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Preface

The classical theory of statistics was developed for parametric models with
finite-dimensional parameter spaces, building on fundamental ideas of C. F. Gauss,
R. A. Fisher and L. Le Cam, among others. It has been successful in providing modern
science with a paradigm for making statistical inferences, in particular, in the ‘frequentist
large sample size’ scenario. A comprehensive account of the mathematical foundations of
this classical theory is given in the monograph by A. van der Vaart, Asymptotic Statistics
(Cambridge University Press, 1998).

The last three decades have seen the development of statistical models that are infinite (or
‘high’) dimensional. The principal target of statistical inference in these models is a function
or an infinite vector f that itself is not modelled further parametrically. Hence, these models
are often called, in some abuse of terminology, nonparametric models, although f itself
clearly also is a parameter. In view of modern computational techniques, such models are
tractable and in fact attractive in statistical practice. Moreover, a mathematical theory of
such nonparametric models has emerged, originally driven by the Russian school in the
early 1980s and since then followed by a phase of very high international activity.

This book is an attempt to describe some elements of the mathematical theory of
statistical inference in such nonparametric, or infinite-dimensional, models. We will
first establish the main probabilistic foundations: the theory of Gaussian and empirical
processes, with an emphasis on the ‘nonasymptotic concentration of measure’ perspective
on these areas, including the pathbreaking work by M. Talagrand and M. Ledoux on
concentration inequalities for product measures. Moreover, since a thorough understanding
of infinite-dimensional models requires a solid background in functional analysis and
approximation theory, some of the most relevant results from these areas, particularly the
theory of wavelets and of Besov spaces, will be developed from first principles in this book.

After these foundations have been laid, we turn to the statistical core of the book.
Comparing nonparametric models in a very informal way with classical parametric models,
one may think of them as models in which the number of parameters that one estimates from
the observations is growing proportionally to sample size n and has to be carefully selected
by the statistician, ideally in a data-driven way. In practice, nonparametric modelling is
often driven by the honesty of admitting that the traditional assumption that n is large
compared to the number of unknown parameters is too strong. From a mathematical
point of view, the frequentist theory that validates statistical inferences in such models
undergoes a radical shift: leaving the world of finite-dimensional statistical models behind
implies that the likelihood function no longer provides ‘automatically optimal’ statistical
methods (‘maximum likelihood estimators’) and that extreme care has to be exercised when

xi
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xii Preface

constructing inference procedures. In particular, the Gauss–Fisher–Le Cam efficiency theory
based on the Fisher information typically yields nothing informative about what optimal
procedures are in nonparametric statistics, and a new theoretical framework is required.
We will show how the minimax paradigm can serve as a benchmark by which a theory
of optimality in nonparametric models can be developed. From this paradigm arises the
‘adaptation’ problem, whose solution has been perhaps one of the major achievements of
the theory of nonparametric statistics and which will be presented here for nonparametric
function estimation problems. Finally, likelihood-based procedures can be relevant in
nonparametric models as well, particularly after some regularisation step that can be
incorporated by adopting a ‘Bayesian’ approach or by imposing qualitative a priori shape
constraints. How such approaches can be analysed mathematically also will be shown here.

Our presentation of the main statistical materials focusses on function estimation
problems, such as density estimation or signal in white-noise models. Many other
nonparametric models have similar features but are formally different. Our aim is to
present a unified statistical theory for a canonical family of infinite-dimensional models,
and this comes at the expense of the breadth of topics that could be covered. However,
the mathematical mechanisms described here also can serve as guiding principles for many
nonparametric problems not covered in this book.

Throughout this book, we assume familiarity with material from real and functional
analysis, measure and probability theory on the level of a US graduate course on the
subject. We refer to the monographs by G. Folland, Real Analysis (Wiley, 1999), and
R. Dudley, Real Analysis and Probability (Cambridge University Press, 2002), for relevant
background. Apart from this, the monograph is self-contained, with a few exceptions and
‘starred sections’ indicated in the text.

This book would not have been possible without the many colleagues and friends from
whom we learnt, either in person or through their writings. Among them, we would like to
thank P. Bickel, L. Birgé, S. Boucheron, L. Brown, T. Cai, I. Castillo, V. Chernozhukov,
P. Dawid, L. Devroye, D. Donoho, R. Dudley, L. Dümbgen, U. Einmahl, X. Fernique,
S. Ghosal, A. Goldenshluger, Y. Golubev, M. Hoffmann, I. Ibragimov, Y. Ingster,
A. Iouditski, I. Johnstone, G. Kerkyacharian, R. Khasminskii, V. Koltchinskii, R. Latala,
M. Ledoux, O. Lepski, M. Low, G. Lugosi, W. Madych, E. Mammen, D. Mason, P. Massart,
M. Nussbaum, D. Picard, B. Pötscher, M. Reiß, P. Rigollet, Y. Ritov, R. Samworth,
V. Spokoiny, M. Talagrand, A. Tsybakov, S. van de Geer, A. van der Vaart, H. van Zanten,
J. Wellner, H. Zhou and J. Zinn.

We are grateful to A. Carpentier, I. Castillo, U. Einmahl, D. Gauthier, D. Heydecker,
K. Ray, J. Söhl and B. Szabò for proofreading parts of the manuscript and providing helpful
corrections.

Moreover, we are indebted to Diana Gillooly of Cambridge University Press for her
support, patience and understanding in the process of this book project since 2011.

R.N. would also like to thank his friends N. Berestycki, C. Damböck, R. Dawid
and M. Neuber for uniquely stimulating friendships that have played a large role in the
intellectual development that led to this book (and beyond).

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.001
http:/www.cambridge.org/core


Preface xiii

Outline and Reading Guide

In principle, all the chapters of this book can be read independently. In particular, the
chapters on Gaussian and empirical processes, as well as the one on function spaces
and approximation theory, are mostly self-contained. A reader interested primarily in the
‘statistical chapters’ (5 through 8) may choose to read those first and then turn to the
mathematical foundations laid out in Chapters 2 through 4 later, when required. A short
outline of the contents of each chapter is given in the following paragraphs:

Chapter 1 introduces the kinds of statistical models studied in this book. In particular,
we will discuss why many common ‘regular’ regression models with normally distributed
error terms can be mathematically accommodated within one Gaussian function estimation
problem known as the Gaussian white noise model.

Chapters 2 and 3 lay the probabilistic foundations of much of the statistical theory that
follows: one chapter on Gaussian processes and one on empirical processes. The Gaussian
theory is mostly classical, presented with a focus on statistically relevant materials, such as
the isoperimetric inequality for Gaussian measures and its consequences on concentration,
as well as a study of suprema of Gaussian processes. The theory for empirical measures
reflects the striking recent developments around the concentration-of-measure phenomenon.
Effectively, here, the classical role of the central limit theorem in statistics is replaced by
nonasymptotic concentration properties of product measures, as revealed in fundamental
work by Talagrand, Ledoux, Massart and others. This is complemented by a treatment of
abstract empirical process theory, including metric entropy methods, Vapnik-Červonenkis
classes and uniform central limit theorems.

Chapter 4 develops from first principles some key aspects of approximation theory and
its functional analytic foundations. In particular, we give an account of wavelet theory and
of Besov spaces, with a focus on results that are relevant in subsequent chapters.

Chapter 5 introduces basic linear estimation techniques that are commonly used in
nonparametric statistics, based on convolution kernels and finite-dimensional projection
operators. Tools from Chapters 3 and 4 are used to derive a variety of probabilistic results
about these estimators that will be useful in what follows.

Chapter 6 introduces a theoretical paradigm – the minimax paradigm – that can be used
to objectively measure the performance of statistical methods in nonparametric models. The
basic information-theoretic ideas behind it are developed, and it is shown how statistical
inference procedures – estimators, tests and confidence sets – can be analysed and compared
from a minimax point of view. For a variety of common nonparametric models, concrete
constructions of minimax optimal procedures are given using the results from previous
chapters.

Chapter 7 shows how the likelihood function can still serve as a successful guiding
principle in certain nonparametric problems if a priori information is used carefully. This can
be done by imposing certain qualitative constraints on the statistical model or by formally
adopting a Bayesian approach which then can be analysed from a frequentist point of view.
The key role of the Hellinger distance in this theory (as pointed out in work by Le Cam,
Birgé, van de Geer, van der Vaart and others) is described in some detail.
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xiv Preface

Chapter 8 presents the solution to the nonparametric adaptation problem that arises
from the minimax paradigm and gives a theory of statistical inference for ‘fully automatic’
statistical procedures that perform well over maximal collections of nonparametric statistical
models. Surprising differences are shown to arise when considering the existence of adaptive
estimation procedures in contrast to the existence of associated adaptive confidence sets. A
resolution of this discrepancy can be obtained by considering certain nonparametric models
of ‘self-similar’ functions, which are discussed in some detail and for which a unified theory
of optimal statistical inference can be developed.

Each chapter is organised in several sections, and historical notes complementing each
section can be found at the end of each chapter – these are by no means exhaustive and only
indicate our understanding of the literature.

At the end of each section, exercises are provided: these, likewise, complement the main
results of the text and often indicate interesting applications or extensions of the materials
presented.

Postscript

It is a terrible tragedy that Evarist Giné passed away shortly after we completed the
manuscript. His passion for mathematics was exceeded only by his love for his wife,
Rosalind; his daughters, Núria and Roser; and his grandchildren, Liam and Mireia. He
mentioned to me in September 2014, when I last met him in Cambridge (MA), that perhaps
he wanted to dedicate this book to all of them, but in an e-mail to me in January 2015,
he mentioned explicitly that he wanted it to be for Rosalind. I have honoured his decision;
however, I know that with this last work he wanted to thank all of them for having been his
wonderful family – who continue his infectious passion into new generations.

I am myself deeply grateful to my father, Harald, for all his support and inspiration
throughout my life in all domains. I dedicate this book to the memory of my mother,
Reingard, in loving gratitude for all her courage and everything she has done for me. And of
course, insofar as this book relates to the future, it is for Ana and our son, Julian, with love
and affection.
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1

Nonparametric Statistical Models

In this chapter we introduce and motivate the statistical models that will be considered
in this book. Some of the materials depend on basic facts developed in subsequent
chapters – mostly the basic Gaussian process and Hilbert space theory. This will be hinted
at when necessary.

Very generally speaking, a statistical model for a random observation Y is a family

{P f : f ∈F}
of probability distributions P f , each of which is a candidate for having generated the
observation Y. The parameter f belongs to the parameter space F . The problem of
statistical inference on f , broadly speaking, can be divided into three intimately connected
problems of using the observation Y to

(a) Estimate the parameter f by an estimator T(Y),
(b) Test hypotheses on f based on test functions �(Y) and/or
(c) Construct confidence sets C(Y) that contain f with high probability.

To interpret inferential results of these kinds, we will typically need to specify a distance, or
loss function on F , and for a given model, different loss functions may or may not lead to
very different conclusions.

The statistical models we will introduce in this chapter are, on the one hand, conceptually
closely related to each other in that the parameter space F is infinite or high dimensional
and the loss functions relevant to the analysis of the performance of statistical procedures are
similar. On the other hand, these models are naturally divided by the different probabilistic
frameworks in which they occur – which will be either a Gaussian noise model or an
independent sampling model. These frameworks are asymptotically related in a fundamental
way (see the discussion after Theorem 1.2.1). However, the most effective probabilistic
techniques available are based on a direct, nonasymptotic analysis of the Gaussian or product
probability measures that arise in the relevant sampling context and hence require a separate
treatment.

Thus, while many of the statistical intuitions are common to both the sampling and the
Gaussian noise models and in fact inform each other, the probabilistic foundations of these
models will be laid out independently.

1

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.002
http:/www.cambridge.org/core


2 Nonparametric Statistical Models

1.1 Statistical Sampling Models

Let X be a random experiment with associated sample space X . We take the mathematical
point of view of probability theory and model X as a random variable, that is, as a measurable
mapping defined on some underlying probability space that takes values in the measurable
space (X ,A), where A is a σ -field of subsets of X . The law of X is described by the
probability measure P on A. We may typically think of X equal to Rd or a measurable
subset thereof, equipped with its Borel σ -field A.

The perhaps most basic problem of statistics is the following: consider repeated outcomes
of the experiment X, that is, a random sample of independent and identically distributed
(i.i.d.) copies X1, . . . ,Xn from X. The joint distribution of the Xi equals the product probability
measure Pn = ⊗n

i=1P on (X n,An). The goal is to recover P from the n observations.
‘Recovering P’ can mean many things. Classical statistics has been concerned mostly with
models where P is explicitly parameterised by a finite-dimensional parameter, such as the
mean and variance of the normal distribution, or the ‘parameters’ of the usual families of
statistical distributions (gamma, beta, exponential, Poisson, etc.). Recovering P then simply
means to use the observations to make inferences on the unknown parameter, and the fact
that this parameter is finite dimensional is crucial for this traditional paradigm of statistical
inference, in particular, for the famous likelihood principle of R. A. Fisher. In this book,
we will follow the often more realistic assumption that no such parametric assumptions are
made on P. For most sample spaces X of interest, this will naturally lead to models that are
infinite dimensional, and we will investigate how the theory of statistical inference needs to
be developed in this situation.

1.1.1 Nonparametric Models for Probability Measures

In its most elementary form, without imposing any parameterisations on P, we can simply
consider the problem of making inferences on the unknown probability measure P based on
the sample. Natural loss functions arise from the usual metrics on the space of probability
measures on X , such as the total variation metric

‖P−Q‖TV = sup
A∈A

|P(A)−Q(A)|

or weaker metrics that generate the topology of weak convergence of probability measures
on X . For instance, if X itself is endowed with a metric d, we could take the bounded
Lipschitz metric

β(X ,d)(P,Q)= sup
f ∈BL(1)

∣∣∣∣∫
X

f (dP− dQ)

∣∣∣∣
for weak convergence of probability measures, where

BL(M)=
{

f : X →R, sup
x∈X

| f (x)|+ sup
x
=y

| f (x)− f (y)|
d(x,y)

≤ M

}
, 0<M<∞.

If X has some geometric structure, we can consider more intuitive loss functions. For
example, if X =R, we can consider the cumulative distribution function

F(x)= P(X ≤ x), x ∈R,
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1.1 Statistical Sampling Models 3

or, if X takes values in Rd, its multivariate analogue. A natural distance function on
distribution functions is simply the supremum-norm metric (‘Kolmogorov distance’)

‖FP −FQ‖∞ = sup
x∈R

|FP(x)−FQ(x)|.

Since the indicators {1(−∞,x] : x ∈R} generate the Borel σ -field of R, we see that, on R, the
statistical parameter P is characterised entirely by the functional parameter F, and vice versa.
The parameter space is thus the infinite-dimensional space of all cumulative distribution
functions on R.

Often we will know that P has some more structure, such as that P possesses a
probability-density function f : R → [0,∞), which itself may have further properties
that will be seen to influence the complexity of the statistical problem at hand. For
probability-density functions, a natural loss function is the L1-distance

‖ fP − fQ‖1 =
∫
R

| fP(x)− fQ(x)|dx

and in some situations also other Lp-type and related loss functions. Although in some sense
a subset of the other, the class of probability densities is more complex than the class of
probability-distribution functions, as it is not described by monotonicity constraints and does
not consist of functions bounded in absolute value by 1. In a heuristic way, we can anticipate
that estimating a probability density is harder than estimating the distribution function, just
as the preceding total variation metric is stronger than any metric for weak convergence
of probability measures (on nontrivial sample spaces X ). In all these situations, we will
see that the theory of statistical inference on the parameter f significantly departs from the
usual finite-dimensional setting.

Instead of P, a particular functional�(P)may be the parameter of statistical interest, such
as the moments of P or the quantile function F−1 of the distribution function F – examples
for this situation are abundant. The nonparametric theory is naturally compatible with such
functional estimation problems because it provides the direct plug-in estimate �(T) based
on an estimator T for P. Proving closeness of T to P in some strong loss function then gives
access to ’many’ continuous functionals � for which �(T) will be close to �(P), as we
shall see later in this book.

1.1.2 Indirect Observations

A common problem in statistical sampling models is that some systematic measurement
errors are present. A classical problem of this kind is the statistical regression problem,
which will be introduced in the next section. Another problem, which is more closely related
to the sampling model from earlier, is where one considers observations in Rd of the form

Yi = Xi + εi, i = 1, . . . ,n, (1.1)

where the Xi are i.i.d. with common law PX, and the εi are random ‘error’ variables that
are independent of the Xi and have law Pε. The law Pε is assumed to be known to the
observer – the nature of this assumption is best understood by considering examples: the
attempt is to model situations in which a scientist, for reasons of cost, complexity or lack
of precision of the involved measurement device, is forced to observe Yi instead of the
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4 Nonparametric Statistical Models

realisations Xi of interest. The observer may, however, have very concrete knowledge of
the source of the error, which could, for example, consist of light emissions of the Milky
Way interfering with cosmic rays from deeper space, an erratic optical device through
which images are observed (e.g., a space telescope which cannot be repaired except at very
high cost) or transmissions of signals through a very busy communication channel. Such
situations of implicit measurements are encountered frequently in the applied sciences and
are often called inverse problems, as one wishes to ‘undo’ the errors inflicted on the signal
in which one is interested. The model (1.1) gives a simple way to model the main aspects of
such statistical inverse problems. It is also known as the deconvolution model because the
law of the Yi equals

PY = PX ∗Pε,

the convolution of the two probability measures PX,Pε, and one wishes to ‘deconvolve’ Pε.
As earlier, we will be interested in inference on the underlying distribution PX of the

signal X when the statistical model for PX is infinite dimensional. The loss functions in this
problem are thus typically the same as in the preceding subsection.

1.2 Gaussian Models

The randomness in the preceding sampling model was encoded in a general product measure
Pn describing the joint law of the observations. Another paradigm of statistical modelling
deals with situations in which the randomness in the model is described by a Gaussian
(normal) distribution. This paradigm naturally encompasses a variety of nonparametric
models, where the infinite-dimensional character of the problem does not necessarily derive
from the probabilistic angle but from a functional relationship that one wishes to model.

1.2.1 Basic Ideas of Regression

Perhaps the most natural occurrence of a statistical model in the sciences is the one in which
observations, modelled here as numerical values or vectors, say, (Yi,xi), arise according to a
functional relationship

Yi = f (xi)+ εi, i = 1, . . . ,n, (1.2)

where n is the number of observations (sample size), f is some function of the xi and the
εi are random noise. By ‘random noise’, we may mean here either a probabilistic model
for certain measurement errors that we believe to be intrinsic to our method of making
observations, or some innate stochastic nature of the way the Yi are generated from the
f (xi). In either case, we will model the εi as random variables in the sense of axiomatic
probability theory – the question of the genuine physical origin of this random noise will
not concern us here. It is sometimes natural to assume also that the xi are realisations of
random variables Xi – we can either take this into account explicitly in our analysis or make
statements conditional on the observed values Xi = xi.

The function f often will be unknown to the observer of observations (Yi,xi), and the
goal is to recover f from the (Yi,xi). This may be of interest for various reasons, for
instance, for predicting new values Yn+1 from f (xn+1) or to gain quantitative and qualitative
understanding of the functional relationship Yi = f (xi) under consideration.
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1.2 Gaussian Models 5

In the preceding context, a statistical model in the broad sense is an a priori specification
of both a parameter space for the functions f that possibly could have generated (1.2) and
a family of probability measures that describes the possible distributions of the random
variables εi. By ‘a priori’, we mean here that this is done independently of (e.g., before) the
observational process, reflecting the situation of an experimentalist.

A systematic use and study of such models was undertaken in the early nineteenth century
by Carl Friedrich Gauss, who was mostly interested in predicting astronomical observations.
When the model is translated into the preceding formalisation, Gauss effectively assumed
that the xi are vectors (xi1, . . . ,xip)

T and thought of f as a linear function in that vector, more
precisely,

f (xi)= xi1θi + . . .xipθp, i = 1, . . . ,n,

for some real-valued parameters θj, j = 1, . . . , p. The parameter space for f is thus the
Euclidean space Rp expressed through all such linear mappings. In Gauss’s time, the
assumption of linearity was almost a computational necessity.

Moreover, Gauss modelled the random noise εi as independent and identically distributed
samples from a normal distribution N(0,σ 2) with some variance σ 2. His motivation behind
this assumption was twofold. First, it is reasonable to assume that E(εi) = 0 for every i. If
this expectation were nonzero, then there would be some deterministic, or ‘systematic’,
measurement error ei = E(εi) of the measurement device, and this could always be
accommodated in the functional model by adding a constant x10 = ·· · = xn0 = 1 to the
preceding linear relationship. The second assumption that εi has a normal distribution is
deeper. If we think of each measurement error εi as the sum of many ‘very small’, or
infinitesimal, independent measurement errors εik,k = 1,2, . . . , then, by the central limit
theorem, εi =∑

k εik should be approximately normally distributed, regardless of the actual
distribution of the εik. By the same reasoning, it is typically natural to assume that the εi are
also independent among themselves. This leads to what is now called the standard Gaussian
linear model

Yi = f (xi)+ εi ≡
p∑

j=1

xijθj + εi, εi ∼i.i.d. N(0,σ 2), i = 1, . . . ,n, (1.3)

which bears this name both because Gauss studied it and, since the N(0,σ 2) distribution is
often called the Gaussian distribution, because Gauss first made systematic use of it. The
unknown parameter (θ ,σ 2) varies in the (p+ 1)-dimensional parameter space

	×
 =Rp × (0,∞).
This model constitutes perhaps the classical example of a finite-dimensional model, which
has been studied extensively and for which a fairly complete theory is available. For
instance, when p is smaller than n, the least-squares estimator of Gauss finds the value
θ̂ ∈Rp which solves the optimisation problem

min
θ∈Rp

n∑
i=1

⎛⎝Yi −
p∑

j=1

xijθj

⎞⎠2

and hence minimises the Euclidean distance of the vector Y = (Y1, . . . ,Yn)
T to the

p-dimensional subspace spanned by the p vectors (x1j, . . . ,xnj)
T, j = 1, . . . ,p.
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6 Nonparametric Statistical Models

1.2.2 Some Nonparametric Gaussian Models

We now give a variety of models that generalise Gauss’s ideas to infinite-dimensional
situations. In particular, we will introduce the Gaussian white noise model, which serves as
a generic surrogate for a large class of nonparametric models, including even non-Gaussian
ones, through the theory of equivalence of experiments (discussed in the next section).

Nonparametric Gaussian Regression

Gauss’s model and its theory basically consist of two crucial assumptions: one is that the εi

are normally distributed, and the other is that the function f is linear. The former assumption
was argued to be in some sense natural, at least in a measurement-error model (see also the
remarks after Theorem 1.2.1 for further justification). The latter assumption is in principle
quite arbitrary, particularly in times when computational power does not constrain us as
much any longer as it did in Gauss’s time. A nonparametric approach therefore attempts to
assume as little structure of f as possible. For instance, by the nonparametric regression
model with fixed, equally spaced design on [0,1], we shall understand here the model

Yi = f (xi)+ εi, xi = i

n
, εi ∼i.i.d. N(0,σ 2), i = 1, . . . ,n. (1.4)

where f is any function defined on [0,1]. We are thus sampling the unknown function f at
an equally spaced grid of [0,1] that, as n→∞, grows dense in the interval [0,1] as n→∞.

The model immediately generalises to bounded intervals [a,b], to ‘approximately’
equally spaced designs {xi : i = 1, . . . ,n} ⊂ [a,b] and to multivariate situations, where the
xi are equally spaced points in some hypercube. We note that the assumption that the xi are
equally spaced is important for the theory that will follow – this is natural as we cannot hope
to make inference on f in regions that contain no or too few observations xi.

Other generalisations include the random design regression model, in which the xi are
viewed as i.i.d. copies of a random variable X. One can then either proceed to argue
conditionally on the realisations Xi = xi, or one takes this randomness explicitly into account
by making probability statements under the law of X and ε simultaneously. For reasonable
design distributions, this will lead to results that are comparable to the fixed-design
model – one way of seeing this is through the equivalence theory for statistical experiments
(see after Theorem 1.2.1).

A priori it may not be reasonable to assume that f has any specific properties other than
that it is a continuous or perhaps a differentiable function of its argument. Even if we would
assume that f has infinitely many continuous derivatives the set of all such f would be
infinite dimensional and could never be fully captured by a p-dimensional parameter space.
We thus have to expect that the theory of statistical inference in this nonparametric model
will be different from the one in Gauss’s classical linear model.

The Gaussian White Noise Model

For the mathematical development in this book we shall work with a mathematical
idealisation of the regression model (1.4) in continuous time, known as the Gaussian
white noise model, and with its infinite sequence space analogue. While perhaps at first
appearing more complicated than the discrete model, once constructed, it allows for a clean
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1.2 Gaussian Models 7

and intuitive mathematical exposition that mirrors all the main ideas and challenges of the
discrete case with no severe loss of generality.

Consider the following stochastic differential equation:

dY(t)≡ dY(n)f (t)= f (t)dt+ σ√
n

dW(t), t ∈ [0,1], n ∈N, (1.5)

where f ∈ L2 ≡ L2([0,1]) is a square integrable function on [0,1], σ > 0 is a dispersion
parameter and dW is a standard Gaussian white noise process. When we observe a
realisation of (1.5), we shall say that we observe the function or signal f in Gaussian white
noise, at the noise level, or a signal-to-noise ratio σ/

√
n. We typically think of n large,

serving as a proxy for sample size, and of σ > 0 a fixed known value. If σ is unknown, one
can usually replace it by a consistent estimate in the models we shall encounter in this book.

The exact meaning of dW needs further explanation. Heuristically, we may think
of dW as a weak derivative of a standard Brownian motion {W(t) : t ∈ [0,1]}, whose
existence requires a suitable notion of stochastic derivative that we do not want to develop
here explicitly. Instead, we take a ‘stochastic process’ approach to define this stochastic
differential equation, which for statistical purposes is perfectly satisfactory. Let us thus
agree that ‘observing the trajectory (1.5)’ will simply mean that we observe a realisation
of the Gaussian process defined by the application

g �→
∫ 1

0
g(t)dY(n)(t)≡Y(n)f (g)∼ N

(
〈 f ,g〉, ‖g‖2

2

n

)
, (1.6)

where g is any element of the Hilbert space L2([0,1]) with inner product 〈·, ·〉 and norm
‖ ·‖2. Even more explicitly, we observe all the N(〈 f ,g〉,‖g‖2

2/n) variables, as g runs through
L2([0,1]). The randomness in the equation (1.5) comes entirely from the additive term dW,
so after translating by 〈 f ,g〉 and scaling by 1/

√
n, this means that dW is defined through the

Gaussian process obtained from the action

g �→
∫ 1

0
g(t)dW(t)≡W(g)∼ N(0,‖g‖2

2), g ∈ L2([0,1]). (1.7)

Note that this process has a diagonal covariance in the sense that for any finite set
of orthonormal vectors {ek} ⊂ L2 we have that the family {W(ek)} is a multivariate
standard normal variable, and as a consequence of the Kolmogorov consistency theorem
(Proposition 2.1.10), W and Y(n) indeed define Gaussian processes on L2.

