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Abstract—Given an i.i.d. sample from a probability measure P on R, an estimator is constructed
that efficiently estimates P in the bounded-Lipschitz metric for weak convergence of probability
measures, and, at the same time, estimates the density of P – if it exists (but without assuming
it does) – at the best possible rate of convergence in total variation loss (that is, in L1-loss for
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1. INTRODUCTION

Viewing the set of all probability measures onR as a subset of the Banach space M(R) of finite signed
Borel measures on R, one has two ‘natural’ topologies: the ‘strong’ norm topology given by the norm

‖µ‖
TV

:= |µ|(R), (1)

where |µ| is the usual total variation measure of µ ∈ M(R); and the usual topology of weak convergence,
where

µn → µ weakly ⇐⇒
∫

R

fd(µn − µ) → 0 ∀f ∈ C(R).

The topology of weak convergence can be metrized on bounded subsets of M(R), so in particular on the
set of all probability measures on R, and a commonly used metric is the bounded Lipschitz metric given
by

β(µ, ν) = sup
f∈FBL

∣∣∣∣
∫

R

f d(µ− ν)
∣∣∣∣ = ‖µ− ν‖FBL

, (2)

for µ, ν ∈ M(R) and where

F
BL

=
{

f : R→ R : ‖f‖
BL

:= ‖f‖∞ + sup
x 6=y

|f(x)− f(y)|
|x− y| ≤ 1

}
(3)

is the unit ball in the space of bounded Lipschitz functions.
Let X1, . . . , Xn be independent real-valued random variables each having law P , and denote by

Pn = n−1
∑n

j=1 δXj the usual empirical measure. We assume throughout that the Xj ’s, j = 1, . . . , n,

are the coordinate projections of the infinite product probability space (RN,BN, PN), and we set Pr :=
PN. Given the sample, the statistical goal is to estimate P , and the Banach space M(R) suggests two
natural loss functions to evaluate the performance of an estimator, namely, ‖ · ‖

TV
and β. For each
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given loss functions, optimal estimators exist: on the one hand, ‖µ‖
TV

= ‖m‖1 for absolutely continuous

µ ∈ M(R) with Lebesgue-density m, so estimation of (absolutely continuous) P in ‖ · ‖
TV

-loss reduces

to density estimation in L1-loss, which is a well treated subject in nonparametric statistics, cf., e.g.,
Devroye and Lugosi [5]. Here the usual phenomenon occurs that the best possible rate of convergence
for estimating the density p0 of P depends on the smoothness properties of p0, and this rate is always
slower than 1/

√
n if no finite-dimensional model is assumed. On the other hand, estimation of P in

bounded-Lipschitz loss β was considered in Giné and Zinn [10]. There it was shown that the empirical
process over the bounded Lipschitz ball F

BL
satisfies the uniform central limit theorem if P has a

moment of order larger than one, and that a marginally weaker condition is necessary for the CLT to
hold. This implies, in particular, that the empirical measure Pn estimates P efficiently w.r.t. the metric β
(for this notion of efficiency, see, e.g., van der Vaart and Wellner [18], p. 420) and has convergence rate
β(Pn, P ) = OP (n−1/2). Note however that Pn is not consistent in ‖ · ‖

TV
-loss, since ‖Pn − P‖

TV
= 2

for every n and absolutely continuous P . So the question arises whether optimality in both loss functions
can be achieved by a single estimator, and we will answer this question in the affirmative in this note.

Adaptive density estimation in the i.i.d. density model on the real line in L1-loss has been treated in
the literature before (see Remark 2 below), but to the best of our knowledge, all these results achieve
the minimax rate of convergence only within a logarithmic factor. Our results show that optimal
rate-adaptive estimators (without a logarithmic penalty) can be constructed in the i.i.d. density model.
More generally, Theorem 1 below shows that optimally rate-adaptive estimators possessing the plug-
in property of Bickel and Ritov [1] exist. The results of the present article also have applications to
semiparametric higher order efficiency problems, similar to those studied in Golubev and Levit [11] and
Dalalyan, Golubev and Tsybakov [3].

