Vol. 17, No. 2, 2008

Adaptation on the Space of Finite Signed Measures *E. Giné and R. Nickl*

113

_

_

Adaptation on the Space of Finite Signed Measures

E. Giné¹ and R. Nickl^{1*}

¹Dept. of Math., University of Connecticut, USA Received February 05, 2008

Abstract—Given an i.i.d. sample from a probability measure P on \mathbb{R} , an estimator is constructed that efficiently estimates P in the bounded-Lipschitz metric for weak convergence of probability measures, and, at the same time, estimates the density of P – if it exists (but without assuming it does) – at the best possible rate of convergence in total variation loss (that is, in L^1 -loss for densities).

Key words: kernel density estimator, exponential inequality, adaptive estimation, total variation loss, bounded Lipschitz metric, L^1 -loss.

2000 Mathematics Subject Classification: primary 62G07; secondary 60F05.

DOI: 10.3103/S1066530708020014

1. INTRODUCTION

Viewing the set of all probability measures on \mathbb{R} as a subset of the Banach space $M(\mathbb{R})$ of finite signed Borel measures on \mathbb{R} , one has two 'natural' topologies: the 'strong' norm topology given by the norm

$$\|\mu\|_{TV} := |\mu|(\mathbb{R}),\tag{1}$$

where $|\mu|$ is the usual total variation measure of $\mu \in M(\mathbb{R})$; and the usual topology of weak convergence, where

$$\mu_n \to \mu \text{ weakly} \qquad \Longleftrightarrow \qquad \int_{\mathbb{R}} f d(\mu_n - \mu) \to 0 \quad \forall f \in \mathsf{C}(\mathbb{R})$$

The topology of weak convergence can be metrized on bounded subsets of $M(\mathbb{R})$, so in particular on the set of all probability measures on \mathbb{R} , and a commonly used metric is the bounded Lipschitz metric given by

$$\beta(\mu,\nu) = \sup_{f \in \mathcal{F}_{BL}} \left| \int_{\mathbb{R}} f \, d(\mu-\nu) \right| = \|\mu-\nu\|_{\mathcal{F}_{BL}},\tag{2}$$

for $\mu, \nu \in M(\mathbb{R})$ and where

$$\mathcal{F}_{BL} = \left\{ f \colon \mathbb{R} \to \mathbb{R} \colon \|f\|_{BL} := \|f\|_{\infty} + \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|} \le 1 \right\}$$
(3)

is the unit ball in the space of bounded Lipschitz functions.

Let X_1, \ldots, X_n be independent real-valued random variables each having law P, and denote by $P_n = n^{-1} \sum_{j=1}^n \delta_{X_j}$ the usual empirical measure. We assume throughout that the X_j 's, $j = 1, \ldots, n$, are the coordinate projections of the infinite product probability space $(\mathbb{R}^{\mathbb{N}}, \mathcal{B}^{\mathbb{N}}, P^{\mathbb{N}})$, and we set $\Pr := P^{\mathbb{N}}$. Given the sample, the statistical goal is to estimate P, and the Banach space $M(\mathbb{R})$ suggests two natural loss functions to evaluate the performance of an estimator, namely, $\|\cdot\|_{TV}$ and β . For each

^{*}E-mail: nickl@math.uconn.edu

GINÉ, NICKL

given loss functions, optimal estimators exist: on the one hand, $\|\mu\|_{TV} = \|m\|_1$ for absolutely continuous

 $\mu \in M(\mathbb{R})$ with Lebesgue-density m, so estimation of (absolutely continuous) P in $\|\cdot\|_{TV}$ -loss reduces

to density estimation in L^1 -loss, which is a well treated subject in nonparametric statistics, cf., e.g., Devroye and Lugosi [5]. Here the usual phenomenon occurs that the best possible rate of convergence for estimating the density p_0 of P depends on the smoothness properties of p_0 , and this rate is always slower than $1/\sqrt{n}$ if no finite-dimensional model is assumed. On the other hand, estimation of P in bounded-Lipschitz loss β was considered in Giné and Zinn [10]. There it was shown that the empirical process over the bounded Lipschitz ball \mathcal{F}_{BL} satisfies the uniform central limit theorem if P has a

moment of order larger than one, and that a marginally weaker condition is necessary for the CLT to hold. This implies, in particular, that the empirical measure P_n estimates P efficiently w.r.t. the metric β (for this notion of efficiency, see, e.g., van der Vaart and Wellner [18], p. 420) and has convergence rate $\beta(P_n, P) = O_P(n^{-1/2})$. Note however that P_n is not consistent in $\|\cdot\|_{TV}$ -loss, since $\|P_n - P\|_{TV} = 2$

for every n and absolutely continuous P. So the question arises whether optimality in both loss functions can be achieved by a single estimator, and we will answer this question in the affirmative in this note.

Adaptive density estimation in the i.i.d. density model on the real line in L^1 -loss has been treated in the literature before (see Remark 2 below), but to the best of our knowledge, all these results achieve the minimax rate of convergence only within a logarithmic factor. Our results show that *optimal* rate-adaptive estimators (without a logarithmic penalty) can be constructed in the i.i.d. density model. More generally, Theorem 1 below shows that optimally rate-adaptive estimators possessing the plugin property of Bickel and Ritov [1] exist. The results of the present article also have applications to semiparametric higher order efficiency problems, similar to those studied in Golubev and Levit [11] and Dalalyan, Golubev and Tsybakov [3].

Some of the methods and ideas of the present article are inspired by recent results in Giné and Nickl [9], who considered the conceptually related problem of optimal estimation of a distribution function and its density in the supnorm.

