that P(Bn = k) = (n+ 1)−1 for 0 ≤ k ≤ n.

Prove that for 0 < θ < 1, (Nn(θ))n≥0 is a martingale, where

Nn(θ) :=
(n+ 1)!

Bn!(n−Bn)!
θBn(1− θ)n−Bn .

Exercise 2.9 (Bayes’ urn). A random number Θ is chosen uniformly between 0 and 1, and
a coin with probability Θ of heads is minted. The coin is tossed repeatedly. Let Bn be the
number of heads in n tosses. Prove that (Bn) has exactly the same probabilistic structure
as the (Bn) sequence in Exercise 2.8. Prove that Nn(θ) is a conditional density function of
Θ given B1, B2, . . . , Bn.

Exercise 2.10 (ABRACADABRA). At each of times 1, 2, 3, . . ., a monkey types a capital
letter at random, the sequence of letters typed forming a sequence of independent random
variables, each chosen uniformly from amongst the 26 possible capital letters.

Just before each time n = 1, 2, . . ., a new gambler arrives on the scene. He bets $1 that

the nth letter will be A.

If he loses, he leaves. If he wins, he receives $26 all of which he bets on the event that

the (n+ 1)th letter will be B.

If he loses, he leaves. If he wins, he bets his whole current fortune $262 that

the (n+ 2)th letter will be R

and so on through the ABRACADABRA sequence. Let T be the first time by which the
monkey has produced the consecutive sequence ABRACADABRA. Prove, by a martingale
argument, that

E[T ] = 2611 + 264 + 26.
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