Some of the methods and ideas of the present article are inspired by recent results in Giné and
Nickl [9], who considered the conceptually related problem of optimal estimation of a distribution
function and its density in the supnorm.

2. ADAPTATION ON THE SPACE OF FINITE SIGNED MEASURES
2.1. Basic Setup

We start with some basic notation. For an arbitrary (non-empty) set M , `∞(M) will denote the
Banach space of bounded real-valued functions H on M normed by ‖H‖M := supm∈M |H(m)|, but
‖H‖∞ is used for supx∈R |H(x)|. For Borel-measurable functions h : R→ R and Borel measures µ
onR, we set µh :=

∫
R h dµ, and we denote by Lp(R, µ) the usual Lebesgue-spaces of Borel-measurable

functions from R to R. If dµ(x) = dx is Lebesgue measure, we set shorthand Lp(R) := Lp(R, µ), and,
for 1 ≤ p < ∞, we abbreviate the norm by ‖ · ‖p. The convolution f ∗ g(x) of two measurable functions
f , g on R is defined by

∫
R g(x− y)f(y) dy if the integral converges. Similarly, if µ is any finite signed

measure and f is a measurable function, convolution is defined as µ ∗ f(x) =
∫
R f(x− y) dµ(y) if

the integral exists. We refer to p. 237 in de la Peña and Giné [4] for the following definitions: the
empirical process indexed by F ⊆ L2(R, P ) is given by f 7→ √

n(Pn − P )f = n−1/2
∑n

j=1(f(Xj)−
Pf). Convergence in law of random elements in `∞(F) is defined in the usual way, and will be denoted by
the symbol Ã`∞(F). The class F is said to be P -Donsker if

√
n(Pn − P ) Ã`∞(F) GP , where GP is the

Brownian bridge indexed by F (that is, a centered Gaussian process with covariance EGP (f)GP (g) =
P [(f −Pf)(g−Pg)]) and if GP is sample-bounded and sample-continuous w.r.t. the covariance metric.
We also introduce the following function spaces, where we restrict ourselves, for simplicity, to integer
t > 0: we denote byWt

1(R) the space of integrable functions f whose derivatives Dαf up to order t exist,
and Dαf ∈ L1(R) for all 0 ≤ α ≤ t.

We will consider the usual smoothed empirical process (kernel density estimator): if X1, . . . , Xn are
i.i.d. on the real line, then

pK
n (h, x) = Pn ∗Kh(x) =

1
nh

n∑

j=1

K

(
x−Xj

h

)
, x ∈ R, (4)
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where the kernel K : R→ R is a symmetric, integrable function that integrates to 1, Kh(x) :=
h−1K(x/h), and h := hn ↘ 0, hn > 0. The kernel K is of order r > 0 if

∫

R

yjK(y) dy = 0 for j = 1, . . . , r − 1, and
∫

R

|y|r|K(y)| dy < ∞.

We will denote by PK
n (h) the random measure defined by PK

n (h)(A) =
∫
A pK

n (h, x) dx for every Borel
set A ⊆ R. The dependence of h on n will be assumed without displaying.

2.2. The Main Theorem

For the construction of the estimator, we will have to know a bound on some moment of P , that is,
we consider the model

P(γ, H) =
{

P a Borel probability measure on R :
∫

R

(1 + |x|)2γ dP (x) ≤ H

}

for some H < ∞, γ > 1/2. See Remark 3 for further discussion. Note that, if P is known to be supported
in a bounded interval [a, b], the constant H can be easily calculated as a function of a and b only, and
the following results then hold for all probability measures on [a, b]. To construct our estimator, we
will use the kernel density estimator pK

n (h) from (4). The crucial problem is to find a good data-driven
bandwidth ĥn, that optimally adapts to the unknown smoothness of the density of P . Here we will use
a modification of Lepski’s method (see Lepski [14]) and refinements given, among others, in Lepski and
Spokoiny [15]). Define the grid