2. ADAPTATION ON THE SPACE OF FINITE SIGNED MEASURES 2.1. Basic Setup

We start with some basic notation. For an arbitrary (non-empty) set M, $\ell^{\infty}(M)$ will denote the Banach space of bounded real-valued functions H on M normed by $||H||_M := \sup_{m \in M} |H(m)|$, but $||H||_{\infty}$ is used for $\sup_{x \in \mathbb{R}} |H(x)|$. For Borel-measurable functions $h \colon \mathbb{R} \to \mathbb{R}$ and Borel measures μ on \mathbb{R} , we set $\mu h := \int_{\mathbb{R}} h \, d\mu$, and we denote by $\mathcal{L}^p(\mathbb{R}, \mu)$ the usual Lebesgue-spaces of Borel-measurable functions from \mathbb{R} to \mathbb{R} . If $d\mu(x) = dx$ is Lebesgue measure, we set shorthand $\mathcal{L}^p(\mathbb{R}) := \mathcal{L}^p(\mathbb{R}, \mu)$, and, for $1 \le p < \infty$, we abbreviate the norm by $\|\cdot\|_p$. The convolution f * g(x) of two measurable functions f, g on \mathbb{R} is defined by $\int_{\mathbb{R}} g(x-y)f(y) \, dy$ if the integral converges. Similarly, if μ is any finite signed measure and f is a measurable function, convolution is defined as $\mu * f(x) = \int_{\mathbb{R}} f(x-y) d\mu(y)$ if the integral exists. We refer to p. 237 in de la Peña and Giné [4] for the following definitions: the empirical process indexed by $\mathcal{F} \subseteq \mathcal{L}^2(\mathbb{R}, P)$ is given by $f \mapsto \sqrt{n}(P_n - P)f = n^{-1/2} \sum_{j=1}^n (f(X_j) - P)f$ Pf). Convergence in law of random elements in $\ell^{\infty}(\mathcal{F})$ is defined in the usual way, and will be denoted by the symbol $\rightsquigarrow_{\ell^{\infty}(\mathcal{F})}$. The class \mathcal{F} is said to be *P*-Donsker if $\sqrt{n}(P_n - P) \rightsquigarrow_{\ell^{\infty}(\mathcal{F})} G_P$, where G_P is the Brownian bridge indexed by \mathcal{F} (that is, a centered Gaussian process with covariance $EG_P(f)G_P(g) =$ P[(f - Pf)(g - Pg)]) and if G_P is sample-bounded and sample-continuous w.r.t. the covariance metric. We also introduce the following function spaces, where we restrict ourselves, for simplicity, to integer t > 0: we denote by $\mathcal{W}_1^t(\mathbb{R})$ the space of integrable functions f whose derivatives $D^{\alpha} f$ up to order t exist, and $D^{\alpha} f \in \mathcal{L}^1(\mathbb{R})$ for all $0 \leq \alpha \leq t$.

We will consider the usual smoothed empirical process (kernel density estimator): if X_1, \ldots, X_n are i.i.d. on the real line, then

$$p_n^K(h,x) = P_n * K_h(x) = \frac{1}{nh} \sum_{j=1}^n K\left(\frac{x - X_j}{h}\right), \quad x \in \mathbb{R},$$
 (4)

where the kernel $K: \mathbb{R} \to \mathbb{R}$ is a symmetric, integrable function that integrates to 1, $K_h(x) := h^{-1}K(x/h)$, and $h := h_n \searrow 0$, $h_n > 0$. The kernel K is of order r > 0 if

$$\int_{\mathbb{R}} y^{j} K(y) \, dy = 0 \quad \text{for } j = 1, \dots, r-1, \quad \text{and} \quad \int_{\mathbb{R}} |y|^{r} |K(y)| \, dy < \infty.$$

We will denote by $P_n^K(h)$ the random measure defined by $P_n^K(h)(A) = \int_A p_n^K(h, x) dx$ for every Borel set $A \subseteq \mathbb{R}$. The dependence of h on n will be assumed without displaying.

2.2. The Main Theorem

For the construction of the estimator, we will have to know a bound on some moment of P, that is, we consider the model

$$\mathcal{P}(\gamma, H) = \left\{ P \text{ a Borel probability measure on } \mathbb{R} \colon \int_{\mathbb{R}} (1 + |x|)^{2\gamma} \, dP(x) \le H \right\}$$

for some $H < \infty, \gamma > 1/2$. See Remark 3 for further discussion. Note that, if *P* is known to be supported in a bounded interval [a, b], the constant *H* can be easily calculated as a function of *a* and *b* only, and the following results then hold for all probability measures on [a, b]. To construct our estimator, we will use the kernel density estimator $p_n^K(h)$ from (4). The crucial problem is to find a good data-driven bandwidth \hat{h}_n , that optimally adapts to the unknown smoothness of the density of *P*. Here we will use a modification of Lepski's method (see Lepski [14]) and refinements given, among others, in Lepski and Spokoiny [15]). Define the grid

$$\mathcal{H} := \left\{ h_k = \rho^{-k} \colon k \in \mathbb{N} \cup \{0\}, \ \rho^{-k} > n^{-1} (\log n)^2 \right\},\tag{5}$$

where $\rho > 1$ is arbitrary. The number of elements in this grid is of order log *n* and we denote by h_{\min} the last (i.e., smallest) element in the grid. We construct \hat{h}_n as follows: first, we check whether

$$\beta(P_n^K(h_{\min}), P_n) \le \frac{1}{\sqrt{n}\log n}$$

holds. If this is not satisfied, we set $\hat{h}_n = 0$. Otherwise, we proceed to check whether

$$\|p_n^K(h_{\min}^+) - p_n^K(h_{\min})\|_1 \le \sqrt{\frac{M}{nh_{\min}}} \quad \text{and} \quad \beta\left(P_n^K(h_{\min}^+), P_n\right) \le \frac{1}{\sqrt{n\log n}}$$

simultaneously hold, where h_{\min}^+ is the last but one element in the grid \mathcal{H} and where $M = 17L^2$ with

$$L := L(\gamma, H, K) = \left[\frac{2H}{2\gamma - 1} \int_{\mathbb{R}} K^2(u)(1 + |u|)^{2\gamma} du\right]^{1/2}$$