The fact that the model (1.5) can be interpreted as a Gaussian process indexed by L2

means that the natural sample space Y in which dY from (1.5) takes values is the ‘path’ space
RL2([0,1]). This space may be awkward to work with in practice. In Section 6.1.1 we shall
show that we can find more tractable choices forY where dY concentrates with probability 1.

Gaussian Sequence Space Model

Again, to observe the stochastic process {Y(n)f (g) : g∈ L2} just means that we observe Y(n)f (g)
for all g ∈ L2 simultaneously. In particular, we may pick any orthonormal basis {ek : k ∈ Z}
of L2, giving rise to an observation in the Gaussian sequence space model

Yk ≡ Y(n)f ,k = 〈 f ,ek〉+ σ√
n

gk, k ∈ Z, n ∈N, (1.8)
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8 Nonparametric Statistical Models

where the gk are i.i.d. of law W(ek) ∼ N(0,‖ek‖2
2) = N(0,1). Here we observe all the basis

coefficients of the unknown function f with additive Gaussian noise of variance σ 2/n. Note
that since the {ek : k ∈ Z} realise a sequence space isometry between L2 and the sequence
space �2 of all square-summable infinite sequences through the mapping f �→ 〈 f ,ek〉, the
law of {Y(n)f ,k : k ∈ Z} completely characterises the finite-dimensional distributions, and thus

the law, of the process Y(n)f . Hence, models (1.5) and (1.8) are observationally equivalent to
each other, and we can prefer to work in either one of them (see also Theorem 1.2.1).

We note that the random sequence Y= (Yk : k∈Z) itself does not take values in �2, but we
can view it as a random variable in the ‘path’ space R�2 . A more tractable, separable sample
space on which (Yk : k ∈ Z) can be realised is discussed in Section 6.1.1.

A special case of the Gaussian sequence model is obtained when the space is restricted to
n coefficients

Yk = θk + σ√
n

gk, k = 1, . . . ,n, (1.9)

where the θk are equal to the 〈 f ,ek〉. This is known as the normal means model. While itself
a finite-dimensional model, it cannot be compared to the standard Gaussian linear model
from the preceding section as its dimension increases as fast as n. In fact, for most parameter
spaces that we will encounter in this book, the difference between model (1.9) and model
(1.8) is negligible, as follows, for instance, from inspection of the proof of Theorem 1.2.1.

Multivariate Gaussian Models

To define a Gaussian white noise model for functions of several variables on [0,1]d through
the preceding construction is straightforward. We simply take, for f ∈ L2([0,1]d),

dY(t)= f (t)dt+ σ√
n

dW(t), t ∈ [0,1]d, n ∈N, σ > 0, (1.10)

where dW is defined through the action

g �→
∫
[0,1]d

g(t)dW(t)≡W(g)∼ N(0,‖g‖2
2) (1.11)

on elements g of L2([0,1]d), which corresponds to multivariate stochastic integrals with
respect to independent Brownian motions W1(t1), . . . ,Wd(td). Likewise, we can reduce to a
sequence space model by taking an orthonormal basis {ek : k ∈ Zd} of L2([0,1]d).

1.2.3 Equivalence of Statistical Experiments

It is time to build a bridge between the preceding abstract models and the statistically
more intuitive nonparametric fixed-design regression model (1.4). Some experience with
the preceding models reveals that a statistical inference procedure in any of these models
constructively suggests a procedure in the others with comparable statistical properties.
Using a suitable notion of distance between statistical experiments, this intuition can be
turned into a theorem, as we show in this subsection. We present results for Gaussian
regression models; the general approach, however, can be developed much further to show
that even highly non-Gaussian models can be, in a certain sense, asymptotically equivalent
to the standard Gaussian white noise model (1.5). This gives a general justification for a
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1.2 Gaussian Models 9

rigorous study of the Gaussian white noise model in itself. Some of the proofs in this
subsection require material from subsequent chapters, but the main ideas can be grasped
without difficulty.

The Le Cam Distance of Statistical Experiments

We employ a general notion of distance between statistical experiments E (i), i = 1,2, due
to Le Cam. Each experiment E (i) consists of a sample space Yi and a probability measure
P(i)f defined on it, indexed by a common parameter f ∈F . Let T be a measurable space of
‘decision rules’, and let

L : F ×T →[0,∞)
be a ‘loss function’ measuring the performance of a decision procedure T(i)(Y(i)) ∈ T based
on observations Y(i) in experiment i. For instance, T(i)(Y(i)) could be an estimator for f so
that T = F and L( f ,T) = d( f ,T), where d is some metric on F , but other scenarios are
possible. The risk under P(i)f for this loss is the P(i)f -expectation of L( f ,T(i)(Y(i))), denoted
by R(i)( f ,T(i),L). Define also

|L| = sup{L( f ,T) : f ∈F ,T ∈ T ).
The Le Cam distance between two experiments is defined as

�F (E (1),E (2))≡ max

[
sup
T(2)

inf
T(1)

sup
f ,L:|L|=1

∣∣R(1)( f ,T(1),L)−R(2)( f ,T(2),L)
∣∣ , (1.12)

sup
T(1)

inf
T(2)

sup
f ,L:|L|=1

∣∣R(1)( f ,T(1),L)−R(2)( f ,T(2),L)
∣∣].

If this quantity equals zero, this means that any decision procedure T(1) in experiment E (1)
can be translated into a decision procedure T(2) in experiment E (2), and vice versa, and that
the statistical performance of these procedures in terms of the associated risk R(i) will be the
same for any bounded loss function L. If the distance is not zero but small, then, likewise,
the performance of the corresponding procedures in both experiments will differ by at most
their Le Cam distance.

Some useful observations on the Le Cam distance are the following: if both experiments
have a common sample space Y (1) = Y (2) = Y equal to a complete separable metric space,
and if the probability measures P(1)f ,P(2)f have a common dominating measure μ on Y , then

�F (E (1),E (2))≤ sup
f ∈F

∫
Y

∣∣∣∣∣dP(1)f

dμ
− dP(2)f

dμ

∣∣∣∣∣dμ≡ ‖P(1)−P(2)‖1,μ,F . (1.13)

This follows from the fact that in this case we can always use the decision rule T(2)(Y) in
experiment E (1) and vice versa and from

|R(1)( f ,T,L)−R(2)( f ,T,L)| ≤
∫
Y
|L( f ,T(Y))||dP(1)f (Y)− dP(2)f (Y)| ≤ |L|‖P(1)−P(2)‖1,μ,F .

The situation in which the two experiments are not defined on the sample space needs
some more thought. Suppose, in the simplest case, that we can find a bi-measurable
isomorphism B of Y (1) with Y (2), independent of f , such that

P(2)f = P(1)f ◦B−1, P(1)f = P(2)f ◦B ∀ f ∈F .
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10 Nonparametric Statistical Models

Then, given observations Y(2) in Y (2), we can use the decision rule T(2)(Y(2)) ≡
T(1)(B−1(Y(2))) in E (2), and vice versa, and the risks R(i) in both experiments coincide by
the image measure theorem. We can conclude in this case that

�F (E (1),E (2))=�F (E (1),B−1(E (2)))= 0. (1.14)

In the absence of such a bijection, the theory of sufficient statistics can come to our aid to
bound the Le Cam distance. Let again Y (i), i= 1,2, be two sample spaces that we assume to
be complete separable metric spaces. Let E (1) be the experiment giving rise to observations
Y(1) of law P(1)f on Y (1), and suppose that there exists a mapping S :Y (1)→Y (2) independent
of f such that

Y(2) = S(Y(1)), Y(2) ∼ P(2)f on Y (2).
Assume, moreover, that S(Y(1)) is a sufficient statistic for Y(1); that is, the conditional
distribution of Y(1) given that we have observed S(Y(1)) is independent of f ∈F . Then

�F (E (1),E (2))= 0. (1.15)

The proof of this result, which is an application of the sufficiency principle from statistics,
is left as Exercise 1.1.

Asymptotic Equivalence for Nonparametric Gaussian Regression Models

We can now give the main result of this subsection. We shall show that the experiments

Yi = f (xi)+ εi, xi = i

n
, εi ∼i.i.d. N(0,σ 2), i = 1, . . . ,n, (1.16)

and

dY(t)= f (t)dt+ σ√
n

dW(t), t ∈ [0,1], n ∈N, (1.17)

are asymptotically (n →∞) equivalent in the sense of Le Cam distance. In the course of
the proofs, we shall show that any of these models is also asymptotically equivalent to the
sequence space model (1.8). Further models that can be shown to be equivalent to (1.17) are
discussed after the proof of the following theorem.

We define classes

F(α,M)=
{

f : [0,1]→R, sup
x∈[0,1]

| f (x)|+ sup
x
=y

| f (x)− f (y)|
|x− y|α ≤ M

}
,

0< α ≤ 1, 0<M<∞,

of α-Hölderian functions. Moreover, for (xi)
n
i=1 the design points of the fixed-design

regression model (1.16) and for f any bounded function defined on [0,1], let πn( f ) be the
unique function that interpolates f at the xi and that is piecewise constant on each interval
(xi1 ,xi] ⊂ [0,1].
Theorem 1.2.1 Let (E (i)n : n ∈ N), i = 1,2,3, equal the sequence of statistical experiments
given by i = 1 the fixed-design nonparametric regression model (1.16); i = 2, the standard
Gaussian white noise model (1.17); and i = 3, the Gaussian sequence space model (1.8),
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1.2 Gaussian Models 11

respectively. Then, for F any family of bounded functions on [0,1], for πn( f ) as earlier and
for any n ∈N,

�F (E (2)n ,E (3)n )= 0, �F (E (1)n ,E (2)n )≤
√

nσ 2

2
sup
f ∈F

‖ f −πn( f )‖2. (1.18)

In particular, if F = F(α,M) for any α > 1/2,M > 0, then all these experiments are
asymptotically equivalent in the sense that their Le Cam distance satisfies, as n →∞,

�F (E (i)n ,E (j)n )→ 0, i, j ∈ {1,2,3}. (1.19)

Proof In the proof we shall say that two experiments are equivalent if their Le Cam
distance is exactly equal to zero. The first claim in (1.18) immediately follows from (1.14)
and the isometry between L2([0,1]) and �2 used in the definition of the sequence space
model (1.8).

Define Vn to equal the n-dimensional space of functions f : [0,1]→R that are piecewise
constant on the intervals

Iin = (xi−1,xi] =
(

i− 1

n
,

i

n

]
, i = 1, . . . ,n.

The indicator functions φin = 1Iin of these intervals have disjoint support, and they form an
orthonormal basis of Vn for the inner product

〈 f ,g〉n =
n∑

j=1

f (xj)g(xj),

noting that
∑n

j=1φ
2
in(xj) = 1 for every i. Given bounded f : [0,1] → R, let πn( f ) be the

〈·, ·〉n-projection of f onto Vn. Since

〈 f ,φin〉 =
n∑

j=1

f (xj)φin(xj)= f (xi) ∀i,

we see

πn( f )(t)=
n∑

i=1

f (xi)φin(t), t ∈ [0,1],

so this projection interpolates f at the design points xi, that is, πn( f )(xj) = f (xj) for all j.
Note that the functions {√nφin : i= 1, . . . ,n} also form a basis of Vn in the standard L2([0,1])
inner product 〈·, ·〉. This simultaneous orthogonality property will be useful in what follows.

Observing Yi = f (xi) + εi in Rn from model (1.16) with bounded f is, by (1.14),
equivalent to observations in the n-dimensional functional space Vn given by

n∑
i=1

Yiφin(t)=
n∑

i=1

f (xi)φin(t)+
n∑

i=1

εiφin(t), t ∈ [0,1]. (1.20)

We immediately recognise that
∑n

i=1 f (xi)φin is the interpolation πn( f ) of f at the xi.
Moreover, the error process is a scaled white noise process restricted to the space Vn: indeed,
its L2([0,1]) action on h ∈ Vn is given by∫ 1

0

n∑
i=1

εiφin(t)h(t)dt = 1√
n

n∑
i=1

εi〈h,
√

nφin〉 ∼ N

(
0,
σ 2

n

n∑
i=1

〈h,
√

nφin〉2

)
= N

(
0,
σ 2

n
‖h‖2

2

)
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12 Nonparametric Statistical Models

using Parseval’s identity and that the
√

nφin form an L2([0,1]) orthonormal basis of Vn. If
�n is the L2([0,1]) projector onto Vn spanned by the {√nφin}, then one shows, by the same
arguments, that this process can be realised as a version of the Gaussian process defined
on L2 by the action h �→ W(�n(h)), where W is as in (1.7). In other words, it equals the
L2-projection of the standard white noise process dW onto the finite-dimensional space Vn,
justifying the notation

σ√
n

dWn(t)≡
n∑

i=1

εiφin(t)dt.

To summarise, (1.16) is equivalent to model (1.20), which itself can be rewritten as

dỸ(t)≡ πn( f )(t)+ σ√
n

dWn(t), t ∈ [0,1]. (1.21)

Next, consider the model

dȲ(t)= πn( f )(t)+ σ√
n

dW(t), t ∈ [0,1], (1.22)

which is the standard white noise model (1.17) but with f replaced by its interpolation
πn( f ) at the design points xi. Since πn( f ) ∈ Vn, we have �n(πn( f )) = πn( f ), and since
dWn =�n(dW) ∈ Vn, the statistics

dỸ =�n(dȲ)=
{∫ 1

0
h(t)dỸ(t) : h ∈ Vn

}
are sufficient for dȲ, so by (1.15) the models (1.21) and (1.22) are equivalent. [To use (1.15)
rigorously, we interpret dỸ,dȲ as tight random variables in a large enough, separable Banach
space (see Section 6.1.1).]

To prove the second claim in (1.18), we relate (1.22) to (1.17), that is, to

dY(t)= f (t)+ σ√
n

dW(t), t ∈ [0,1].

Both experiments have the same sample space, which in view of Section 6.1.1 we can take
to be, for instance, the space of continuous functions on [0,1], and the standard white noise
W gives a common dominating measure PY

0 on that space for the corresponding probability
measures PY

f ,P
Y
πn( f ). In view of (1.13) and using Proposition 6.1.7a) combined with (6.16),

we see that the Le Cam distance is bounded by

sup
f ∈F

‖PY
f −PY

πn( f )‖2
1,μ,F ≤ n

σ 2
sup
f ∈F

‖ f −πn( f )‖2
2, (1.23)

which gives (1.18). Finally, for (1.19), uniformly in f ∈F(α,M),

‖ f −πn( f )‖2
2 =

n∑
i=1

∫ i/n

(i−1)/n
( f (x)− f (xi))

2dx ≤ M2
n∑

i=1

∫ i/n

(i−1)/n
|x− xi|2αdx

≤ M2n−2α
n∑

i=1

∫ i/n

(i−1)/n
dx = O(n−2α),

so for α > 1/2, the quantity in (1.23) converges to zero, completing the proof.
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1.3 Notes 13

In the preceding theorem the Hölder classes F(α,M) could be replaced by balls in the
larger Besov-Sobolev spaces Bα2∞ (defined in Chapter 4) whenever α > 1/2. The condition
on α, however, cannot be relaxed, as we discuss in the notes.

The theory of asymptotic equivalence can be taken much further, to include results like
the one preceding for random design regression experiments in possibly multivariate settings
and with possibly non-Gaussian noise ε. The theory also extends to non-Gaussian settings
that are not of regression type: one can show that nonparametric models for probability or
spectral densities, or ergodic diffusions, are asymptotically equivalent to a suitable Gaussian
white noise model. We discuss relevant references in the notes.

Asymptotic equivalence theory, which is a subject in its own, justifies that the Gaussian
white noise model is, in the sense of the Le Cam distance, a canonical limit experiment in
which one can develop some main theoretical ideas of nonparametric statistics. For Gaussian
regression problems, the closeness of the experiments involved is in fact of a nonasymptotic
nature, as shown by Theorem 1.2.1, and in this book we thus shall concentrate on the white
noise model as the natural continuous surrogate for the standard fixed-design regression
model. For other, non-Gaussian models, such as density estimation, asymptotic equivalence
theory is, however, often overly simplistic in its account of the probabilistic structure of
the problem at hand, and for the purposes of this book, we hence prefer to stay within the
product-measure setting of Section 1.1, such that a nonasymptotic analysis is possible.

Exercises

1.1 Prove (1.15). [Hint: Use the fact that the proof of the standard sufficiency reduction principle
extends to complete separable metric spaces (see Le Cam 1986).]

1.3 Notes

The modern understanding of statistical inference as consisting of the three related branches of
estimation, testing and confidence statements probably goes back, in its most fundamental form,
to the work of Fisher (1922; 1925a, b), who considered mostly parametric (finite-dimensional)
statistical models. The need to investigate nonparametric statistical models was realised not much
later, roughly at the same time at which the axiomatic approach to probability theory was put forward
by Kolmogorov (1933). Classic papers on fully nonparametric sampling models for the cumulative
distribution function are, for instance, Glivenko (1933), Cantelli (1933), Kolmogorov (1933a), and
Smirnov (1939). More recent developments will be reviewed in later chapters of this book.

The linear regression model with normally distributed errors was initiated by Gauss (1809), who
used it successfully in the context of observational astronomy. Gauss most likely was the first to use
the least-squares algorithm, although Legendre and even some others can claim priority as well. The
history is reviewed, for example, in Plackett (1972) and Stigler (1981).

Nonparametric regression models were apparently not studied systematically before the 1960s;
see Nadaraya (1964) and Watson (1964). The Gaussian white noise model and its sequence space
analogue were systematically developed in the 1970s and later by the Russian school – we refer
to the seminal monograph by Ibragimov and Khasminskii (1981). The asymptotic equivalence
theory for statistical experiments was developed by Le Cam; we refer to his fundamental book
Le Cam (1986) and also to Le Cam and Yang (1990). Landmark contributions in nonparametric
asymptotic equivalence theory are the papers Brown and Low (1996) and Nussbaum (1996), who
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14 Nonparametric Statistical Models

treated univariate regression models with fixed design and density estimation, respectively. The
necessity of the assumption α ≥ 1/2 is the subject of the paper by Brown and Zhang (1998).
Asymptotic equivalence for random design regression is somewhat more involved: the univariate
case is considered in Brown et al. (2002), and the general, multivariate random design regression
case is considered in Reiß (2008). Further important results include asymptotic equivalence for
nonparametric regression with non-Gaussian error distributions in Grama and Nussbaum (2002),
asymptotic equivalence for spectral density estimation in Golubev, Nussbaum and Zhou (2010), and
asymptotic equivalence for ergodic diffusions in Dalalyan and Reiß (2006).
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2

Gaussian Processes

This chapter develops some classical theory and fundamental tools for Gaussian random
processes. We start with the basic definitions of Gaussian processes indexed by abstract
parameter spaces and, by way of introduction to the subject, derive some elementary yet
powerful properties. We present the isoperimetric and log-Sobolev inequalities for Gaussian
measures in Rn and apply them to establish concentration properties for the supremum of
a Gaussian process about its median and mean, which are some of the deepest and most
useful results on Gaussian processes. Then we introduce Dudley’s metric entropy bounds
for moments of suprema of (sub-) Gaussian processes as well as for their a.s. modulus of
continuity. The chapter also contains a thorough discussion of convexity and comparison
properties of Gaussian measures and of reproducing kernel Hilbert spaces and ends with an
exposition of the limit theory for suprema of stationary Gaussian processes.

2.1 Definitions, Separability, 0-1 Law, Concentration

We start with some preliminaries about stochastic processes, mainly to fix notation and
terminology. Then these concepts are specialised to Gaussian processes, and some first
properties of Gaussian processes are developed. The fundamental observation is that a
Gaussian process X indexed by a a set T induces an intrinsic distance dX on T (dX(s, t) is
the L2-distance between X(s) and X(t)), and all the probabilistic information about X is
contained in the metric or pseudo-metric space (T,d). This is tested on some of the first
properties, such as the 0-1 law and the existence of separable versions of X. One of the main
properties of Gaussian processes, namely, their concentration about the mean, is introduced;
this subject will be treated in the next section, but a first result on it, which is not sharp but
that has been chosen for its simplicity, is given in this section.

2.1.1 Stochastic Processes: Preliminaries and Definitions

Let (�,
,Pr) be a probability space, and let T be a set. A stochastic process X indexed by T
and defined on the probability space (�,
,Pr) is a function X : T×� �→R, (t,ω) �→ X(t,ω)
such that, for each t ∈ T, X(t, ·) is a random variable. Then, for any finite set F ⊂ T, the
maps� �→RF given by ω �→ {X(t,ω) : t∈ F} are also measurable, and their probability laws
μF = Pr◦{X(t, ·) : t ∈ F}−1 are the finite-dimensional distributions (or finite-dimensional
marginal distributions or finite-dimensional marginals) of X. If F ⊂ G ⊂ T and G is finite
and πGF is the natural projection from RG onto RF, then, obviously, the consistency

15
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16 Gaussian Processes

conditions μF =μG ◦π−1
GF are satisfied (πGF({X(t) : t ∈ G})= {X(t) : t ∈ F}). Conversely, the

Kolmogorov consistency theorem shows that any collection of Borel probability measures
μF on RF, indexed by the finite subsets F ⊂ T and satisfying the consistency conditions,
is the collection of finite-dimensional distributions of a stochastic process X indexed by
T. In other words, a consistent family of probability measures μF, F ⊂ T, F finite,
defines a unique probability measure μ on the cylindrical σ -algebra C of RT such that
μF = μ ◦ π−1

TF . (The cylindrical σ -algebra C is the σ -algebra generated by the cylindrical
sets with finite-dimensional base, π−1

TF (A), A ∈ B(RF), F ⊂ T, F finite.) Then the map
X : T × RT �→ R, (t,x) �→ x(t), is a process defined on the probability space (RT,C,μ).
If μ is the probability measure on (RT,C) defined by the finite-dimensional distributions
of a process X, then we say that μ is the probability law of X (which can be thought of
as a ‘random variable’ taking values on the measurable space (RT,C)). See almost any
probability textbook, for example, Dudley (2002).

Definition 2.1.1 Two processes X and Y of index set T are said to be a version of each other if
both have the same finite-dimensional distributions L(X(t1), . . . ,X(tn))=L(Y(t1), . . . ,Y(tn))
for all n∈N and ti ∈ T or, what is the same, if both have the same probability law on (RT,C).
They are said to be a strict version or a modification of each other if Pr{X(t)= Y(t)} = 1 for
all t.

It is convenient to recall the definition of pseudo-distance and pseudo-metric space. A
pseudo-distance d on T is a nonnegative symmetric function of two variables s, t ∈ T that
satisfies the triangle inequality but for which d(s, t) = 0 does not necessarily imply s = t.
A pseudo-metric space (T,d) is a set T equipped with a pseudo-distance d. Clearly, a
pseudo-metric space becomes a metric space by taking the quotient with respect to the
equivalence relation s � t iff d(s, t) = 0. For instance, the space Lp of functions is a
pseudo-metric space for the Lp (pseudo-)norm, and the space of equivalence classes, Lp,
is a metric space for the same norm. One only seldom needs to distinguish between the two.

If the index set T of a process X is a metric or pseudo-metric space (T,d), we say that
X is continuous in probability if X(tn)→ X(t) in probability whenever d(tn, t)→ 0. In this
case, if T0 is a d-dense subset of T, the law of the process on (RT,C) is determined by the
finite-dimensional distributions L(X(t1), . . . ,X(tn)) for all n ∈N and ti ∈ T0.

Here are two more definitions of interest.

Definition 2.1.2 A process X(t), t ∈ T, (T,d) a metric or pseudo-metric space, is separable
if there exists T0 ⊂ T, T0 countable, and �0 ⊂� with Pr(�0)= 1 such that for all ω ∈�0,
t ∈ T and ε > 0,

X(t,ω) ∈ {X(s,ω) : s ∈ T0 ∩Bd(t,ε)},
where Bd(t,ε) is the open d-ball about t of radius ε. X is measurable if the map (� ×
T,
⊗T )→ R given by (ω, t)−→ X(ω, t) is jointly measurable, where T is the σ -algebra
generated by the d-balls of T.

By definition, if X(t), t ∈ T, is separable, then there are points from T0 in any
neighborhood of t, t ∈ T; hence (T,d) is separable; that is, (T,d) possesses a countable dense
subset. Note that if X is separable, then supt∈T X(t)= sups∈T0

X(s) a.s., and the latter, being a
countable supremum, is measurable; that is, suprema over uncountable sets are measurable.
The same holds for |X(t)|.
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2.1 Definitions, Separability, 0-1 Law, Concentration 17

Often we require the sample paths t �→ X(t,ω) to have certain properties for almost every
ω, notably, to be bounded or bounded and uniformly continuous ω a.s.

Definition 2.1.3 A process X(t), t∈ T, is sample bounded if it has a version X̃ whose sample
paths t �→ X̃(t,ω) are almost all uniformly bounded, that is, supt∈T |X̃(t)| <∞ a.s. If (T,d)
is a metric or pseudo-metric space, then X is sample continuous (more properly, sample
bounded and uniformly continuous) if it has a version X̃(t) whose sample paths are almost
all bounded and uniformly d-continuous.

Note that if X is sample continuous, then the finite-dimensional distributions of X
are the marginals of a probability measure μ defined on the cylindrical σ -algebra C ∩
Cu(T,d) of Cu(T,d), the space of bounded uniformly continuous functions on (T,d),
L(X(t1), . . . ,X(tk)) = μ ◦ (δt1 , . . . ,δtk)−1, ti ∈ T, k < ∞ (here and in what follows, δt is
unit mass at t). The vector space Cu(T,d), equipped with the supremum norm ‖ f ‖∞ =
supt∈T | f (t)|, is a Banach space, that is, a complete metric space for which the vector
space operations are continuous. The Banach space Cu(T,d) is separable if (and only if)
(T,d) is totally bounded, and in this case, Cu(T,d) is isometric to C(T̄,d), where (T̄,d)
is the completion of (T,d), which is compact. Then, assuming (T,d) totally bounded, we
have ‖ f ‖∞ = supt∈T0

| f (t)|, where T0 is any countable dense subset of T; in particular, the
closed balls of Cu(T,d) are measurable for the cylindrical σ -algebra: { f : ‖ f − f0‖∞ ≤ r} =
∩t∈T0{ f : | f (t)− f0(t)| ≤ r}. This implies that the open sets are also measurable because, by
separability of Cu(T,d), every open set in this space is the union of a countable number of
closed balls. This proves that the Borel and the cylindrical σ -algebras of Cu(T,d) coincide
if (T,d) is totally bounded. Hence, in this case, the finite-dimensional distributions of X
are the marginal measures of a Borel probability measure μ on Cu(T,d). Since Cu(T,d) is
separable and complete (for the supremum norm), the probability law μ of X is tight in view
of the following basic result that we shall use frequently in this book (see Exercise 2.6 for
its proof). Recall that a probability measure μ is tight if for all ε > 0 there is K compact such
that μ(Kc) < ε.

Proposition 2.1.4 (Oxtoby-Ulam) If μ is a Borel probability measure on a complete
separable metric space, then μ is tight.

In general, given a Banach space B, a B-valued random variable X is a Borel measurable
map from a probability space into B. Thus, the preceding considerations prove the following
proposition. It is convenient to introduce an important Banach space: given a set T, �∞
(T) ⊂ RT will denote the set of bounded functions x : T �→ R. Note that this is a Banach
space if we equip it with the supremum norm ‖x‖T = supt∈T |x(t)| and that the inclusion of
Cu(T) into �∞(T) is isometric. Observe that �∞(T) is separable for the supremum norm if
and only if T is finite.

