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Abstract It is shown that the uniform distance between the distribution function
F K

n (h) of the usual kernel density estimator (based on an i.i.d. sample from an abso-
lutely continuous law on R) with bandwidth h and the empirical distribution function
Fn satisfies an exponential inequality. This inequality is used to obtain sharp almost
sure rates of convergence of ‖F K

n (hn)− Fn‖∞ under mild conditions on the range of
bandwidths hn , including the usual MISE-optimal choices. Another application is a
Dvoretzky–Kiefer–Wolfowitz-type inequality for ‖F K

n (h)− F‖∞, where F is the true
distribution function. The exponential bound is also applied to show that an adaptive
estimator can be constructed that efficiently estimates the true distribution function F
in sup-norm loss, and, at the same time, estimates the density of F—if it exists (but
without assuming it does)—at the best possible rate of convergence over Hölder-balls,
again in sup-norm loss.

Keywords Kernel density estimator · Exponential inequalities · Adaptive
estimation · Sup-norm · Plug-in property
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1 Introduction

Let X1, . . . , Xn be independent random variables each having law P , and denote by Pn

the usual empirical measure induced by the sample. Let F and Fn denote the distribu-
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570 E. Giné, R. Nickl

tion functions of P and Pn . In the recent articles [2,17,18,29], it was shown that several
nonparametric density estimators (such as maximum likelihood, wavelet or kernel esti-
mators) are within a ‖ · ‖F -ball of probabilistic size o(1/

√
n) around the empirical

measure, where ‖µ‖F = sup f ∈F | ∫ f dµ| is the usual supnorm of a measure µ over
some (Donsker) class F . The special case F = {1(−∞,x] : x ∈ R} corresponds to the
distribution function F̂n of the corresponding density estimator, and in this case the
quantity ‖F̂n − Fn‖∞ can be analyzed with somewhat more precision. For example,
in the case of the maximum likelihood estimator of a monotone density, a classical
result by Kiefer and Wolfowitz [23] is that ‖F̂n − Fn‖∞ = Oa.s.

(
(n/ log n)−2/3

)
.

Similar results were recently proved for other shape-constrained minimum contrast
estimators, see [1,8,9].

The first goal of the present article is to give a more precise analysis of the stochas-
tic behavior of ‖F K

n (h)− Fn‖∞ if F K
n (h) is the distribution function of the classical

Rosenblatt–Parzen kernel density estimator with bandwidth h. In Theorem 1 we shall
prove an exponential inequality for the tail probabilities of

√
n‖F K

n (h) − Fn‖∞,
under mild and general conditions on P and the bandwidth h. The proof consists in an
application of Talagrand’s inequality, together with expectation bounds for empirical
processes over VC-classes. Although our theorem is confined to this particular class F ,
the model of the proof extends easily to other Donsker class F . The inequality implies
a rate of convergence of ‖F K

n (hn)− Fn‖∞ to zero, which—as we also show—cannot
be improved upon in general. This is in the spirit of the above mentioned result by [23].
Another direct consequence is a Dvoretzky–Kiefer–Wolfowitz [10] type inequality (up
to constants) for the distribution function of the classical kernel density estimator with
mean-integrated-squared error (MISE) optimal (and other) bandwidths.

The second goal of this article is the following adaptation result, that uses
Theorem 1: Without any assumptions on the underlying data generating process,
we show that one can construct a purely data driven estimator which estimates the
distribution function F efficiently in sup-norm loss and, at the same time, estimates
the density of F (if it exists, but without apriori assuming it does), at the best pos-
sible rate of convergence over Hölder balls, again in sup-norm loss. To do this, we
slightly modify Lepski’s method for adaptive nonparametric density estimation (see
[25], and further developments given, e.g., in [4,26,27,33]). The idea basically con-
sists in applying the usual method, but confined to kernel density estimators whose
distribution functions are contained in a ‖ · ‖∞-ball of size smaller than 1/

√
n around

Fn—the exact size depending on the bandwidth of the estimator—and then using our
exponential bound to control the probability of the event that

√
n‖F K

n (h)− Fn‖∞ is
“too large”.

We think that this adaptation result is theoretically interesting in several ways,
although it has practical drawbacks. First, the estimator we construct is robust with
respect to the choice of loss function, as it is optimal in sup-norm loss both for the
distribution function and the density. In particular this shows that—in a certain asymp-
totic sense—one can outperform the empirical distribution function as an estimator of
F . Of course we do not advocate replacing Fn by our more complicated estimator—
see also the last paragraph of the introduction—but we suggest that estimators other
than Fn can be thought of even if nothing is known about F .
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An exponential inequality for the distribution function 571

A second motivation requires a little more background. Density estimators that
achieve the minimax rate of convergence in some loss function (we typically have
L p-loss in mind) and simultaneously satisfy central limit theorems over Donsker
classes F , are interesting in several statistical problems. Bickel and Ritov [2] label
this the “plug-in property” of an estimator, which is useful, e.g., in the estimation
of non- or semiparametric functionals (see also Sects. 3.3–4 in [29]): Suppose, e.g.,
�(·) is a nonlinear functional defined on some set of bounded densities. In statistical
applications, �(p) is often estimated by the plug-in estimator �(pn), where pn is
some density estimator for the true density p. Suppose the approximation

�(pn)−�(p) = D�(p)[pn − p] + O(‖pn − p‖2∞)

holds. The rate of convergence of the remainder term is of order ‖pn − p‖2∞, which
typically depends on unknown properties of p, and here adaptive pn is desirable, see
also the recent article [5] on higher order efficiency of semiparametric estimators.
But one still has to prove asymptotic normality of the linear term D�(p)[pn − p]—
which will often have the form of an integral functional—and this easily follows from
general CLTs for the process

√
n(
∫
(pn − p) f ) f ∈F . Theorem 2—within its limited

context—provides both the CLT for the linear part and best possible rates for the
remainder.

Third, while adaptive estimation of a density on the real line in L p-loss, 1 ≤ p < ∞,
has been considered in several articles, e.g., [7,19,21,22], the case p = ∞ does not
seem to have been treated in the literature, except in the context of the Gaussian white
noise model: Using Lepski’s method, Tsybakov [33] treated the case p = ∞ as well as
pointwise density estimation in this Gaussian framework, and using an estimator dif-
ferent from ours. Building on [33], Butucea [4] pioneered the use of Lepski’s method
in the density model by treating the pointwise case. Our results show that adaptation
by Lepski’s method applied to regular kernel density estimators also works in the
sup-norm case.

We emphasize in advance that Theorem 2 is asymptotic in nature, and that the appli-
cability of the estimator we construct is limited, at least for the following two reasons.
First, the constants involved in the “Lepski-type” tests we construct may be too large
to give reasonable results for small or even moderate sample sizes. Clearly, the reason
for these large constants relies on the fact that we try to implement Lepski’s method
in a density model rather than in the Gaussian white noise model: in Lemma 1, we
use Talagrand’s inequality combined with expectation bounds for empirical processes
based on the entropy integral, instead of the direct Gaussian tail bounds that one can
use in the Gaussian white noise model considered in most of the adaptive literature so
far. Similar problems were encountered in [21], where constants even larger than ours
were necessary. This points to the need for bounds with more reasonable constants for
the moments of empirical processes (than those we obtain in the Appendix). A second
limitation of Theorem 2 relates to the fact that higher order kernels are necessary if
one wants to adapt to a wider range of smoothness, and the finite-sample performance
of any kernel-based estimator might suffer from this fact, see Sect. 6 in [28] and also
Remark 5.
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572 E. Giné, R. Nickl

2 Basic notation

For an arbitrary (non-empty) set M , �∞(M)will denote the Banach space of bounded
real-valued functions H on M normed by

‖H‖M := sup
m∈M

|H(m)| ,

but we will use the usual symbol ‖ f ‖∞ to denote supx∈R | f (x)| for f : R → R.
For Borel-measurable functions h : R → R and Borel measures µ on R, we set
µh := ∫

R
hdµ, and we denote by Lp(R, µ) the usual Lebesgue-spaces of Borel-

measurable functions from R to R. If dµ(x) = dx is Lebesgue measure, we set
shorthand Lp(R) := Lp(R, µ), and, for 1 ≤ p < ∞, we abbreviate the norm by
‖ · ‖p. The convolution f ∗ g(x) of two measurable functions f, g on R is defined
by
∫

g(x − y) f (y)dy if the integral converges. Similarly, if µ is any finite signed
measure and f is a measurable function, set µ ∗ f (x) = ∫

f (x − y)dµ(y) if the
integral exists.