For example, if P and K are supported in [0, 1] we have H = 4 (with $\gamma = 1$) and may choose $L = 4\sqrt{2}||K||_2$. If the latter does not occur, we set $\hat{h}_n = h_{\min}$, and otherwise, we define \hat{h}_n as

$$\hat{h}_n = \max \left\{ h \in \mathcal{H} \colon \| p_n^K(h) - p_n^K(g) \|_1 \le \sqrt{M/ng} \quad \forall g < h, \ g \in \mathcal{H} \right.$$

and $\beta(P_n^K(h), P_n) \le \frac{1}{\sqrt{n\log n}} \left\}.$

The estimator is $P_n^K(\hat{h}_n) =: P_n^K(\hat{h}_n, \gamma, H)$ with the convention that $P_n^K(0) := P_n$. The following theorem shows that this estimator is asymptotically optimal both in β and in $\|\cdot\|_{TV}$ -loss, see the remark following the theorem for details. In what follows, we say that a sequence of events A_n is *eventual* if $\lim_m \Pr(\bigcap_{n \ge m} A_n) = 1$.

Theorem 1. Let X_1, \ldots, X_n be i.i.d. on \mathbb{R} with common law $P \in \mathcal{P}(\gamma, H)$ for some $H < \infty, \gamma > 1/2$. Let $P_n^K(\hat{h}_n)$ be defined as above, where K is a kernel function of order T + 1, $0 \le T < \infty$ integer, such that $\int_{\mathbb{R}} [(1 + |x|)^{\gamma} K(x)]^2 dx < \infty$. Then

$$\sqrt{n} \left(P_n^K(\hat{h}_n) - P \right) \rightsquigarrow_{\ell^{\infty}(\mathcal{F}_{BL})} G_P, \tag{6}$$

so in particular

$$\beta(P_n^K(\hat{h}_n), P) = O_P\left(\frac{1}{\sqrt{n}}\right)$$

If P possesses a Lebesgue-density p_0 , then {the Lebesgue density $p_n^K(\hat{h}_n)$ of $P_n^K(\hat{h}_n)$ exists} is eventual, and

$$\|p_n^K(\hat{h}_n) - p_0\|_1 = o_P(1).$$
(7)

If, in addition, $p_0 \in W_1^t(\mathbb{R})$ for some $0 < t \leq T$, we have

$$\|p_n^K(\hat{h}_n) - p_0\|_1 = O_P\left(n^{-\frac{t}{2t+1}}\right).$$
(8)

Remark 1. (Modification of Lepski's method.) Our modification of Lepski's [14] method, which follows Theorem 2 in Giné and Nickl [9], basically consists in applying the usual method, but confined to estimators that are contained in a $\|\cdot\|_{\mathcal{F}_{BL}}$ -ball of size $o(1/\sqrt{n})$ around the empirical measure P_n .

Remark 2. (Minimax Rates, Related Results.) The minimax rate of convergence in L^1 -loss over balls of densities in $\mathcal{W}_1^t(\mathbb{R})$ is $n^{-t/(2t+1)}$ (e.g., Chapter 15 in Devroye and Lugosi [5]), which is achieved by the estimator in the above theorem. Inspection of the proof shows that (8) holds uniformly over sets of the form $\{p \in \mathcal{W}_1^t(\mathbb{R}): \sum_{0 \le \alpha \le t} \|D^{\alpha}p\|_1 \le D\}$, and it can be shown that (7) holds uniformly over precompact subsets of $\mathcal{L}^1(\mathbb{R})$. Also, the convergence in law in (6) is uniform over the class of probability measures $\mathcal{P}(\gamma, H)$, since \mathcal{F}_{BL} is a $\mathcal{P}(\gamma, H)$ -uniform Donsker class (cf. Corollary 5 and Remark 2 in

Nickl and Pötscher [16]). The question whether (8) in Theorem 1 can be obtained for adaptive density estimators on \mathbb{R} has been treated in several places in the literature. For example, Donoho *et al.* [6], Kerkyacharian *et al.* [13] (for compactly supported densities) and Juditsky and Lambert-Lacroix [12] (for densities on \mathbb{R}) treated adaptation in general L^p -loss, $1 \le p < \infty$, for compactly supported densities, by wavelet-based estimators, but they had to pay a logarithmic penalty in the rate of convergence.

Remark 3. (Moment Conditions.) Efficient estimation of P in the metric β (that is, in the Banach space $\ell^{\infty}(\mathcal{F}_{BL})$, for this notion of efficiency cf. van der Vaart and Wellner [18], p. 420) is only possible if a tight Brownian bridge process over \mathcal{F}_{BL} exists, hence, by the Giné and Zinn [10] result discussed in the Introduction, the moment condition on P imposed in Theorem 1 cannot be relaxed.