Proposition 2.1.5 If (T,d) is a totally bounded metric or pseudo-metric space and X(t),
t ∈ T, is a sample continuous process, then X has a version which is a Cu(T,d)-valued
random variable, and its probability law is a tight Borel measure with support contained in
Cu(T,d) and hence a tight Borel probability measure on �∞(T).

Example 2.1.6 (Banach space–valued random variables as sample continuous pro-
cesses.) Let B be a separable Banach space, let B∗ be its dual space and let B∗

1 denote the
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18 Gaussian Processes

closed-unit ball of B∗
1 about the origin. Then there exists a countable set D ⊂ B∗

1 such that
‖x‖ = sup f ∈D f (x) for all x ∈ B: if {xi} ⊂ B is a countable dense subset of B and fi ∈ B∗

1 are
such that fi(xi) = ‖xi‖ (note that fi exists by the Hahn-Banach theorem), then D = { fi} is
such a set. The inclusion B �→ Cu(D,‖ · ‖), where ‖ · ‖ is the norm on B∗

1, is an isometric
imbedding, and every B-valued random variable X defines a process f �→ f (X), f ∈ D,
with all its sample paths bounded and uniformly continuous. Hence, any results proved
for sample bounded and uniformly continuous processes indexed by totally bounded metric
spaces do apply to Banach space–valued random variables for B separable.

If X(t), t ∈ T, is a sample bounded process, then its probability law is defined on the
cylindrical σ -algebra of �∞(T), 
 = C ∩ �∞(T). Since �∞(T) is a metric space for the
supremum norm, it also has another natural σ -algebra, the Borel σ -algebra. We conclude
with the interesting fact that if the law of the bounded process X extends to a tight Borel
measure on �∞(T), then X is sample continuous with respect to a metric d for which (T,d)
is totally bounded.

Proposition 2.1.7 Let X(t), t ∈ T, be a sample bounded stochastic process. Then the
finite-dimensional probability laws of X are those of a tight Borel probability measure on
�∞(T) if and only if there exists on T a pseudo-distance d for which (T,d) is totally bounded
and such that X has a version with almost all its sample paths uniformly continuous for d.

Proof Let us assume that the probability law of X is a tight Borel measure μ on �∞(T); let
Kn, n ∈ N, be an increasing sequence of compact sets in �∞(T) such that μ

(∪∞
n=1Kn

) = 1;
and set K =∪∞

n=1Kn. Define a pseudo-metric d as

d(s, t)=
∞∑

n=1

2−n
(
1∧ dn(s, t)

)
,

where
dn(s, t)= sup

{| f (t)− f (s)| : f ∈ Kn

}
.

To prove that (T,d) is totally bounded, given ε > 0, let m be such that
∑∞

n=m+1 2−n < ε/4.
Since the set ∪m

n=1Kn is compact, it is totally bounded, and therefore, it contains a finite
subset { f1, . . . , fr} which is ε/4 dense in ∪m

n=1Kn for the supremum norm; that is, for each
f ∈ ∪m

n=1Kn, there is i ≤ r such that ‖ f − fi‖∞ ≤ ε/4. Since ∪m
n=1Kn is a bounded subset

of �∞(T) (as it is compact), it follows that the subset A = {( f1(t), . . . , fr(t)) : t ∈ T} of Rr is
bounded, hence precompact, hence totally bounded, and therefore there exists a finite set
Tε = {ti : 1 ≤ i ≤ N} such that for each t ∈ T there is i = i(t)≤ N such that max1≤s≤r | fs(t)−
fs(ti)| ≤ ε/4. It follows that Tε is ε dense in T for the pseudo-metric d: for n ≤ m, t ∈ T and
ti = ti(t), we have

dn(t, ti)= sup
f ∈Kn

| f (t)− f (ti)| ≤ max
s≤r

| fs(t)− fs(ti)|+ ε/2 ≤ 3ε

4

and therefore

d(t, ti)≤ ε
4
+

m∑
n=1

2−ndn(t, ti)≤ ε,

proving that (T,d) is totally bounded.
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2.1 Definitions, Separability, 0-1 Law, Concentration 19

Next, since μ(K) = 1, the identity map of (�∞(T),B,μ) is a version of X with almost
all its trajectories in K. Thus, to prove that X has a version with almost all its sample paths
bounded and uniformly d-continuous, it suffices to show that the functions from K have
these properties. If f ∈Kn, then | f (s)− f (t)| ≤ dn(s, t)≤ 2nd(s, t) for all s, t∈T with d(s, t)<
2−n, proving that f is uniformly continuous, and f is bounded because Kn is bounded.

Conversely, let X(t), t ∈ T, be a process with a version whose sample paths are almost
all in Cu(T,d) for a distance or pseudo-distance d on T for which (T,d) is totally bounded,
and let us continue denoting X such a version (recall the notation Cu(T,d) as the space of
bounded uniformly continuous functions on (T,d)). Then X is a random variable taking
values in Cu(T,d), and its marginal laws correspond to a Borel probability measure on
Cu(T,d) (see the argument following Definition 2.1.3). But since (T,d) is precompact,
Cu(T,d) is separable, and the law of X is in fact a tight Borel measure by the Oxtoby-Ulam
theorem (Proposition 2.1.4). But a tight Borel probability measure on Cu(T,d) is a tight
Borel measure on �∞(T) because the inclusion of Cu(T,d) into �∞ is continuous.

2.1.2 Gaussian Processes: Introduction and First Properties

We now look at Gaussian processes. Recall that a finite-dimensional random vector or a
multivariate random variable Z = (Z1, . . . ,Zn), n ∈ N, is an n-dimensional Gaussian vector,
or a multivariate normal random vector, or its coordinates are jointly normal, if the random
variables 〈a,Z〉 =∑n

i=1 aiZi, a = (a1, . . . ,an) ∈ Rn, are normal variables, that is, variables
with laws N(m(a),σ 2(a)), σ(a)≥ 0, m ∈ R. If m = m(a)= 0 for all a ∈ Rn, we say that the
Gaussian vector is centred.

Definition 2.1.8 A stochastic process X(t), t ∈ T, is a Gaussian process if for all n ∈ N,
ai ∈ R and ti ∈ T, the random variable

∑n
i=1 aiX(ti) is normal or, equivalently, if all the

finite-dimensional marginals of X are multivariate normal. X is a centred Gaussian process
if all these random variables are normal with mean zero.

Definition 2.1.9 A covariance � on T is a map � : T× T → R such that for all n ∈ N and
t1, . . . , tn ∈ T, the matrix (�(ti, tj))ni,j=1 is symmetric and nonnegative definite (i.e., �(ti, tj)=
�(tj, ti) and

∑
i,j aiaj�(ti, tj)≥ 0 for all ai).

The following is a consequence of the Kolmogorov consistency theorem.

Proposition 2.1.10 Given a covariance � on T and a function f on T, there is a Gaussian
process X(t) such that E(X(t)) = f (t) and E[(X(t)− f (t))(X(s)− f (s))] = �(s, t) for all
s, t ∈ T. � is called the covariance of the process and f its expectation, and we say that X is
a centred Gaussian process if and only if f ≡ 0.

Proof If F ⊂ T is finite, take μF = N(( f (t) : t ∈ F),�|F×F) . It is easy to see that the set
{μF : F ⊂ T, F finite} is a consistent system of marginals. Hence, by the Kolmogorov
consistency theorem, there is a probability on (RT,C), hence a process, with {μF} as its
set of finite-dimensional marginals.

Example 2.1.11 A basic example of a Gaussian process is the isonormal or white noise
process on a separable Hilbert space H, where {X(h) : h ∈ H} has a covariance diagonal
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20 Gaussian Processes

for the inner product 〈·, ·〉 of H: EX(h) = 0 and EX(h)X(g) = 〈h,g〉H for all g,h ∈ H. The
existence of this process does not even require the Kolmogorov consistency theorem but
only the existence of an infinite sequence of random variables (i.e., the existence of an
infinite product probability space): if {gi} is a sequence of independent N(0,1) random
variables and {ψi} is an orthonormal basis of H, the process defined by linear and continuous
extension of X̃(ψi) = gi (i.e., by X̃(

∑
aiψi) = ∑

aigi whenever
∑

a2
i < ∞) is clearly a

version of X. Note for further use that if V ⊂ L2(�,
,Pr) is the closed linear span of the
sequence {gi}, then the map X̃ : H �→ V is an isometry.

From now on, all our Gaussian processes will be centred, even if sometimes we omit
mentioning it. If X is a centred Gaussian process on T, the L2-pseudo-distance between X(t)
and X(s) defines a pseudo-distance dX on T

d2
X(s, t) := E(X(t)−X(s))2 =�(t, t)+�(s,s)− 2�(s, t)

that we call the intrinsic distance of the process. With this pseudo-metric, T is isometric
to the subspace {X(t) : t ∈ T} of L2(�,
,Pr). Clearly, a centred Gaussian process X is
continuous in probability for the pseudo-distance dX; in particular, its probability law in
(RT,C) is determined by the finite-dimensional marginals based on subsets of any dX-dense
subset T0 of T.

It is important to note that the probability law of a centred Gaussian process X is
completely determined by its intrinsic distance dX (or by the covariance �). Thus, all the
probabilistic information about a centred Gaussian process is contained in the metric (or
pseudo-metric) space (T,dX). This is a very distinctive feature of Gaussian processes.

Here is a first, albeit trivial, example of the exact translation of a property of the metric
space (T,dX) into a probabilistic property of X, actually, necessarily of a version of X.

Proposition 2.1.12 For a Gaussian process X indexed by T, the following are equivalent:

1. The pseudo-metric space (T,dX) is separable, and
2. X, as a process on (T,dX), has a separable, measurable (strict) version.

Proof If point 2 holds, let X̄ be a separable and measurable version of X (in particular,
dX̄ = dX), and let T0 be a countable set as in the definition of separability. Then, as mentioned
earlier, the very definition of separability implies that T0∩BdX(t,ε) 
= ∅ for all t∈T and ε > 0.
Thus, T0 is dense in (T,dX), and therefore, (T,dX) is separable.

Assume now that (T,dX) is separable, and let T0 be a countable dX-dense subset of T. Also
assume, as we may by taking equivalence classes, that dX(s, t) 
= 0 for all s, t ∈ T0, s 
= t. If
T0 = {si : i ∈N}, define, for each n, the following partition of T:

Cn(sm)= B
(
sm,2−n

) \⋃
k<m

B
(
sk,2

−n
)
, m ∈N.

For each t ∈ T, let sn(t) be the only s ∈ T0 such that t ∈ Cn(s), and define Xn(t) = X(sn(t)).
Now Xn(t,ω) is jointly measurable because X−1

n (A) =
⋃

i∈N [Cn(si)×{ω : X(si,ω) ∈ A}] .
Since, for any t ∈ T, Pr{|Xn(t)−X(t)|> 1/n} ≤ n2 E (X(sn(t))−X(t))2 ≤ n2/22n, it follows
by Borel-Cantelli that Xn(t)→ X(t) a.s.

Define X̄(t,ω)= limsupn Xn(t,ω), which, for each t, is ∞ at most on a set of measure 0.
Then the process X̄(t,ω) is measurable because it is a limsup of measurable functions. Also,
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for each t, X̄(t)= X(t) on a set of measure 1; that is, X̄ is a strict version of X. Next we show
that X̄ is separable. Given r ∈ N, there exists nr large enough that dX(sr,sl) > 1/2nr for all
l< r; hence, for n ≥ nr, Xn(sr)= X(sr). This shows that X̄(s)= X(s) for all s ∈ T0. Then, for
all ω ∈�,

X̄(t,ω)= limsup Xn(t,ω)= limsupX(sn(t),ω)= limsup X̄(sn(t),ω),

proving that X̄ is separable.

Just as with normal random variables, Gaussian processes also satisfy the Gaussian
stability property, namely, that if two Gaussian processes with index set T are independent,
then their sum is a Gaussian process with covariance the sum of covariances (and mean the
sum of means); in particular, if X and Y are independent and equally distributed Gaussian
processes (meaning that they have the same finite-dimensional marginal distributions or,
what is the same, the same law on the cylindrical σ -algebra C of RT), then the process
αX+βY has the same law as (α2+β2)1/2X. This property has many consequences, and here
is a nice instance of its use.

Theorem 2.1.13 (0-1 law) Let F ⊂ RT be a C-measurable linear subspace, and let X be a
(centred) Gaussian process indexed by T. Then

Pr{X ∈ F} = 0 or 1.

Proof Let X1 and X2 be independent copies of X. Define sets

An = {X1 + nX2 ∈ F} and Bn = {X2 
∈ F}∩An, n ∈N.

Since X1 + nX2 is a version of
√

1+ n2X and F is a vector space, we have

Pr{Bn} = Pr{An}−Pr[An ∩{X2 ∈ F}]
= Pr{X ∈ F}−Pr{X1 + n X2 ∈ F, X2 ∈ F}
= Pr{X ∈ F}−Pr{X1 ∈ F,X2 ∈ F}
= Pr{X ∈ F}− [Pr{X ∈ F}]2.

Clearly, Bn ∩ Bm = ∅ if n 
= m; hence, since by the preceding inequalities Pr{Bn} does not
depend on n, it follows that Pr{Bn} = 0 for all n. But then, again by the same inequalities,
Pr{X ∈ F} can only be 0 or 1.

Corollary 2.1.14 Let X be a centred Gaussian process on T and ‖ · ‖ be a C-measurable
pseudo-norm on RT. Then

P{‖X‖<∞}= 0 or 1.

Proof The set {x ∈ RT : ‖x‖ <∞} = ∪n{x ∈ RT : ‖x‖ < n} is a measurable vector space,
and the 0-1 law yields the result.

Example 2.1.15 If X is Gaussian, separable and centred, then there exists T0 ⊂ T,
T0 countable, such that supt∈T |X(t)| = supt∈T0

|X(t)| a.s, but ‖x‖T0 := supt∈T0
|x(t)| is a

measurable pseudo-norm, and hence it is finite with probability 0 or 1.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.003
http:/www.cambridge.org/core


22 Gaussian Processes

Example 2.1.16 The B-valued Gaussian variables where B is a separable Banach space
constitute a very general and important class of Gaussian processes, and we define them
now. Given a separable Banach space B, a B-valued random variable X is centred Gaussian
if f (X) is a mean zero normal variable for every f ∈ B∗, the topological dual of B. By
linearity, this is equivalent to the statement that f1(X), . . . , fn(X) are jointly centred normal
for every n ∈ N and fi ∈ B∗. In particular, if X is a B-valued centred Gaussian random
variable, then the map X : B∗ �→L2(�,
,Pr), defined by X( f )= f (X), is a centred Gaussian
process. If B = E has dimension d, X is centred Gaussian iff the coordinates of X in a basis
of E are jointly normal with mean zero (hence, the same is true for the coordinates of X in
any basis).

Now we turn to a very useful property of Gaussian processes X, namely, that the
supremum norm of a Gaussian process concentrates about its mean, as well as about its
median, with very high probability, in fact as if it were a real normal variable with variance
the largest variance of the individual variables X(t). This result is a consequence of an even
deeper result, the isoperimetric inequality for Gaussian measures, although it has simpler
direct proofs, particularly if one is allowed some latitude and does not aim at the best result.
Here is one such proof that uses the stability property in an elegant and simple way.

We should recall that a function f : V �→ R, where V is a metric space, is Lipschitz
with Lipschitz constant c = ‖ f ‖Lip if c := supx
=y | f (x)− f (y)|/d(x,y) <∞. Rademacher’s
theorem asserts that if f :Rn �→R is Lipschitz, then it is a.e. differentiable and the essential
supremum of the norm of its derivative is bounded by its Lipschitz constant ‖ f ‖Lip. We
remark that although we will use this result in the theorem that follows, it is not needed
for its application to a concentration of maxima of jointly normal variables because one can
compute by hand the derivative of the Lipschitz function x �→ maxi≤d |xi|, x ∈Rd.

Theorem 2.1.17 Let (B,‖ · ‖B) be a finite-dimensional Banach space, and let X be an
B-valued centred Gaussian random variable. Let f : B �→ R be a Lipschitz function. Let
� : R �→ R be a nonnegative, convex, measurable function. Then the following inequality
holds:

E[�( f (X)−E f (X))] ≤ E
[
�
(π

2
〈 f ′(X),Y〉

)]
, (2.1)

where Y is an independent copy of X (X and Y have the same probability law and are
independent), and 〈·, ·〉 denotes the duality action of B∗ on B.

Proof Since the range of X is a full subspace, we may assume without loss of generality
that B equals the range of X (i.e., the support of the law of X is B). This has the effect
that the law of X and Lebesgue measure on B are mutually absolutely continuous (as the
density of X is strictly positive on its supporting subspace). For θ ∈ [0,2π), define X(θ)=
Xsinθ + Ycosθ . Then X′(θ)= Xcosθ − Ysinθ , and notice that X(θ) and X′(θ) are (normal
and) independent: it suffices to check covariances, and if f ,g ∈ B∗, we have

E[ f (X(θ))g(X′(θ))] = E( f (X)g(X))sinθ cosθ −E( f (Y)g(Y))sinθ cosθ = 0.

In other words, the joint probability laws of X and Y and of X(θ) and X′(θ) coincide.
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Since for any increasing sequence θi∑
| f (X(θi))− f (X(θi−1))| ≤ ‖ f ‖Lip

∑
‖X(θi)−X(θi−1)‖

≤ ‖ f ‖Lip(‖X‖+‖Y‖)
∑

|θi − θi−1|,
it follows that the function θ �→ f (X(θ)) is absolutely continuous, and therefore, we have

f (X)− f (Y)= f (X(π/2))− f (X(0))=
∫ π/2

0

d

dθ
f (X(θ))dθ .

Using convexity of �, Fubini’s theorem and the preceding, we obtain

E�( f (X)−E f (X))= E�( f (X)−E f (Y))≤ E�( f (X)− f (Y))

= E�

(∫ π/2

0

d

dθ
f (X(θ))dθ

)
≤ 2

π
E
∫ π/2

0
�

(
π

2

d

dθ
f (X(θ))

)
dθ

= 2

π

∫ π/2

0
E�

(
π

2

d

dθ
f (X(θ))

)
dθ .

Now f is m a.e. differentiable with a bounded derivative by Rademacher’s theorem, where
m is Lebesgue measure on B, and since L(X(θ)) is absolutely continuous with respect to
Lebesgue measure for every θ ∈ [0,π/2) (X(θ) has the same support as X), f ′ exists a.s.
relative to the law of X(θ). Since X′(θ) exists for each θ , it follows from the chain rule that
given θ , d f (X(θ))/dθ = 〈 f ′(X(θ)),X′(θ)〉 a.s. Then, since L(X,Y) = L(X(θ),X′(θ)), we
have

E�

(
π

2

d

dθ
f (X(θ))

)
= E�

(π
2
〈 f ′(X),Y〉

)
,

which, combined with the preceding string of inequalities, proves the theorem.

Remark 2.1.18 It turns out, as we will see in the next section, that Lipschitz functions are
the natural tool for extracting concentration results from isoperimetric inequalities, on the
one hand, and on the other, as we will see now, the supremum norm of a vector in Rn is a
Lipschitz function, so concentration inequalities for Lipschitz functions include as particular
cases concentration inequalities for the supremum norm and for other norms as well.

Example 2.1.19 (Concentration for the maximum of a finite number of jointly normal
variables) To estimate the distribution of maxi≤n |gi| for a finite sequence g1, . . . ,gn of jointly
normal variables using the preceding theorem, we take B = �n

∞, which is Rn with the norm
f (x) = maxi≤n |xi|, where x = (x1, . . . ,xn), which we take as our function f , and we take
X = (g1, . . . ,gn). f is obviously Lipschitz, so the previous theorem will apply to it. We also
have that for each 1≤ i≤ n, f (x)= xi on the set {x : xi> |xj|,1≤ j≤ n, j 
= i} and f (x)=−xi

on {x : −xi > |xj|,1 ≤ j ≤ n, j 
= i}. It follows that m a.s. the gradient of f has all but one
coordinate equal to zero, and this coordinate is 1 or −1. If gi 
= ±gj for i 
= j, which we
can assume without loss of generality (by deleting repeated coordinates without changing
the maximum), then this also holds a.s. for the law of X. Let σ 2

i = Eg2
i and σ 2 = maxi≤nσ

2
i .

For almost every X = x fixed, 〈 f ′(x),Y〉 is ±gi for some i, that is, in law, the same as
σig, g standard normal. Therefore, if we assume that the function � is as in the preceding
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theorem and that, moreover, it is even and nondecreasing on [0,∞), then, letting EY denote
integration with respect to the variable Y only, the preceding observation implies that, X a.s.,

EY�
(π

2
〈 f ′(x),Y〉

)
≤ E�

(π
2
σg
)

.

We conclude that for any n ∈ N, if g1, . . . ,gn are jointly normal random variables and if
σ 2 = maxi≤n Eg2

i , then for any nonnegative, even, convex function � nondecreasing on
[0,∞),

E�

(
max
i≤n

|gi|−Emax
i≤n

|gi|
)
≤ E�

(π
2
σg
)

, (2.2)

where g denotes a standard normal random variable.
Now Eet|g| ≤ E(etg + e−tg)= 2et2/2. Thus, if �λ(x)= eλ|x|, we have

E�λ
(π

2
σg
)
≤ 2eλ

2π2σ 2/8

and, by (2.2) and Chebyshev’s inequality,

Pr

{∣∣∣∣max
i≤n

|gi|−Emax
i≤n

|gi|
∣∣∣∣> u

}
≤ 2e−λu+λ

2π2σ 2/8, u ≥ 0.

With λu/2 = λ2π2σ 2/8, that is, λ = 4u/(π2σ 2), this inequality gives the following
approximate concentration inequality about its mean for the maximum of any finite number
of normal random variables:

Pr

{∣∣∣∣max
i≤n

|gi|−Emax
i≤n

|gi|
∣∣∣∣> u

}
≤ 2e

− 1
π2

u2

2σ2 , u ≥ 0. (2.3)

The last inequality and the one in the next theorem are suboptimal: the factor 1/π2 in
the exponent is superfluous, as we will see in two of the sections that follow. We can
translate (2.2) and (2.3) into a concentration inequality for the supremum norm of a separable
Gaussian process (and draw as well some consequences).

Theorem 2.1.20 Let {X(t), t ∈ T} be a separable centred Gaussian process such that

Pr{sup
t∈T

|X(t)|<∞}> 0.

Let � be an even, convex, measurable function, nondecreasing on [0,∞). Let g be
N(0,1).Then,

a. σ = σ(X) := supt∈T

(
EX2(t)

)1/2
<∞ and Esupt∈T |X(t)|<∞ and

b. The following inequalities hold:

E�

(
sup
t∈T

|X(t)|−Esup
t∈T

|X(t)|
)
≤ E�

(π
2
σg
)

and

Pr

{∣∣∣∣sup
t∈T

|X(t)|−Esup
t∈T

|X(t)|
∣∣∣∣> u

}
≤ 2e−(Ku2/2σ 2),

where K = 1
π2 .

(As mentioned earlier, the optimal constant K in this theorem will be shown to be 1.)
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Proof By assumption and the 0-1 law (Theorem 2.1.13; see the example following
Corollary 2.1.14), supt∈T |X(t)|<∞ a.s. Let 0< z1/2 < 1 be such that Pr{|g|> z1/2} = 1/2,
and let M<∞ be such that Pr

{
supt∈T |X(t)|>M

}
< 1/2. Then, for each t,

1/2> Pr{|X(t)|>M} = Pr{|g|>M/(EX(t)2)1/2},
which implies that σ = supt∈T(EX2(t))1/2 ≤ M/z1/2 <∞.

Let T0 = {ti}n
i=1 be a countable set such that supt∈T |X(t)| = supt∈T0

|X(t)|. For every n ∈N,
we have, by inequality (2.3),

Pr

{∣∣∣∣max
i≤n

|X(ti)|−Emax
i≤n

|X(ti)|
∣∣∣∣> σu

}
≤ 2e−u2/2π2

.

Since supt∈T |X(t)|<∞ a.s., this variable has a finite median m, and also for all n,

Pr

{
max
i≤n

|X(ti)| ≤ m

}
≥ 1

2
.

If u0 is such that 2e−u2
0/2π

2
< 1/2, these two inequalities imply that for all n ∈ N, the

intersection of the two sets
{
x :
∣∣Emaxi≤n |X(ti)|− x

∣∣≤ σu0

}
and {x : x ≤ m} is not empty

and hence that Emaxi≤n |X(ti)| ≤ m+σu0 <∞. a) is proved.
We have supt∈T |X(t)| = limn→∞ maxi≤n |X(ti)| a.s. and, by monotone convergence, also

in L1(Pr). Hence, the first inequality in (b) follows by inequality (2.2), continuity of � and
Fatou’s lemma. The second inequality follows from the first by Chebyshev’s inequality in
the same way as (2.3) follows from (2.2).

Exercises

In Exercises 2.1 to 2.4 we write ‖X‖ for supt∈T |X(t)|, and X denotes a separable, centred Gaussian
process such that Pr

{
supt∈T |X(t)|<∞}

> 0. Also, for any random variable ξ , ‖ξ‖p will denote its
Lp-norm.

2.1.1 Prove that there exists α > 0 such that Eeα‖X‖2
<∞.

2.1.2 Use results from this section to show that for all p ≥ 1,

(E‖X‖p)1/p ≤ K
√

pE‖X‖
for a universal constant K<∞. Hint: Integrating the exponential inequality in Theorem 2.1.20
with respect to ptp−1dt yields ‖‖X‖ − E‖X‖‖p ≤ cσ‖g‖p, where g is standard normal and c a
universal constant. Check that ‖g‖p is of the order of

√
p.

2.1.3 Prove that the median m of ‖X‖, satisfies KE‖X‖ ≤ m ≤ 2E‖X‖ for a universal constant K> 0.
Hint: The second inequality is obvious, and the first is contained in the proof of Theorem 2.1.20.

2.1.4 Prove that if Xn are separable, centred Gaussian processes such that Pr{‖Xn(t)‖<∞}> 0, then
‖Xn‖ → 0 in pr. iff ‖Xn‖ → 0 in Lp for some p ≥ 1 iff ‖Xn‖ → 0 in Lp for all p ≥ 1. Hint: Lp

convergences for different p are equivalent by Exercise 2.1.2, and the equivalence extends to
convergence in probability by Exercise 2.1.2 and the Paley-Zygmund argument as follows: for
any 0< τ < 1,

E‖X‖ ≤ τE‖X‖+E(‖X‖I‖X‖>τE‖X‖)≤ τE‖X‖+ (
E‖X‖2

)1/2
(Pr{‖X‖> τE‖X‖})1/2 ,

so

Pr{‖X‖> τE‖X‖} ≥
[
(1− τ)E‖X‖(

E‖X‖2
)1/2

]2

≥ K(1− τ)2
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for a universal constant K. Thus, if ‖Xn‖→ 0 in probability, then E‖Xn‖→ 0.
2.1.5 Let B be a separable Banach space, and let X be a B-valued Gaussian (centred) random variable.