H :=
{

hk = ρ−k : k ∈ N ∪ {0}, ρ−k > n−1(log n)2
}

, (5)

where ρ > 1 is arbitrary. The number of elements in this grid is of order log n and we denote by hmin the
last (i.e., smallest) element in the grid. We construct ĥn as follows: first, we check whether

β
(
PK

n (hmin), Pn

) ≤ 1√
n log n

holds. If this is not satisfied, we set ĥn = 0. Otherwise, we proceed to check whether

‖pK
n (h+

min)− pK
n (hmin)‖1 ≤

√
M

nhmin
and β

(
PK

n (h+
min), Pn

) ≤ 1√
n log n

simultaneously hold, where h+
min is the last but one element in the gridH and where M = 17L2 with

L := L(γ, H, K) =
[

2H

2γ − 1

∫

R

K2(u)(1 + |u|)2γ du

]1/2

.

For example, if P and K are supported in [0, 1] we have H = 4 (with γ = 1) and may choose L =
4
√

2‖K‖2. If the latter does not occur, we set ĥn = hmin, and otherwise, we define ĥn as

ĥn = max
{

h ∈ H : ‖ pK
n (h)− pK

n (g)‖1 ≤
√

M/ng ∀g < h, g ∈ H

and β(PK
n (h), Pn) ≤ 1√

n log n

}
.

The estimator is PK
n (ĥn) =: PK

n (ĥn, γ, H) with the convention that PK
n (0) := Pn. The following the-

orem shows that this estimator is asymptotically optimal both in β and in ‖ · ‖
TV

-loss, see the remark

following the theorem for details. In what follows, we say that a sequence of events An is eventual if
limm Pr(∩n≥mAn) = 1.
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Theorem 1. Let X1, . . . , Xn be i.i.d. onRwith common law P ∈ P(γ, H) for some H < ∞, γ > 1/2.
Let PK

n (ĥn) be defined as above, where K is a kernel function of order T + 1, 0 ≤ T < ∞ integer,
such that

∫
R[(1 + |x|)γK(x)]2 dx < ∞. Then

√
n
(
PK

n (ĥn)− P
)

Ã`∞(F
BL

) GP , (6)

so in particular

β(PK
n (ĥn), P ) = OP

(
1√
n

)
.

If P possesses a Lebesgue-density p0, then {the Lebesgue density pK
n (ĥn) of PK

n (ĥn) exists} is
eventual, and

‖pK
n (ĥn)− p0‖1 = oP (1). (7)

If, in addition, p0 ∈ Wt
1(R) for some 0 < t ≤ T , we have

‖pK
n (ĥn)− p0‖1 = OP

(
n−

t
2t+1

)
. (8)

Remark 1. (Modification of Lepski’s method.) Our modification of Lepski’s [14] method, which follows
Theorem 2 in Giné and Nickl [9], basically consists in applying the usual method, but confined to
estimators that are contained in a ‖ · ‖FBL

-ball of size o(1/
√

n) around the empirical measure Pn.

Remark 2. (Minimax Rates, Related Results.) The minimax rate of convergence in L1-loss over balls
of densities in Wt

1(R) is n−t/(2t+1) (e.g., Chapter 15 in Devroye and Lugosi [5]), which is achieved by
the estimator in the above theorem. Inspection of the proof shows that (8) holds uniformly over sets
of the form {p ∈ Wt

1(R) :
∑

0≤α≤t ‖Dαp‖1 ≤ D}, and it can be shown that (7) holds uniformly over
precompact subsets of L1(R). Also, the convergence in law in (6) is uniform over the class of probability
measures P(γ,H), since F

BL
is a P(γ, H)-uniform Donsker class (cf. Corollary 5 and Remark 2 in

Nickl and Pötscher [16]). The question whether (8) in Theorem 1 can be obtained for adaptive density
estimators on R has been treated in several places in the literature. For example, Donoho et al. [6],
Kerkyacharian et al. [13] (for compactly supported densities) and Juditsky and Lambert-Lacroix [12]
(for densities onR) treated adaptation in general Lp-loss, 1 ≤ p < ∞, for compactly supported densities,
by wavelet-based estimators, but they had to pay a logarithmic penalty in the rate of convergence.