2.3. Proof of Theorem 1

(1) First note that the class of functions \mathcal{F} is *P*-Donsker for every probability measure *P* satisfying $\int_{\mathbb{R}} |x|^{2\gamma} dP(x) < \infty$ for some $\gamma > 1/2$, see, e.g., Theorem 2 in Giné and Zinn [10]. Then (6) follows from

$$||P_n^K(\hat{h}_n) - P_n||_{\mathcal{F}_{BL}} = o(1/\sqrt{n}).$$

(II) For the case, where P possesses a density p_0 , we need the following. Using Minkowski's inequality for integrals we have

$$\left(E\|p_n^K(h) - Ep_n^K(h)\|_1^2\right)^{1/2} \le \int_{\mathbb{R}} \left(E\left|\frac{1}{n}\sum_{j=1}^n K_h(x - X_j) - K_h * p_0(x)\right|^2\right)^{1/2} dx$$

$$\leq \frac{1}{\sqrt{nh}} \int\limits_{\mathbb{R}} \left((K^2)_h * p_0(x) \right)^{1/2} dx.$$

Adapting the proof of Lemma 1 in Giné and Mason [7] to obtain explicit constants, we have

$$\int_{\mathbb{R}} \left((K^2)_h * p_0(x) \right)^{1/2} dx \le \left(\frac{2H}{2\gamma - 1} \int_{\mathbb{R}} K^2(u) (1 + |u|)^{2\gamma} du \right)^{1/2} := L,$$

and hence we have that

$$E\|p_n^K(h) - Ep_n^K(h)\|_1^2 \le L^2 \frac{1}{nh} := L^2 \sigma^2(h, n).$$
(9)

For the bias, assuming $p_0 \in \mathcal{W}_1^t(\mathbb{R})$, we have for some constant $0 < L' < \infty$ and some $0 < \zeta < 1$

$$||Ep_{n}^{K}(h) - p_{0}||_{1} = \int_{\mathbb{R}} \left| \int_{\mathbb{R}} K(u) [p_{0}(x - uh) - p_{0}(x)] \, du \right| dx$$

$$\leq \frac{h^{t}}{t!} \int_{\mathbb{R}} |K(u)| |u|^{t} \int_{\mathbb{R}} |D^{t}p_{0}(x - uh\zeta)| \, dx \, du = L'h^{t} := B(h, p_{0})$$
(10)

since $D^t p_0 \in \mathcal{L}^1(\mathbb{R})$. If it is only known that p_0 exists we still have

$$||Ep_n^K(h) - p_0||_1 = ||K_h * p_0 - p_0||_1 = o(1),$$

cf., e.g., Theorem 9.1 in Devroye and Lugosi [5].

Proof of (7) *and* (8). By Lemma 1 below with $\lambda = 1/\log n$ and $h = h_{\min}$ we obtain that $\{\hat{h}_n \ge h_{\min}\}$ is eventual, and hence the density $p_n^K(\hat{h}_n)$ exists eventually. Expectations in the rest of the proof are taken over the event $\{p_n^K(\hat{h}_n) \text{ exists}\}$.

Define h_p by the balance equation

$$h_p = \max\left\{h \in \mathcal{H} \colon B(h, p_0) \le \frac{\sqrt{M}}{4}\sigma(h, n)
ight\}.$$

It is easily verified that $h_p \simeq n^{-1/(2t+1)}$ if $p_0 \in \mathcal{W}_1^t(\mathbb{R})$ for some $0 < t \leq T$, cf. (II). If p_0 exists but is not contained in $\mathcal{W}_1^t(\mathbb{R})$ for some t > 0, we set $h_p = h_{\min}$. Then we define $\tilde{\sigma}(h_p, n)$ as $\sigma(h_p, n)$ if t > 0 and set $\tilde{\sigma}(h_p, n) = \max\left(\sigma(h_p, n), (4/\sqrt{M})B(h_p, p_0)\right)$ otherwise, so that

$$B(h_p, p_0) \le (\sqrt{M}/4)\tilde{\sigma}(h_p, n)$$

always holds. Clearly $\sigma(h_p, n) = O(\tilde{\sigma}(h_p, n))$ and we note that for t > 0

$$\tilde{\sigma}(h_p, n) = \sigma(h_p, n) \simeq n^{-t/2t+1}$$
(11)

is the rate of convergence required in (8), but $\tilde{\sigma}(h_p, n) \to 0$ as soon as P has a density.

We will consider the cases $\{\hat{h}_n \ge h_p\}$ and $\{\hat{h}_n < h_p\}$ separately. First, by definition of \hat{h}_n , h_p and (9) we have

$$E\|p_{n}^{K}(\hat{h}_{n}) - p_{0}\|_{1}I_{\{\hat{h}_{n} \ge h_{p}\}} \le E\Big(\|p_{n}^{K}(\hat{h}_{n}) - p_{n}^{K}(h_{p})\|_{1} + \|p_{n}^{K}(h_{p}) - Ep_{n}^{K}(h_{p})\|_{1} + B(h_{p}, p_{0})\Big)I_{\{\hat{h}_{n} \ge h_{p}\}}$$
$$\le \sqrt{M}\sigma(h_{p}, n) + L\sigma(h_{p}, n) + \frac{\sqrt{M}}{4}\tilde{\sigma}(h_{p}, n) = O(\tilde{\sigma}(h_{p}, n)).$$

In the case $\{\hat{h}_n < h_p\}$ we have the following: if $h_p = h_{\min}$, then $\{\hat{h}_n < h_p\}$ cannot occur, so (7) is proved if t = 0 and will follow from (8) in case t > 0, which we assume for the rest of the proof. [Note that then $\tilde{\sigma}(h_p, n) = \sigma(h_p, n)$.] Since

$$E\|p_n^K(\hat{h}_n) - p_0\|_1 I_{\{\hat{h}_n < h_p\}} \le \sum_{h \in \mathcal{H}: \ h < h_p} E\Big[\big(\|p_n^K(h) - Ep_n^K(h)\|_1 + \|Ep_n^K(h) - p_0\|_1\big)I_{\{\hat{h}_n = h\}}\Big]$$