Show that the previous theorems apply to ‖X‖ where now ‖ · ‖ is the Banach space norm. Hint:
Use Example 2.1.6.

2.1.6 Prove Proposition 2.1.4. Hint: Recall that a subset of a complete separable metric space S is
compact if and only if it is closed and totally bounded. Given ε > 0, by separability, for each n
there exists a finite collection {Fn,k}kn

k=1 of closed sets of diameter not exceeding n−1 and such

that μ
(
∪kn

k=1Fn,k

)c
< ε/2n. The set K =∩∞

n=1 ∪kn
k=1 Fn,k is compact and satisfies μ(Kc) < ε.

2.2 Isoperimetric Inequalities with Applications to Concentration

The Gaussian isoperimetric inequality, in its simplest form, identifies the half-spaces as the
sets of Rn with the smallest Gaussian perimeter among those with a fixed Gaussian measure,
where the Gaussian measure in question is the standard one, that is, the probability law of n
independent standard normal random variables, and where the Gaussian perimeter of a set
is taken as the limit of the measure of the difference of an ε-enlargement of the set and the
set itself divided by ε. The proof of this theorem was obtained originally by translating the
isoperimetric inequality on the sphere to the Gaussian setting by means of Poincaré’s lemma,
which states that the limiting distribution of the orthogonal projection onto a Euclidean
space of fixed dimension n of the uniform distribution on the sphere of Rm+1 with radius√

m is the standard Gaussian measure of Rn. The isoperimetric inequality on the sphere is
a deep result that goes back to P. Lévy and E. Schmidt, ca. 1950 (although the equivalent
isoperimetric problem on the plane goes back to the Greeks–recall, for instance, ‘Dido’s
problem’). The Gaussian isoperimetric inequality does imply best possible concentration
inequalities for Lipschitz functions on Rn and for functions on RN that are Lipschitz ‘in
the direction of �2’, although concentration inequalities have easier proofs, as seen in the
preceding section and as will be seen again in further sections. The Gaussian isoperimetric
inequality in general Banach spaces requires the notion of reproducing kernel Hilbert space
and will be developed in a further section as well. This section contains proofs as short as
we could find of the isoperimetric inequalities on the sphere and for the standard Gaussian
measure on Rn, n≤∞, with applications to obtain the best possible concentration inequality
with respect to the standard Gaussian measure for Lipschitz functions f about their medians
and for the supremum norm of a separable Gaussian process X when supt∈T |X(t)|<∞ a.s.

2.2.1 The Isoperimetric Inequality on the Sphere

Let Sn =
{
x ∈Rn+1 : ‖x‖2 =∑n+1

i=1 x2
i = 1

}
, where x = (x1, . . . ,xn+1); let p be an arbitrary

point in Sn that we take to be the north pole, p = (0, . . . ,0,1); and let μ be the uniform
probability distribution on Sn (equal to the normalized volume element – surface area for S2

– equal also to the normalized Haar measure of the rotation group). Let d be the geodesic
distance on Sn, defined, for any two points, as the length of the shortest segment of the great
circle joining them.

A closed cap centred at a point x∈ Sn is a geodesic closed ball around x, that is, a set of the
form C(x,ρ) := {y : d(x,y)≤ ρ}. Here ρ is the radius of the cap, and clearly, the μ-measure
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of a cap is a continuous function of its radius, varying between 0 and 1. Often we will not
specify the centre or the radius of C = C(x,ρ), particularly if the centre is the north pole.

The isoperimetric inequality on the sphere states that the caps are the sets of shortest
perimeter among all the measurable sets of a given surface area. What we will need is an
equivalent formulation, in terms of neighbourhoods of sets, defined as follows: the closed
ε neighbourhood of a set A is defined as Aε = {x : d(x,A) ≤ ε}, with the distance between
a point and a set being defined, as usual, by d(x,A) = inf{d(x,y) : y ∈ A}. The question is:
among all measurable subsets of the sphere with surface area equal to the surface area of A,
find sets B for which the surface areas of their neighbourhoods Bε, 0< ε < 1, are smallest.
The following theorem shows that an answer are the caps (they are in fact the answer, but
uniqueness will not be considered: we are only interested in the value of infμ(Aε), ε > 0).

Theorem 2.2.1 Let A 
= ∅ be a measurable subset of Sn, and let C be a cap such that
μ(C)= μ(A). Then, for all ε > 0,

μ(Cε)≤ μ(Aε). (2.4)

The proof is relatively long, and some prior digression may help. The idea is to construct
transformations A �→ A∗ on measurable subsets of the sphere that preserve area, that is,
μ(A)=μ(A∗), and decrease perimeter, a condition implied byμ((A∗)ε)≤μ(Aε)=μ((Aε)∗),
ε > 0, because the perimeter of A is the limit as ε → 0 of μ(Aε \ A)/ε. Then iterating
transformations that satisfy these two properties should eventually produce the solution, in
our case a cap. Or, more directly, one may obtain a cap using a more synthetic compactness
argument instead of iteration. In the sense that A∗ concentrates the same area as A on a
smaller perimeter, A∗ is closer to the solution of the problem than A is. A∗ is called a
symmetrisation of A.

Proof If μ(A) = 0, then C consists of a single point, and (2.4) holds. Next, we observe
that by regularity of the measure μ, it suffices to prove the theorem for A compact. By
regularity, there exist Am compact, Am ⊂ A, Am increasing and such that μ(Am)↗ μ(A). Let
Cm be caps with the same centre as C and with μ(Cm)= μ(Am). Since the measure of a cap
is a continuous one-to-one function of its geodesic radius, we also have μ(Cm

ε )↗ μ(Cε),
and if the theorem holds for compact sets, then

μ(Aε)≥ limμ(Am
ε )≥ limμ(Cm

ε )= μ(Cε),
and the theorem holds in general. Thus, we will assume that A is compact and that μ(A) 
= 0.
We divide the proof into several parts.

Part 1: Construction and main properties of the symmetrisation operation. Given an
n-dimensional subspace H ⊂ Rn+1 that does not contain the point p, let σ = σH be the
reflection about H; that is, if x = u + v with u ∈ H and v orthogonal to H, then σ(x) =
u − v. Clearly, σ is an isometry (so it preserves μ-measure), and it is involutive; that is,
σ 2 = σ . It also satisfies a property that, together with the preceding two, is crucial for the
symmetrisation operation to work, namely, that if x and y are on the same half-space with
respect to H, then

d(x,y)≤ d(x,σ(y)). (2.5)
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To see this, observe that the geodesic distance is an increasing function of the Euclidean
distance, so it suffices to prove (2.5) for the Euclidean distance. Changing orthogonal
coordinates if necessary, we may and do assume that H={x : xn+1 = 0}, so if x and y are in the
same hemisphere, then sign(xn+1)= sign(yn+1), which implies that the (n+ 1)th coordinate
of x− y is dominated in absolute value by the (n+ 1)th coordinate of x−σ(y), whereas the
first n coordinates of these two vectors coincide. Hence,

∑n+1
i=1 (xi−yi)

2 ≤∑n+1
i=1 (xi−σ(y)i)2.

H divides Sn into two open hemispheres, and we denote by S+ the open hemisphere that
contains p, S− the other hemisphere, and S0 = Sn ∩H. The symmetrisation of A with respect
to σ = σH, sH(A)= A∗ is defined as

sH(A)= A∗ := [A∩ (S+ ∪ S0)]∪{a ∈ A∩ S− : σ(a) ∈ A} ∪ {σ(a) : a ∈ A∩ S−,σ(a) 
∈ A} .
(2.6)

Note that A∗ is obtained from A by reflecting towards the northern hemisphere every
a ∈ A ∩ S− for which σ(A) is not already in A. It is easy to see (Exercise 2.2.1) that
if A is compact, then so is A∗ and that if C is a cap with centre at p or at any other
point in the northern hemisphere, then C∗ = C. Next, observe that the three sets in the
definition are disjoint and that, σ being an isometry, the measure of the third set equals
μ{a ∈ A∩ S− : σ(a) 
∈ A}, which implies that

μ(A∗)= μ(A), A ∈ B(Sn+1). (2.7)

This is one of the two properties of the symmetrisation operation that we need.
We now show that the ε-neighbourhoods of A∗ are less massive than those of A (thus

making A∗ ‘closer’ to being a cap than A is), actually, we prove more, namely, that for all
A ∈ B(Sn) and ε > 0, then

(A∗)ε ⊆ (Aε)∗, hence μ((A∗)ε)≤μ((Aε)∗)= μ(Aε). (2.8)

To see this, let x ∈ (A∗)ε and let y ∈ A∗ be such that d(x,y) ≤ ε (such a y ∈ A∗ exists by
compactness). Then, using (2.5) and that σ is an involutive isometry, we obtain, when x and
y lay on different half-spaces,

d(σ (x),y)= d(x,σ(y))≤ d(σ (x),σ(y))= d(x,y)≤ ε.
Thus, since y ∈ A∗ implies that either y ∈ A or σ(y) ∈ A, in either case we have that both
x∈Aε and σ(x)∈Aε; hence, x∈ (Aε)∗. If x and y are in S−, then y and σ(y) are both in A, and
therefore, by the last identity earlier, x ∈ Aε and σ(x) ∈ Aε; hence, x ∈ (Aε)∗ in this case as
well. If x and y are in S+, then either y or σ(y) is in A; hence, either x or σ(x) is in Aε, which
together with x ∈ S+ implies that x ∈ (Aε)∗. The cases where x and/or y are in S0 are similar,
even easier, and they are omitted. The inclusion in (2.8) is proved, and the inequality there
follows from the inclusion and from (2.7).

Part 2: Preparation for the compactness argument. Let (K,h) denote the set of nonempty
compact subsets of Sn equipped with the Hausdorff distance, defined as h(A,B) = inf{ε :
A ⊆ Bε, B ⊆ Aε}, A,B ∈ K. (K,h) is a compact metric space (Exercise 2.2.2). Given a
compact nonempty set A ⊆ Sn, let A be the minimal closed subset of K that contains A
and is preserved by sH for all n-dimensional subspaces H of Rn+1 that do not contain the
north pole p (meaning that if A ∈K, then sH(A) ∈K for all H with p 
∈ H). A exists and is
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nonempty because K is a closed {sH}-invariant collection of sets that contains A. Also note
that since (K,h) is compact and A closed, A is compact. We have

Claim: If B ∈A, then (a) μ(B)= μ(A), and (b) for all ε > 0, μ(Bε)≤ μ(Aε).
Proof of the claim. It suffices to show that the collection of closed sets F satisfying a) and
b) is preserved by sH for all H not containing p and is a closed subset of K because then
A⊆F follows by minimality of A. That sH(F)⊆F follows from (2.7) and (2.8). Let now
Bn ∈F and h(Bn,B)→ 0. Let ε > 0 be fixed. Given δ > 0, there exists nδ such that B ⊆ Bn

δ

for all n≥ nδ; hence, Bε ⊆Bn
δ+ε and μ(Bε)≤μ(Bn

δ+ε)≤μ(Aδ+ε). Letting δ↘ 0 shows that B
satisfies condition (b). Letting ε↘ 0 in condition (b) for B shows that μ(B)≤ μ(A). Using
that for all n large enough we also have Bn ⊆ Bδ, we get that μ(A) = μ(Bn) ≤ μ(Bδ) and,
letting δ↘ 0, that μ(A)≤μ(B), proving condition (a). The claim is proved.

Part 3: Completion of the proof of Theorem 2.2.1. Clearly, because of the claim about A, it
suffices to show that if C is the cap centred at p such that μ(A)=μ(C), then C ∈A.

Define f (B)= μ(B∩C), B ∈A. We show first that f is upper semicontinuous on A. If
h(Bn,B)→ 0, then, given δ > 0, for all n large enough, Bn ⊆ Bδ, which, as is easy to see,
implies that Bn ∩C ⊆ (B∩Cδ)δ. Hence, limsupnμ(B

n ∩C) ≤ μ((B∩Cδ)δ), but because B
and C are closed, if δn ↘ 0, then ∩n(B∩Cδn)δn = B∩C, thus obtaining limsupnμ(B

n ∩C)≤
μ(B∩C).

Since f is upper semicontinuous on A and A is compact, f attains its maximum at some
B ∈ A. The theorem will be proved if we show that C ⊆ B. Assume that C 
⊂ B. Then,
since μ(C) = μ(A) = μ(B) and both C and B are closed, we have that both B \ C and
C\B have positive μ-measure. Thus, the Lebesgue density theorem, which holds on Sn (see
Exercise 2.2.3 for definitions and a sketch of the proof), implies that there exist points of
density x ∈ B \ C and y ∈ C \ B. Let H be the subspace of dimension n orthogonal to the
vector x− y, and let us keep the shorthand notation σ for the reflection with respect to H,
D∗ for sH(D), S+, S− for the two hemispheres determined by H, and S0 for Sn ∩H. Then
σ(y)= x. Since y ∈ C and x 
∈ C, we have both, that p is not in H (the reflection of a point
in C with respect to a hyperplane through p is necessarily in C) and that y is closer to p than
x is; that is, d(y,p) ≤ d(x,p) = d(σH(y),p). Then it follows from this last obsesrvation and
(2.5) that y ∈ S+ and x ∈ S−.

Let x ∈ (B∩C)∗. Then, if x ∈ B∩C∩ (S+ ∪ S0) or if x ∈ B∩C∩ S− and σ(x) ∈ B∩C, we
obviously have x∈B∗ ∩C. Now, if z∈C∩S−, then σ(z)∈C (as σ(z) is closer to p than z is);
hence, if x = σ(z) with z ∈ B∩C∩ S− and σ(z) 
∈ B∩C, then σ(z) is not in B and therefore
x ∈ B∗ ∩C. We conclude that (B∩C)∗ ⊆ B∗ ∩C and, in particular, that

μ(B∩C)=μ((B∩C)∗)≤ μ(B∗ ∩C). (2.9)

By definition of density point, for δ > 0 small enough, C(x,δ)⊂ S−, σ(C(x,δ))= C(y,δ)⊂
S+, μ((B \C)∩C(x,δ)) ≥ 2μ(C(x,δ))/3, and μ((C \ B)∩C(y,δ)) ≥ 2μ(C(y,δ))/3. Then
the set

D = ((B \C)∩C(x,δ))∩σ((C \B)∩C(y,δ))

satisfies

μ(D)≥ μ(C(x,δ))/3> 0, D ⊂ (B \C)∩ S− and σ(D)⊂ C \B. (2.10)
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The inclusions in (2.10) imply that σ(D)⊂ B∗ ∩C and σ(D)∩ (B∩C)∗ = ∅ (as z ∈ (B∩C)∗

implies either z ∈ B∩C or σ(z) ∈ B∩C). This together with (2.9) and μ(D) > 0 proves

μ(B∗ ∩C)≥μ((B∩C)∗ ∪σ(D))=μ((B∩C)∗)+μ(D) > μ((B∩C)∗),

which, because B∗ ∈A, contradicts the fact that f attains it maximum at B.

2.2.2 The Gaussian Isoperimetric Inequality for the Standard
Gaussian Measure on RN

In this subsection we translate the isoperimetric inequality on the sphere to an isoperimetric
inequality for the probability law γn of n independent N(0,1) random variables by means
of Poincaré’s lemma, which states that this measure can be obtained as the limit of the
projection of the uniform distribution on

√
mSn+m onto Rn when m → ∞. We also let

n →∞.
In what follows, gi, i ∈ N, is a sequence of independent N(0,1) random variables, and

as mentioned earlier, γn = L(g1, . . . ,gn). We call γn the standard Gaussian measure on Rn.
We also set γ = L({gi}∞i=1), the law of the process i �→ gi, i ∈ N, a probability measure on
the cylindrical σ -algebra C of RN, which we also refer to as the standard Gaussian measure
on RN.

Here is the Gaussian isoperimetric problem: for a measurable subset A of Rn, and ε > 0,
define its Euclidean neighbourhoods Aε as Aε := {x ∈ Rn : d(x,A)≤ ε} = A+ εOn, where d
denotes Euclidean distance and On is the closed d-unit ball centred at 0 ∈ Rn. The problem
is this: given a Borel set A, find among the Borel sets B⊂Rn with the same γn-measure as A
those for which the γn-mesure of the neighbourhood Bε is smallest, for all 0< ε < 1/2. The
solution will be shown to be the affine half-space ({x : 〈x,u〉 ≤ λ}, u any unit vector, λ ∈ R)
of the same measure as A. Note that γn{x : 〈x,u〉 ≤ λ} = γ1{x ≤ λ}.

Prior to stating and proving the main results, we describe the relationship between the
uniform distribution on the sphere of increasing radius and dimension and the standard
Gaussian measure on Rn.

Lemma 2.2.2 (Poincaré’s lemma) Let μn+m be the uniform distribution on
√

mSn+m, the
sphere of Rn+m+1 of radius

√
m and centred at the origin. Let πm be the orthogonal

projection Rn+m+1 �→ Rn = {x ∈ Rn+m+1 : xi = 0,n < i ≤ n + m + 1}, and let π̃m be the
restriction of πm to

√
mSn+m. Let νm = μn+m ◦ π̃−1

m be the projection onto Rn of μn+m. Then
νm has a density fm such that if φn is the density of γn, limm→∞ fm(x)= φn(x) for all x ∈Rn.
Therefore,

γn(A)= lim
m→∞μn+m(π̃

−1
m (A)) (2.11)

for all Borel sets A of Rn.

Proof Set Gn := (g1, . . . ,gn) and Gn+m+1 := (g1, . . . ,gn+m+1). The rotational invariance
of the standard Gaussian law on Euclidean space implies that μn+m is the law of the
vector

√
mGn+m+1/|Gn+m+1|1/2. Hence, νm is the law of

√
mGn/|Gn+m+1|1/2. This allows

for computations with normal densities that we only sketch. For any measurable set
A of Rn,

νm(A)= 1

(2π)(n+m+1)/2

∫
Rm+1

∫
Ã(y)

e−(|z|
2+|y|2)/2dzdy
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where z ∈ Rn and y ∈ Rm+1, and Ã =
{
z ∈Rn :

√
m/(|z|2 +|y|2) z ∈ A

}
. Make the change

of variables z �→ x, x =√
m/(|z|2 +|y|2) z or z = |y|x/√m−|x|2, |x| ≤ √

m. Its Jacobian is
∂(z)/∂(x)= m|y|n/(m−|x|2)1+n/2, thus obtaining

νm(A)= 1

(2π)(n+m+1)/2

∫
A

I(|x|2 <m)
m

(m−|x|2)n/2+1

∫
Rm+1

|y|n exp

(
−1

2

m|y|2
m−|x|2

)
dydx

= E(|Gm+1|n)
mn/2

1

(2π)n/2

∫
A

(
1− |x|2

m

)(m−1)/2

I(|x|2 <m)dx.

Hence, the density of νm is fm(x) = Cn,m(2π)−n/2(1 − |x|2/m)(m−1)/2I(|x|2 < m), x ∈ Rn.
Clearly, (2π)−n/2(1 − |x|2/m)(m−1)/2I(|x|2 < m)→ (2π)−n/2e−|x|2/2 for all x as m → ∞.
Moreover, since for 0 ≤ a < m and m ≥ 2 we have 1 − a/m ≤ e−a/2(m−1), it follows that
(1− |x|2/m)(m−1)/2I(|x|2 < m) is dominated by the integrable function e−|x|2/4. Thus, by the
dominated convergence theorem, fm(x)/Cn,m → (2π)−n/2e−|x|2/2 in L1, which implies that
C−1

n,m → 1, proving the lemma. (Alternatively, just show that Cn,m = E(|Gm+1|n)/mn/2 → 1 as
m →∞ by taking limits on well-known expressions for the moments of chi-square random
variables.) Now the limit (2.11) for any Borel set follows by dominated convergence.

Theorem 2.2.3 For n <∞, let γn be the standard Gaussian measure of Rn, let A be a
measurable subset of Rn, and let H be a half-space H= {x ∈Rn : 〈x,u〉 ≤ a}, u a unit vector,
such that γn(H) = γn(A) and hence with a := �−1(γn(A)), where � denotes the standard
normal distribution function. Then, for all ε > 0,

γn(H+ εOn)≤ γn(A+ εOn), (2.12)

which, by the definition of a, is equivalent to

γn(A+ εOn)≥�(�−1(γn(A))+ ε). (2.13)

Proof First, we check the behaviour of distances under π̃m. If dn+m denotes the geodesic
distance of

√
mSn+m, it is clear that the projection π̃m is a contraction from the sphere

onto Rn; that is, |π̃m(x)− π̃m(y)| ≤ dn+m(x,y) for any x,y ∈ √
mSn+m. Moreover, if in the

half-space Hb := {x∈Rn : 〈x,u〉 ≤ b}, we have −√
m< b<

√
m; then its pre-image π̃−1(Hb)

is a nonempty cap, and for 0< ε <
√

m− b, we have (π̃−1(Hb))ε = π̃−1(Hb + τ(b,ε)On)=
π̃−1(Hb+τ(b,ε)), where

b+ τ =√
mcos

(
cos−1 b√

m
± ε√

m

)
,

which, taking limits in the addition formula for the cosine, immediately gives
limm→∞ τ(b,ε)= ε.

Let now b< a=�−1(γn(A)) so that Hb ={x : 〈x,u〉≤ b}⊂H. Then, by Poincaré’s lemma,

lim
m
μn+m(π̃

−1
m (A))= γn(A) > γn(Hb)= lim

m
μn+m(π̃

−1
m (Hb)),

so for all m large enough, we have both b ∈ (−√
m,

√
m), such that π−1

m (Hb) is a nonempty
cap in the sphere, and μn+m(π̃

−1
m (A)) ≥ μn+m(π̃

−1
m (Hb)). Then the isoperimetric inequality

for μn+m (Theorem 2.2.1) yields that for each ε > 0, b+ ε <√
m, for all m large enough,

μn+m

(
(π̃−1

m (A))ε
)
≥ μn+m

(
(π−1

m (Hb))ε
)= μn+m

(
π−1

m (Hb+τ(b,ε))
)
,
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so by Poincaré’s lemma again,

γn(A+ εOn)≥ limsup
m

μn+m

(
(π̃−1

m (A))ε
)
≥ limsup

m
μn+m

(
(π̃−1

m (Hb+τ(b,ε))
)
= γn(Hb+ε).

Since this holds for all b< a, it also holds with b replaced by a.

Theorem 2.2.3 extends to infinite dimensions, as will be shown in Theorem 2.6.12. An
extension to the standard Gaussian measure on RN, that is, for the law γ of a sequence of
independent standard normal random variables, can be obtained directly. Before stating the
theorem, it is convenient to make some topological and measure-theoretic considerations.
The distance ρ(x,y) =∑∞

k=1 min(|xk − yk|,1)/2k metrises the product topology of RN, and
(RN,ρ) is a separable and complete metric space, as is easy to see. That is, RN is a Polish
space (a topological space that admits a metric for which it is separable and complete).
Then the cylindrical σ -algebra C coincides with the Borel σ -algebra of RN, and any finite
cylindrical (hence Borel) measure is tight (Radon). The product space RN×�2 is also Polish,
and for each t∈R, the map ft :RN×�2 �→RN, ft(x,y)= x+ ty is continuous. Then the image
of ft is universally measurable, that is, measurable for any Radon measure, in particular, in
our case, measurable for any finite measure on the cylindrical σ -algebra C of RN. See, for
example, theorem 13.2.6 in section 13.2 in Dudley (2002).

Theorem 2.2.4 Let A be a Borel set of RN (i.e., A ∈ C), and let γ be the probability law
of (gi : i ∈ N), gi independent standard normal. Let O denote the unit ball about zero of
�2 ⊂RN, O = {x ∈RN :

∑
i x

2
i ≤ 1}. Then, for all ε > 0,

γ (A+ εO)≥�(�−1(γ (A))+ ε). (2.14)

The proof is indicated in Exercises 2.2.5 through 2.2.7.

2.2.3 Application to Gaussian Concentration

We would like to translate the isoperimetric inequality in Theorem 2.2.4 into a concentration
inequality for functions of {gi}n

i=1 about their medians, that is, into a bound for γ {| f (x)−
M| > ε} for all ε > 0. The following definition describes the functions for which such a
translation is almost obvious.

Definition 2.2.5 A function f : RN �→ R is Lipschitz in the direction of �2, or �2-Lipschitz
for short, if it is measurable and if

‖ f ‖Lip2 := sup

{ | f (x)− f (y)|
|x− y| : x,y ∈RN,x 
= y,x− y ∈ �2

}
<∞,

where |x− y| is the �2 norm of x− y.

For a measurable function f on RN, we denote by M f the median of f with respect to the
Gaussian measure γ , defined as M f = inf{t : γ {x : f (x)≤ t}> 1/2}. Then γ ( f ≤M f )≥ 1/2
and γ ( f ≥ M f )≥ 1/2, and M is the largest number satisfying these two inequalities.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.003
http:/www.cambridge.org/core


2.2 Isoperimetric Inequalities with Applications to Concentration 33

Theorem 2.2.6 If f is an �2-Lipschitz function on RN, and if M f is its median with respect
to γ , then

γ {x : f (x)≥ M f + ε} ≤ (1−�(ε/‖ f ‖Lip2)),

γ {x : f (x)≤ M f − ε} ≤ (1−�(ε/‖ f ‖Lip2)), (2.15)

in particular

γ {x : | f (x)−M f | ≥ ε} ≤ 2(1−�(ε/‖ f ‖Lip2))≤ e−ε
2/2‖ f ‖Lip2 , (2.16)

for all ε > 0.

Proof Let A+ = {x ∈ RN : f (x) ≥ M f } and A− = {x ∈ RN : f (x) ≤ M f }. Then γ (A+) ≥
1/2, γ (A−) ≥ 1/2. Moreover, if x ∈ A+ + εO, then there exists h ∈ O such that x − εh ∈
A+; hence, f (x − εh) ≥ M f and f (x)+ ε‖ f ‖Lip2 ≥ f (x − εh) ≥ M f ; that is, A+ + εO ⊂{
x : f (x)≥ M f − ε‖ f ‖Lip2

}
. Then the Gaussian isoperimetric inequality (2.14) for A = A+

gives (recall �−1(1/2)= 0)

γ { f <M f − ε‖ f ‖Lip2} ≤ 1− γ (A+ + εO)≤ 1−�(ε),
which is the second inequality in (2.15). Likewise, A− + εO ⊂ {

x : f (x)≤ M f + ε‖ f ‖Lip2

}
,

and the isoperimetric inequality applied to A+ gives the first inequality in (2.15). Finally,
(2.16) follows by combination of the previous two inequalities and a known bound for the
tail probabilities of a normal variable (Exercise 2.2.8).