Given n independent random variables X1, . . . , Xn identically distributed accord-
ing to some Borel law P on R, we denote by Pn = n−1∑n

j=1 δX j the empirical
measure. We assume throughout that the variables X j are the coordinate projections
of (RN,BN, PN), and we set Pr := PN. The empirical process indexed by F ⊆
L2(R, P) is given by

f 	−→ √
n (Pn − P) f = 1√

n

n∑

j=1

( f (X j )− P f ).

Convergence in law of random elements in �∞ (F) is defined in the usual way, see,
e.g., 5.1.1 in [6], and will be denoted by the symbol ��∞(F). The class F is said to
be P-Donsker if

√
n (Pn − P) ��∞(F) G P where G P is the (generalized) Brownian

bridge process indexed by F with covariance EG P ( f )G P (g) = P[( f −P f )(g−Pg)]
and if G P is sample-bounded and -continuous w.r.t. the covariance metric.

3 An exponential inequality for the distribution function of the kernel estimator

We will consider the usual kernel density estimator: If X1, . . . , Xn are i.i.d. on the
real line, then

pK
n (h)(x) = Pn ∗ Kh(x) = 1

nh

n∑

j=1

K

(
x − X j

h

)

, x ∈ R, (1)

where the kernel K : R → R is a symmetric, integrable function that integrates to 1,
Kh(x) := h−1 K (x/h), and h := hn ↘ 0, hn > 0. The dependence of h on n will be
assumed without displaying. We use kernels of order r > 0,
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An exponential inequality for the distribution function 573

∫

R

y j K (y)dy = 0 for j = 1, . . . , {r}, and
∫

R

|y|r |K (y)|dy < ∞,

where {r} is the largest integer strictly smaller than r .
Denote now by

Fn(x) =
x∫

−∞
d Pn(u), x ∈ R,

the empirical distribution function and by

F K
n (h)(x) =

x∫

−∞
pK

n (h)(u)du, x ∈ R,

the distribution function of the kernel density estimator (1). Also, define for any non-
negative integer s the spaces Cs(R) of all bounded continuous real-valued functions
that are s-times continuously differentiable on R, equipped with the norm

‖ f ‖s,∞ =
∑

0≤α≤s

∥
∥Dα f

∥
∥∞ ,

with the convention that D0 =: id and then C0(R) =: C(R). For noninteger s > 0,
set

Cs(R) =
⎧
⎨

⎩
f ∈ C[s](R) : ‖ f ‖s,∞ :=

∑

0≤α≤[s]

∥
∥Dα f

∥
∥∞

+ sup
x �=y

∣
∣D[s] f (x)− D[s] f (y)

∣
∣

|x − y|s−[s] < ∞
⎫
⎬

⎭
, (2)

where [s] denotes the integer part of s. We have the following theorem.

Theorem 1 Suppose P has a density p0 with respect to Lebesgue measure. Assume
that p0 is bounded, in which case we set t = 0 in what follows, or that p0 ∈ Ct (R)

for some t > 0. Let h := hn → 0 as n → ∞ satisfy h ≥ (log n/n) and let K be a
kernel of order t + 1. Then there exist finite positive constants L := L(‖p0‖∞, K )
and �0 := �0(‖p0‖t,∞, K ) such that for all λ ≥ �0 max(

√
h log(1/h),

√
nht+1)

and n ∈ N,

Pr
(√

n‖F K
n (h)− Fn‖∞ > λ

)
≤ 2 exp

{
−L min

(
h−1λ2,

√
nλ
)}
.

Proof Note first that F K
n (h)(x) − Fn(x) is a random variable for each x ∈ R and

hence so is ‖F K
n (h) − Fn‖∞ since, by right continuity, this is in fact a supremum
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574 E. Giné, R. Nickl

over a countable set. We will also use this observation when we apply Talagrand’s
inequality below.

We set F = {1(−∞,x] : x ∈ R} throughout the proof, and note that Pn1(−∞,x] =
Fn(x) as well as (Pn ∗ Kh)1(−∞,x] = F K

n (x). We consider the decomposition:

Pn ∗ Kh − Pn = Pn ∗ Kh − P ∗ Kh − Pn + P + P ∗ Kh − P. (3)

For the deterministic bias P ∗ Kh − P , we have (as in Lemma 4 in [18]), for given
f ∈ F with f̄ (x) = f (−x)

(P ∗ Kh − P) f =
∫

R

K (u)[p0 ∗ f̄ (hu)− p0 ∗ f̄ (0)]du.

First, if t = 0, we have for every x ∈ R and u ≥ 0 that

∣
∣p0 ∗ f̄ (hu)− p0 ∗ f̄ (0)

∣
∣ =

∣
∣
∣
∣
∣
∣

∫

R

(
1(−∞,x](y − hu)− 1(−∞,x](y)

)
p0(y)dy

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

∫

R

1[x,x+hu](y)p0(y)dy

∣
∣
∣
∣
∣
∣
≤ ‖p0‖∞hu

and likewise for u < 0, and hence ‖P ∗ Kh − P‖F ≤ h‖p0‖∞
∫
R

|K (u)||u|du.More
generally, if t > 0, the distribution function F of p0 is contained in Ct+1(R), so by
standard Taylor expansions and since the kernel is of order t + 1 it follows that

sup
x∈R

|(P ∗ Kh − P)1(−∞,x]| = sup
x∈R

∣
∣
∣
∣
∣
∣

∫

R

K (u)[F(x + uh)− F(x)]du

∣
∣
∣
∣
∣
∣
≤ dht+1 (4)

for some constant d depending only on ‖p0‖t,∞ and
∫
R

|K (u)||u|t+1du.
For the remaining part of the decomposition, observe that, using the symmetry of

the kernel,

(Pn ∗ Kh − P ∗ Kh − Pn + P) f = (Pn − P)(Kh ∗ f − f )

for f ∈ F . Consequently,

Pr
(√

n‖F K
n (h)− Fn‖∞ > λ

)

≤ Pr

(√
n sup

f ∈F
|(Pn − P)(Kh ∗ f − f )| > λ− d

√
nht+1

)

≤ Pr

(

n sup
f ∈F

|(Pn − P)(Kh ∗ f − f )| >
√

nλ

2

)

, (5)
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An exponential inequality for the distribution function 575

by assumption on λ, and we will apply Talagrand’s inequality to the class

F̃ = {Kh ∗ f − f − P(Kh ∗ f − f ) : f ∈ F }
to bound the last probability, but first we need some other facts:

(a) First, we note that the class of functions {Kh ∗ f − f : f ∈ F } is uniformly
bounded by 2‖K‖1, and hence F̃ has envelope U = 4‖K‖1.