GINÉ, NICKL

$$\leq \sum_{h \in \mathcal{H}: \ h < h_p} \left(E \| p_n^K(h) - E p_n^K(h) \|_1^2 \right)^{1/2} \left(E I_{\{\hat{h}_n = h\}} \right)^{1/2} + \frac{\sqrt{M}}{4} \sigma(h_p, n),$$

by (9), it remains to show that

$$\sum_{h \in \mathcal{H}: \ h < h_p} \sigma(h, n) \cdot \sqrt{\Pr(\hat{h}_n = h)} = O(\sigma(h_p, n))$$
(12)

is satisfied. Pick any $h \in \mathcal{H}$ so that $h < h_p$, denote by h^+ the previous element in the grid (i.e., $h^+ = \rho h$) and observe that

$$\sqrt{\Pr(\hat{h}_n = h)} \leq \left(\sum_{g \in \mathcal{H}: \ g \leq h} \Pr\left(\|p_n^K(h^+) - p_n^K(g)\|_1 > \sqrt{M}\sigma(g, n)\right)\right)^{1/2} \\
+ \left(\Pr\left(\sqrt{n}\|P_n^K(h^+) - P_n\|_{\mathcal{F}_{BL}} > \frac{1}{\log n}\right)\right)^{1/2} =: A + B.$$
(13)

First, by definition of the grid and (9) we have

$$\sum_{h \in \mathcal{H}: \ h < h_p} \sigma(h, n) \cdot B \le d(\log n) \sigma(h_{\min}, n) \sqrt{\exp\left\{-L \min\left(\frac{1}{(h_p \log n)^2}, \frac{\sqrt{n}}{h_p \log n}\right)\right\}}$$
$$= o(\sigma(h_p, n)) \tag{14}$$

for *n* large, where we have applied Lemma 1 below with $\lambda = 1/\log n$ and $h = h^+ \leq h_p$.

For the term including A we first observe that

$$\|p_n^K(h^+) - p_n^K(g)\|_1 \le \|p_n^K(h^+) - Ep_n^K(h^+)\|_1 + \|p_n^K(g) - Ep_n^K(g)\|_1 + B(h^+, p_0) + B(g, p_0) \le (\sqrt{M}/2)\sigma(g, n), \text{ since } g < h^+ \le h_p. \text{ Consequently,}$$

$$\Pr\left(\|p_n^K(h^+) - p_n^K(g)\|_1 > \sqrt{M}\sigma(g,n)\right) \le \Pr\left(\|p_n^K(h^+) - Ep_n^K(h^+)\|_1 > (1/4)\sqrt{M}\sigma(h^+,n)\right) + \Pr\left(\|p_n^K(g) - Ep_n^K(g)\|_1 > (1/4)\sqrt{M}\sigma(g,n)\right).$$

Now Lemma 2 below gives

$$\sum_{g \in \mathcal{H}: g \le h} \Pr\left(\|p_n^K(h^+) - p_n^K(g)\|_1 > \frac{1}{4}\sqrt{M}\sigma(g,n) \right) \le L'' \log n \exp\left\{ -\frac{1}{L'h} \right\}$$

and then

$$\sum_{h \in \mathcal{H}: \ h < h_p} \sigma(h, n) \cdot A = O\left((\log n)^{3/2} \sigma(h_{\min}, n) \sqrt{\exp\left\{-\frac{1}{L'h_p}\right\}}\right) = o\left(\sigma(h_p, n)\right).$$

Now this, (13), and (14) verify (12), which completes the proof, given Lemmas 1 and 2.

The following two exponential inequalities were used in the proof.

Lemma 1. Suppose that P satisfies $H := H(\gamma) = \int_{\mathbb{R}} |x|^{2\gamma} dP(x) < \infty$ for some $\gamma > 1/2$. Set t = 0 in what follows, or assume that P has a density p_0 with respect to Lebesgue measure such that $p_0 \in W_1^t(\mathbb{R})$ for some t > 0. Let $h := h_n \to 0$ as $n \to \infty$ satisfy $h \ge (\log n/n)$, and let K be a kernel of order t + 1. Define $\gamma' = \gamma$ if $\gamma \neq 1$, and $\gamma' = 1 - \delta$ for some arbitrary $0 < \delta < 1/2$ otherwise, and then define $\kappa = \min(1, \gamma')$. Then there exist finite positive constants L := L(K) and $\Lambda_0 := \Lambda_0(K, H, \int_{\mathbb{R}} |D^t p_0(y)| \, dy)$ such that for all $\lambda \ge \Lambda_0 \max\left(\min(h^{1-1/2\kappa}, \sqrt{n}h), \sqrt{n}h^{t+1}\right)$ and $n \in \mathbb{N}$,

$$\Pr\left(\sqrt{n} \| P_n^K(h) - P_n \|_{\mathcal{F}_{BL}} > \lambda\right) \le 2 \exp\left\{-L \min\left(\frac{\lambda^2}{h^2}, \frac{\sqrt{n\lambda}}{h}\right)\right\}.$$