Remark 3. (Moment Conditions.) Efficient estimation of P in the metric β (that is, in the Banach space
`∞(F

BL
), for this notion of efficiency cf. van der Vaart and Wellner [18], p. 420) is only possible if a

tight Brownian bridge process over F
BL

exists, hence, by the Giné and Zinn [10] result discussed in the

Introduction, the moment condition on P imposed in Theorem 1 cannot be relaxed.

2.3. Proof of Theorem 1

(I) First note that the class of functions F is P-Donsker for every probability measure P satisfying∫
R |x|2γ dP (x) < ∞ for some γ > 1/2, see, e.g., Theorem 2 in Giné and Zinn [10]. Then (6) follows from

‖PK
n (ĥn)− Pn‖F

BL

= o(1/
√

n).

(II) For the case, where P possesses a density p0, we need the following. Using Minkowski’s
inequality for integrals we have

(
E‖pK

n (h)− EpK
n (h)‖2

1

)1/2 ≤
∫

R

(
E

∣∣∣∣
1
n

n∑

j=1

Kh(x−Xj)−Kh ∗ p0(x)
∣∣∣∣
2)1/2

dx
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≤ 1√
nh

∫

R

(
(K2)h ∗ p0(x)

)1/2
dx.

Adapting the proof of Lemma 1 in Giné and Mason [7] to obtain explicit constants, we have
∫

R

(
(K2)h ∗ p0(x)

)1/2
dx ≤

(
2H

2γ − 1

∫

R

K2(u)(1 + |u|)2γ du

)1/2

:= L,

and hence we have that

E‖pK
n (h)− EpK

n (h)‖2
1 ≤ L2 1

nh
:= L2σ2(h, n). (9)

For the bias, assuming p0 ∈ Wt
1(R), we have for some constant 0 < L′ < ∞ and some 0 < ζ < 1

‖EpK
n (h)− p0‖1 =

∫

R

∣∣∣∣
∫

R

K(u)[p0(x− uh)− p0(x)] du

∣∣∣∣ dx

≤ ht

t!

∫

R

|K(u)||u|t
∫

R

|Dtp0(x− uhζ)| dx du = L′ht := B(h, p0) (10)

since Dtp0 ∈ L1(R). If it is only known that p0 exists we still have

‖EpK
n (h)− p0‖1 = ‖Kh ∗ p0 − p0‖1 = o(1),

cf., e.g., Theorem 9.1 in Devroye and Lugosi [5].

Proof of (7) and (8). By Lemma 1 below with λ = 1/ log n and h = hmin we obtain that {ĥn ≥ hmin} is
eventual, and hence the density pK

n (ĥn) exists eventually. Expectations in the rest of the proof are taken
over the event {pK

n (ĥn) exists}.
Define hp by the balance equation

hp = max
{

h ∈ H : B(h, p0) ≤
√

M

4
σ(h, n)

}
.

It is easily verified that hp ' n−1/(2t+1) if p0 ∈ Wt
1(R) for some 0 < t ≤ T , cf. (II). If p0 exists but is not

contained in Wt
1(R) for some t > 0, we set hp = hmin. Then we define σ̃(hp, n) as σ(hp, n) if t > 0 and

set σ̃(hp, n) = max
(
σ(hp, n), (4/

√
M)B(hp, p0)

)
otherwise, so that

B(hp, p0) ≤ (
√

M/4)σ̃(hp, n)

always holds. Clearly σ(hp, n) = O(σ̃(hp, n)) and we note that for t > 0

σ̃(hp, n) = σ(hp, n) ' n−t/2t+1) (11)

is the rate of convergence required in (8), but σ̃(hp, n) → 0 as soon as P has a density.