(b) Also,

sup
f ∈F

‖Kh ∗ f − f ‖2,P ≤ Ch1/2 =: σ (6)

for C = ‖p0‖1/2∞
∫
R

|u|1/2|K (u)|, since

E( f (X + y)− f (X))2 ≤ E | f (X + y)− f (X)|

=
∞∫

−∞
1[x−y,x)(u)p0(u)dx

≤ ‖p0‖∞y,

if y > 0 and similarly if y < 0, and hence, using Minkowski’s inequality for integrals

⎛

⎜
⎝E

⎛

⎝
∫

R

( f (X + y)− f (X))Kh(y)dy

⎞

⎠

2
⎞

⎟
⎠

1/2

≤
∫

R

(
E( f (X + y)− f (X))2

)1/2 |Kh(y)|dy

≤ ‖p0‖1/2∞
∫

R

|y|1/2|Kh(y)|dy

= ‖p0‖1/2∞ h1/2
∫

R

|u|1/2|K (u)|. (7)

(c) Moreover, we will need the expectation bound

nE sup
f ∈F

|(Pn − P)(Kh ∗ f − f )| ≤ d ′√nh log(1/h), (8)

for some constant 0 < d ′ < ∞ depending only on ‖p0‖∞ and K , which is proved as
follows: For each h > 0, the class {Kh ∗ 1(−∞,x] : x ∈ R} is just {F K ( x−·

h ) : x ∈ R},
where F K (t) = ∫ t

−∞ K (s)ds, since

Kh ∗ 1(−∞,x](u) = h−1

x∫

−∞
K

(
y − u

h

)

dy =
x−u

h∫

−∞
K (t)dt = F K

(
x − u

h

)

,
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576 E. Giné, R. Nickl

and F K is of bounded variation since it is the distribution function of a finite signed
measure. Similarly, {1(−∞,x](t) : x ∈ R} = {1(−∞,0](t − x) : x ∈ R}, so {Kh ∗
1(−∞,x] − 1(−∞,x] : x ∈ R} is contained in the set of all translates of the function
F K (·/h) − 1(−∞,0](·), which is of bounded variation, and Lemma 3 hence gives an
entropy bound for the class {Kh∗ f − f : f ∈ F} independent of h. This entropy bound
and the bounds from (a) and (b) above now allow to apply Proposition 3, yielding (8)
since h ≥ n−1 log n.

Finally, we apply Talagrand’s inequality, see (37), with

x = L min
(√

nλ, h−1λ2
)

and σ , U as in (a) and (b), to the expression (5). For this we need the following bounds:
(I) First we have

nE sup
f ∈F

|(Pn − P)(Kh ∗ f − f )| ≤ d ′√nh log(1/h) ≤
√

nλ

6

by (8) and the assumption on λ.
(II) We also have, for V as defined in Section 5.1, that

V ≤ C2nh + 8‖K‖1d ′√nh log(1/h) ≤ C ′nh

for some constant C ′ since h ≥ (log n/n) and hence

√
2V x ≤

√
2C ′nhL min

(√
nλ, h−1λ2

) ≤ √
2C ′L

√
nλ ≤

√
nλ

6

for L small enough.
(III) Furthermore,

U x/3 ≤ (4/3)‖K‖1L min
(√

nλ, h−1λ2
)

≤
√

nλ

6
.

Summarizing, the sum of the terms in I, II, III is smaller than (
√

nλ/2) if L is
chosen suitably small, and we obtain from (37) for the given choice of x that

Pr

(

n sup
f ∈F

|(Pn − P)(Kh ∗ f − f )| >
√

nλ

2

)

≤ 2 exp {−x} ,

which implies the theorem. ��

We now discuss several probabilistic and statistical consequences of Theorem 1.
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An exponential inequality for the distribution function 577

1. A DKW-type inequality. Theorem 1 implies a Dvoretzky-Kiefer-Wolfowitz [10]
type exponential bound, up to constants; namely, there exist universal constants c1, c2
such that for �0 max(

√
h log(1/h),

√
nht+1) ≤ λ ≤ √

n we have, for p0 ∈ Ct (R)

Pr(
√

n‖F K
n (h)− F‖∞ > λ) ≤ c1 exp{−c2λ

2}. (9)

The MISE-optimal choice h∗(t) � n−1/2t+1 is admissible for every t > 0, in which
case the window for λ is �0n−1/2(2t+1)√log n ≤ λ ≤ √

n.

2. LIL, invariance principles. Theorem 1 can also be used to transfer invariance
principles and other limit theorems for Fn − F to F K

n − F . We only give the law of
the iterated logarithm: Let

S =
⎧
⎨

⎩
x 	→

x∫

−∞
f d P :

∫

R

f d P = 0,
∫

R

f 2d P ≤ 1

⎫
⎬

⎭

be the Strassen set. If P , K satisfy the conditions of Theorem 1 for some t ≥ 0, and
if hn → 0 as n → ∞, hn ≥ (log n/n) and supn

√
nht+1

n = M < ∞, then, almost
surely, the sequence

{√
n

2 log log n
(F K

n (hn)− F)

}∞

n=3

is relatively compact in �∞(R) and its set of limit points coincides with the Strassen
set S.

3. Optimal choices of h. The most interesting bandwidths are

h∗(t) :� n−1/(2t+1), and h∗∗(t) � (n/ log n)−1/(2t+1),

since in the case of h∗(t), the kernel estimator is optimal in mean integrated squared
error, and in the case h∗∗(t), it is optimal in sup-norm loss. Note that for these band-
widths and p0 ∈ Ct (R), Theorem 1 implies

‖F K
n (h

∗(t))− Fn‖∞ = Oa.s.

(
n−(t+1)/(2t+1)

√
log n

)
= oa.s.(n

−1/2), (10)

as well as

‖F K
n (h

∗∗(t))− Fn‖∞ = Oa.s.

(
(n/ log n)−(t+1)/(2t+1)

)
= oa.s.(n

−1/2). (11)

We shall see below that these rates (including the logarithmic power) cannot be
improved in general.

Remark 1 (Comments on shape-constrained estimators.) The case t = 1 in (10) and
(11) can be (qualitatively) compared to the classical result of Kiefer and Wolfowitz
[23], who considered the distribution function F̂n of the maximum likelihood estima-
tor of a monotone decreasing density p0, and proved that, if p0 is strictly monotone,
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578 E. Giné, R. Nickl

bounded from above and below and has a bounded continuous derivative (on its
support), then ‖F̂n − Fn‖∞ = Oa.s.

(
(n/ log n)−2/3

)
. A similar result can be proved

in a monotone regression framework, see [9], who also proved that this rate is best
possible. Furthermore, Durot and Tocquet obtained a pointwise result similar to (12)
(with a non-normal limiting distribution). An “updated” proof of the classical
Kiefer–Wolfowitz result can be found in [1], who also considered an analog of it for the
distribution function F̃n of the least squares estimator of a convex monotone density,
and obtained ‖F̃n − Fn‖∞ = Oa.s.

(
(n/ log n)−3/5

)
, which again can be compared

to the case t = 2 in (10) and (11). Balabdaoui and Wellner [1] also conjectured that
for k-monotone densities, the rate should be (n/ log n)−(k+1)/(2k+1), and Theorem 1
confirms the analog of this conjecture for the kernel density estimator (with

√
log n

instead of (log n)(k+1)/(2k+1) if the bandwidth h∗(t) is considered).

In the remainder of this section, we show that Theorem 1 is optimal in several
respects.

4. Rate of convergence of ‖F K
n (h)− Fn‖∞: lower bounds. First note that a simple

application of the CLT (convergence of triangular arrays to the normal law), of (3),
(4) and of (16), (20), gives that, if p0 ∈ Ct (R) for some integer t > 0 and K is a (e.g.,
compactly supported) kernel of order t + 1, for every x ∈ R,

n(t+1)/(2t+1)
(

F K
n (h

∗(t))(x)− Fn(x)
)

�R N (Dt p0(x)c(K ), p0(x)c
′(K )), (12)

and

(n/ log n)(t+1)/(2t+1)
(

F K
n (h

∗∗(t))(x)− Fn(x)
)

→ Dt p0(x)c(K ) in probability,

(13)

where c(K ) = ∫
R

K (u)ut+1du, c′(K ) = ∫
(1[0,∞)(u) − F K (u))2du and F K (u) =∫ u

−∞ K (v)dv. Since no differentiable density p0 on R has a t-th derivative that van-
ishes for all x , the second limit gives optimality of (11). (This is clear for c(K ) �= 0,
and in the somewhat unnatural case c(K ) = 0, the rate cannot improve uniformly in
all densities in a ‖·‖t,∞-ball.) Moreover, if we ignore logarithmic terms, the limit (12)
gives optimality of the convergence rate in (10), and the following lower bound for
more general bandwidths will show, in particular, that the power of the logarithmic
term in (10) cannot be improved in general, see Remark 2.