Proof. We start with a remark on measurability, which will also be needed in the application of Talagrand's inequality below: since f and $K_h * f$ are continuous functions, $(P_n^K(h) - P_n)f$ is a random variable for each $f \in \mathcal{F}_{BL}$. Furthermore, there is a countable $\mathcal{F}_0 \subseteq \mathcal{F}_{BL}$ such that

$$\sup_{f \in \mathcal{F}_0} |(P_n - P)(K_h * f - f)| = \sup_{f \in \mathcal{F}_{BL}} |(P_n - P)(K_h * f - f)|$$
(15)

except perhaps on a set of zero probability. To see this, let $\mathcal{F}_{BL}(l)$ be the unit ball of the space of bounded Lipschitz functions on [-l, l], which is relatively compact for the sup-norm (by Ascoli's theorem), and let \mathcal{F}_l be a countable (sup-norm) dense subset of $\mathcal{F}_{BL}(l)$. Extend each $f \in \mathcal{F}_l$ as f(x) = f(-l) for x < -land f(x) = f(l) for x > l, and still denote, with some abuse of notation, this set of extensions as \mathcal{F}_l . Then $\mathcal{F}_0 := \bigcup_{l=1}^{\infty} \mathcal{F}_l$ is a countable subset of \mathcal{F}_{BL} , and, using tightness of K and P, it is easy to see that (15) holds for all ω such that $|X_i(\omega)| < \infty$, $j \in \mathbb{N}$, and for all n.

The proof of the lemma follows Theorem 1 in Giné and Nickl [9], but requires substantial technical modifications. We use the decomposition

$$P_n * K_h - P_n = P_n * K_h - P * K_h - P_n + P + P * K_h - P,$$

so that

$$\|P_{n}^{K}(h) - P_{n}\|_{\mathcal{F}}_{BL} \leq \sup_{f \in \mathcal{F}}_{BL} |(P_{n} - P)(K_{h} * f - f)| + \|P * K_{h} - P\|_{\mathcal{F}}_{BL}.$$
 (16)

For the "bias term" we have, as in Lemma 4 in Giné and Nickl [8], for given $f \in \mathcal{F}_{BL}$ with $\bar{f}(x) = f(-x)$, that

$$(P * K_h - P)f = \int_{\mathbb{R}} K(t) [P * \bar{f}(ht) - P * \bar{f}(0)] dt.$$
(17)

For every $0 < \alpha \leq t$, we have $D^{\alpha}(p_0 * \bar{f}) = D^{\alpha}p_0 * \bar{f}$, see, e.g., Lemma 5b in Giné and Nickl [8], and, with the convention that $D^0p_0 = P$, we obtain

$$\|D^{\alpha}p_0 * \bar{f}\|_{\infty} \le \|D^{\alpha}p_0\|_{TV} \|f\|_{\infty} < \infty,$$

where $||D^{\alpha}p_0||_{TV}$ denotes the total variation norm (see (1) above) of the measure $D^{\alpha}p_0(y)dy$, which is equal to the L^1 -norm of $D^{\alpha}p_0$ for $\alpha > 0$. Summarizing, the function $P * \bar{f}$ possesses bounded derivatives up to order t. Furthermore, since $D^t p_0(y)dy$ gives rise to a finite signed measure, and since $f \in \mathcal{F}_{BL}$, we obtain (interpreting $D^0 p_0(y) dy$ as dP(y))

$$|r|^{-1}|D^{t}p_{0}*\bar{f}(x+r) - D^{t}p_{0}*\bar{f}(x)| = |r|^{-1} \left| \int_{\mathbb{R}} [f(r+y-x) - f(y-x)]D^{t}p_{0}(y) \, dy \right|$$
$$\leq \int_{\mathbb{R}} |D^{t}p_{0}(y)| \, dy < \infty$$

and hence $P * \bar{f}$ has bounded derivatives up to order t and the tth derivative (in case t = 0 the function $P * \bar{f}$ itself) is a bounded Lipschitz function. Now this, (17) and the fact that the kernel is of order t + 1 give, by straightforward Taylor expansions,

$$\|P * K_h - P\|_{\mathcal{F}_{BL}} \le Ch^{t+1}$$

for some constant *C* depending only on $\int_{\mathbb{R}} |D^t p_0(y)| dy$ and *K*. This and (16) imply, by assumption on λ , that

$$\Pr\left(\sqrt{n} \|P_n^K(h) - P_n\|_{\mathcal{F}_{BL}} > \lambda\right) \le \Pr\left(\sqrt{n} \sup_{f \in \mathcal{F}_{BL}} |(P_n - P)(K_h * f - f)| > \lambda - C\sqrt{n}h^{t+1}\right)$$
$$\le \Pr\left(n \sup_{f \in \mathcal{F}_{BL}} |(P_n - P)(K_h * f - f)| > \frac{\sqrt{n}\lambda}{2}\right).$$
(18)

We will apply Talagrand's inequality to the class

$$\tilde{\mathcal{F}}_{BL} = \left\{ K_h * f - f - P(K_h * f - f) \colon f \in \mathcal{F}_{BL} \right\}$$

to bound the last probability, but first we need some preliminary facts:

(a) We have

$$\sup_{f \in \mathcal{F}_{BL}} \|K_h * f - f\|_{2,P} \le \sup_{f \in \mathcal{F}_{BL}} \|K_h * f - f\|_{\infty} \le h \int_{\mathbb{R}} |K(u)| |u| du := \sigma,$$
(19)

since

$$|K_h * f(x) - f(x)| = \left| \int_{\mathbb{R}} K(u) [f(x - uh) - f(x)] \, du \right| \le h \int_{\mathbb{R}} |K(u)| |u| \, du$$

(b) Clearly, (19) implies that the envelope U of $\tilde{\mathcal{F}}_{BL}$ can be taken to be of order C'h for $C' = 2 \int_{\mathbb{R}} |K(u)| |u| \, du$.