Let now X(t), t ∈ T, be a separable centred Gaussian process such that Pr{supt∈T |X(t)|<
∞} > 0. Then supt∈T |X(t)| = supt∈T0

|X(t)| < ∞ a.s., where T0 = {tk}∞k=1 is a countable
subset of T (see Example 2.1.15). Ortho-normalizing (in L2(Pr)), the jointly normal sequence
{X(tk)} yields X(tk) =∑k

i=1 akigi, where gi are independent standard normal variables, and∑k
i=1 a2

ki = EX2(tk). Then the probability law of the process X(tk), k ∈ N, coincides with
the law of the random variable defined on the probability space (RN,C,γ ), X : RN �→ R,
X̃(tk,x) = ∑k

i=1 akixi. This is so because the coordinates of RN, considered as random
variables on the probability space (RN,C,γ ), are i.i.d. N(0,1). Now define a function
f : RN �→R by

f (x)= sup
k

∣∣∣∣∣
k∑

i=1

akixi

∣∣∣∣∣ .
The probability law of f under γ is the same as the law of supt∈T0

|X(t)|, which, in turn, is the
same as the law of supt∈T |X(t)|. Moreover, if h ∈O, the unit ball of �2, by Cauchy-Schwarz,

| f (x+ h)− f (x)|2 = sup
k

∣∣∣∣∣
k∑

i=1

akihi

∣∣∣∣∣
2

≤ sup
k

[
k∑

i=1

a2
ki

k∑
i=1

h2
i

]
≤ sup

k

k∑
i=1

a2
ki = sup

k
EX2(tk).

Therefore,
‖ f ‖Lip2 ≤ σ 2(X), where σ 2 = σ 2(X) := sup

t∈T
EX2(t).

Recall from an argument at the beginning of the proof of Theorem 2.1.20 that for the
processes X we are considering here, σ 2 <∞ and the median M<∞. Then Theorem 2.2.6
applies to the function f and gives the following concentration inequality:
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34 Gaussian Processes

Theorem 2.2.7 (The Borell-Sudakov-Tsirelson concentration inequality for Gaus-
sian processes) Let X(t), t ∈ T, be a centred separable Gaussian process such that
Pr{supt∈T |X(t)| <∞} > 0, and let M be the median of supt∈T |X(t)| and σ 2 the supremum
of the variances EX2(t). Then, for all u> 0,

Pr

{
sup
t∈T

|X(t)|>M+ u

}
≤ 1−�(u/σ), Pr

{
sup
t∈T

|X(t)|<M− u

}
≤ 1−�(u/σ), (2.17)

and hence,

Pr

{∣∣∣∣sup
t∈T

|X(t)|−M

∣∣∣∣> u

}
≤ 2(1−�(u/σ))≤ e−u2/2σ 2

. (2.18)

Inequality (2.18) is also true with the median M of supt∈T |X(t)| replaced by the
expectation E

(
supt∈T |X(t)|

)
, as we will see in Section 2.5 as a consequence of the Gaussian

logarithmic Sobolev inequality (other proofs are possible; see Section 2.1 for a simple proof
of a weaker version). But such a result, in its sharpest form, does not seem to be obtainable
from (2.18). However, notice that if we integrate in (2.18) and let g be a N(0,1) random
variable, we obtain∣∣∣∣Esup

t∈T
|X(t)|−M

∣∣∣∣≤ E

∣∣∣∣sup
t∈T

|X(t)|−M

∣∣∣∣≤ σE|g| =√
2/π σ , (2.19)

an inequality which is interesting in its own right and which gives, by combining with the
same (2.18),

Pr

{∣∣∣∣sup
t∈T

|X(t)|−Esup
t∈T

|X(t)|
∣∣∣∣> u+√

2/πσ

}
≤ e−u2/2σ 2

, (2.20)

which is of the right order for large values of u.
Theorem 2.2.7, or even (2.20), expresses the remarkable fact that the supremum of a

Gaussian process X(t), centred at its mean or at its median, has tail probabilities not worse
than those of a normal variable with the largest of the variances EX2(t), t∈ T. In particular, if
we knew the size of Esupt∈T |X(t)|, we would have a very exact knowledge of the distribution
of supt∈T |X(t)|. This will be the object of the next two sections.

We complete this section with simple applications of Theorem 2.2.7 to integrability and
moments of the supremum of a Gaussian processes.

Corollary 2.2.8 Let X(t), t ∈ T, be a Gaussian process as in Theorem 2.2.7. Let M and σ
also be as in this theorem, and write ‖X‖ := supt∈T |X(t)| to ease notation. Then there exists
K <∞ such that with the same hypothesis and notation as in the preceding corollary, for
all p ≥ 1,

(E‖X‖p)1/p ≤ 2E‖X‖+ (E|g|p)1/pσ ≤ K
√

pE‖X‖
for some absolute constant K.

Proof Just integrate inequality (2.18) with respect to ptp−1dt and then use that M≤ 2E‖X‖
(by Chebyshev) and that σ ≤√

π/2supt∈T E|X(t)|. See Exercise 2.1.2.
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Corollary 2.2.9 Let X(t), t ∈ T, be a Gaussian process as in Theorem 2.2.7, and let ‖X‖, M
and σ be as in Corollary 2.2.8. Then

lim
u→∞

1

u2
logPr{‖X‖> u} = − 1

2σ 2

and

Eeλ‖X‖2
<∞ if and only if λ <

1

2σ 2
.

Proof The first limit follows from the facts that the first inequality in (2.17) can be
rewritten as

1

(u−M)2
logPr{‖X‖> u} ≤ − 1

σ 2

and that Pr{‖X‖ > u} ≥ Pr{|X(t)| > u} for all t ∈ T (as, for a N(0,1) variable g, we do
have u−2 logPr{|g| > u/a} → −1/2a2, e.g., by l’Hôpital’s rule). For the second statement,

just apply the first limit to Eeλ‖X‖ = 1+ ∫∞
0

∫ λ‖X‖2

0 evdv dL(‖X‖)(u) = 1+ ∫∞
0 ev Pr{‖X‖ >√

v/λ}dv.

Exercises

2.2.1 Prove that if A is closed, so is sH(A) for any subspace H of dimension n. Hint: Conveniently
enlarge some of the components in the definition of sH(A) to make them compact and still
keep the same union.

2.2.2 Prove that (K,h), the space of nonempty compact subsets of Sn with the Hausdorff distance,
is a compact metric space. Hint: Show that the map K �→ C(Sn), A �→ d(·,A), is an isometry
between (K,h) and its image in (C(Sn),‖ · ‖∞) and that this image is compact in C(Sn) (note
that x �→ d(x,A) is bounded and Lipschitz or see Beers (1993)).

2.2.3 Show that the Lebesgue density theorem holds in Sn for the uniform measure; that is, show that
if μ(E) > 0, then μ-almost all points of E satisfy limρ→0 [μ(E∩C(x,ρ))]/[μ(C(x,ρ))] = 1.
Hint: First adapt the usual proof of the Vitali covering theorem to the sphere, using that Ln<∞
such that any cap of radius 2ρ can be covered by Ln caps of radius ρ. Then use the Vitali
covering theorem to show that if for each 0 < α < 1, Aα is the set of those points in E for
which liminfρ→0 [μ(E∩C(x,ρ))]/[μ(C(x,ρ))] < α < 1, then μ(Aα) = 0 as follows: if G is
an open set containing Aα with μ(G) < μ(Aα)/α, let V be the set of caps C(x,ρ) that satisfy
[μ(E∩C(x,ρ))]/[μ(C(x,ρ))]<α and are contained in G; get a Vitali subcover and show that
its total measure, which is at most μ(G), is larger than or equal than μ(Aα)/α, a contradiction.
Or refer to Mattila (1995).

2.2.4 Prove that for n ≥ 2, if μ(A) ≥ 1/2, then μ(Aε) ≥ 1 − (π/8)1/2e−(n−1)ε2/2, where μ is the
uniform probability measure on Sn.

2.2.5 Let πn : RN �→ Rn be the projection πn(x) = πn(xk : k ∈ N)= (x1, . . . ,xn). Then show that (a)
γn = γ ◦π−1

n , (b) if K ⊂ RN is compact, then K = ∩∞
n=1π

−1
n (πn(K)), and (c) K+ tO, where O

is the closed unit ball of �2, is compact if K is.
2.2.6 Use Theorem 2.2.3 and Exercise 2.2.5 to prove Theorem 2.2.4 in the particular case where A

is a compact set.
2.2.7 Since RN is Polish, it follows that γ is tight (Proposition 2.1.4). Use this and Exercise 2.2.2 to

prove Theorem 2.2.4 for any A ∈ C.
In the remaining exercises, the process X is as in Theorem 2.2.7.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.003
http:/www.cambridge.org/core


36 Gaussian Processes

2.2.8 Let� be the N(0,1) distribution function. Then, for all u≥ 0, show that 2(1−�(u))≤ e−u2/2.
Hint: Use the well-known bound

∫∞
u e−t2/2dt≤ u−1e−u2/2 for u≥√

2/π and differentiation for
0 ≤ u ≤√

2/π .
2.2.9 Prove the analogue of Theorem 2.2.7 for supt∈T X(t) and its median.

2.2.10 Show that Pr
{
supt∈T |X(t)|> u

}≤ 2Pr
{
supt∈T X(t) > u

}
.

2.2.11 (a) The random variable supt∈T |X(t)| has a unique median, meaning that M is the only number
for which both Pr

{
supt∈T |X(t)| ≥ M

}
and Pr

{
supt∈T |X(t)| ≤ M

}
are larger than or equal to 1/2.

In particular, the distribution function of supt∈T |X(t)| is continuous at M. Hint: The second
equation in (2.15) implies that no number below the largest median of f for the measure γ
can be a median; now apply this to the appropriate f . (b) Use the same reasoning to conclude
that if Ma = inf

{
u : Pr

{
supt∈T |X(t)| ≤ u

}
> a

}
, 0 < a < 1, then the distribution function of

supt∈T |X(t)| is continuous at Ma.
2.2.12 Let B be a Banach space whose norm ‖ · ‖ satisfies the following: there exists a countable

subset D of the unit ball of its (topological) dual space B∗ such that ‖x‖ = sup f ∈D | f (x)| for
all x ∈ B. For instance, this is true for separable Banach spaces as well as for �∞. Define a
Gaussian random variable X with values in B as a map from some probability space (�,
,Pr)
into B such that f (X) is a centred normal random variable for every f ∈ B∗. Prove that if ‖X‖
is finite almost surely, if M is a median of ‖X‖ and σ 2 = sup f ∈D E f 2(X), then

Pr{|‖X‖−M|> u} ≤ 2(1−�(u/σ))≤ e−t2/2σ 2
. (2.21)

2.2.13 Let B be a Banach space as in Exercise 2.2.12, and let X be a centred Gaussian B-valued
random variable. Use Exercise 2.2.12 to show that the distribution function F‖X‖ of ‖X‖
is continuous at Ma for all 0 < a < 1, where Ma is as defined in Exercise 2.2.11 with the
supremum of the process replaced by ‖X‖.

2.3 The Metric Entropy Bound for Suprema of Sub-Gaussian Processes

In this section we define sub-Gaussian processes and obtain the celebrated Dudley’s entropy
bound for their supremum norm. We are careful about the constants, as they are of some
consequence in statistical estimations, at the expense of making the ‘chaining argument’
(proof of Theorem 2.3.6) slightly more complicated than it could be. Combined with
concentration inequalities, these bounds yield good estimates of the distribution of the
supremum of a Gaussian process. They also constitute sufficient conditions for sample
boundedness and sample continuity of Gaussian and sub-Gaussian processes and provide
moduli of continuity for their sample paths which are effectively sharp in light of Sudakov’s
inequality derived in the next section.

A square integrable random variable ξ is said to be sub-Gaussian with parameter σ > 0
if for all λ ∈R,

Eeλξ ≤ eλ
2σ 2/2.

Developing the two exponentials, dividing by λ > 0 and by λ < 0 and letting λ→ 0 in each
case yield Eξ = 0; that is, sub-Gaussian random variables are automatically centred. Then,
if in the two developments once the expectation term is cancelled, we divide by λ2 and let
λ→ 0, we obtain Eξ 2 ≤ σ 2.

Aside from normal variables, perhaps the main examples of sub-Gaussian variables
are the linear combinations of independent Rademacher (or symmetric Bernoulli) random
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2.3 The Metric Entropy Bound for Suprema of Sub-Gaussian Processes 37

variables ξ =∑n
i=1 aiεi, where εi are independent identically distributed and Pr{εi = 1} =

Pr{εi = −1} = 1/2. To see that these variables are sub-Gaussian, just note that by Taylor
expansion, if ε is a Rademacher variable,

Eeλε = (eλ+ e−λ)/2 ≤ eλ
2/2, λ ∈R,

so that, by independence,

Eeλ
∑

aiεi ≤ eλ
2∑a2

i /2.

Both for Gaussian and for linear combinations of independent Rademacher variables,
σ 2 = Eξ 2.

The distributions of sub-Gaussian variables have sub-Gaussian tails: Chebyshev’s
inequality in exponential form, namely,

Pr{ξ ≥ t} = Pr
{
eλξ ≥ eλt

}≤ eλ
2σ 2/2−λt, t> 0, λ > 0,

with λ= t/σ 2 and applied as well to −ξ , gives that if ξ is sub-Gaussian for σ 2, then

Pr{ξ ≥ t} ≤ e−t2/2σ 2
and Pr{ξ ≤−t} ≤ e−t2/2σ 2

, hence,

Pr{|ξ | ≥ t} ≤ 2e−t2/2σ 2
, t> 0. (2.22)

The last inequality in (2.22) in the case of linear combinations of independent Rademacher
variables is called Hoeffding’s inequality. Of course, we can be more precise about the tail
probabilities of normal variables: simple calculus gives that for all t> 0,

t

t2 + 1
e−t2/2 ≤

∫ ∞

t
e−u2/2du ≤ min

(
t−1,

√
π/2

)
e−t2/2, (2.23)

(see Exercise 2.2.8).
Back to the inequalities (2.22), we notice that if they hold for ξ , then ξ/c enjoys square

exponential integrability for some 0< c<∞: if c2 > 2σ 2, then

Eeξ
2/c2 =

∫ ∞

0
2tet2 Pr {|ξ |> ct}dt ≤ 2

c2/2σ 2 − 1
<∞. (2.24)

The collection of random variables ξ on (�,
,Pr) that satisfy this integrability property
constitutes a vector space, denoted by Lψ2(�,
,Pr), and the functional

‖ξ‖ψ2 = inf{c> 0 : Eψ2(|ξ |/c)≤ 1},
where ψ2(x) := ex2 − 1 (a convex function which is zero at zero) is a pseudo-norm on it for
which Lψ2 , with identification of a.s. equal functions, is a Banach space (Exercise 2.3.5).
With this definition, inequality (2.24) shows that

Pr{|ξ | ≥ t} ≤ 2e−t2/2σ 2
for all t> 0 implies ‖ξ‖ψ2 ≤

√
6σ . (2.25)

To complete the set of relationships developed so far, suppose that ξ ∈ Lψ2 and Eξ = 0, and
let us show that ξ is sub-Gaussian. We have

Eeλξ − 1 ≤ E
∞∑

k=2

|λkξ k|/k! ≤ λ
2

2
E
(
ξ 2e|λξ |

)
.
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38 Gaussian Processes

Now we estimate the exponent |λξ | on the region |ξ |> 2λ‖ξ‖2
ψ2

and on its complement to
obtain, after multiplying and dividing by ‖ξ‖2

ψ2
and using that a< ea/2 for all a> 0,

λ2

2
E
(
ξ 2e|λξ |

)≤ λ2‖ξ‖2
ψ2

2
e2λ2‖ξ‖2

ψ2 E

(
ξ 2

‖ξ‖2
ψ2

eξ
2/2‖ξ‖2

ψ2

)

≤ λ2‖ξ‖2
ψ2

e2λ2‖ξ‖2
ψ2 Eeξ

2/‖ξ‖2
ψ2 /2 ≤ λ2‖ξ‖2

ψ2
e2λ2‖ξ‖2

ψ2 .

Using 1+ a ≤ ea, the last two bounds give

Eeλξ ≤ e3λ2‖ξ‖2
ψ2 , (2.26)

showing that ξ is sub-Gaussian with σ ≤ √
6‖ξ‖ψ2 . If ξ is symmetric, just developing the

exponential gives the better inequality Eeλξ ≤ eλ
2‖ξ‖2

ψ2
/2.

We collect these facts:

Lemma 2.3.1 If ξ is sub-Gaussian for a constant σ > 0, then it satisfies the sub-Gaussian
tail inequalities (2.22), and therefore, ξ ∈ Lψ2 , with ‖ξ‖ψ2 ≤

√
6σ . Conversely, if ξ is in Lψ2

and is centred, then it is sub-Gaussian for the constant σ ≤√
6‖ξ‖ψ2 , and in particular, it

also satisfies the inequalities (2.22) for σ =√
6‖ξ‖ψ2 .

In other words, ignoring constants, for ξ centred, the conditions (a) ξ ∈ Lψ2 and (b) ξ
satisfies the sub-Gaussian tail inequalities (2.22) for some σ1 and (c) ξ is sub-Gaussian for
some σ2 are all equivalent.

Lemma 2.3.1 extends to random variables whose tail probabilities are bounded by a
constant times the sub-Gaussian probabilities in (2.22) as follows.

Lemma 2.3.2 Assume that

Pr{|ξ | ≥ t} ≤ 2Ce−t2/2σ 2
, t> 0, (2.27)

for some C ≥ 1 and σ > 0, a condition implied by the Laplace transform condition

Eeλξ ≤ Ceλ
2σ 2/2, λ ∈R. (2.28)

Then ξ also satisfies
‖ξ‖ψ2 ≤

√
2(2C+ 1)σ . (2.29)

Moreover, if in addition Eξ = 0, then also

Eeλξ ≤ e3λ2(2(2C+1))σ2
, λ ∈R, (2.30)

that is, ξ is sub-Gaussian with constant σ̃ 2 = 12(2C+ 1)σ 2.

Proof The proof of inequality (2.22) shows that (2.28) implies (2.27). The preceding proof
showing that (2.22) implies (2.25), with only formal changes, proves that (2.27) implies
(2.29). Finally, inequality (2.30) follows from (2.29) and (2.26).

This lemma is useful in that showing that a variable ξ is sub-Gaussian reduces to proving
the tail probability bounds (2.27) for some C > 1, which may be easier than proving them
for C = 1.
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Lemma 2.3.1 (or, more precisely, the inequalities that make it possible) has many
important consequences on the size of maxima of sub-Gaussian stochastic processes. The
simplest examples of such processes are finite collections of sub-Gaussian variables. The
following lemma contains a maximal inequality for variables in ξi ∈ Lψ2 not necessarily
centred, and it applies by Lemma 2.3.1 to finite collections of sub-Gaussian variables.

Lemma 2.3.3 Let ξi ∈ Lψ2 , i = 1, . . . ,N, 2 ≤ N<∞. Then∥∥∥∥max
i≤N

|ξi|
∥∥∥∥
ψ2

≤ 4
√

logNmax
i≤N

‖ξi‖ψ2 , (2.31)

and, in particular, there exist Kp <∞, 1 ≤ p<∞, such that∥∥∥∥max
i≤N

|ξi|
∥∥∥∥

Lp

≤ Kp

√
logNmax

i≤N
‖ξi‖ψ2 . (2.32)

Proof To prove (a), we may assume that max‖ξi‖ψ2 = 1. Then the definition of the ψ2

norm together with the exponential Chebyshev’s inequality gives

Emax
i≤N

eξ
2
i /(16logN) =

∫ ∞

0
Pr

{
max
i≤N

eξ
2
i /(16logN) ≥ t

}
dt

≤ e1/8 +
N∑

i=1

∫ ∞

e1/8
Pr
{
eξ

2
i /(16logN) ≥ t

}
dt

≤ e1/8 + 2N
∫ ∞

e1/8
e−8(logN)(log t)dt = e1/8 + 2N

∫ ∞

e1/8
t−8logNdt

= e1/8

(
1+ 2

8(logN)− 1

)
< 2,

proving (2.31). For part (b), use that ‖ζ‖L2k ≤ (k!)1/2k‖ζ‖Lψ2 for any random variable ζ ∈ Lψ2

(as observed earlier) and part (a) to obtain inequality (2.32) with constants K2p−1 = K2p =
4
√

6((2p)!)1/(2p) for p even.

It is convenient to have sensible values of Kp at hand, particularly for p = 1. The method
to obtain the following bound is quite simple and general: let � be a nonnegative, strictly
increasing, convex function on a finite or infinite interval I, and let ξi, 1 ≤ i ≤ N, be random
variables taking values in I and such that E�(ξi) <∞. We then have, by Jensen’s inequality
and the properties of �,

�

(
Emax

i≤N
ξi

)
≤ E�

(
max
i≤N
ξi

)
= Emax

i≤N
�(ξi)

≤
N∑

i=1

E�(ξi)≤ Nmax
i≤N

E�(ξi), (2.33)

and, inverting �,

Emax
i≤N
ξi ≤�−1

(
Nmax

i≤N
E�(ξi)

)
. (2.34)
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Lemma 2.3.4 For any N ≥ 1, if ξi, i ≤ N, are sub-Gaussian random variables admitting
constants σi, then

Emax
i≤N
ξi ≤

√
2logNmax

i≤N
σi, Emax

i≤N
|ξi| ≤

√
2log2Nmax

i≤N
σi. (2.35)

Proof We take �(x) = eλx in (2.34). Since ξi is sub-Gaussian, we have E�(ξi) ≤ eλ
2σ 2

i /2,
and (2.34) gives

Emax
i≤N
ξi ≤ logN

λ
+ 1

2
λmax

i≤N
σ 2

i .

The first inequality in the lemma follows by minimizing in λ in this inequality (i.e., by
taking λ = (2logN)1/2/maxi≤Nσ

2
i ). The second inequality follows by applying the first to

the collection of 2N random variables ηi = ξi, ηn+i =−ξi, 1 ≤ i ≤ N.

We now consider more general sub-Gaussian processes.

Definition 2.3.5 A centred stochastic process X(t), t ∈ T, is sub-Gaussian with respect to a
distance or pseudo-distance d on T if its increments satisfy the sub-Gaussian inequality, that
is, if

Eeλ(X(t)−X(s)) ≤ eλ
2d2(s,t)/2 λ ∈R, s, t ∈ T. (2.36)

If instead of condition (2.36) the centred process X satisfies

Eeλ(X(t)−X(s)) ≤ Ceλ
2d2(s,t)/2 or Pr{|X(t)−X(s)| ≥ u} ≤ Ce−u2/2d2(s,t),

for all λ ∈ R, u> 0 and s, t ∈ T and some C> 1, then, by Lemma 2.3.2, X is sub-Gaussian
for the distance d̃(s, t) := √

12(2C+ 1)d. Then all the results that follow for sub-Gaussian
processes apply as well to processes X satisfying this condition, and the effects on the results
themselves of the dilation of the distance d can be easily quantified.

Gaussian processes, that is, processes X(t) such that for every finite set of indices
t1, . . . , tk, k<∞, the vectors (X(ti) : 1≤ i≤ k) are multivariate normal and are sub-Gaussian
with respect to the L2-distance dX(s, t)= ‖X(t)−X(s)‖L2 . Randomized empirical processes
constitute another important class of examples. Let (S,S ,P) be a probability space, and
let Xi : SN �→ S, i ∈ N, be the coordinate functions (which are i.i.d. with law P). Given a
collection F of measurable functions on (S,S), the empirical measures indexed by F and
based on {Xi} are defined as{

Pn( f ) := 1

n

n∑
i=1

f (Xi) : f ∈F
}

, n ∈N,

and a related process that has turned out to be an excellent tool in the study of empirical
measures is the randomized empirical process, defined for each n ∈N as{

1√
n

n∑
i=1

εi f (Xi) : f ∈F
}

,

where {εi} is a sequence of independent Rademacher variables, independent of the variables
Xi. Since linear combinations of independent Rademacher variables are sub-Gaussian with
respect to their variance, it follows that randomized empirical processes are sub-Gaussian
with respect to d( f ,g)= ‖ f − g‖L2(Pn) conditionally on the variables Xi.
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Here are two useful observations about sub-Gaussian processes: if X is a sub-Gaussian
process with respect to d, then the definition immediately implies that

E(X(t)−X(s))2 ≤ d2(s, t)

(as observed earlier, just after the definition of sub-Gaussian variables). Moreover, since
for any s, t, (X(t)− X(s))/d(s, t) is a sub-Gaussian variable with variance not exceeding 1,
Lemma 2.3.4 implies that if F is a finite subset of T×T of cardinality N, then

E max
(s,t)∈F

|X(t)−X(s)| ≤√
2log2N max

(s,t)∈F
d(s, t). (2.37)

Inequalities analogous to those in Lemma 2.3.3 for these maxima hold as well.
Given a sub-Gaussian process X(t), t ∈ T, it is of great interest to determine the

(stochastic) size of supt∈T |X(t)| or of sups,t∈T,dX(s,t)≤δ |X(t)−X(s)| or whether X has a version
with bounded sample paths or with uniformly dX-continuous sample paths (or perhaps
continuous in another metric). For Gaussian processes, these questions should and have
been answered exclusively in terms of the properties of the metric space (T,d), and for
sub-Gaussian processes, properties of this metric space do provide good control of these
quantities and good sufficient conditions for sample boundedness and continuity. Although
there are much more refined analyses (see the notes at the end of the section), we will
develop only the very neat and useful chaining method based on Dudley’s metric entropy.
The reason for not presenting this subject in more generality is that it is not needed in
this book.

The following theorem indicates a way to control supt∈T |X(t)| based on a combination of
the bound in Lemma 2.3.4 with the size of the (pseudo-) metric space (T,d), measured in
terms of the size of the most economical coverings. Given a metric or pseudo-metric space
(T,d), for any ε > 0, its covering number N(T,d,ε) is defined as the smallest number of
closed d-balls of radius ε needed to cover T, formally, if B(t,ε) := {s ∈ T : d(s, t)≤ ε},

N(T,d,ε) := min
{
n : there exist t1, . . . , tn ∈ T such that T ⊆∪n

i=1B(ti,ε)
}
,

where we take the minimum of the empty set to be infinite. The packing numbers

D(T,d,ε) := max
{
n : there exist t1, . . . , tn ∈ T such that min

1≤i,j≤n
d(ti, tj) > ε

}
are sometimes useful and are equivalent to the covering numbers: it is easy to see (and we
will use it without explicit mention) that, for all ε > 0,

N(T,d,ε)≤ D(T,d,ε)≤ N(T,d,ε/2).

The logarithm of the covering number of (T,d) is known as its metric entropy.

Theorem 2.3.6 Let (T,d) be a pseudo-metric space, and let X(t), t ∈ T, be a stochastic
process sub-Gaussian with respect to the pseudo-distance d, that is, one whose increments
satisfy condition (2.36). Then, for all finite subsets S ⊆ T and points t0 ∈ T, the following
inequalities hold:

Emax
t∈S

|X(t)| ≤ E|X(t0)|+ 4
√

2
∫ D/2

0

√
log2N(T,d,ε) dε, (2.38)
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where D is the diameter of (T,d), and

E max
s,t∈S

d(s,t)≤δ
|X(t)−X(s)| ≤ (16

√
2+ 2)

∫ δ

0

√
log2N(T,d,ε) dε, (2.39)

for all δ > 0, where the integrals are taken to be 0 if D = 0.