In the proof of the following proposition, we use a lower bound from [15], which is
based on a Sudakov-type-inequality for Rademacher processes due to Talagrand (see
[24, p. 114]).

Proposition 1 Let K (u) = 1[−1/2,1/2](u) and let hn satisfy hn → 0 and nhn/

log n → ∞ as n → ∞. Let p0 be any density such that p0(x) = c > 0 for all
x on an interval of positive length. Then there exist positive constants c1, c2 such that

lim inf
n

Pr

{

‖F K
n (hn)− Fn‖∞ > c1

√
hn(log h−1

n )/n

}

> c2 > 0.
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Proof As the proof will show, we can assume c = 1 w.l.o.g. Let [a, b] be an interval
where p0(x) = 1 and let I = [a + 2h, b − 2h] for h small enough. Then, by Taylor
expansion and symmetry of K ,

(P ∗ Kh − P)1(−∞,x] =
1/2∫

−1/2

[F(x + uh)− F(x)]du

= h2

1/2∫

−1/2

u2 Dp0(x + uhζ )du = 0 (14)

for all x ∈ I . Therefore, by (3) above,

‖F K
n (h)− Fn‖∞ ≥ sup

x∈I

∣
∣(Pn − P)(Kh ∗ 1(∞,x] − 1(−∞,x])

∣
∣ .

The main step is to show that there exist c3 > 0 such that for all n large enough,

E sup
x∈I

∣
∣(Pn − P)(Kh ∗ 1(−∞,x] − 1(−∞,x])

∣
∣ ≥ c3

√
h(log h−1)/n. (15)

Set

gx = Kh ∗ 1(−∞,x] − 1(−∞,x] and F ′ = {gx : x ∈ R}.

A computation along the lines of (7) gives

sup
x∈R

|Pgx | ≤ c4h, (16)

and therefore, by symmetrization (ε j are the usual i.i.d. Rademacher variables,
independent of the X j ’s, all coordinates in a large probability space),

E sup
x∈I

|(Pn − P)gx | ≥ 1

2
E sup

x∈I

∣
∣
∣
∣
∣
∣
n−1

n∑

j=1

ε j gx (X j )

∣
∣
∣
∣
∣
∣
− 1

2
E

∣
∣
∣
∣
∣
∣
n−1

n∑

j=1

ε j

∣
∣
∣
∣
∣
∣
sup
x∈I

|Pgx |

= 1

2
E sup

x∈I

∣
∣
∣
∣
∣
∣
n−1

n∑

j=1

ε j gx (X j )

∣
∣
∣
∣
∣
∣
− o

(√
h log h−1/n

)

.

Hence inequality (15) will follow if we show

E sup
x∈I

∣
∣
∣
∣
∣
∣
n−1

n∑

j=1

ε j gx (X j )

∣
∣
∣
∣
∣
∣
≥ c5

√
h(log h−1)/n. (17)
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580 E. Giné, R. Nickl

To prove this we will apply Theorem 3.4 in [15], whose proof is actually given for the
symmetrized process, and applies to this process even if the class of functions involved
is not centered.

From the proof of Theorem 1 we already know that

sup
Q

log N (F ′,L2(Q), ε) ≤ c6 log(c7/ε) (18)

for ε ≤ 2 supx ‖gx‖∞, so inequality (17) will follow from Theorem 3.4 in [15] if we
show that,

log N (F ′/2,L2(P), σ/4) ≥ c8 log(c9/σ), (19)

where 2 = supx ‖gx‖∞ > σ ≥ supx∈I ‖gx‖2,P . For the uniform kernel, we can
sharpen the variance bound (6) to σ = √

h/12, since, recalling that F K is the cdf of
K , we have, for x ∈ I ,

E
(
Kh ∗ 1(−∞,x] − 1(−∞,x]

)2

=
∫ (∫

K (u)1[(y−x)/h,∞)(u)du − 1(−∞,x](y)
)2

p0(y)dy

=
∫ (

1(x,∞)(y)− F K ((y − x)/h)
)2

p0(y)dy

= h
∫ (

1[0,∞)(v)− F K (v)
)2

p0(vh + x)dv

= h
∫ (

1[0,∞)(v)− F K (v)
)2

dv = h/12. (20)

Note next that gx (y) = h−1(x + (h/2))− 1 − (y/h) if x − (h/2) ≤ y ≤ x , gx (y) =
h−1(x + (h/2)) − (y/h) if x < y ≤ x + (h/2) and gx (y) is 0 otherwise. Then, a
simple computation shows that, for δ < h/2 and x ∈ I , we have

∫
(gx+δ(y)− gx (y))

2 p0(y)dy = 2δ3

3h2 + 2

(
h

2
− δ

)
δ2

h2 + δ

(

1 − δ

h

)2

which, for δ = h/3, equals (17/34)h > σ 2 = h/12. Since, for h and hence δ small
enough, the interval I contains at least (b − a)/(3δ) points at distance at least δ from
each other, it follows that

N
(F ′/2,L2(P), σ/4

) = N
(F ′,L2(P), σ/2

) ≥ (b − a)(3δ)−1 = (b − a)(12σ 2)−1,

which proves (19) and therefore (15), via (17). The bound in probability follows from
the lower bound (15), the upper bound

(

E sup
x∈I

|(Pn − P)gx |2
)1/2

≤ c10

√
h log h−1/n
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—which follows from Corollary 1 in Giné and Mason [16] and (18)—and the usual
Paley–Zygmund argument: for any random variable ξ , one has E |ξ | ≤ a + E(ξ2)1/2

× Pr(|ξ | > a)1/2, which for ξ = supt∈I |(Pn − P)gt | and a = (c3/2)
√

h log h−1/n
gives, by virtue of the given bounds,

Pr(ξ > a) ≥ (c3/(2c10))
2 ,

proving the proposition. ��

It is not difficult to devise kernels of order larger than one so that a result similar
to this proposition holds as well.

This proposition shows that the requirement λ ≥ c
√

h log h−1 in Theorem 1 is
necessary for (some) densities that are contained in Ct (R) for any t . Regarding the
second requirement in Theorem 1, namely that λ ≥ C

√
nht+1 for some 0 < C < ∞,

one can distinguish three situations. If
√

nht+1 <<
√

h log h−1, this additional con-
ditions is void. If

√
nht+1 >>

√
h log h−1, necessity is easily seen from (4) (and

(8)). If
√

nht+1 � √h log h−1, then h � h∗∗(t), and optimality of Theorem 1 follows
from (13).

Remark 2 (Optimality of (10).) If one requires p0 to be only uniformly continuous,
one can find a nontrivial interval I around a point of maximum, where p0 is almost
constant, and the lower bound for the entropy of F ′ in the proof of Proposition 1 still
holds. If in addition, p0 is differentiable, the bias (14) is not necessarily zero, but is
bounded by Ch2 for some C < ∞. Hence, for h � h∗(1), the bias can be absorbed
by the bound (17), and the proof of Proposition 1 shows that the order (10) is optimal
for t = 1. Similar arguments imply that the bound (10) is sharp in general (t > 1), but
we do not pursue this further.

5. The case of discrete P. Another question is whether the assumption that P has
a bounded density can be relaxed. Inspection of the proof shows that boundedness of
p0 can be relaxed to p0 ∈ Lp(R) for some p > 1, assuming

√
nh1−1/p → 0. On the

other hand, if P has atoms, while Fn is still uniformly close (with large probability)
to the discontinuous function F , the continuous function F K

n (h) is not:

Proposition 2 Let P be a probability measure such that P{x0} = a > 0 for some
x0 ∈ R. If K ∈ L1(R) and hn → 0 as n → ∞ then

lim
n

Pr
(
‖F K

n (h)− Fn‖∞ >
a

3

)
= 1,

in particular, the sequence
√

n‖F K
n (h)− Fn‖∞ is not stochastically bounded.