(c) We will establish the expectation bound

$$nE \sup_{f \in \mathcal{F}_{BL}} |(P_n - P)(K_h * f - f)| \le C'' \min(\sqrt{n}h^{1 - 1/2\kappa}, nh)$$
(20)

for C'' some finite positive constant depending only on H. That this expression is dominated by C''nh follows immediately from (b). Note that the set $\cup_{h>0} \{K_h * f - f : f \in \mathcal{F}_{BL}\}$ is contained in the class of functions $3\|K\|_1 \cdot \mathcal{F}_{BL}$ in view of $\|K_h * f - f\|_{BL} \le \|K_h * f\|_{BL} + 1$, $\|K_h * f\|_{\infty} \le \|K\|_1$, and

$$|r|^{-1}|K_h * f(x+r) - K_h * f(x)| = |r|^{-1} \bigg| \int_{\mathbb{R}} K_h(y) [f(x+r-y) - f(x-y)] \, dy$$
$$\leq \int_{\mathbb{R}} |K_h(y)| \, dy = \|K\|_1.$$

Then, the bracketing metric entropy $\log N_{[]}(\varepsilon, 3 ||K||_1 \cdot \mathcal{F}_{BL}, ||\cdot||_{2,P})$ can be shown to be dominated by a constant depending only on H times $\varepsilon^{-1/\kappa}$, see Theorem 1.2 (with $\beta = 0, s = d = 1, p = q = \infty$,

by a constant depending only on *H* times $\varepsilon^{-1/n}$, see Theorem 1.2 (with $\beta = 0$, s = d = 1, $p = q = \infty$, $\mu = P$) and Remark 2 in Nickl and Pötscher [16]. Now, the bracketing-expectation bound for empirical processes contained in the third inequality in Theorem 2.14.2 in van der Vaart and Wellner [18] yields (20) in view of (b).

We now apply Talagrand's inequality, see (21) below, with $x = L \min\left(\frac{\lambda^2}{h^2}, \frac{\sqrt{n\lambda}}{h}\right)$ for suitable L and with σ and U as in (a) and (b), to the expression (18). We need to check the following three bounds.

(I) First we have, for n large enough

$$nE \sup_{f \in \mathcal{F}} |(P_n - P)(K_h * f - f)| \le C'' \min(\sqrt{n}h^{1 - 1/2\kappa}, nh) \le \frac{\sqrt{n\lambda}}{6}$$

by (20) and the assumption on λ .

(II) Note that $V \le n\sigma^2 + C'C''h\min(\sqrt{n}h^{1-1/2\kappa}, nh) \le C'''nh^2$ and then, for L small enough,

$$\sqrt{2Vx} \le 2\sqrt{LC'''}\sqrt{nh^2\frac{\lambda^2}{h^2}} \le \frac{\sqrt{n\lambda}}{6}.$$

(III) Furthermore

$$\frac{Ux}{3} \le LC'h\frac{\sqrt{n\lambda}}{3h} \le \frac{\sqrt{n\lambda}}{6}.$$

Summarizing, the sum of the terms in (I)–(III) is smaller than $\sqrt{n\lambda/2}$ if *L* is chosen suitably small, and we obtain from (21) for the given choice of *x* that

$$\Pr\left\{n\sup_{f\in\mathcal{F}_{BL}}|(P_n-P)(K_h*f-f)|>\frac{\sqrt{n\lambda}}{2}\right)\leq 2\exp\{-x\},\$$

which completes the proof of the lemma.

Lemma 2. We have

$$\Pr\left(\|p_n^K(g) - Ep_n^K(g)\|_1 > (1/4)\sqrt{M}\sigma(g,n)\right) \le 2\exp\left(-\frac{1}{L'g}\right)$$

for every $g \leq h_p$, $g \in \mathcal{H}$, $n \in \mathbb{N}$, and some constant $0 < L' < \infty$.

Proof. We will apply Talagrand's inequality to $K_g(\cdot - X) - K_g * p_0$ which is a $\mathcal{L}^1(\mathbb{R})$ -valued random variable (since the mapping $x \mapsto f(\cdot - x)$ is continuous from \mathbb{R} to $\mathcal{L}^1(\mathbb{R})$ for integrable f). First we note that, since the unit ball B of $\mathcal{L}^\infty(\mathbb{R})$ is compact and metrizable, hence separable, for the weak* topology induced by $\mathcal{L}^1(\mathbb{R})$, there is a countable subset B_0 of B such that $||H||_1 = \sup_{f \in B_0} |\int_{\mathbb{R}} H(t)f(t) dt|$ for all $H \in \mathcal{L}^1(\mathbb{R})$. Since $K_g, P * K_g$ are in $\mathcal{L}^1(\mathbb{R})$, we have

$$||p_n^K(g) - Ep_n^K(g)||_1 = ||P_n - P||_{\mathcal{K}}$$

for

$$\mathcal{K} = \left\{ x \mapsto \int_{\mathbb{R}} f(t) K_g(t-x) \, dt - \int_{\mathbb{R}} f(t) K_g * p_0(t) \, dt \colon f \in B_0 \right\},\$$

so that we can apply Talagrand's inequality with the countable class \mathcal{K} .

To do this, observe that \mathcal{K} is uniformly bounded by $2||K||_1 := U$, since

$$\sup_{f,x} \left| \int_{\mathbb{R}} f(t) K_g(t-x) \, dt \right| \le \|K\|_1.$$

Similarly, we have

$$\sup_{f} E\bigg(\int_{\mathbb{R}} f(t)K_g(t-x)\,dt\bigg)^2 \le \|K\|_1^2 := \sigma^2.$$

Also we have as in (9)

$$E\|n(P_n-P)\|_{\mathcal{K}} = E\left\|\sum_{j=1}^n \left(K_h(\cdot-X_j) - EK_h(\cdot-X)\right)\right\|_1 \le L\sqrt{\frac{n}{h}},$$

where L is specified before (9).