We will consider the cases {ĥn ≥ hp} and {ĥn < hp} separately. First, by definition of ĥn, hp and (9)
we have

E‖pK
n (ĥn)− p0‖1I{ĥn≥hp} ≤ E

(
‖pK

n (ĥn)− pK
n (hp)‖1 + ‖pK

n (hp)−EpK
n (hp)‖1 + B(hp, p0)

)
I{ĥn≥hp}

≤
√

Mσ(hp, n) + Lσ(hp, n) +
√

M

4
σ̃(hp, n) = O(σ̃(hp, n)).

In the case {ĥn < hp}we have the following: if hp = hmin, then {ĥn < hp} cannot occur, so (7) is proved
if t = 0 and will follow from (8) in case t > 0, which we assume for the rest of the proof. [Note that then
σ̃(hp, n) = σ(hp, n).] Since

E‖pK
n (ĥn)− p0‖1I{ĥn<hp} ≤

∑

h∈H : h<hp

E
[(‖pK

n (h)− EpK
n (h)‖1 + ‖EpK

n (h)− p0‖1

)
I{ĥn=h}

]
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≤
∑

h∈H : h<hp

(
E‖pK

n (h)− EpK
n (h)‖2

1

)1/2(
EI{ĥn=h}

)1/2 +
√

M

4
σ(hp, n),

by (9), it remains to show that
∑

h∈H : h<hp

σ(h, n) ·
√

Pr(ĥn = h) = O(σ(hp, n)) (12)

is satisfied. Pick any h ∈ H so that h < hp, denote by h+ the previous element in the grid (i.e., h+ = ρh)
and observe that

√
Pr(ĥn = h) ≤

( ∑

g∈H : g≤h

Pr
(‖ pK

n (h+)− pK
n (g)‖1 >

√
Mσ(g, n)

))1/2

+
(

Pr
(√

n‖PK
n (h+)− Pn‖F

BL

>
1

log n

))1/2

=: A + B. (13)

First, by definition of the grid and (9) we have

∑

h∈H : h<hp

σ(h, n) ·B ≤ d(log n)σ(hmin, n)

√
exp

{
− Lmin

(
1

(hp log n)2
,

√
n

hp log n

)}

= o
(
σ(hp, n)

)
(14)

for n large, where we have applied Lemma 1 below with λ = 1/ log n and h = h+ ≤ hp.
For the term including A we first observe that

‖pK
n (h+)− pK

n (g)‖1 ≤ ‖ pK
n (h+)−EpK

n (h+)‖1 + ‖pK
n (g)− EpK

n (g)‖1 + B(h+, p0) + B(g, p0),

where B(h+, p0) + B(g, p0) ≤ (
√

M/2)σ(g, n), since g < h+ ≤ hp. Consequently,

Pr
(
‖pK

n (h+)− pK
n (g)‖1 >

√
Mσ(g, n)

)
≤ Pr

(
‖pK

n (h+)− EpK
n (h+)‖1 > (1/4)

√
Mσ(h+, n)

)

+ Pr
(
‖pK

n (g)−EpK
n (g)‖1 > (1/4)

√
Mσ(g, n)

)
.

Now Lemma 2 below gives
∑

g∈H : g≤h

Pr
(
‖pK

n (h+)− pK
n (g)‖1 >

1
4

√
Mσ(g, n)

)
≤ L′′ log n exp

{
− 1

L′h

}

and then

∑

h∈H : h<hp

σ(h, n) ·A = O

(
(log n)3/2σ(hmin, n)

√
exp

{
− 1

L′hp

})
= o

(
σ(hp, n)

)
.

Now this, (13), and (14) verify (12), which completes the proof, given Lemmas 1 and 2.

The following two exponential inequalities were used in the proof.