Proof We adopt the notation from the proof of Theorem 1. By continuity of the
measure P ∗ Kh , we obviously have

‖P ∗ Kh − P‖F = ‖P ∗ Kh(−∞, ·] − P(−∞, ·]‖∞ ≥ a/2.
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582 E. Giné, R. Nickl

On the other hand, even if P does not have a density, one still has

E

⎛

⎝
∫

R

( f (X + y)− f (X))Kh(y)dy

⎞

⎠

2

≤ ‖K‖2
1,

which, by the same argument as in Part c) of the proof of Theorem 1, gives
√

nE‖(Pn−
P)(Kh ∗ f − f )‖F = O(1), and hence by (3),

√
n‖F K

n (h)− Fn‖∞ ≥ √
na/2 − OP (1),

which implies the proposition. ��
6. The multivariate case. It is of interest to know whether a result similar to

Theorem 1 can be proved in higher dimensions, i.e., for the distribution function of
the kernel density estimator of a density p0 in R

d , d > 1. The first part of the decom-
position (3) can be shown to satisfy sup f ∈F |(Pn − P)(Kh ∗ f − f )| = oP (n−1/2)

for F = {1(−∞,x] : x ∈ R
d}, see Theorem 2a and Corollary 1a in [18]. On the other

hand, the “bias part”

√
n sup

x∈Rd
|(P ∗ Kh − P)(1(−∞,x])| (21)

can be shown not to be smaller than
√

nht+1 for most common kernels used in multi-
variate density estimation (and for p0 t-times differentiable in R

d ). In particular, this
is too large for the MISE-optimal bandwidths n−1/(2t+d) to be admissible (rather one
would need a bias of order o(

√
nht+d/2)). To see that (21) is not smaller than

√
nht+1,

consider, for simplicity, d = 2, t = 0 and K (x1, x2) = k(x1)k(x2) a positive kernel of
order 2, supported in (−1/2, 1/2)2, and let P be uniform on (0, 1). It is easy to see that
then the bias at the point x = (0, 1) equals

√
n(ch+c′h2), where c, c′ are fixed positive

constants. Hence, in dimension d, one can expect a similar exponential inequality as
in Theorem 1 only in (the less interesting) range of h’s where

√
nht+1 = o(1).

4 Adaptive Estimation of the distribution function and its density

Given independent X1, . . . , Xn with common law P on the real line, we ask the
following question in this section: If nothing at all is known about the probability
measure P , can one efficiently estimate the cumulative distribution function F(x)
and, simultaneously, estimate the density p0 of P , if it exists, at the minimax rate in
sup-norm loss over Hölder balls? We recall that the best rate of convergence uniformly
over balls of densities in Ct (R), is (n/ log n)−t/(2t+1), see [20].

The empirical distribution function Fn(x), which estimates F efficiently, is not a
candidate since it does not have a derivative. But the kernel density estimator pK

n (h)
from (1) is a candidate: In fact, it is well known (e.g., [14]) that pK

n (h
∗∗(t)) estimates

p0, if the latter is known to exist and to have derivatives up to order t > 0, at the
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An exponential inequality for the distribution function 583

optimal rate in sup-norm loss. In practice however, t is unknown, so that h∗∗(t) is
not available, and we have to find other ways to choose h, which we do in a purely
data-driven way: Set

H :=
{

hk = ρ−k : k ∈ N ∪ {0}, ρ−k > n−1(log n)2
}

where ρ > 1 is arbitrary. The number of elements in this grid is of order log n, and
we denote by hmin the last (i.e., smallest) element in the grid. We will construct a
preliminary estimator ĥn for the bandwidth as follows: First, as long as

‖F K
n (hmin)− Fn‖∞ >

√
hmin (log(1/hmin))

2

√
n log n

(22)

holds, we set ĥn = 0. This step can be interpreted as a test of whether P has a discrete
part or not, cf. Proposition 2 and also Remark 3. If

‖F K
n (hmin)− Fn‖∞ ≤

√
hmin (log(1/hmin))

2

√
n log n

,

we proceed to use a modification of Lepski’s method for adaptive estimation and check
whether

‖pK
n (h

+
min)− pK

n (hmin)‖∞ ≤
√

M̃
log(1/hmin)

nhmin
AND ‖F K

n (h
+
min)− Fn‖∞

≤
√

h+
min

(
log(1/h+

min)
)2

√
n log n

simultaneously hold, where h+
min is the last but one element in the grid H, and where

M̃ := M̃n := C‖pK
n (hmin)‖∞

with
√

C := √
C(K ) = 384‖K‖2. If this does not occur, we set ĥn = hmin, otherwise,

we define ĥn as

ĥn = max

{

h ∈ H : ‖ pK
n (h)− pK

n (g)‖∞ ≤
√

M̃
log(1/g)

ng
∀g < h, g ∈ H

AND ‖F K
n (h)− Fn‖∞ ≤

√
h (log(1/h))2√

n log n

}

. (23)

The adaptive estimator of F is now defined as F K
n (ĥn) with the convention that

F K
n (0) = Fn .
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584 E. Giné, R. Nickl

By Proposition 2, if P has a discrete part, then ĥn = 0—and therefore F K
n (ĥn) =

Fn—with probability approaching one. Consequently, if P has a discrete part, our
estimator will be discrete with probability approaching one. If P has a bounded and
uniformly continuous density, then the next theorem shows that pK

n (ĥn) exists and
uniformly estimates the derivative p0 of F with probability approaching 1. We recall
that Pr is the product probability on R

N and, in what follows, we say that a sequence
of events An is eventual if limm Pr(∩n≥m An) = 1.

Theorem 2 Let X1, ..., Xn be i.i.d. on R with common law P. Let F K
n (ĥn) be defined

as above, where K is a kernel of order T + 1, 0 ≤ T < ∞, right-continuous and of
bounded variation. Then

√
n
(

F K
n (ĥn)− F

)
��∞(R) G P , (24)

the convergence being uniform over the set of all probability measures P on R, in any
distance that metrizes convergence in law. If furthermore P possesses a bounded and
uniformly continuous density p0 with respect to Lebesgue measure, then

{the Lebesgue density pK
n (ĥn) of F K

n (ĥn) exists}
is eventual, and, if C is a precompact subset of C(R), then

sup
p0∈C

‖pK
n (ĥn)− p0‖∞ = oP (1). (25)

If, in addition, p0 ∈ Ct (R) for some 0 < t ≤ T , then also

sup
p0:‖p0‖t,∞≤D

‖pK
n (ĥn)− p0‖∞ = OP

((
log n

n

)t/(2t+1)
)

. (26)

Proof Uniformity in p0, which follows from control of the constants involved, will
be left implicit in the derivations. First we have the following three observations.

(I) The class of functions {1(−∞,x] : x ∈ R} is uniform Donsker, and since
{√h(log(1/h))2 : h ∈ H} is bounded in absolute value, by the constant D say,
we have

‖F K
n (ĥn)− Fn‖∞ ≤ D√

n log n

by construction of the estimator, which proves (24).

(II) We need to obtain the bias and variance of the kernel density estimator in the
sup-norm for given h under the assumptions of the second part of the theorem. For
the variance, we use Corollary 3.4 in [14] to obtain

E‖pK
n (h)− EpK

n (h)‖2∞ ≤ D2 log(1/h)

nh
:= D2σ 2(h, n) (27)

for h ∈ H and some 0 < D < ∞ depending only on ‖p0‖∞ and K .
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An exponential inequality for the distribution function 585

For the bias, we have the following: If p0 is in Ct (R) for some t > 0, we have by
standard Taylor-series arguments

|EpK
n (h, x)− p0(x)| =

∣
∣
∣
∣
∣
∣

∫

R

K (u)[p0(x − uh)− p0(x)]du

∣
∣
∣
∣
∣
∣

≤ ht ‖p0‖t,∞
[t]!