Proof If the d-diameter D of T is zero, or if
∫ D/2

0

√
logN(T,d,ε) dε=∞, there is nothing to

prove. Thus, we assume that D> 0 and that the entropy integral is finite, in which case (T,d)
is totally bounded and, in particular, D <∞. By taking (X(t)− X(t0))/((1+ δ)D) instead
of X(t) and d/((1+ δ)D) for any small δ instead of d, we may assume that X(t0) = 0 and
1/2< D< 1. Given S ⊂ T finite, since d(s, t)= 0 implies X(t)= X(s) a.s., we can identify
points of S at d-distance zero from each other; that is, we can assume that d is a proper
distance on S. We also can assume that S has cardinality at least 2. Since S is finite, there
is k1 ∈ N such that for each t ∈ T, the ball B(t,2−k1) contains at most one point from S. Set
Tk1 = S, which has cardinality at most N(T,d,2−k1), set T0 = {t0} and for 1≤ k< k1, let Tk be
a set of centres of N(T,d,2−k) d-balls of radius 2−k covering T. For each s ∈ S, we construct
a chain (πk1(s),πk1−1(s), . . . ,π0(s)) with links πk(s) ∈ Tk, 0 ≤ k ≤ k1, as follows: πk1(s)= s
and, given πk(s), k1 ≥ k > 0, πk−1(s) is taken to be a point in Tk−1, for which the ball
B(πk−1(s),2−(k−1)) contains πk(s), this being done in such a way that πk−1(s) depends only
on πk(s) in the sense that if πk(s) = πk(t), then πk−1(s) = πk−1(t). Note that π0(s) = t0 for
all s. In particular, for each 0≤ k≤ k1, the number of ‘subchains’ (πk(s),πk−1(s), . . . ,π0(s)),
s ∈ S, is exactly Card{πk(s) : s ∈ S} ≤ N(T,d,2−k). In particular, for k = 1, . . . ,k1,

Card{(X(πk(s))−X(πk−1(s))) : s ∈ S} = Card{πk(s) : s ∈ S} ≤ N(T,d,2−k).

Moreover, since πk(s) ∈ B(πk−1(s),2−(k−1)),[
E(X(πk(s))−X(πk−1(s)))

2
]1/2 ≤ d(πk(s),πk−1(s))≤ 2−k+1, k = 1, . . . ,k1.

Hence, by inequality (2.37),

Emax
s∈S

|X(πk(s))−X(πk−1(s))| ≤ 2−k+1
√

2log2N(T,d,2−k), k = 1, . . . ,k1.

(Note that N(T,d,2−k) ≥ 2 for k ≥ 1 because D > 1/2, so this inequality holds even if
Card(πk(s) : s ∈ S} = 1.) Therefore, noting that X(π0(s))= X(t0)= 0 and X(πk1(s))= X(s),
we have

Emax
s∈S

|X(s)| ≤
k1∑

k=1

Emax
s∈S

|X(πk(s))−X(πk−1(s))|

≤
∞∑

k=1

2−k+1
√

2log2N(T,d,2−k)

≤ 4
∫ 1/2

0

√
2log2N(T,d,ε) dε.

Replacing X(t) by (X(t) − X(t0))/D and d by d/(1 + δ)D and letting δ → 0, we obtain
inequality (2.38).
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2.3 The Metric Entropy Bound for Suprema of Sub-Gaussian Processes 43

Given δ < diam(T), let k(δ)= min{k ∈N : 2−k ≤ δ}. Define

U = {
(x,y) ∈ Tk(δ)×Tk(δ) : ∃ u,v ∈ S,d(u,v)≤ δ,πk(δ)(u)= x,πk(δ)(v)= y

}
,

and given (x,y) ∈U, fix ux,y, vx,y ∈ S, such that πk(δ)(ux,y)= x, πk(δ)(vx,y)= y, d(ux,y,vx,y)≤ δ.
For s, t ∈ S such that d(s, t)≤ δ, obviously, (x,y) := (πk(δ)(s),πk(δ)(t)) ∈ U, and we can write

|X(t)−X(s)| ≤ |X(t)−X(πk(δ)(t))|+ |X(πk(δ)(t))−X(vx,y)|+ |X(vx,y)−X(ux,y)|+ |X(ux,y)

−X(πk(δ)(s))|+ |X(πk(δ)(s))−X(s)|
≤ sup
(x,y)∈U

|X(ux,y)−X(vx,y)|+ 4max
r∈S

|X(r)−X(πk(δ)(r))|.

Since Card(U)≤ (N(T,d,2−k(δ)))2 and, for (x,y) ∈U, d(ux,y,vx,y)≤ δ, inequality (2.37) gives

E sup
(x,y)∈U

|X(ux,y)−X(vx,y)| ≤ δ
√

2log2N2(T,d,2−k(δ)).

Next, the proof of (2.38) gives

Emax
r∈S

|X(r)−X(πk(δ)(r))| ≤
∑

k>k(δ)

2−k+1
√

2log2N(T,d,2−k).

We then conclude from the last three inequalities that

E max
s,t∈S

d(s,t)≤δ
|X(t)−X(s)| ≤ 2δ

√
log

√
2N(T,d,2−k(δ))+ 4

∑
k>k(δ)

2−k+1
√

2log2N(T,d,2−k)

≤ (16
√

2+ 2)
∫ δ

0

√
log2N(T,d,ε) dε.

Theorem 2.3.6 implies the existence of versions of X(t) whose sample paths are bounded
and uniformly continuous for d, actually, that this holds for all the separable versions of X,
and they do exist (recall Proposition 2.1.12 complemented by Exercise 2.3.6, and note that
the entropy condition obviously implies that (T,d) is a separable pseudo-metric space). For
the next theorem, recall the definition of sample bounded and sample continuous processes
(Definition 2.1.3).

Theorem 2.3.7 Let (T,d) be a metric or pseudo-metric space, and let X(t), t ∈ T, be a
sub-Gaussian process relative to d. Assume that∫ ∞

0

√
logN(T,d,ε) dε <∞. (2.40)

Then

(a) X(t), t ∈ T, is sample d-continuous (in particular, X admits a separable version), and
(b) Any separable version of X(t), t ∈ T, that we keep denoting by X(t) has almost all its

sample paths bounded and uniformly d-continuous, and satisfies the inequalities

Esup
t∈T

|X(t)| ≤ E|X(t0)|+ 4
√

2
∫ D/2

0

√
log2N(T,d,ε) dε, (2.41)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.003
http:/www.cambridge.org/core


44 Gaussian Processes

where t0 ∈ T, D is the diameter of (T,d) and

E sup
s,t∈T

d(s,t)≤δ

|X(t)−X(s)| ≤ (16
√

2+ 2)
∫ δ

0

√
log2N(T,d,ε) dε, (2.42)

for all δ > 0.

Proof The entropy condition implies that (T,d) is totally bounded, in particular,
separable. Then, if T0 is a countable dense set and Tn ↗ T0, Tn finite, the monotone
convergence theorem together with inequality (2.38) implies that both this inequality holds
for supt∈T0

|X(t)| and this random variable is almost surely finite. Likewise, monotone
convergence also proves inequality (2.39) for T0 and, in particular, that for any sequence
δn ↘ 0,

E sup
s,t∈T0

d(s,t)≤δn

|X(t)−X(s)| ↘ 0.

This implies not only that these random variables are finite a.s. but also that
sups,t∈T0,d(s,t)≤δn |X(t)−X(s)| ↘ 0 a.s. Hence, there exists a set �0 ⊆� with Pr(�0)= 1 such
that the restriction X|T0 of X to T0 has bounded and d-uniformly continuous sample paths
t �→ X(t,ω), t ∈ T0, for all ω ∈ �0. If we extend each of these paths to T by continuity, we
obtain a separable version X̃ of the process X with almost all its sample paths bounded and
d-uniformly continuous and such that the inequalities (2.38) and (2.39) hold for supt∈T |X̃(t)|
and sups,t∈T,d(s,t)≤δ |X̃(t) − X̃(s)|, respectively (as these suprema equal the corresponding
suprema over T0 for all ω ∈ �0). This proves part (a) and the inequalities in part (b) for
the version just constructed. Now, if X̄ is any separable version of X and T0 is the countable
set from Definition 2.1, we can apply to them the same reasoning as earlier and conclude
part (b).

The chaining argument also can be adapted to obtain a metric entropy bound on the
modulus of continuity of a sample continuous Gaussian or sub-Gaussian process.

Theorem 2.3.8 (Dudley’s theorem) If X(t), t ∈ T, is a sub-Gaussian process for a
pseudo-metric d such that (T,d) has positive d-diameter and satisfies the metric entropy
condition (2.40), then, for any separable version of X (still denoted by X), we have, with the
convention 0/0 = 0,

E

[
sup
s,t∈T

|X(t)−X(s)|∫ d(s,t)
0

√
logN(T,d,ε) dε

]
<∞. (2.43)

Proof The main part of the proof consists of showing that

sup
s,t∈T

|X(t)−X(s)|∫ d(s,t)
0

√
logN(T,d,ε) dε

<∞ a.s. (2.44)

Once this is proved, (2.43) will follow from general properties of Gaussian processes. The
proof of (2.44) consists of a delicate chaining argument. Set H(ε)= logN(T,d,ε). Instead of
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discretising at ε = 2−k as in the proof of Theorem 2.3.6, we define ε1 = 1 and, inductively,
δk ↘ 0 and εk ↘ 0 as

δk = 2inf{ε : H(ε)≤ 2H(εk)}, εk+1 = min(εk/3,δk), k ∈N.

Then, since εk+1 ≤ εk/3, we have εk ≤ 3(εk − εk+1)/2; also, if εk+1 = δk, then H(εk+1) ≤
H(2δk/3) ≤ 2H(εk), so

∫ εk
εk+1

H1/2(x)dx ≤ 2εkH1/2(εk), whereas if εk+1 = εk/3, then∫ εk
εk+1

H1/2(x)dx ≤ 2εk+1H1/2(εk+1). This gives, for each n,

2

3

∞∑
k=n

εkH
1/2(εk)≤

∞∑
k=n

(εk − εk+1)H
1/2(εk)≤

∫ εn

0
H1/2(x)dx ≤ 4

∞∑
k=n

εkH
1/2(εk), (2.45)

and the sums converge because, by (2.40), so does the integral. We also have, for each k,

H(εk+2)≥ H(εk+1/3)≥ H(δk/3)≥ 2H(εk). (2.46)

Finally, {δk} relates to {εk} as follows: by definition, if τ < δk/2, then H(τ )> 2H(εk)≥H(εk)

so that δk ≤ 2εk, which gives

εk+1 ≤ δk ≤ 6εk+1. (2.47)

For each k, let Tk be a set of cardinality N(δk) = N(T,d,δk) and δk-dense in T for d, and
let Gk = {(s, t) : s ∈ Tk−1, t ∈ Tk}. Then Card(Tk)= eH(δk) ≤ e2H(εk) by definition of δk, and
Card(Gk)≤ e4H(εk). Then the sub-Gaussian tail bound (2.22) combined with the bound on the
cardinality of Gk gives

∑
k

Pr

{
max

s∈Tk−1,t∈Tk

|X(t)−X(s)|
d(s, t)

≥ 3H1/2(εk)

}
≤ 2

∑
k

e4H(εk)−9H(εk)/2 ≤ 2
∑

k

e−H1/2(εk)/2,

which is finite because by (2.46) this last series is dominated by the sum of two convergent
geometric series. Hence, by the Borel-Cantelli lemma, there exists n0(ω) <∞ a.s. such that

|X(t,ω)−X(s,ω)|
d(s, t)

≤ 3H1/2(εn), for all (s, t) ∈ Gn and n ≥ n0(ω). (2.48)

Next, given n ∈ N, and t ∈ T, let πn(t) ∈ Tn be such that d(t,πn(t)) < δn. The metric
entropy being finite, any separable version of X has almost all its sample paths continuous by
Theorem 2.3.7; hence, there is a set of measure one �1 such that if ω ∈�1, both n0(ω) <∞
and X(πk(t),ω) converges to X(t,ω) for all t ∈ T (actually, there is no need to invoke this
theorem because it is easy to see that {X(πk(t),ω))} is a Cauchy sequence for all ω such that
n0(ω) <∞ by (2.48) and finiteness of the entropy integral. Hence, we can take a version of
X such that, for these ω, X(t,ω)= limX(πn(t),ω)).
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46 Gaussian Processes

Then, if n≥ n0(ω) and εn−1 < d(s, t)≤ εn, s, t ∈ T, the preceding two observations and the
fact that d(πk(s),πk(t))≤ d(s, t)+ 2δk, give

|X(t,ω)−X(s,ω)| ≤ |X(πn(t),ω)−X(πn(s),ω)|+
∞∑

k=n

|X(πk(t),ω)−X(πk(t),ω)|

+
∞∑

k=n

|X(πk(s),ω)−X(πk(s),ω)|

≤ 3(d(s, t)+ 2δn)H
1/2(εn)+ 12

∞∑
k=n

δkH
1/2(εk+1)

≤ 39d(s, t)H1/2(d(s, t))+ 108
∫ d(s,t)

0
H1/2(x)dx

≤ 147
∫ d(s,t)

0
H1/2(x)dx,

where, besides (2.48) and the convergence of X(πk(t)), we have used (2.47) and (2.45).
Thus, the modulus

∫ d(s,t)
0 H1/2(x)dx for X(t,ω) is valid for d(s, t)≤ εn0(ω), and hence, by total

boundedness of T, it is valid for all d(s, t) and for all ω ∈�1. This proves (2.44)
Next, we show how (2.44) implies (2.43). Set

U = {u = (u1,u2) : u1,u2 ∈ T,d(u1,u2) 
= 0},
and define on U the pseudo-metric D(u,v)= d(u1,v1)+d(u2,v2). Then (U,D) is a separable
metric or pseudo-metric space because (T,d) is separable by Proposition 2.1.12. Consider
the Gaussian process

Y(u)= X(u2)−X(u1)

J(d(u1,u2))
, u ∈ U,

where J(x)= ∫ x
0

√
logN(T,d,ε)dε, and note that J(x) > 0 for all x> 0 (as the diameter of T

is not zero). This is a Gaussian process on U with bounded sample paths (by (2.44)). It also
has continuous paths for D because

|Y(u)−Y(u0)| ≤ |X(u2)−X(u1)− (X(u0
2)−X(u0

1))|
J((d(u0

1,u
0
2))

+
(

sup
s,t∈T

|X(t)−X(s)|
)∣∣∣∣ 1

J((d(u1,u2))
− 1

J((d(u0
1,u

0
2))

∣∣∣∣
tends to zero as u → u0 in the D-distance because of (a) the sample continuity of X, (b) the
first part of the theorem, (c) the continuity of J(x) and (d) J(d(u0

1,u
0
2) > 0. In particular, Y is

a separable Gaussian process on (U,D) with bounded sample paths; hence,

Esup
u∈U

|Y(u)|<∞

by part (a) of Theorem 2.1.20, proving (2.43).

In fact, Theorem 2.1.20 yields more than just first-moment integrability in (2.43) once
(2.44) is proved, namely, square exponential integrability.
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Exercises

2.3.1 The main ingredient in the basic estimates of Theorem 2.3.6 is clearly the first maximal
inequality in (2.37) (hence, Lemma 2.3.4). Replace this inequality with the maximal inequality
(2.31) for the ψ2-norm from Lemma 2.3.3 in the proof of Theorem 2.3.6 to obtain that if X(t),
t ∈ T, is a sub-Gaussian process for a pseudo-distance d for which (T,d) satisfies the entropy
condition (2.40), then the following inequalities hold for any separable version of X:∥∥∥∥sup

t∈T
|X(t)|

∥∥∥∥
ψ2

≤ ‖X(t0)‖ψ2 + 16
√

6
∫ D

0

√
logN(T,d,ε) dε,

where t0 ∈ T is arbitrary and D is the d-diameter of T, and∥∥∥∥∥∥ sup
s,t∈T

d(s,t)≤δ

|X(t)−X(s)|
∥∥∥∥∥∥
ψ2

≤ 128
√

3
∫ δ

0

√
logN(T,d,ε) dε,

for any δ > 0 In particular, these inequalities also hold for the Lp-norms of these random
variables, p<∞, possibly with different constants.

2.3.2 Brownian motion on [0,1] is defined as a centred Gaussian process X(t) with continuous
sample paths and such that X(0) = 0 a.s., E(X(s)− X(t))2 = |t − s|, s, t ∈ [0,1]. Prove the
existence of Brownian motion, and show that sups,t∈[0,1] |X(t)−X(s)|/√|t− s|| log |t− s||<∞
almost surely.

2.3.3 For real random variables Xi, give an upper bound for Esupt∈R
∣∣1/√n

∑n
i=1 εiI(Xi ≤ t)

∣∣, n ∈N;
in particular, prove that Esupt∈R

∣∣1/n∑n
i=1 εiI(Xi ≤ t)

∣∣→ 0 (Glivenko-Cantelli theorem). Hint:
Conditionally on {Xi}, take d2(s, t)= 1/n

∑n
i=1(I(Xi ≤ t)− I(Xi ≤ s)|)2, and notice that if X(i),

i = 1, . . . ,n, are the order statistics, d(s, t) = 0 if (and only if) both s and t belong to one of
the sets (−∞,X(1)], (X(n),∞) or (X(i),X(i+1)], i = 1, . . . ,n− 1. Note also that d(s, t)≤ 1 for all
s, t. Deduce that N(R,d,ε) ≤ n+ 1 for all ε > 0 and that D ≤ 1. The bound follows from this
estimate and the entropy integral bound.

2.3.4 (Alternate proof of inequality (2.39) with a slightly larger constant.) Define V= {(s, t)∈ T×T :
d(s, t) ≤ δ} and on V the process Y(u) = X(tu)− X(su), where u = (su, tu) ∈ V. Take on V the
pseudo-distance ρ(u,v) :=‖Y(u)−Y(v)‖ψ2 . One has that Y(v) is sub-Gaussian for ρ on V, that
2maxu∈V ‖Y(u)‖ψ2 ≤ 2

√
6δ and that ρ(u,v) ≤ √

6(d(tu, tv)+ d(su,sv)), all by Lemma 2.3.1.
Thus, one can apply inequality (2.38) to Y for ρ, using that the first of the preceding two
inequalities gives a bound for the ρ-diameter of V and that the second implies N(V,ρ,4

√
6ε)≤

N2(T,d,ε).
2.3.5 Use the fact that the function ex2 − 1 is convex and zero at zero to show that ‖ · ‖ψ2 is a

(pseudo-)norm on the space Lψ2 of all the random variables ξ :� �→ R such that Eeλξ
2
<∞

for some λ > 0 (with identification of a.s. equal functions). Show that the resulting normed
space is complete.

2.3.6 Show that Proposition 2.1.12 holds true for sub-Gaussian processes.
2.3.7 Show that a separable stochastic process X(t), t ∈ T, is sample continuous on (T,d) iff there

exists a Borel probability measure on Cu(T,d), the Banach space of bounded and uniformly
continuous functions on (T,d), whose finite-dimensional marginals μ ◦ (δt1 , . . . ,δtn)

−1 are the
marginals L(X(t1), . . . ,X(tn)), for all ti ∈ T, i ≤ n, n ∈N.

2.3.8 Prove the following inequality, which is a qualitative improvement on (2.31) as it does not
assume a finite number of variables: there exists a universal constant K<∞ such that∥∥∥∥ supk |ξk|

ψ−1
2 (k)

∥∥∥∥
ψ2

≤ Ksup
k
‖ξk‖ψ2 ,
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with ‖ξk‖ψ2 replaced by ‖ξk‖L2 if the variables ξi are normal. Hint: Show, using Chebyshev’s
inequality, that

Pr

⎧⎨⎩exp

⎡⎣sup
k≥9

(
|ξk|√
6logk

)2
⎤⎦> t

⎫⎬⎭≤
∞∑

k=9

Pr
{
e|ξk|

2
> e6(logk)(log t)

}
,

and then apply inequality (2.22) together with the fact that for t ≥ 3/2 and k ≥ 9, log(kt) ≤
3(logk)(log t). Use the resulting bound to show that

Eexp

[
sup
k≥9

(
|ξk|/(

√
6logk)

)2
]
< 2.

2.3.9 Let Xi, i ≤ n, be separable centred Gaussian processes such that E‖Xi‖∞ <∞ (where ‖ · ‖∞
denotes the supremum norm), and let σ 2

i and Mi be, respectively, their sup of second moments
and median. Prove that

Emax
i≤n

‖Xi‖∞ ≤ max
i≤n

E‖Xi‖∞ + (8√logn+√
2/π)max

i≤n
σi.

Hint: By Theorem 2.2.7 and Lemma 2.3.2, the variables |‖Xi‖−Mi| have ψ2-norm bounded
by 2σi, and the result then follows from Lemma 2.3.3 and inequality (2.19).

2.3.10 Show that there exists K<∞ such that if Y(t), t ∈ T, is a centred Gaussian process such that
d2

Y(s, t)= E(Y(t)−Y(s))2 ≤ d2(s, t) and (T,d) is totally bounded, then

E sup
d(s,t)<δ

|Y(t)−Y(s)| ≤ K

[
sup
t∈T

E sup
s∈T:d(s,t)<δ

|Y(t)−Y(s)|+ δ(logN(T,d,δ))1/2
]

.

Hint: Let U be the set of centres of N(T,d,δ) d-balls of radius δ covering T. Apply the
result in Exercise 2.3.9 to the processes Yu = Y − Y(u), u ∈ U, and inequality (2.35) to

max
u,v∈U:d(u,v)<3δ

|Y(u)−Y(v)|.

2.4 Anderson’s Lemma, Comparison and Sudakov’s Lower Bound

In this section we deal with the general question of how comparison of the distributions
of the supremum of two Gaussian processes follows from comparison of their covariances
or of their induced metric structures. Perhaps the most important results of this kind are
Anderson’s inequality regarding the probability, relative to a centred Gaussian measure on
Rn, of a convex symmetric set and its translates, and Slepian’s lemma that allows comparing
the distributions of the suprema of X(t) and Y(t) if the covariance of one of the processes
dominates the other. Anderson’s lemma is related to the fact that centred Gaussian measures
on Rn are log-concave.

These results have several important consequences, and we will examine two particularly
interesting ones, the Khatri-Sidak inequality and Sudakov’s inequality, that compare, for a
jointly normal variable (g1, . . . ,gn), the distribution of max1≤i≤n |gi| with the maximum of
related independent normal random variables. Sudakov’s inequality shows that Dudley’s
entropy bound is effectively sharp and, in this sense, complements it.

2.4.1 Anderson’s Lemma

A set C in a vector space is convex and symmetric if
∑n

i=1λixi ∈ C whenever xi ∈ C and
λi ∈R satisfy

∑n
i=1 |λi| = 1, n<∞. Example: Balls centred at the origin in Banach spaces,
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2.4 Anderson’s Lemma, Comparison and Sudakov’s Lower Bound 49

{x : ‖x‖ ≤ c}. Anderson’s lemma states that for a centred Gaussian measure μ on Rn, if C is
a measurable, convex, symmetric set, then

μ(C+ x)≤μ(C),
for all x ∈ Rn. Suppose now that X = Y + Z, where Y and Z are two independent centred
Gaussian random vectors in Rn, which holds if and only if the difference of covariances
CX −CY is nonnegative definite. Then

Pr{X ∈ C} =
∫

Pr{Y ∈ C− z}dL(Z)(z)≤ Pr{Y ∈ C}.
This inequality is stronger than E‖Y+Z‖p ≥ E‖Y‖p for all p ≥ 1, which follows from it and
also from Jensen’s inequality. Both Anderson’s inequality and its corollary on comparison
of Gaussian probabilities are quite useful. The modern proof of Anderson’s lemma uses the
Brunn-Minkowski inequality, or inequalities similar to it, expressing the log-concavity of
the function A �→ m(A), where m is Lebesgue measure and, as a consequence (of a slightly
stronger inequality) of A �→μ(A), μ-Gaussian and centred.

We start with the Brunn-Minkowski inequality for Lebesgue measure in R. Given two
sets A and B in a vector space, their Minkowski addition is A+B= {x+y : x∈ A,y∈ B}, and
λA is defined as λA= {λx : x ∈ A}. In this subsection, m will stand for Lebesgue measure on
Rn for any n.

Lemma 2.4.1 Let A and B be Borel measurable sets in R. Then

m(A+B)≥ m(A)+m(B).

Proof Note that A+B is Lebesgue measurable as it is the image by a continuous function
of the Borel set A×B, hence, analytic. Regularity of m by compact sets reduces the problem
to A and B compact. Since m is invariant by translations, neither side of the inequality
changes if we translate the sets A and/or B; hence, by taking A+{−supA} and B+{− infB}
instead of A and B, we can assume A ⊂ {x ≤ 0}, B ⊆ {x ≥ 0} and A ∩ B = {0}. But then
m(A+B)≥ m(A∪B)= m(A)+m(B).

Theorem 2.4.2 (Précopa-Leindler theorem) Let f ,g,ϕ be Lebesgue measurable functions
on Rn taking values in [0,∞] and satisfying, for some 0< λ< 1 and all u,v ∈Rn,

ϕ(λu+ (1−λ)v)≥ f λ(u)g1−λ(v). (2.49)

Then ∫
ϕ dm ≥

(∫
f dm

)λ(∫
g dm

)1−λ
. (2.50)

Proof The proof is by induction on the dimension n. Assume that n= 1. We can divide both
sides of inequality (2.49) by ‖ f ‖λ∞‖g‖1−λ

∞ ; that is, we can assume without loss of generality
that ‖ f ‖∞ = ‖g‖∞ = 1. Then, for 0 ≤ t< 1, the sets {x : f (x)≥ t} and {x : g(x)≥ t} are not
empty, and we have

λ{ f ≥ t}+ (1−λ){g ≥ t} ⊆ {ϕ ≥ t},
since, by (2.49), if f (u) ≥ t and g(v) ≥ t, then ϕ(λu + (1 − λ)v) ≥ t. But then, by
Lemma 2.4.1,

m{ϕ ≥ t} ≥ λm{ f ≥ t}+ (1−λ)m{g ≥ t}.
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50 Gaussian Processes

Integrating with respect to t and using the concavity of the logarithm, we obtain∫
ϕ dm ≥ λ

∫
f dm+ (1−λ)

∫
g dm ≥

(∫
f dm

)λ(∫
g dm

)1−λ
,

proving the theorem for n = 1. Assume now that the result holds for n− 1, and let ϕ, f ,
g, λ be as in the statement of the theorem. Fix a coordinate, say, xn = x, and consider
ϕx : Rn−1 �→ [0,∞], defined by ϕx(t)= ϕ(t,x), and likewise define fx and gx. Then, for x1,
x2 such that x = λx1 + (1−λ)x2 and for any u,v ∈Rn−1,

ϕx(λu+ (1−λ)v)= ϕ(λ(u,x1)+ (1−λ)(v,x2))≥ f λ(u,x1)g
1−λ(v,x2)= f λx1

(u)g1−λ
x2
(v).

Hence, induction gives∫
Rn−1

ϕx dm ≥
(∫

Rn−1
fx1 dm

)λ(∫
Rn−1

gx2 dm

)1−λ
,

and (2.50) now follows by application of the very same result in dimension one.

We sketch in Exercise 2.4.1 how to obtain the Brunn-Minkowski inequality from
Theorem 2.4.2. Of course, we are primarily interested in using this theorem to prove that
centred Gaussian measures are logarithmically concave.