MATHEMATICAL METHODS OF STATISTICS Vol. 17 No. 2 2008

GINÉ, NICKL

Now Talagrand's inequality, see (21), gives with x = 1/(L'g) that

$$\Pr\left(n\|p_n^K(g) - Ep_n^K(g)\|_1 > L\sqrt{\frac{n}{g}} + \sqrt{\left(2n\|K\|_1^2 + 4\|K\|_1 L\sqrt{\frac{n}{g}}\right)\frac{1}{L'g} + \frac{2\|K\|_1}{3L'g}}\right) \le 2e^{-\frac{1}{L'g}}.$$

But this inequality implies the lemma, since

$$\sqrt{\frac{n}{g}} \left[L + \frac{\sqrt{2} \|K\|_1}{\sqrt{L'}} + \frac{2\sqrt{L} \|K\|_1}{\sqrt{L'} (ng)^{1/4}} + \frac{2\|K\|_1}{3L'\sqrt{ng}} \right] \le \frac{\sqrt{M}}{4} \sqrt{\frac{n}{g}}$$

by suitable choice of L' and recalling $M = 17L^2$.

2.4. Appendix: Talagrand's Inequality

Let X_1, \ldots, X_n be i.i.d. with law P on \mathbb{R} , and let \mathcal{F} be a P-centered (i.e., $\int f dP = 0$ for all $f \in \mathcal{F}$) countable class of real-valued functions on \mathbb{R} , uniformly bounded by the constant U. Let σ be any positive number such that $\sigma^2 \ge \sup_{f \in \mathcal{F}} E(f^2(X))$, and set $V := n\sigma^2 + 2UE \|\sum_{j=1}^n f(X_j)\|_{\mathcal{F}}$. Then, Bousquet's [2] version of Talagrand's inequality (Talagrand [17]), with constants, is as follows (see Theorem 7.3 in Bousquet [2]): for every $x \ge 0$

$$\Pr\left\{\|\sum_{j=1}^{n} f(X_j)\|_{\mathcal{F}} \ge E\|\sum_{j=1}^{n} f(X_j)\|_{\mathcal{F}} + \sqrt{2Vx} + \frac{Ux}{3}\right\} \le 2e^{-x}.$$
(21)

REFERENCES

- J. P. Bickel and Y. Ritov, "Nonparametric Estimators which Can Be 'Plugged-In'," Ann. Statist. 31, 1033– 1053 (2003).
- O. Bousquet, "Concentration Inequalities for Sub-Additive Functions Using the Entropy Method", in: *Progress in Probability*, Vol. 56: *Stochastic Inequalities And Applications*, Ed. by E. Giné, C. Houdré, and D. Nualart (Birkhäuser, Boston, 2003), pp. 213–247.
- 3. A. S. Dalalyan, G. K. Golubev, and A. B. Tsybakov, "Penalized Maximum Likelihood and Semiparametric Second-Order Efficiency", Ann. Statist. **34**, 169–201 (2006).
- 4. V. de la Peña and E. Giné, Decoupling. From Dependence to Independence (Springer, New York, 1999).
- 5. L. Devroye and G. Lugosi, Combinatorial Methods in Density Estimation (Springer, New York, 2001).
- 6. D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, "Density Estimation by Wavelet Thresholding", Ann. Statist. 24, 508–539 (1996).
- 7. E. Giné and D. M. Mason, "On Local *U*-Statistic Processes and the Estimation of Densities of Functions of Several Sample Variables", Ann. Statist. **35**, 1105–1145 (2007).
- 8. E. Giné and R. Nickl, "Uniform Central Limit Theorems for Kernel Density Estimators", Probab. Theory Related Fields, 2008 (in press).
- 9. E. Giné and R. Nickl, "An Exponential Inequality for the Distribution Function of the Kernel Density Estimator, with Applications to Adaptive Estimation", Probab. Theory Related Fields, 2008 (in press).
- E. Giné and J. Zinn, "Empirical Processes Indexed by Lipschitz Functions", Ann. Probab. 14, 1329–1338 (1986).
- 11. G. K. Golubev and B. Y. Levit, "Distribution Function Estimation: Adaptive Smoothing", Math. Methods Statist. **5**, 383–403 (1996).
- 12. A. Juditsky and S. Lambert-Lacroix, "On Minimax Density Estimation on R", Bernoulli 10, 187–220 (2004).
- G. Kerkyacharian, D. Picard, and K. Tribouley, "L^p Adaptive Density Estimation", Bernoulli 2, 229–247 (1996).
- O. V. Lepski, "Asymptotically Minimax Adaptive Estimation. I. Upper Bounds. Optimally Adaptive Estimates", Theory Probab. Appl. 36, 682–697 (1991).
- 15. O. V. Lepski and V. G. Spokoiny, "Optimal Pointwise Adaptive Methods in Nonparametric Estimation", Ann. Statist. **25**, 2512–2546 (1997).
- 16. R. Nickl and B. M. Pötscher, "Bracketing Metric Entropy Rates and Empirical Central Limit Theorems for Function Classes of Besov- and Sobolev-Type", J. Theoret. Probab. 20, 177–199 (2007).
- 17. M. Talagrand, "New Concentration Inequalities in Product Spaces", Invent. Math. 126, 505-563 (1996).
- 18. A. W. van der Vaart and J. A. Wellner, *Weak Convergence and Empirical Processes* (Springer, New York, 1996).