∫

R

|K (u)||u|t du := B(h, p0) (28)

since the kernel is of order t . If p0 is only bounded and uniformly continuous, then
one still has

sup
x∈R

|EpK
n (h, x)− p0(x)| = ‖Kh ∗ p0 − p0‖∞ = o(1), (29)

see Theorem 8.14b in Folland [12], and in this case we define B(h, p0) := ‖Kh ∗ p0 −
p0‖∞.

(III) We need to control the probability that M̃ > 1.2C‖p0‖∞ or M̃ < 0.8C‖p0‖∞
if p0 is bounded and uniformly continuous. For some 0 < L < ∞ and n large enough
we have

Pr
(
|M̃ − C‖p0‖∞| > 0.2C‖p0‖∞

)

= Pr
(
|‖pK

n (hmin)‖∞ − ‖p0‖∞| > 0.2‖p0‖∞
)

≤ Pr
(
‖pK

n (hmin)− p0‖∞ > 0.2‖p0‖∞
)

≤ Pr
(
‖pK

n (hmin)− EpK
n (hmin)‖∞ > 0.2‖p0‖∞ − B(hmin, p0)

)

≤ Pr
(

n‖pK
n (hmin)− EpK

n (hmin)‖∞ > 0.1n‖p0‖∞
)

≤ L exp

{

− (log n)2

L

}

by (28), hmin � (log n)2/n, Lemma 3 and Talagrand’s inequality as given in Corollary
2.2 in [14]. [One could also proceed as in Lemma 1.]

Proof of (25) and (26): First we observe that if P has a bounded density, then the
event {ĥn ≥ hmin} = {pK

n (ĥn) exists} is eventual in view of Theorem 1 with λ =√
hmin (log(1/hmin))

2 (log n)−1/2 and hmin � n−1(log n)2 (and the Borel–Cantelli
lemma). We will assume that pK

n (ĥn) exists throughout the rest of the proof. In par-
ticular, expectations in the following derivations are taken over the event {ĥn ≥ hmin}
so that pK

n (ĥn) exists.
Set

M = C‖p0‖∞
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586 E. Giné, R. Nickl

and, if t > 0, define h p := h(p0) by the balance equation

h p = max

{

h ∈ H : B(h, p0) ≤
√

0.8M

4
σ(h, n)

}

.

Using the results from (II), it is easily verified that

h p �
(

log n

n

) 1
2t+1

if p0 ∈ Ct (R) for some 0 < t ≤ T . If p0 is only bounded and uniformly continuous
but not contained in Ct (R) for any t > 0, we set h p = hmin. Then we define σ̃ (h p, n)
as σ(h p, n) if t > 0 and set

σ̃ (h p, n) = max

(

σ(h p, n),
4√

0.8M
B(h p, p0)

)

otherwise, so that

B(h p, p0) ≤
√

0.8M

4
σ̃ (h p, n)

always holds. Clearly σ(h p, n) = O(σ̃ (h p, n)) and we note that for t > 0

σ̃ (h p, n) = σ(h p, n) �
(

log n

n

) t
2t+1

(30)

is the rate of convergence required in (26), but σ̃ (h p, n) → 0 as soon as P has a
bounded and uniformly continuous density.

We will consider the cases {ĥn ≥ h p} and {ĥn < h p} separately. In the first case
we also distinguish M̃ ≤ 1.2C‖p0‖∞ = 1.2M and M̃ > 1.2C‖p0‖∞ = 1.2M . First,
by definition of ĥn , (27) and (28) we have

E
∥
∥
∥pK

n (ĥn)− p0

∥
∥
∥∞ I{ĥn≥h p}∩{M̃≤1.2M}

≤ E

(

‖pK
n (ĥn)− pK

n (h p)‖∞ + ‖pK
n (h p)− EpK

n (h p)‖∞

+‖EpK
n (h p)− p0‖∞

)

I{ĥn≥h p}∩{M̃≤1.2M}

≤ √
1.2Mσ(h p, n)+ Dσ(h p, n)+

√
0.8M

4
σ̃ (h p, n) = O(σ̃ (h p, n)).
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Also, for some constant c,

E
∥
∥
∥pK

n (ĥn)− p0

∥
∥
∥∞ I{ĥn≥h p}∩{M̃>1.2M}

≤
∑

h∈H:h≥h p

E
([

‖pK
n (h)− EpK

n (h)‖∞ + B(h, p0)
]

I{ĥn=h} I{M̃>1.2M}
)

≤ c log n
[
Dσ(h p, n)+ B(1, p0)

] ·
√

E1{M̃>1.2M}

= O

⎛

⎝(log n)

√

exp

{

− (log n)2

L

}
⎞

⎠ = o(σ̃ (h p, n))

by the results in (II), (III).
We now turn to {ĥn < h p}. If P has a uniformly continuous density not contained

in Ct (R) for any t—in which case we have h p = hmin—we have that {ĥn < h p} =
{ĥn < hmin} has empty intersection with {ĥn ≥ hmin}. So the last two bounds already
prove (25) in this case, and (25) will follow from (26) in the case t > 0, which we
assume for the rest of the proof. [Note that then σ̃ (h p, n) = σ(h p, n)]. Now we have,
first,

E
∥
∥
∥pK

n (ĥn)− p0

∥
∥
∥∞ I{ĥn<h p}∩{M̃<0.8M}

≤
∑

h∈H:h<h p

E
([

‖pK
n (h)− EpK

n (h)‖∞ + B(h, p0)
]

I{ĥn=h} I{M̃<0.8M}
)

≤ c′ log n
[
Dσ(hmin, n)+ B(h p, p0)

] ·
√

E I{M̃<0.8M}

= O

⎛

⎝

√

exp

{

− (log n)2

L

}
⎞

⎠ = o(σ (h p, n)),

again by the results in (II), (III); and second,

E
∥
∥
∥pK

n (ĥn)− p0

∥
∥
∥∞ I{ĥn<h p}∩{0.8M≤M̃}

≤
∑

h∈H:h<h p

E
[(

‖pK
n (h)− EpK

n (h)‖∞ + ‖EpK
n (h)− p0‖∞

)
I{ĥn=h}∩{0.8M≤M̃}

]

≤
∑

h∈H:h<h p

(

E
∥
∥
∥pK

n (h)− EpK
n (h)

∥
∥
∥

2

∞

)1/2 (
E I{ĥn=h}∩{0.8M≤M̃}

)1/2 + B(h p, p0)

≤
∑

h∈H:h<h p

Dσ(h, n) ·
√

Pr
(
{ĥn = h} ∩ {0.8M ≤ M̃}

)
+ O(σ (h p, n)).
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It remains to show that

∑

h∈H:h<h p

σ(h, n) ·
√

Pr({ĥn = h} ∩ {0.8M ≤ M̃}) = O(σ (h p, n)) (31)

is satisfied. Pick any h ∈ H so that h < h p, denote by h+ the previous element in the
grid (i.e., h+ = ρh) and observe that

√
Pr({ĥn = h} ∩ {0.8M ≤ M̃})

≤
⎛

⎝
∑

g∈H:g≤h

Pr
(∥∥
∥ pK

n (h
+)− pK

n (g)
∥
∥
∥∞ >

√
0.8Mσ(g, n)

)
⎞

⎠

1/2

+
(

Pr

(
√

n‖F K
n (h

+)− Fn‖∞ >

√
h+ (log(1/h+)

)2

log n

))1/2

:= A + B (32)

First we observe that by Theorem 1 with λ = (
√

h+ (log(1/h+)
)2
)/ log n, the defini-

tion of the grid and (27),

∑

h∈H:h<h p

σ(h, n) · B (33)

≤ c(log n) σ (hmin, n)

√

2 exp

{

−L min

(
(log(1/h p))4

(log n)2
,

√
nhmin(log(1/h p))2

log n

)}

≤ c(log n) σ (hmin, n)
√

2 exp
{−L ′(log n)2

}

= o
(
σ(h p, n)

)
(34)

from some n onwards since hmin ≤ h+ ≤ h p implies that max(
√

h+ log(1/h+),√
n(h+)t+1) = o((

√
h+ (log(1/h+)

)2
)/ log n) by definition of hmin, h p.