Theorem 2.4.3 (Log-concavity of Gaussian measures in Rn) Let μ be a centred Gaussian
measure on Rn. Then, for any Borel sets A, B in Rn and 0 ≤ λ≤ 1, we have

μ(λA+ (1−λ)B)≥ (μ(A))λ(μ(B))1−λ. (2.51)

Proof Let μ be a centred Gaussian measure on Rn. Then μ is supported by a subspace
V⊂Rn, and the density of the restriction of μ to V with respect to Lebesgue measure on V is
φ(x)= ce−|�x|2/2, where � : V �→V is the positive square root of the inverse of the restriction
to V of the covariance of μ and is a strictly positive definite operator. It is easy to see, for
example, by diagonalising �, that the function x �→ logφ(x)=−|�x|2, x∈V, is concave and
therefore that

φ(λu+ (1−λ)v)≥ φλ(u)φ1−λ(v), u,v ∈ V. (2.52)

Now, if A and B are Borel sets of Rn, we define, on V,

ϕ = φIλ(A∩V)+(1−λ)(B∩V), f = φIA∩V, g = φIB∩V.

Note that the set λ(A ∩ V)+ (1 − λ)(B ∩ V) is the image by a continuous function of a
Borel set on V× V; hence, it is measurable for the completion of any Borel measure on V
(e.g., Dudley (2002), section 13.2)). Inequality (2.52) shows that these functions satisfy the
hypothesis (2.49) with Rn replaced by V. Hence, Theorem 2.4.2 applies to give∫

λ(A∩V)+(1−λ)(B∩V)
φ dm ≥

(∫
A∩V
φ dm

)λ(∫
B∩V
φ dm

)1−λ
,

where m is Lebesgue measure on V. This inequality implies the theorem because

μ(λA+ (1−λ)B)= μ[(λA+ (1−λ)B)∩V]
≥ μ(λ(A∩V)+ (1−λ)(B∩V))=

∫
λ(A∩V)+(1−λ)(B∩V)

φ dm,

and μ(A)= ∫
A∩Vφ dm and likewise for μ(B).
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An immediate consequence of this theorem is Anderson’s inequality for any centred
Gaussian measure on Rn.

Theorem 2.4.4 (Anderson’s lemma) Let X= (g1, . . . ,gn) be a centred jointly normal vector
in Rn, and let C be a measurable convex symmetric set of Rn. Then, for all x ∈Rn,

Pr{X+ x ∈ C} ≤ Pr{X ∈ C}. (2.53)

Proof Let μ = L(X). Let A = C+ x, B = C− x and λ = 1/2 in (2.51), and note that by
symmetry of μ and symmetry of C, μ(A) = μ(B), so we obtain μ(C) ≥ μ(C+ x), which
is (2.53).

The assumption of measurability for C in the statement of the preceding theorem is
superfluous because the boundary of a convex set C has μ-measure zero (whereas obviously
its closure and its interior are measurable), but in applications, C is usually open or closed
and hence measurable.

Theorem 2.4.4 extends to infinite dimensions, both for B-valued random variables, B
separable (next theorem) and processes (Exercise 2.4.3).

Theorem 2.4.5 Let B be a separable Banach space, let X be a B-valued centred Gaussian
random variable and let C be a closed, convex, symmetric subset of B. Then, for all x ∈ B,

Pr{X+ x ∈ C} ≤ Pr{X ∈ C}.
In particular, Pr(‖X‖ ≤ ε) > 0, for all ε > 0.

Proof By the Hahn-Banach separation theorem in locally convex topological spaces, there
exists a set DC ⊂ B∗ such that C =∩ f ∈DC{| f | ≤ 1}. Then Cc = ∪ f ∈DC{| f |> 1}. Since Cc is
separable, its topology has a countable base, and therefore, this covering admits a countable
subcovering; that is, there exists a countable subset TC ⊂ DC such that Cc =∪ f ∈TC{| f |> 1}
or C =∩ f ∈TC{| f | ≤ 1}. Then, if Tn ↗ TC, Tn finite, we have

Pr{X ∈ C} = Pr{ sup
f ∈TC

| f (X)| ≤ 1} = lim
n→∞Pr

{
max
f ∈Tn

| f (X)| ≤ 1

}
≥ lim

n→∞Pr

{
max
f ∈Tn

| f (X+ x)| ≤ 1

}
= Pr{X+ x ∈ C},

where the inequality follows from Theorem 2.4.4 applied to the Gaussian vector ( f (X) :
f ∈ Tn) and the convex set {x ∈ RCard(Tn) : |xi| ≤ 1, i = 1, . . . ,Card(Tn)}. For the last claim,
apply the first part to closed balls Ci = {x : ‖x− xi‖ ≤ ε} for xi a countable dense subset of
B.

Anderson’s lemma applies to the comparison of the probabilities that X = Y+ Z and Y
fall in convex symmetric sets C, where Y and Z are independent centred Gaussian Rn-valued
random vectors (Exercise 2.4.2), and gives

Pr{X ∈ C} ≤ Pr{Y ∈ C}.
Here is another application of Anderson’s lemma, in the version of Exercise 2.4.5, to
comparison of Gaussian processes, concretely, to proving the simplest yet useful instance
of the famous Gaussian correlation conjecture, known as the Khatri-Sidak inequality. The
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Gaussian correlation conjecture itself states that for symmetric convex sets A, B, if X and Y
are arbitrary centred Gaussian vectors, Pr{X ∈ A,Y ∈ B} ≥ Pr{X ∈ A}Pr{Y ∈ B}; that is, the
independent case gives the smallest probability of the intersection of two symmetric convex
sets.

Corollary 2.4.6 (Khatri-Sidak inequality) Let n ≥ 2, and let g1, . . . ,gn be jointly normal
centred random variables. Then, for all x ≥ 0,

Pr{max
1≤i≤n

|gi| ≤ x} ≥ Pr{|g1| ≤ x}Pr{max
2≤i≤n

|gi| ≤ x},
and hence, iterating,

Pr{max
1≤i≤n

|gi| ≤ x} ≥
n∏

i=1

Pr{|gi| ≤ x}.

Proof Note that Pr{max2≤i≤n |gi| ≤ x} = limt→∞ Pr{max2≤i≤n |gi| ≤ x, |g1| ≤ t}. Hence, it
suffices to show that for any convex symmetric subset A of Rn−1, the function

f (t)/g(t) := Pr{|g1| ≤ t,(g2, . . . ,gn) ∈ A}/Pr{|g1| ≤ t}
is monotone decreasing. Let φ1 denote the density of g1, and set X = (g2, . . . ,gn). Since

Pr{X ∈ A||g1| ≤ t} =
∫ t

−t
Pr{X ∈ A|g1 = u}dL(g1||g1| ≤ t)(u)

=
∫ t

−t
Pr{X ∈ A|g1 = u}φ1(u)du/Pr{|g1| ≤ t},

we have (using symmetry of the different laws) that

f (t)=
∫ t

−t
Pr{X ∈ A|g1 = u}φ1(u)du, f ′(t)= 2Pr{X ∈ A|g1 = t}φ1(t)

and that, by Exercises 2.4.5 and 2.4.6,

Pr{X ∈ A||g1| ≤ t} ≤ Pr{X ∈ A|g1 = t}.
These two observations give

( f/g)′(t)= 2φ1(t)Pr{X ∈ A|g1 = t}Pr{|g1| ≤ t}− 2Pr{|g1| ≤ t,(g2, . . . ,gn) ∈ A}φ1(t)

= 2φ1(t)Pr{|g1| ≤ t} [Pr{X ∈ A|g1 = t}−Pr{X ∈ A||g1| ≤ t}] ≤ 0.

Thus, the function f/g is monotone decreasing, proving the corollary.

2.4.2 Slepian’s Lemma and Sudakov’s Minorisation

Before proving the basic comparison result, it is convenient to consider a useful
identity regarding derivatives of the multidimensional normal density. Let f (C,x) =
((2π)n detC)−1/2e−xC−1xT/2 be the N(0,C) density in Rn, where C = (Cij) is an n × n
symmetric strictly positive definite matrix x = (x1, . . .xn) and xT is the transpose of x.
Consider f as a function of the real variables Cij, 1 ≤ i ≤ j ≤ n, and xi, 1 ≤ i ≤ n. Then

∂ f (C,x)

∂Cij
= ∂

2 f (C,x)

∂xi∂xj
= ∂

2 f (C,x)

∂xj∂xi
, 1 ≤ i< j ≤ n. (2.54)
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To see this, just note that by the inversion formula for characteristic functions,

f (C,x)= 1

(2π)n

∫
Rn

e−ixuT
e−uCuT/2du

and that differentiation under the integral sign is justified by dominated convergence, so the
three partial derivatives in (2.54) are all equal to −xixj f (C,x).

We can now prove the following comparison result:

Theorem 2.4.7 Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be centred normal vectors in Rn

such that EX2
i = EY2

j = 1, 1≤ i, j≤ n. Set, for each 1≤ i< j≤ n, C1
ij = E(XiXj), C0

ij = E(YiYj)

and ρij = max{|C0
ij|, |C1

ij|}. Then, for any λi ∈R,

Pr
n⋂

i=1

{Xi ≤ λi}−Pr
n⋂

i=1

{Yi ≤ λi} ≤ 1

2π

∑
1≤i<j≤n

(C1
ij −C0

ij)
+ 1

(1−ρ2
ij)

1/2
exp

(
− (λ

2
i +λ2

j )/2

1+ρij

)
.

(2.55)

Moreover, if μi ≤ λi and v = min{|λi|, |λi| : i = 1, . . .n}, then∣∣∣∣∣Pr
n⋂

i=1

{μi ≤ Xi ≤ λi}− Pr
n⋂

i=1

{μi ≤ Yi ≤ λi}
∣∣∣∣∣≤ 2

π

∑
1≤i<j≤n

|C1
ij −C0

ij|
1

(1−ρ2
ij)

1/2

× exp

(
− v2

1+ρij

)
. (2.56)

Proof We may assume that the covariances of X and Y are invertible (so that both X and
Y have densities): just take, if necessary, Xε = (1− ε2)1/2X+ εG, Yε = (1− ε2)1/2Y+ εG
instead, where G is a standard normal random vector on Rn independent of X and Y. Then
the result for Xε and Yε implies the result for X and Y by letting ε→ 0. Moreover, since both
the hypotheses and the conclusions of the theorem involve the probability laws of X and Y
but not their joint law, we may also assume that X and Y are independent.

Under these two assumptions, define X(t)= t1/2X+ (1− t)1/2Y. Then X(0)= Y, X(1)= X
and Ct :=Cov(X(t))= tC1+(1−t)C0. This curve inRn(n−1)/2 has a neighbourhood consisting
only of (symmetric) strictly positive definite matrices. Let ft denote the density of X(t), and
define

F(t)=
∫ λ1

−∞
· · ·
∫ λn

−∞
ft(x)dx, (2.57)

which can be easily seen to be in C([0,1]). Then the left-hand side of (2.55) is precisely

F(1)−F(0)=
∫ 1

0
F′(t) dt.

We can still differentiate under the integral sign in (2.57), and since by (2.54)

d ft

dt
=

∑
1≤i<j≤n

∂ ft

∂Cij

dCij

dt
=

∑
1≤i<j≤n

(C1
ij −C0

ij)
∂2 ft

∂xi∂xj
,

we obtain

F′(t)=
∑

1≤i<j≤n

(C1
ij −C0

ij)

∫ λ1

−∞
· · ·
∫ λn

−∞

∂2 ft

∂xi∂xj
dx.
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Integrating ∂ ft/(∂xi∂xj) with respect to xi and xj, we obtain ft(x′), where x′k = xk if k 
= i, j,
x′i = λi, x′j = λj. Moreover, we can bound the integrals with respect to the other coordinates,∫ λk
−∞, by integrals over R and obtain∫ λ1

−∞
· · ·
∫ λn

−∞

∂2 ft

∂xi∂xj
dx ≤

∫
Rn−2

ft(x1, . . . ,xi−1,λi,xi+1, . . . ,xj−1,λj,xj+1, . . . ,xn)dx.

This last integral is just the evaluation at the point (λi,λj) of the joint density of Xi(t) and
Xj(t), that is, the density of the centred normal probability law in R2 with covariance(

1 Ct
ij

Ct
ij 1

)
,

1

2π(1− (Ct
ij)

2)1/2
exp

(
−λ

2
i − 2Ct

ijλiλj +λ2
j )

2(1− (Ct
ij)

2)

)
.

Replacing Ct
ij with its absolute value and noting that the minimum of the func-

tion of u, (a2 − 2uab + b2)/(1 − u) on [0,∞), is attained at u = 0, to obtain
(λ2

i − 2Ct
ijλiλj +λ2

j )/(2(1− (Ct
ij)

2))≥ (λ2
i + λ2

j )/2(1+ |Ct
ij|), and then using that ρij ≥ |Ct

ij|,
we see that the quantity in the last display is dominated by

1

2π(1−ρ2
ij)

1/2
exp

(
− (λ

2
i +λ2

j )/2

1+ρij

)
.

This shows that

F′(t)≤ 1

2π

∑
1≤i<j≤n

(C1
ij −C0

ij)
+ 1

(1−ρ2
ij)

1/2
exp

(
− (λ

2
i +λ2

j )/2

1+ρij

)
and that this is a bound for its integral over [0,1] as well, that is, for F(1)−F(0), proving
(2.55).

To prove (2.56), we define

F̃(t)=
∫ λ1

μ1

· · ·
∫ λn

μn

ft(x)dx

and proceed as before to obtain, as a result of the double integration
∫ λi
μi

∫ λj
μj
(∂2 ft)/(∂xi∂xj),

the sum of four functions of n− 2 variables, two of them obtained from ft by, respectively,
setting (xi,xj) = (λi,λj) and (xi,xj) = (μi,μj) and the other two from − ft by, respectively,
setting (xi,xj) = (λi,μj) and (xi,xj) = (μi,λj). Then, on integrating over Rn−2 as earlier
(instead of between μk and λk for each k 
= i, j), we obtain

|F̃′
(t)| ≤ 4

2π

∑
1≤i<j≤n

|C1
ij −C0

ij|
1

(1−ρ2
ij)

1/2
exp

(
− v2

1+ρij

)
,

which yields inequality (2.56) by integrating between 0 and 1.

In this section we need a little less, in fact, only the following consequence of
Theorem 2.4.7:
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Theorem 2.4.8 (Slepian’s lemma) Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be centred
jointly normal vectors in Rn such that

E(XiXj)≤ E(YiYj) and EX2
i = EY2

i f or 1 ≤ i, j ≤ n. (2.58)

Then, for all λi ∈R, i ≤ n,

Pr

(
n⋃

i=1

{Yi > λi}
)
≤ Pr

(
n⋃

i=1

{Xi > λi}
)

, (2.59)

and therefore,
Emax

i≤n
Yi ≤ Emax

i≤n
Xi. (2.60)

Proof Under assumptions (2.58), the right-hand side of (2.55) is less than or equal to zero,
so (2.59) follows from Theorem 2.4.7. Inequality (2.60) follows from (2.58) by integration
by parts (E|ξ | = ∫∞

0 Pr{|ξ |> λ}dλ).
Remark 2.4.9 Sometimes one wishes to compare expected values of the maximum of the
absolute values, and to this end, the following may be useful: for Xi symmetric, for any
i0 ∈ {1, . . . ,n},

Emax
i≤n

Xi ≤ Emax
i≤n

|Xi| ≤ E|Xi0 |+Emax
i,j

|Xi −Xj| ≤ E|Xi0 |+ 2Emax
i≤n

Xi,

where the last inequality follows because

Emax
i,j

|Xi −Xj| = Emax
i,j
(Xi −Xj)= Emax

i
Xi +Emax

j
(−Xj)= 2Emax

i
Xi.

It is also worth mentioning that for any real random variable with mean zero, Emaxi(Xi +
Z)= EZ+Emaxi Xi = Emaxi Xi.

The following corollary of Slepian’s lemma is sometimes easier to apply than
Theorem 2.4.8 because it does not require EX2

i = EY2
i , i ≤ n.

Corollary 2.4.10 Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be two centred, jointly normal
vectors in Rn, and assume that

E(Yi −Yj)
2 ≤ E(Xi −Xj)

2, i, j ∈ {1, . . . ,n}.
Then

Emax
i≤n

Yi ≤ 2Emax
i≤n

Xi.

Proof Replacing Xi by Xi −X1 and Yi by Yi −Y1, we may assume that X1 = Y1 = 0 (see the
preceding remark), which in particular implies that EY2

i ≤ EX2
i . Set σ 2

X =maxi≤n EX2
i , and let

X̄ and Ȳ be Gaussian vectors whose coordinates are defined by

X̄i = Xi + (σ 2
X +EY2

i −EX2
i )

1/2g, Ȳi = Yi +σXg, i = 1, . . . ,n,

where g is standard normal and independent of X and Y. Then

EX̄
2
i = EȲ

2
i = EY2

i +σ 2
X

and
E(Ȳi − Ȳj)

2 = E(Yi −Yj)
2 ≤ E(Xi −Xj)

2 ≤ E(X̄i − X̄j)
2.
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Therefore, we also have E(X̄iX̄j) ≤ E(ȲiȲj) and can apply Slepian’s lemma to X̄ and Ȳ to
obtain Emaxi Ȳi ≤ Emaxi X̄i. We clearly have Emaxi Ȳi = Emaxi Yi. Moreover, since EY2

i ≤
EX2

i , we have

Emax
i

X̄i ≤ Emax
i

Xi +σXEg+

and, using Remark 2.4.9,

σX = max(EX2
i )

1/2 =
√
π

2
maxE|Xi|

≤ 2

√
π

2
Emax

i
Xi = 1

Eg+
Emax

i
Xi.

Thus, Emaxi X̄i ≤ 2Emaxi Xi, and the result follows.

In fact, the constant 2 in this corollary is suboptimal: considerably more work gives a
constant of 1, which is best (see the notes at the end of this chapter).

Finally, we will apply the comparison results to obtain a lower bound for Esupt X(t) in
terms of the metric entropy of the space (T,dX), where X is a Gaussian process and d2

X(s, t)=
E(X(t)−X(s))2. This result will be based on a comparison between a Gaussian vector X and
an appropriate vector of independent normal variables. Then the entropy lower bound will
follow from the following evaluation of the maximum of a finite number of independent
normal variables.

Lemma 2.4.11 Let gi, i ∈N, be independent standard normal random variables. Then

a. lim
n→∞

Emaxi≤n |gi|√
2logn

= 1, and

b. There exists K<∞ such that, for all n> 1,

K−1(logn)1/2 ≤ Emax
i≤n

gi ≤ Emax
i≤n

|gi| ≤ K(logn)1/2.

Proof The right-hand side of the inequality in part (b) is contained in Lemma 2.3.4. Since
Emax(g1,g2) > 0 (in fact equal to 1/

√
π ), it suffices to prove the left-hand inequality for

all n ≥ n0, for some n0 (large enough). Since, by Remark 2.4.9, Emaxi≤n |gi| ≤ √
2/π +

2Emaxi≤n gi, it follows that, for n large enough,

Emax
i≤n

gi ≥ 3−1Emax
i≤n

|gi|,

and part (b) is therefore a consequence of part (a). To prove part (a), first note that if in the
estimate

Emax
i≤n

|gi| =
∫ ∞

0
Pr

{
max
i≤n

|gi|> t

}
dt ≤ δ+ n

∫ ∞

δ

Pr{|g|> t}dt

= δ+ n

√
2

π

∫ ∞

δ

∫ ∞

t
e−u2/2dudt = δ+ n

√
2

π

∫ ∞

δ

e−u2/2

∫ u

δ

dtdu
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≤ δ+ n

√
2

π
e−δ

2/2 − n

√
2

π

δ2

δ2 + 1
e−δ

2/2

= δ+ n

√
2

π

1

δ2 + 1
e−δ

2/2

we take δ =√
2logn, we obtain Emaxi≤n |gi| ≤

√
2logn+√

2/π/(1+ 2logn), giving

limsup
n→∞

Emaxi≤n |gi|√
2logn

≤ 1.

In the opposite direction, since by (2.23), for t ≤√
(2− δ) logn, for 0< δ < 2,

Pr{|g|> t} ≥
√

2

π

t

t2 + 1
e−t2/2 ≥

√
2

π

√
(2− δ) logn

(2− δ) logn+ 1
n−(2−δ)/2 = c(n,δ)

n
,

with limn→∞ c(n,δ)=∞, for all δ > 0, and

Pr{max
i≤n

|gi|> t} = 1− (1−P{|g|> t)})n ≥ 1− e−nP{|g|>t} ≥ 1− e−c(n,δ),

we have

Emax
i≤n

|gi|>
∫ √

(2−δ) logn

0

(
1− e−c(n,δ)

)
dt = (

1− e−c(n,δ)
)√
(2− δ) logn,

which yields

liminf
n

Emaxi≤n |gi|√
(2− δ) logn

≥ 1, for all 0< δ < 2.

Letting δ→ 0 completes the proof.

Recall that given a metric or pseudo-metric space (T,d), N(T,d,ε) denotes the ε-covering
number of (T,d) and that the packing numbers D(T,d,ε) are comparable to the covering
numbers, concretely, N(T,d,ε)≤ D(T,d,ε) (see immediately preceding Theorem 2.3.6).

Theorem 2.4.12 (Sudakov’s lower bound) There exists K <∞ such that if X(t), t ∈ T,
is a centred Gaussian process and dX(s, t) = (E(X(t)− X(s))2)1/2 denotes the associated
pseudo-metric on T, then, for all ε > 0,

ε
√

logN(T,dX,ε)≤ K sup
S⊂T, S finite

Emax
t∈S

X(t).

Proof Let N be any finite number not exceeding N(T,dX,ε) (which may or may not be
finite). Then, since D(T,dX,ε) ≥ N, there exist N points in T, say, S = {t1, . . . , tN}, such that
dX(titj)≥ ε, for 1 ≤ i 
= j ≤ N. Let gi, i ≤ N, be i.i.d. standard normal random variables, and
set X′(ti)= εgi/2, i ≤ N. Then E(X′(ti)−X′(tj))2 = ε2 ≤ d2

X(ti, tj), i 
= j, and Corollary 2.4.10
implies that

Emax
t∈S

X′(s)≤ 2Emax
t∈S

X(s).

The theorem now follows from part (b) of Lemma 2.4.11.

Corollary 2.4.13 (Sudakov’s theorem) Let X(t), t ∈ T, be a centred Gaussian process,
and let dX be the associated pseudo-distance. If liminfε↓0 ε

√
logN(T,dX,ε) = ∞, then

supt∈T |X(t)| =∞ a.s., so X is not sample bounded.
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Proof Under the hypothesis of the corollary, by Sudakov’s lower bound, there exists
an increasing sequence of finite subsets Sn ⊂ T such that Esupt∈Sn

|X(t)| ↗ ∞, and by
monotone convergence, this gives Esupt∈∪∞n=1Sn

|X(t)| =∞. The process X restricted to ∪nSn

is separable, and applying part (b) of Theorem 2.1.20 to it implies that

Pr

{
sup

t∈∪∞n=1Sn

|X(t)|<∞
}
= 0.

This corollary shows that if a centred Gaussian process X is sample bounded, then the
covering numbers N(T,dX,ε) are all finite; that is, (T,dX) is not only separable but totally
bounded, and in particular, X is separable by Theorem 2.1.12.

If X is sample continuous, the preceding theorem admits a stronger version:

Corollary 2.4.14 Let X(t), t ∈ T, be a sample continuous centred Gaussian process. Then

lim
ε→0
ε
√

logN(T,dX,ε)= 0.

Proof If X is sample continuous, let X itself denote a process with the same law (hence
the same dX) with bounded, uniformly continuous sample paths. Thus, in particular, X is
separable because it is sample bounded. Then Esupt∈T |X(t)| <∞ by Theorem 2.1.20, and
since supdX(s,t)<δ

|X(t)− X(s)| ≤ 2supt∈T |X(t)|, continuity of X and dominated convergence
give

η(δ) := E sup
dX(s,t)<δ

|X(t)−X(s)|→ 0, as δ→ 0.

Given δ > 0, since by Theorem 2.4.12 (T,dX) is totally bounded, there exists a finite set A in
T which is δ-dense in T (i.e., for all t ∈ T there is s ∈ A such that dX(s, t) < δ). Then we can
partition T into Card(A) sets, each within the sphere of radius δ about a point s in A. Call
these sets Ts, s∈A. For each s∈A, consider the process Yt =Xt−Xs, t∈ Ts. We have dY = dX

on Ts, and by the preceding theorem, Ts has an ε-dense subset, say, Bs, whose cardinality
satisfies

ε
√

logCard(Bs)≤ Kη(δ).

Now the set
⋃

s∈A Bs is ε-dense in T, and by definition of N(T,dX,ε) and the preceding
inequality we have

ε
√

logN(T,dX,ε)≤ ε√logCard(∪s∈ABs)≤ ε
√

log[Card(A)×max
s

Card(Bs)]

≤ ε
√

logCard(A)+ K2η2(δ)

ε2
≤ ε√logCard(A)+Kη(δ).

Thus, for all δ > 0,
limsup
ε→0

ε
√

logN(T,dX,ε)≤ Kη(δ),

proving the corollary because η(δ)→ 0, as δ→ 0.

The lower bound for Esupt∈T |X(t)| in Theorem 2.4.12 should be compared with the upper
bound in Theorem 2.3.6 for X a centred Gaussian process with X(t0)= 0 a.s. for some t0 ∈ T.
Note that if logN(T,dX,1/τ) is bounded above and below by a constant times a regularly
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varying (at infinity) function of τ , then both bounds combine to give that there exists K<∞
such that

1

K
σX

√
logN(T,dX,σX)≤ Esup

t∈T
|X(t)| ≤ KσX

√
logN(T,dX,σX). (2.61)

Exercises

2.4.1 Let A and B be two compact subsets of Rn. Take ϕ = IλIA+(1−λ)IB , f = IA, g = IB in
Theorem 2.4.2 to obtain

Vol(λA+ (1−λ)B)≥ (Vol(A))λ(Vol(B))1−λ,

where Vol indicates volume in Rn. Now prove that, as a consequence,

(Vol(A+B))1/n ≥ (Vol(A))1/n + (Vol(B))1/n,

which is Brunn-Minkowski’s inequality. Hint: Apply the first inequality to Ã= (Vol(A))−1/nA,
B̃ = (Vol(B))−1/nB and λ̃= (Vol(A))1/n/((Vol(A))1/n + (Vol(B))1/n).

2.4.2 Let X and Y be two centred Gaussian random vectors in Rn such that E〈x,Y〉2 ≤ E〈x,X〉2,
x ∈ Rn. Show that CX −CY, the difference between the covariance of X and the covariance of
Y, is positive definite. Conclude that if Z is a centred random vector with covariance CX −CY

and independent of Y, then X and Y+ Z have the same probability law. Prove, using Fubini
and Anderson’s lemma, that Pr{X ∈ C} ≤ Pr{Y ∈ C} for any convex symmetric set C ⊂Rn.