Lemma 1. Suppose that P satisfies H := H(γ) =
∫
R |x|2γ dP (x) < ∞ for some γ > 1/2. Set t = 0

in what follows, or assume that P has a density p0 with respect to Lebesgue measure such that
p0 ∈ Wt

1(R) for some t > 0. Let h := hn → 0 as n →∞ satisfy h ≥ (log n/n), and let K be a kernel
of order t + 1. Define γ′ = γ if γ 6= 1, and γ′ = 1− δ for some arbitrary 0 < δ < 1/2 otherwise,
and then define κ = min(1, γ′). Then there exist finite positive constants L := L(K) and Λ0 :=
Λ0(K, H,

∫
R |Dtp0(y)| dy) such that for all λ ≥ Λ0 max

(
min(h1−1/2κ,

√
nh),

√
nht+1

)
and n ∈ N,

Pr
(√

n‖PK
n (h)− Pn‖F

BL

> λ
) ≤ 2 exp

{
− Lmin

(
λ2

h2
,

√
nλ

h

)}
.
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Proof. We start with a remark on measurability, which will also be needed in the application of
Talagrand’s inequality below: since f and Kh ∗ f are continuous functions, (PK

n (h)− Pn)f is a random
variable for each f ∈ F

BL
. Furthermore, there is a countable F0 ⊆ F

BL
such that

sup
f∈F0

|(Pn − P )(Kh ∗ f − f)| = sup
f∈F

BL

|(Pn − P )(Kh ∗ f − f)| (15)

except perhaps on a set of zero probability. To see this, letF
BL

(l) be the unit ball of the space of bounded

Lipschitz functions on [−l, l], which is relatively compact for the sup-norm (by Ascoli’s theorem), and let
Fl be a countable (sup-norm) dense subset of F

BL
(l). Extend each f ∈ Fl as f(x) = f(−l) for x < −l

and f(x) = f(l) for x > l, and still denote, with some abuse of notation, this set of extensions as Fl.
Then F0 := ∪∞l=1Fl is a countable subset of F

BL
, and, using tightness of K and P , it is easy to see

that (15) holds for all ω such that |Xj(ω)| < ∞, j ∈ N, and for all n.

The proof of the lemma follows Theorem 1 in Giné and Nickl [9], but requires substantial technical
modifications. We use the decomposition

Pn ∗Kh − Pn = Pn ∗Kh − P ∗Kh − Pn + P + P ∗Kh − P,

so that

‖PK
n (h)− Pn‖F

BL

≤ sup
f∈F

BL

|(Pn − P )(Kh ∗ f − f)|+ ‖P ∗Kh − P‖F
BL

. (16)

For the "bias term" we have, as in Lemma 4 in Giné and Nickl [8], for given f ∈ F
BL

with f̄(x) = f(−x),

that

(P ∗Kh − P )f =
∫

R

K(t)[P ∗ f̄(ht)− P ∗ f̄(0)] dt. (17)

For every 0 < α ≤ t, we have Dα(p0 ∗ f̄) = Dαp0 ∗ f̄ , see, e.g., Lemma 5b in Giné and Nickl [8], and,
with the convention that D0p0 = P , we obtain

‖Dαp0 ∗ f̄‖∞ ≤ ‖Dαp0‖TV
‖f‖∞ < ∞,

where ‖Dαp0‖TV
denotes the total variation norm (see (1) above) of the measure Dαp0(y)dy, which is

equal to the L1-norm of Dαp0 for α > 0. Summarizing, the function P ∗ f̄ possesses bounded derivatives
up to order t. Furthermore, since Dtp0(y)dy gives rise to a finite signed measure, and since f ∈ F

BL
,

we obtain (interpreting D0p0(y) dy as dP (y))

|r|−1|Dtp0 ∗ f̄(x + r)−Dtp0 ∗ f̄(x)| = |r|−1

∣∣∣∣
∫

R

[f(r + y − x)− f(y − x)]Dtp0(y) dy

∣∣∣∣

≤
∫

R

|Dtp0(y)|dy < ∞

and hence P ∗ f̄ has bounded derivatives up to order t and the tth derivative (in case t = 0 the function
P ∗ f̄ itself) is a bounded Lipschitz function. Now this, (17) and the fact that the kernel is of order t + 1
give, by straightforward Taylor expansions,