For the term including A we first observe that

∥
∥
∥pK

n (h
+)− pK

n (g)
∥
∥
∥∞ ≤

∥
∥
∥ pK

n (h
+)− EpK

n (h
+)
∥
∥
∥∞ +

∥
∥
∥pK

n (g)− EpK
n (g)

∥
∥
∥∞

+B(h+, p0)+ B(g, p0),

where

B(h+, p0)+ B(g, p0) ≤ 2B(h p, p0) ≤ (1/2)
√

0.8Mσ(h p, n) ≤ (1/2)
√

0.8Mσ(g, n)
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since g < h+ ≤ h p. Consequently,

Pr
(∥∥
∥pK

n (h
+)− pK

n (g)
∥
∥
∥∞ >

√
0.8Mσ(g, n)

)

≤ Pr
(∥∥
∥pK

n (h
+)− EpK

n (h
+)
∥
∥
∥∞ +

∥
∥
∥pK

n (g)− EpK
n (g)

∥
∥
∥∞ > (1/2)

√
0.8Mσ(g, n)

)

≤ Pr
(∥∥
∥pK

n (h
+)− EpK

n (h
+)
∥
∥
∥∞ > (1/4)

√
0.8Mσ(h+, n)

)

+ Pr
(∥∥
∥pK

n (g)− EpK
n (g)

∥
∥
∥∞ > (1/4)

√
0.8Mσ(g, n)

)
.

We will now need the following inequality.

Lemma 1 We have

Pr
(∥∥
∥pK

n (g)− EpK
n (g)

∥
∥
∥∞ > (1/4)

√
0.8Mσ(g, n)

)
≤ 2g

for every g ≤ h p, g ∈ H and n large enough (depending only on ‖p0‖∞ and K ).

Proof For g fixed set

ft (x) = (2‖K‖∞)−1
(

K

(
t − x

g

)

− E K

(
t − X

g

))

so that

∥
∥
∥pK

n (g)− EpK
n (g)

∥
∥
∥∞ = 2

‖K‖∞
gn

sup
t∈R

∣
∣
∣
∣
∣
∣

n∑

j=1

ft (X j )

∣
∣
∣
∣
∣
∣
= 2

‖K‖∞
gn

sup
t∈Q

∣
∣
∣
∣
∣
∣

n∑

j=1

ft (X j )

∣
∣
∣
∣
∣
∣
,

by right-continuity of K , and define F = { ft : t ∈ Q}, which is P-centered and uni-
formly bounded by 1. Consequently

Pr
(∥∥
∥pK

n (g)− EpK
n (g)

∥
∥
∥∞ > (1/4)

√
0.8Mσ(g, n)

)

= Pr

⎛

⎝‖
n∑

j=1

f (X j )‖F >

√
0.8M

√
ng log(1/g)

8‖K‖∞

⎞

⎠ .

To bound the latter probability, we apply Talagrand’s inequality with constants as
given in [3], see (37). We first compute the variance σ 2 for this class of functions.
Clearly

sup
t

E f 2
t (X) ≤ ‖p0‖∞

4‖K‖2∞
‖K‖2

2g =: σ 2.
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Choosing x = log(1/g) in (37), the lemma will be proved if we show that

E‖
n∑

j=1

f (X j )‖F + √
2V x + x/3 ≤

√
0.8M

√
ng log(1/g)

8‖K‖∞
(35)

where V = nσ 2 + 2E‖∑n
j=1 f (X j )‖F . We first need to obtain a good bound (with

constants) for the expectation term E‖∑n
j=1 f (X j )‖F . By Proposition 3 (and Lemma

3) we obtain for n large enough, since (ng/ log(1/g)) → ∞ for g ≥ hmin,

E‖
n∑

j=1

f (X j )‖F ≤ 42.5
‖p0‖1/2∞ ‖K‖2

‖K‖∞
√

ng log(1/g). (36)

This shows, in particular, that V ≤ 1.1nσ 2 for n large enough since g ≥ hmin. So
summarizing, since g ≥ hmin, we have

E‖
n∑

j=1

f (X j )‖F +√2V log(1/g)+ log(1/g)

3
≤ 43

‖p0‖1/2∞ ‖K‖2

‖K‖∞
√

ng log(1/g),

and (35) holds in view of M = C‖p0‖∞ and
√

C = 384‖K‖2 ≥ (43 ·8‖K‖2)/
√

0.8.
��

This lemma and the above give

∑

g∈H:g≤h

Pr
(∥∥
∥pK

n (h
+)− pK

n (g)
∥
∥
∥∞ > (1/4)

√
0.8Mσ(g, n)

)

≤
∑

g∈H:g≤h

2
[
h+ + g

] ≤ Lh log n

for n large enough and then

∑

h∈H:h<h p

σ(h, n) · A = √
L

∑

h∈H:h<h p

√
log(1/h)

nh

√
h log n = O(n−1/2(log n)2)

= o(σ (h p, n)).

Now this, (32) and (34) verify (31), which completes the proof of the theorem. ��
Remark 3 (Case when P is not absolutely continuous) Although the first step (22) in
the definition of ĥn can be viewed as a test of absolute continuity of P , we do not
advocate its use out of context. [As pointed out by a referee—much simpler tests exist,
for example, one can check whether any sample point occurred twice.] As soon as
P has a discrete part, we just estimate P by Pn , without even attempting to estimate
separately different (discrete and continuous) components of P .
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An exponential inequality for the distribution function 591

Remark 4 (Modification of Lepski’s method) We modified Lepski’s method here by
adding an additional test at each step. In principle, it would have been enough to
apply Lepski’s method restricted to density estimators whose distribution functions
are in a sup-norm ball of radius o(1/

√
n) around Fn , that is, Theorem 2 can still be

proved if we replace
√

h(log(1/h))2/(
√

n log n) in (23) (and, mutatis mutandis, in
the relevant previous steps) by, e.g., 1/(

√
n log n). However, for small bandwidths

h, the results from Sect. 3 show that
√

n‖F K
n (h) − Fn‖∞ is of the stochastic order√

h log(1/h), whereas, if the bandwidth is chosen too large, the bias
√

nht+1 starts
to dominate, depending on the unknown smoothness t . Hence restricting Lepski’s
method to estimators pK

n (h) whose distribution functions are in a sup-norm ball of
radius

√
h(log(1/h))2/(

√
n log n) around Fn should improve the asymptotic precision

of the estimator ĥn . In fact, it is for these sizes that one has to use the full strength of
Theorem 1, cf. (34) in the proof of Theorem 2.

Remark 5 (Order of the kernel) The range of adaptation in the above theorem is
restricted to the Hölder classes with smoothness smaller than T , the reason being that
the order of the kernel has to be fixed at a certain degree to control the bias term. If
one wants to adapt up to order T = 1, then a standard symmetric positive kernel (of
order 2) can be used. If one wants to adapt to smoothness larger than T = 1, one
has to use higher order kernels, and then it might be advisable to allow for kernels
of varying order in the construction of the estimator. This can be achieved by using
similar methods as in Sect. 2.8 of Lepski and Spokoiny [27], and might be important
for improving the actual implementability of the procedure proposed above.

Acknowledgments We thank two referees and Jon Wellner for useful comments on the manuscript. A
question from Jon Wellner led us to proving Proposition 1.

