Supplementary notes for new Part IIC course: Statistical Modelling, using the gamma distribution

P.M.E.Altham

January 4, 2005

We follow the notation of McCullagh and Nelder (1970), who define the density function of the gamma distribution with mean μ and shape parameter ν as

$$f(y|\mu,\nu) = \frac{1}{\Gamma(\nu)} (\nu y/\mu)^{\nu} e^{-\nu y/\mu} \frac{1}{y}$$

for y > 0.

You may check that this gives

$$E(Y) = \mu, \ var(Y) = (\mu^2)/\nu,$$

and the density is of standard glm form with $\phi = 1/\nu$, and canonical link $\eta = 1/\mu$.

We simulate from two gamma distributions below, and use the glm fitting procedure, with canonical link (ie the inverse). See if you can work out what's going on.

```
> library(MASS)
> y1 = rgamma(100, shape=5, rate=0.1)
> y2 = rgamma(50, shape=5, rate= 1.0)
> par(mfrow=c(2,1))
> truehist(y1); truehist(y2) # graphs not shown here
summary(y1); summary(y2)
                       Mean 3rd Qu.
Min. 1st Qu. Median
4.817 30.770 43.770 48.360 59.730 114.300
Min. 1st Qu. Median
                       Mean 3rd Qu.
                                       Max.
                               6.083 10.410
       3.000 4.716 4.694
> x =c(rep("a", times=100), rep("b", times=50))
> is.factor(x); x = factor(x)
> y = c(y1, y2)
> plot(x,y)
            # graphs not shown here
> first.glm = glm(y~x, Gamma) # nb, do not use "gamma"
> summary(first.glm)
glm(formula = y ~ x, family = Gamma)
Deviance Residuals:
              1Q
                     Median
                                   3Q
                                            Max
    -1.21730 -0.33643 -0.09652 0.25573
 Coefficients:
             Estimate Std. Error t value Pr(>|t|)
 (Intercept) 0.0209790 0.0009124
                                   22.99 <2e-16 ***
```

N.D

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Gamma family taken to be 0.1891440)

Null deviance: 144.609 on 149 degrees of freedom
Residual deviance: 28.430 on 148 degrees of freedom
AIC: 1095.8

> dev = residuals(first.glm, type="deviance")
>summary(dev) ; sum(dev^2)

This fits $1/\mu_i = \alpha$ for the first 100 observations, and $1/\mu_i = \alpha + \beta$ for the remaining 50 observations. What is $1/\hat{\alpha}$?

What is $1/(\hat{\alpha} + \hat{\beta})$?

Note that the estimate given for ν is the reciprocal of the dispersion parameter ϕ , and this dispersion parameter is estimated by

$$X^2/(n-p)$$

where n is the number of observations, and p is the number of parameters in the linear model (here p=2) and

$$X^2 = \Sigma [(y_i - \hat{\mu}_i)/\hat{\mu}_i]^2$$

Thus we find for this example that $\hat{\nu}=5.287$. This is actually a 'moments' estimator rather than the mle: as an exercise you can write down the equation for the maximum likelihood extimator. You will find that this gives an equation involving the function $\Gamma'(\nu)/\Gamma(\nu)$ (the digamma function), and there is no closed-form solution to this equation.

I must admit, I had difficulty working out where the AIC came from. It is, I believe, minus twice the maximised log-likelihood $+2 \times 3$, since we were fitting 3 parameters. Try

```
> nu <- 5.287 # your simulation may mean you have a different estimator here
> fv <- first.glm\fitted.value
> term= -lgamma(nu) + nu*log(nu * y/fv) - (nu*y/fv) - log(y)
> sum(term)
   -544.9114
```

and I trust you will see what I mean.

Reference

P.McCullagh and J.A.Nelder *Generalized Linear Models* Chapman and Hall (1990).