‖P ∗Kh − P‖F
BL

≤ Cht+1
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for some constant C depending only on
∫
R |Dtp0(y)| dy and K. This and (16) imply, by assumption on λ,

that

Pr
(√

n‖PK
n (h)− Pn‖F

BL

> λ
) ≤ Pr

(√
n sup

f∈F
BL

|(Pn − P )(Kh ∗ f − f)| > λ− C
√

nht+1
)

≤ Pr
(

n sup
f∈F

BL

|(Pn − P )(Kh ∗ f − f)| >
√

nλ

2

)
. (18)

We will apply Talagrand’s inequality to the class

F̃
BL

=
{
Kh ∗ f − f − P (Kh ∗ f − f) : f ∈ F

BL

}

to bound the last probability, but first we need some preliminary facts:
(a) We have

sup
f∈F

BL

‖Kh ∗ f − f‖2,P ≤ sup
f∈F

BL

‖Kh ∗ f − f‖∞ ≤ h

∫

R

|K(u)||u|du := σ, (19)

since

|Kh ∗ f(x)− f(x)| =
∣∣∣∣
∫

R

K(u)[f(x− uh)− f(x)] du

∣∣∣∣ ≤ h

∫

R

|K(u)||u| du.

(b) Clearly, (19) implies that the envelope U of F̃
BL

can be taken to be of order C ′h for C ′ =

2
∫
R |K(u)||u| du.
(c) We will establish the expectation bound

nE sup
f∈F

BL

|(Pn − P )(Kh ∗ f − f)| ≤ C ′′min(
√

nh1−1/2κ, nh) (20)

for C ′′ some finite positive constant depending only on H . That this expression is dominated by C ′′nh
follows immediately from (b). Note that the set ∪h>0 {Kh ∗ f − f : f ∈ F

BL
} is contained in the class of

functions 3‖K‖1 · FBL
in view of ‖Kh ∗ f − f‖

BL
≤ ‖Kh ∗ f‖

BL
+ 1, ‖Kh ∗ f‖∞ ≤ ‖K‖1, and

|r|−1|Kh ∗ f(x + r)−Kh ∗ f(x)| = |r|−1

∣∣∣∣
∫

R

Kh(y)[f(x + r − y)− f(x− y)] dy

∣∣∣∣

≤
∫

R

|Kh(y)|dy = ‖K‖1.

Then, the bracketing metric entropy log N[]

(
ε, 3‖K‖1 · FBL

, ‖ · ‖2,P

)
can be shown to be dominated

by a constant depending only on H times ε−1/κ, see Theorem 1.2 (with β = 0, s = d = 1, p = q = ∞,
µ = P ) and Remark 2 in Nickl and Pötscher [16]. Now, the bracketing-expectation bound for empirical
processes contained in the third inequality in Theorem 2.14.2 in van der Vaart and Wellner [18] yields
(20) in view of (b).

We now apply Talagrand’s inequality, see (21) below, with x = Lmin
(

λ2

h2 ,
√

nλ
h

)
for suitable L and

with σ and U as in (a) and (b), to the expression (18). We need to check the following three bounds.
(I) First we have, for n large enough

nE sup
f∈F

|(Pn − P )(Kh ∗ f − f)| ≤ C ′′min(
√

nh1−1/2κ, nh) ≤
√

nλ

6
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by (20) and the assumption on λ.

(II) Note that V ≤ nσ2 + C ′C ′′h min(
√

nh1−1/2κ, nh) ≤ C ′′′nh2 and then, for L small enough,

√
2V x ≤ 2

√
LC ′′′

√
nh2

λ2

h2
≤
√

nλ

6
.