5 Appendix: Inequalities

5.1 Talagrand’s inequality

Let X1, . . . , Xn be i.i.d. with law P on R, and let F be a P-centered (i.e.,
∫

f d P = 0
for all f ∈ F) countable class of real-valued functions on R, uniformly bounded by
the constant U . Let σ be any positive number such that σ 2 ≥ sup f ∈F E( f 2(X)), and
set V := nσ 2 + 2U E‖∑n

j=1 f (X j )‖F . Then, Bousquet’s [3] version of Talagrand’s
inequality ([32]), with constants, is as follows (see Theorem 7.3 in [3]): For every
x ≥ 0

Pr

⎧
⎨

⎩
‖

n∑

j=1

f (X j )‖F ≥ E‖
n∑

j=1

f (X j )‖F + √
2V x + U x/3

⎫
⎬

⎭
≤ 2e−x . (37)

We note that Rio [30] obtained this inequality with U x/2 instead of U x/3, and we
could have used his inequality to obtain exactly the same results in the present article.

123



592 E. Giné, R. Nickl

5.2 Moment inequalities for VC classes, with constants

To apply Talagrand’s inequality in Theorem 1 and Lemma 1, we need bounds for
E‖∑n

j=1 f (X j )‖F with explicit constants, which we obtain in this subsection.
Talagrand [31] showed that one can obtain simple bounds for the moments of the
empirical process indexed by a VC class of sets just by means of the usual entropy
bound and the contraction principle for Rademacher processes. This was extended
to VC classes of functions by several authors ([11,13,15], among others). Here we
sketch a proof of these extensions, with explicit constants, but only for the case we
are using (constant envelope, VC classes).

Proposition 3 Let F be a countable (or stochastically separable) P-centered class of
real valued functions uniformly bounded by a constant U and such that, for all finitely
supported probability measures Q, the L2(Q)-covering numbers satisfy

N (F ,L2(Q), τ ) ≤
(

AU

τ

)v
, 0 < τ < U,

for some A > e and v ≥ 2. Let σ ≤ U be as before (37). Then, for all n ∈ N,

E

∥
∥
∥
∥
∥
∥

n∑

j=1

f (X j )

∥
∥
∥
∥
∥
∥F

≤ 30
√

2v

√

nσ 2 log
5AU

σ
+ 15225vU log

5AU

σ
. (38)

Proof (Sketch) It suffices to prove this inequality for U = 1. By the entropy bound
with constants in the lemma below, we have

1√
n

Eε

∥
∥
∥
∥
∥
∥

n∑

j=1

ε j f (X j )

∥
∥
∥
∥
∥
∥F

≤ 30
√

2v

√
‖Pn f 2‖F /4∫

0

√

log
21/(2v)A

τ
dτ,

where εi are i.i.d. Rademacher variables independent of the variables X j and Eε
indicates expectation with respect to the εi ’s. As in [17], if (log C/c) ≥ 2 then

c∫

0

(

log
C

x

)1/2

dx ≤ 2c

(

log
C

c

)1/2

.

Since 4 · 21/(2v)A/
√‖Pn f 2‖F ≥ 4A ≥ e2, we conclude

1√
n

Eε

∥
∥
∥
∥
∥
∥

n∑

j=1

ε j f (X j )

∥
∥
∥
∥
∥
∥F

≤ 15
√

2v
√

‖Pn f 2‖F

√

log
5A

√‖Pn f 2‖F
.
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By concavity of
√

x
√− log x on (0, e−1), this yields

1√
n

E

∥
∥
∥
∥
∥
∥

n∑

j=1

ε j f (X j )

∥
∥
∥
∥
∥
∥F

≤ 15
√

2v
√

E‖Pn f 2‖F

√

log
5A

√
E‖Pn f 2‖F

=: 15
√

2vB.

Now we apply the contraction principle for Rademacher processes [31], to the effect
that

nE‖Pn f 2‖F ≤ nσ 2 + 8E

∥
∥
∥
∥
∥
∥

n∑

j=1

ε j f (X j )

∥
∥
∥
∥
∥
∥F

.

The last two inequalities give

E‖Pn f 2‖F ≤ σ 2 + 120
√

2vB√
n

,

which, replaced into the definition of B, implies that B satisfies the inequality

B2 ≤
(

σ 2 + 120
√

2vB√
n

)

log
5A

σ
.

The result follows by solving for B, and applying a simple symmetrization inequality.
��

For lack of reference, here we sketch how to get the usual entropy bound with
sensible (not necessarily best possible) constants:

Lemma 2 Let X (t) = ∑N
i=1 ai (t)εi , t ∈ T , (for any N ∈ N) be a Rademacher

process indexed by the set T such that X (t0) = 0 a.s. for some t0 ∈ T , and let

D = 2 supt∈T (E X2(t))1/2 = 2 supt∈T

(∑N
i=1 a2

i (t)
)1/2

. Then,

E sup
t∈T

|X (t)| ≤ 30

D/4∫

0

√
2 log(

√
2N (T, δ, τ ))dτ,

where δ2(s, t) = E |X (t)− X (s)|2.

Proof (Sketch) If ξ = ∑
aiεi , then the well known hypercontractivity inequality

(e.g., de la Peña and Giné [6, p. 113]) states

E |ξ |q ≤ (q − 1)q/2(Eξ2)q/2,

which, by development of the exponential gives

Eeξ
2/6τ 2

< 2
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594 E. Giné, R. Nickl

where τ 2 = ∑ a2
i . This gives, by a convexity argument e.g., (4.3.1), p. 188, in de la

Peña and Giné [6], that if ξi , 1 ≤ i ≤ N , are Rademacher polynomials and σ 2 =
maxi≤N Eξ2

i , then

E max
i≤N

|ξi | ≤ √
6σ
√

log(2N ). (39)

It can be shown that (T, δ) is stochastically separable (as it is isometric to a subset of
a cube in R

N ), so it suffices to show that

E sup
t∈S

|X (t)| ≤ 30

D/4∫

0

√
2 log(

√
2N (T, δ, τ ))dτ,

for all finite subsets S ⊆ T , S containing t0 without loss of generality. Then, a compu-
tation (chaining) similar to the one leading to (5.1.14), p. 217 in de la Peña and Giné
[6], applied with d = √

6δ, but for E maxs∈S |X (s)| instead of ‖ maxs∈S |X (s)|‖ψ ,
and using (39) and the properties of log, and assuming that the d-diameter of T is at
most 1, gives

E sup
t∈S

|X (t)| ≤ 12

1/4∫

0

√
2 log(

√
2N (T, d, τ ))dτ.

Applying this bound to Y (t) = X (t)/(
√

6D) if the δ-diameter of T is dominated by
D yields the result. ��

We use the above bounds for classes of functions of the form

F := Fh =
{

H

(
t − ·

h

)

: t ∈ R

}

,

where H is of bounded variation. We record here the entropy bound for these classes:

Lemma 3 Let H : R 	→ R be a function of bounded variation. Then there exists
A < ∞ independent of h and of H such that, for all probability measures Q on R

and all 0 < ε < 1,

N (Fh,L2(Q), ε) ≤
(

2‖H‖V A

ε

)4

where ‖H‖V is the total variation norm of the function H.

Proof Let H+ and H− be, respectively, the positive and negative variations of H .
Then H(·/h) = H+(·/h) − H−(·/h). Set F+

h = {H+((t − ·)/h) : t ∈ R} and
likewise define F−

h . Then, a simple estimate of covering numbers gives

N (Fh,L2(Q), 2ε) ≤ N (F+
h ,L2(Q), ε)N (F−

h ,L2(Q), ε).
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An exponential inequality for the distribution function 595

Applying Theorem 2.6.7 and Lemma 2.6.16 in [34] to F+
h , we obtain that there is a

universal constant A such that

N (F+
h ,L2(Q), ε) ≤ (AH+(∞−)/ε)2 ,

since supx H+((t − x)/h) = H+(∞−), and similarly for F−
h . The lemma follows.

��
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