(III) Furthermore

Ux

3
≤ LC ′h

√
nλ

3h
≤
√

nλ

6
.

Summarizing, the sum of the terms in (I)–(III) is smaller than
√

nλ/2 if L is chosen suitably small,
and we obtain from (21) for the given choice of x that

Pr
{

n sup
f∈F

BL

|(Pn − P )(Kh ∗ f − f)| >
√

nλ

2

)
≤ 2 exp{−x},

which completes the proof of the lemma.

Lemma 2. We have

Pr
(
‖pK

n (g)−EpK
n (g)‖1 > (1/4)

√
Mσ(g, n)

)
≤ 2 exp

(
− 1

L′g

)

for every g ≤ hp, g ∈ H, n ∈ N, and some constant 0 < L′ < ∞.

Proof. We will apply Talagrand’s inequality to Kg(· −X)−Kg ∗ p0 which is a L1(R)-valued random
variable (since the mapping x 7→ f(· − x) is continuous from R to L1(R) for integrable f ). First we note
that, since the unit ball B of L∞(R) is compact and metrizable, hence separable, for the weak* topology
induced by L1(R), there is a countable subset B0 of B such that ‖H‖1 = supf∈B0

∣∣ ∫
RH(t)f(t) dt

∣∣ for
all H ∈ L1(R). Since Kg, P ∗Kg are in L1(R), we have

‖pK
n (g)−EpK

n (g)‖1 = ‖Pn − P‖K
for

K =
{

x 7→
∫

R

f(t)Kg(t− x) dt−
∫

R

f(t)Kg ∗ p0(t) dt : f ∈ B0

}
,

so that we can apply Talagrand’s inequality with the countable classK.

To do this, observe that K is uniformly bounded by 2‖K‖1 := U , since

sup
f,x

∣∣∣∣
∫

R

f(t)Kg(t− x) dt

∣∣∣∣ ≤ ‖K‖1.

Similarly, we have

sup
f

E

( ∫

R

f(t)Kg(t− x) dt
)2 ≤ ‖K‖2

1 := σ2.

Also we have as in (9)

E‖n(Pn − P )‖K = E

∥∥∥∥
n∑

j=1

(
Kh(· −Xj)− EKh(· −X)

)∥∥∥∥
1

≤ L

√
n

h
,

where L is specified before (9).

MATHEMATICAL METHODS OF STATISTICS Vol. 17 No. 2 2008



122 GINÉ, NICKL

Now Talagrand’s inequality, see (21), gives with x = 1/(L′g) that

Pr
(

n‖pK
n (g)− EpK

n (g)‖1 > L

√
n

g
+

√(
2n‖K‖2

1 + 4‖K‖1L

√
n

g

)
1

L′g
+

2‖K‖1

3L′g

)
≤ 2e

− 1
L′g .

But this inequality implies the lemma, since
√

n

g

[
L +

√
2‖K‖1√

L′
+

2
√

L‖K‖1√
L′(ng)1/4

+
2‖K‖1

3L′
√

ng

]
≤
√

M

4

√
n

g

by suitable choice of L′ and recalling M = 17L2.

2.4. Appendix: Talagrand’s Inequality

Let X1, . . . , Xn be i.i.d. with law P on R, and let F be a P-centered (i.e.,
∫

fdP = 0 for all f ∈ F)
countable class of real-valued functions on R, uniformly bounded by the constant U . Let σ be any
positive number such that σ2 ≥ supf∈F E(f2(X)), and set V := nσ2 + 2UE‖∑n

j=1 f(Xj)‖F . Then,
Bousquet’s [2] version of Talagrand’s inequality (Talagrand [17]), with constants, is as follows (see
Theorem 7.3 in Bousquet [2]): for every x ≥ 0

Pr
{
‖

n∑

j=1

f(Xj)‖F ≥ E‖
n∑

j=1

f(Xj)‖F +
√

2V x +
Ux

3

}
≤ 2e−x. (21)
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