2.4.3 Let X(t), t∈ T, be a centred Gaussian process. Let C⊂RT be a convex symmetric set such that
C =∩∞

k=1{x ∈RT : | fk(x)| ≤ 1}, where fk(x)=∑rk
i=1 akix(tki) for some rk <∞ and collections

of rk point tk,i ∈ T and rk coefficients aki ∈R. Then, for all x ∈RT, Pr{X+ x ∈ C} ≤ Pr{X ∈ C}.
(In this sense, there is no need for B to be separable, or even a Banach space, in Theorem 2.4.5,
but only that the definition of the convex set involve only a countable set of measurable linear
functionals.)

2.4.4 Let X be a centred Gaussian B-valued random variable and B a separable Banach space. Show
that the distribution function F‖X‖(t) = Pr{‖X‖ ≤ t} is continuous for all t > 0. Deduce that
if Pr(X = 0) = 0 then F||X|| is uniformly continuous on [0,∞). Hint: For any t > 0, B is a
countable union of translates of balls of radius t by separability; hence, at least one of them
has strictly positive measure for the probability law of X. Thus, by Theorem 2.4.5, the same is
true for the ball centred at the origin. This allows use of Exercise 2.2.13.

2.4.5 Here is a formal improvement of Theorems 2.4.4 and 2.4.5: prove that in the notation of each
of these theorems, the function λ �→ Pr{X+λx ∈C}, 0≤ λ≤ 1, is monotone decreasing. Hint:
Use these theorems after applying the log-concavity inequality to A = C−λx and B = C.

2.4.6 Let X = (g0,g1, . . . ,gn) be a centred jointly normal random vector in Rn+1, set Y = (g1, . . . ,gn)

and let C be a measurable convex symmetric set of Rn. Use the preceding exercise to show that
Pr{Y ∈C|g0 = x} ≥ Pr{Y ∈C||g0| ≤ x}. Hint: There exists Z centred normal in Rn, independent
of g0, and a vector a = (a1, . . . ,an) such that Y = ag0 + Z. Then Pr{Y ∈ C|g0 = x} = Pr{Z ∈
C− ax}. Also, Pr{Y ∈ C||g0| ≤ x} = ∫ x

−x Pr{Y ∈ C|g0 = t}dL(g0||g0| ≤ x)(t).
2.4.7 Complete the details of the proof of identity (2.54) by showing that differentiation under the

integral sign in the Fourier inversion formula for f is justified.
2.4.8 Likewise for the differentiation of F in (2.57).
2.4.9 Prove the following fact: If X and Y are centred Gaussian processes such that dX(s, t)≥ dY(s, t),

and if X is sample continuous, then so is Y. Hint: Use Exercise 2.3.10 and Sudakov’s inequality.
2.4.10 Extend Corollary 2.4.10 to separable centred Gaussian processes: if X and Y are two separable

centred Gaussian processes on T, and if E(Y(t)−Y(s))2 ≤ E(X(t)−X(s))2 for all s, t ∈ T, then
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Esupt∈T Y(t)≤ 2Esupt∈T X(t) (meaning, in particular, that if the second quantity is finite, then
so is the first).

2.4.11 If the processes X and Y in Exercise 2.4.10 have zero in their range for every ω (meaning
that for each ω there is tω such that X(ω, tω) = 0, and likewise for Y), then the inequality
between their intrinsic distances also implies that Esupt∈T |Y(t)| ≤ 4Esupt∈T |X(t)| (the constant
is not best possible, neither in this exercise nor in Exercise 2.4.10). Hint: By nonnegativity,
supt X

+(t) = supt X(t) and supt X
−(t) = supt(−X(t)), and likewise for Y. Now apply the

comparison theorem (Exercise 2.4.10) to both {X,Y} and {−X,−Y}.
2.4.12 (Comparison of moduli of continuity.) Let X and Y be as in Exercise 2.4.11, and set d2

X(s, t)=
E(X(t)− X(s))2, s, t ∈ T, and likewise for Y. Exercise 2.3.10 ‘localizes’ the increments by
reducing the estimation of Esups,t:dY(s,t)≤δ |Y(t)−Y(s)| to that of supt Esups:dY(s,t)≤δ |Y(t)−Y(s)|
(plus a metric entropy term), but then, since dY = dYt , where Yt(s) = Y(s) − Y(t), this
localization allows for comparison. Concretely, prove that there exists K <∞ such that if
X and Y are as in Exercise 2.4.11, then for all δ > 0,

E sup
dX(s,t)≤δ

|Y(t)−Y(s)| ≤ K

[
sup
t∈T

E sup
s:dX(s,t)≤δ

|X(t)−X(s)|+ δ(logN(T,d,δ))1/2
]

.

2.5 The Log-Sobolev Inequality and Further Concentration

In this section we present another approach to concentration via log-Sobolev inequalities and
the Herbst method. This gives, by way of solving a differential inequality for the Laplace
transform of Lipschitz functions of a Gaussian process, sharp concentration inequalities
about its mean. The method is of particular interest as it is amenable to generalisation to
non-Gaussian situations.

2.5.1 Some Properties of Entropy: Variational Definition and Tensorisation

In this subsection, μ is a probability measure on some measurable space (S,S), and f is
a measurable, real nonnegative function on this space. Convention: 0 log0 := limx→0+ x
logx = 0.

Definition 2.5.1 The entropy of f ≥ 0 with respect to a probability measure μ is defined as

Entμ f =
∫

f log f dμ−
(∫

f dμ

)(
log

∫
f dμ

)
if
∫

f log(1+ f )dμ<∞ and as ∞ otherwise.

Note that since x logx (extended by continuity at 0) is a convex function on R+ ∪ {0}, the
entropy functional is nonnegative. It is easy to see from the definition that the functional
Entμ is homogeneous of degree 1, that is, Entμ(λ f )= λEntμ f .

Recall the following Young’s inequality: for x ∈R and y ≥ 0,

xy ≤ y logy− y+ ex. (2.62)

To prove it, observe that for each x ∈ R the function zx(y) = xy − y logy + y − ex, y > 0,
has an absolute maximum equal to 0 at y = ex. This inequality yields the following useful
expression for the entropy:
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Lemma 2.5.2

Entμ f = sup

{∫
f gdμ :

∫
egdμ≤ 1, g measurable

}
.

Proof By homogeneity, we can assume that
∫

f dμ= 1. By Young’s inequality (2.62) for
y = f ≥ 0 and x = g,∫

f gdμ≤
∫

f log f dμ− 1+
∫

egdμ≤
∫

f log f dμ= Entμ f ,

which gives that the preceding sup is dominated by the entropy. To see that it equals the
entropy, take g = log f .

Lemma 2.5.2 yields an inequality about the behavior of Ent for product measures,
‘tensorisation of entropy’, which is basic for the proof of concentration inequalities. Given
a product measure P = μ1 × ·· · ×μn and a function f of n variables, we denote Entμi f
the function of n− 1 variables obtained by computing the entropy with respect to μi of the
function of one variable fi(x) = f (x1, . . . ,xi−1,x,xi+1, . . . ,xn). With this notation, we have
the following:

Proposition 2.5.3 Let P = μ1 ×·· ·×μn, and let f ≥ 0 on a product space. Then

EntP f ≤
n∑

i=1

∫ (
Entμi f

)
dP.

Proof Given g on the product space such that
∫

egdP ≤ 1, set, for any x = (x1, . . . ,xn),

g1(x)= log
eg(x)∫

eg(x)dμ1(x1)
,

gi(x)= log

∫
eg(x)dμ1(x1) · · ·dμi−1(xi−1)∫

eg(x)dμ1(x1) · · ·dμi(xi)
, i = 2, . . . ,n.

Thus, for each gi, the integral with respect to μi of the numerator is the denominator. Note
then that

g ≤ g− log
∫

egdP =
n∑

i=1

gi and
∫

egidμi = 1.

Then, by Lemma 2.5.2,∫
f gdP ≤

n∑
i=1

∫
f gidP =

n∑
i=1

∫ ∫
f gidμidP ≤

n∑
i=1

∫
(Entμi f )dP.

We still need another variational definition of entropy and its consequence for exponential
functions.

Let ξ be a convex function on a finite or infinite interval (e.g., ξ(u)= u logu on [0,∞)),
differentiable on its interior, and let the range of f be contained in it. Then, assuming the
existence of the integrals involved,∫

ξ( f )dμ− ξ
(∫

f dμ

)
= inf

t

∫ [
ξ( f )− ξ(t)+ (t− f )ξ ′(t)

]
dμ.
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To see this, note that the integral on the right-hand side for t = ∫
f dμ is just the left-hand

side. Now note that the convex function y = ξ(x) at
∫

f dμ is larger than or equal to the
value at

∫
f dμ of the tangent line to the graph of this function at (t,ξ(t)), which gives

ξ

(∫
f dμ

)
≥ ξ(t)+

(∫
f dμ− t

)
ξ ′(t),

proving the claim. Applied to entropy, this gives the following identity:

Lemma 2.5.4

Entμ f = inf
t≥0

∫
[ f log f − (log t+ 1) f + t]dμ.

In the case of exponential functions e f , this lemma gives the following:

Lemma 2.5.5 Setting
φ(u) := e−u + u− 1, u ∈R,

we have

Entμe f = inf
u∈R

∫
φ( f − u)e f dμ. (2.63)

Proof The last lemma and the change of variables u = log t give

Entμe f = inf
t≥0

∫
[ f e f − (log t+ 1)e f + t]dμ= inf

u∈R

∫
φ( f − u)e f dμ.

2.5.2 A First Instance of the Herbst (or Entropy) Method: Concentration of the
Norm of a Gaussian Variable about Its Expectation

An application of Theorem 2.4.2 (the Prékopa-Leindler theorem) yields the logarithmic
Sobolev inequality for Gaussian measures, which then can be integrated to provide an upper
bound for the Laplace transform of the norm of the associated Gaussian vector. Given a
smooth function of several variables f (x1, . . . ,xn), we let f ′ = (∂ f/∂x1, . . . ,∂ f/∂xn) denote
its gradient and let | f ′| denote its Euclidean norm.

Theorem 2.5.6 Let γ be the canonical Gaussian measure on Rn, and let f : Rn �→ R be a
twice continuously differentiable function such that f 2 and | f ′|2 are γ -integrable. Then

Entγ ( f 2)≤ 2
∫

| f ′|2dγ . (2.64)

Proof By Proposition 2.5.3 on the tensorisation of entropy, it suffices to prove this theorem
for n = 1. Also, by standard approximation arguments, we can assume that f 2 = eg, where
g is twice continuously differentiable and has compact support. For completeness sake, an
approximation argument is sketched in Exercise 2.5.1. Set V(x)= (x2 + ln2π)/2 so that the
standard normal density becomes e−V(x). For 0< λ< 1, define

gλ(z)= sup
u,v∈R:λu+(1−λ)v=z

[
g(u)− (

λV(u)+ (1−λ)V(v)−V(λu+ (1−λ)v))] ,

so that taking φ(z)= egλ(z)−V(z), we have the relation

φ(λu+ (1−λ)v)≥ eλ(g(u)/λ−V(u))e−(1−λ)V(v),
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that is, the functions eg/λ−V, e−V and φ satisfy the log-concavity relation (2.49) from
Theorem 2.4.2, respectively, as the functions f , g and φ there (the different use of the
notation g in this proof and in Theorem 2.4.2 should not lead to confusion). Hence, the
conclusion of this theorem gives∫

egλdγ ≥
(∫

eg/λdγ

)λ
. (2.65)

This is relevant to entropy because letting H(λ) = (∫
eg/λdγ

)λ
, we obtain, by logarithmic

differentiation,
H′(1)=−Entγ (e

g).

Hence, by Taylor expansion about λ= 1,(∫
eg/λdγ

)λ
=
∫

egdγ + (1−λ)Entγ (e
g)+O

(
(1−λ)2) , (2.66)

as λ→ 1. To finish the proof, we must find an upper bound for the left-hand side of (2.65).
We observe that with the change of variables h = z− v and η = (1− λ)/λ and using the

definition of V,

gλ(z)= sup
u,v∈R:λu+(1−λ)v=z

[
g(u)− λ(1−λ)

2
(u− v)2

]
= sup

h∈R

[
g(z+ηh)− ηh

2

2

]
.

Since g′′ is continuous and has compact support, we have that

g(z+ηh)≤ g(z)+ g′(z)ηh+Cη2h2

for some constant C independent of z. This gives

gλ(z)≤ g(z)+η sup
h

[
g′(z)h− (1/2−Cη)h2

]= g(z)+ η
2
(g′(z))2 +O(η2)

uniformly over all z ∈ R and for η small enough because g′ is bounded (we must have
1/2−Cη > 0 and observe that for a real and b positive, the maximum of ah−bh2 is attained
at h = a/2b). Applying Taylor’s theorem again, we obtain

egλ(z) ≤ eg(z)+ η
2
(g′(z))2eg(z)+O(η2)

uniformly in z (recall that g has compact support). Integrating with respect to γ and using
(2.65) and (2.66), we obtain (letting λ→ 1)

Entγ (e
g)≤ 1

2

∫
(g′)2egdγ ,

which, since 2 f f ′ = g′eg and hence 4( f ′)2 = (g′)2eg, gives the log-Sobolev inequality
for f .

This proof works as well in Rn for any n, so tensorisation of entropy is in fact redundant
here. Notice the independence on the dimension of the preceding log-Sobolev inequality.
Such independence may be seen either as a consequence of the tensorisation property of
entropy or as a consequence of the the log-concavity inequality from Theorem 2.4.2 (which,
as just mentioned, could have been used in any dimensions).
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64 Gaussian Processes

Let now f 2 = eλF, where F : Rn �→ R is twice continuously differentiable with |F′| ≤ 1.
Then

E| f ′|2 = λ
2

4
E
(|F′|2eλF)≤ λ2

4
E
(
eλF

)
. (2.67)

With this bound, the Gaussian log-Sobolev inequality becomes a solvable differential
inequality for the Laplace transform of the random variable F(X), where X is a random
variable with probability law γ . This is the first, simplest instance of the Herbst method or
entropy method for obtaining exponential inequalities. Applied in this case it gives optimal
concentration of the supremum norm of a Gaussian process about its mean as follows: recall
that ‖F‖Lip = supx
=y |F(x)−F(y)|/|x− y|.
Theorem 2.5.7 Let F be a Lipschitz function on Rn, with ‖F‖Lip ≤ 1, and let X= (g1, . . . ,gn)

with gi independent standard normal random variables. Then, for all λ ∈R,

E
(
eλF(X)

)≤ eλE(F(X))+λ
2/2. (2.68)

As a consequence,

Pr{F(X)≥ E(F(X))+ t} ≤ e−t2/2, Pr{F(X)≤ E(F(X))− t} ≤ e−t2/2. (2.69)

Proof Assume first that F is twice continuously differentiable with |F′| ≤ 1, and set H(λ)=
E
(
eλF(X)

) = ∫
eλFdγ . Then the log-Sobolev inequality (2.64) applied to f 2 = eλF together

with inequality (2.67) gives

λH′(λ)−H(λ) logH(λ)= Entγ
(
eλF

)≤ λ2

2
H(λ).

This inequality simplifies if we write it in terms of K(λ) := λ−1 logH(λ), becoming

K′(λ)≤ 1

2
.

Now, using l’Hôpital’s rule, we see that K(λ) satisfies the initial condition K(0) =
H′(0)/H(0)= E(F(X)), and therefore,

K(λ)= K(0)+
∫ λ

0
K′(t)dt ≤ E(F(X))+ λ

2
.

Hence, H(λ) = eλK(λ) ≤ eλE(F(X))+λ2/2 for all λ ∈ R, which is inequality (2.68) in the case
of differentiable F. The case of F Lipschitz follows by convolution of F with a smooth
approximate identity and a standard approximation argument (Exercise 2.5.2). For the first
inequality in (2.69), we observe that, by Chebyshev’s inequality, for λ≥ 0,

Pr {F(X)≥ E(F(X))+ t} ≤ H(λ)

eλ(E(F(X))+t)
≤ e−λt+λ

2/2

and then take λ= t. The second inequality in (2.69) follows by applying the preceding one
to the Lipschitz function −F.

The same arguments used to derive Theorem 2.2.7 from Theorem 2.2.6 show how the
preceding theorem applies to the supremum of a separable Gaussian process or to the
norm of a Gaussian random vector. With the notation of processes we thus obtain the
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2.5 The Log-Sobolev Inequality and Further Concentration 65

following version of the #Borell-Sudakov-Tsirelson concentration inequality, now around
the mean. Recall from the 0-1 law and the integrability properties of Gaussian processes
(e.g., Theorem 2.1.20) that if the sup norm of a Gaussian process X is finite with positive
probability, then E‖X‖∞ <∞ and σ 2 = supt∈T EX2(t) <∞.

Theorem 2.5.8 Let X(t), t ∈ T, be a separable centred Gaussian process whose supremum
norm is finite with positive probability. Let σ 2 be the supremum of the variances EX2(t), and
set ‖X‖∞ := supt∈T |X(t)|. Then,

Pr {‖X‖∞ ≥ E‖X‖∞+ u} ≤ e−u2/2σ 2
, Pr {‖X‖∞ ≤ E‖X‖∞− u} ≤ e−u2/2σ 2

. (2.70)

Note that inequality (2.70) gives Pr{|‖X‖∞−E‖X‖∞| ≥ u} ≤ 2e−u2/2σ 2
, whereas the

Borell-Sudakov-Tsirelson concentration inequality about the median Pr{|‖X‖∞−M| ≥ u} ≤
e−u2/2σ 2

is better by a factor of 2 (see (2.18)). Compare also with (2.20).

Exercises

2.5.1 (The approximation argument in Theorem 2.5.6). Let γ be the standard normal measure on R,
and let f : R �→R satisfy f ∈ L2(γ ) and f ′ ∈ L2(γ ). Take 1> εn ↓ 0, and choose Ln ↑∞ such
that ∫

[−Ln ,Ln]c
[
( f 2 + 1)1−εn)2 log( f 2 + 1))2 + 2ε−εnn ( f ′)2

]
dγ < εn,

which exists by the hypotheses on f . Let wn be an even continuously differentiable function
such that wn is 1−εn on [−Ln,Ln] and zero on [−Ln −2,Ln +2]c; it is decreasing on [0,∞) and
|w′

n| ≤ 1. Define

gn = wn log( f 2 + εn), h2
n = egn = ( f 2 + εn)

wn .

Then (a) gn is continuously differentiable and has bounded support, so, by the proof of
Theorem 2.5.6 (without the approximation argument), we have

Entγ (h
2
n)≤ 2

∫
(h′n)

2dγ .

(b) h2
n ≤ f 2 + 1, so, by dominated convergence,

∫
h2

ndγ → ∫
f 2dγ , and we also have, by

bounded convergence, that
∫

hn≤1 h2
n logh2

n dγ → ∫
f 2≤1 f 2 log f 2 dγ . Then, by Fatou’s lemma

applied to
∫

hn>1 h2
n logh2

n dγ and by part (a), we obtain

Entγ ( f 2)≤ liminf
n

Entγ (h
2
n)≤ 2liminf

n

∫
(h′n)

2dγ .

(c) Next, 2h′n/hn =w′
n log( f 2+εn)+2wn f f ′/( f 2+εn), and recall that w′

n = 0 on [−Ln,Ln] and
on [−Ln − 2,Ln + 2]c. Hence, |h′n| ≤ | f ′| on [−Ln,Ln] and

∫
[−Ln ,Ln]c(h

′
n)

2dγ ≤ εn, concluding

that
∫
(h′n)2dγ ≤ ∫

( f ′)2dγ + εn, which gives

Entγ ( f 2)≤ 2
∫
( f ′)2dγ

by part (b).
2.5.2 Show that if Theorem 2.5.8 holds for F infinitely differentiable with ‖F′‖∞ ≤ 1, it also holds

for F Lipschitz with ‖F‖Lip ≤ 1. Hint: Apply the result for smooth functions to the convolution
of F Lipschitz with, for example, the density of the N(0,ε2I) distribution, and let ε→ 0. Since
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66 Gaussian Processes

we will be using this type of approximation more than once, just note the following two easy
estimates: if φ(u) is the N(0, I) density in Rd and for F : Rd �→R with ‖F‖Lip <∞, then

Fε(x)= F∗φε(x) := ε−d

∫
Rd
φ((x− y)/ε)F(y)dy =

∫
Rd
φ(u)F(x− εu)du

is infinitely differentiable, ‖Fε − F‖∞ ≤ ε
∫
Rd φ(u)|u|du → 0 and |Fε(x1) − Fε(x2)| ≤

supv |F(x1 − v)−F(x2 − v)| ≤ ‖F‖Lip.

2.6 Reproducing Kernel Hilbert Spaces

In the first subsection the reproducing kernel Hilbert spaces of Gaussian processes and of
Gaussian random variables taking values in separable Banach spaces are defined, and their
very basic properties are given. In the next subsection, several applications are developed,
particularly to isoperimetry, equivalence and singularity, and small ball estimation.

2.6.1 Definition and Basic Properties

Let X(t), t ∈ T, be a centred Gaussian process, and let C(s, t) = E(X(s)X(t)), s, t ∈ T, be its
covariance. Let F be the linear span of the collection of (square integrable) random variables
{X(t) : t ∈ T} and F̄ its closure in L2(�,
,Pr). This space is isometric to a Hilbert space H
of functions on T, which is called the reproducing Hilbert space of X (or, more properly, of
the covariance function C) as follows: define

φ : F �→RT, φ

(
k∑

i=1

aiX(ti)

)
=

k∑
i=1

aiC(ti, ·) (2.71)

for k<∞, ai ∈ R and ti ∈ T, i = 1, . . . ,k, and define on φ(F) the inner product induced by
the L2 inner product via φ, that is,〈

k∑
i=1

aiC(ti, ·),
�∑

i=1

biC(si, ·)
〉

H

=
∑

i≤k,j≤�
aibjC(ti,sj), (2.72)

in particular, 〈C(t, ·),C(s, ·)〉 = C(s, t) for all s, t ∈ T. The reproducing kernel Hilbert space
H = HX of X is defined as the completion of φ(F) by this inner product. In order to see that
HX can be identified to a space of functions (or of classes of functions, identifying those at
distance zero from each other), note that the definitions (2.71) of φ and (2.72) of the inner
product 〈·, ·〉H can be restated as

φ

(
k∑

i=1

aiX(ti)

)
(t)= E

((
k∑

i=1

aiX(ti)

)
X(t)

)
, t ∈ T,

and 〈
φ

(
k∑

i=1

aiX(ti)

)
, φ

⎛⎝ �∑
j=1

bjX(sj)

⎞⎠〉
H

= E

⎡⎣ k∑
i=1

aiX(ti)
�∑

j=1

bjX(sj)

⎤⎦ .

That is,
φ(h)(t)= E(hX(t)), 〈φ(h1),φ(h2)〉H = 〈h1,h2〉L2 , h,h1,h2 ∈ F.
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2.6 Reproducing Kernel Hilbert Spaces 67

Thus, the function φ(h)= E(hX) is a linear isometry between (F,‖ · ‖L2) and (φ(F),‖ · ‖H)

(where ‖v‖2
H = 〈v,v〉H). It follows that the completion of φ(F) for the induced inner product

〈·, ·〉H is simply the collection of functions{
φ(h) : φ(h)(t) := E(hX(t)), t ∈ T,h ∈ F̄

}= {E(hX) : h ∈ F̄},
with inner product 〈E(h1X),E(h2X)〉H = E(h1h2). In short:

Definition 2.6.1 The reproducing kernel Hilbert space (RKHS) of a centred Gaussian
process X(t), t ∈ T, (or of its probability law, or of its covariance) is the Hilbert space of
functions

t �→ (E(hX))(t) := E(hX(t)), t ∈ T,

where h ranges over the closure F̄ in L2(�,
,Pr) of the linear span F of the range of the
process {X(t) : t∈ T}⊂ L2(�,
,Pr), with inner product 〈E(h1X),E(h2X)〉H =E(h1h2), hi ∈ F̄.

Example 2.6.2 The RKHS of an orthogaussian sequence {gn}∞n=1. The closure in L2 of the
linear span of X(n)= gn, n ∈N, gn independent N(0,1), is F̄= {∑∞

i=1 aigi :
∑

a2
i <∞}

, and
if h =∑∞

i=1 aigi ∈ F̄, then (E(hX))(n)= E
((∑∞

i=1 aigi

)
gn

)= an. Hence, E(hX)= {an}∞n=1 ∈
�2 ⊂ RN. That is, the RKHS of the standard Gaussian measure on RN is �2 (as a subset
of RN).

Often one is interested in sample continuous Gaussian processes, as in Section 2.3, or
more generally in processes whose sample paths belong to a Banach space of functions or
even more generally in Banach space–valued random variables (defined in Section 2.1). If
X is a centred Gaussian B-valued random variable, it certainly can be viewed as a Gaussian
process on the unit ball of the topological dual B∗ of B, and then the preceding definition
applies. However, more can be said, for instance, that the RKHS is not only a collection of
continuous linear functionals on B∗, that is, a subset of B∗∗, but also a subset of B. Thus,
there is something to gain from adapting the preceding definition to this situation. In what
follows, for x ∈ B, ‖x‖ will denote its B-norm, and the same symbol will be used for the
B∗-norm; that is, ‖ f ‖ = sup‖x‖≤1 | f (x)| will denote the B∗-norm of f .

Before proceeding, it is convenient to recall some definitions and basic properties of
Banach-valued random variables and their expectations. Let (�,
,Pr) be a probability
space, and let B be a separable Banach space, equipped with its Borel σ -algebra B. Let
X be a B-valued random variable, that is, a 
 − B measurable function X : � �→ B. X is
simple if it is finitely valued, and the expected value of a finitely valued random variable
X =∑n

i=1 xiIAi , xi ∈ B, Ai ∈ 
, is naturally defined as EX =∑n
i=1 Pr(Ai)xi. X is Bochner

integrable or strongly integrable if there exists a sequence of simple functions Xn such that
E‖Xn −X‖→ 0. Then

‖EXn −EXm‖ ≤ E‖Xn −Xm‖ ≤ E‖Xn −X‖+E‖Xm −X‖
by convexity and the triangle inequality; hence, the sequence {EXn} is Cauchy. The expected
value of X is then defined as EX= limn→∞ EXn. It is immediate that EX is well defined. Since
E|‖Xn‖ − ‖X‖| ≤ E‖Xn − X‖ → 0, we obtain E‖X‖ = limn E‖Xn‖ <∞. Also, if f ∈ B∗,
then E| f (Xn)− f (X)| ≤ ‖ f ‖E‖Xn − X‖ → 0; hence, E f (X) = limn E f (Xn) exists and is
finite. Moreover, f (EXn)= E f (Xn) and | f (EXn)− f (EX)| ≤ ‖ f ‖‖EXn −EX‖→ 0. These
observations imply that f (EX)= E f (X).
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68 Gaussian Processes

A random variable X is Pettis or weakly integrable if f (X) ∈ L1(Pr) for all f ∈ B∗ and
there exists x ∈ B such that E f (X)= f (x), f ∈ B∗. The preceding paragraph shows that if X
is Bochner integrable, then it is Pettis integrable and both integrals coincide.

If E‖X‖<∞, then the map ν : A �→ ν(A) := E(‖X‖IX∈A) is a finite measure on the Borel
sets of B and hence, by the Oxtoby-Ulam theorem (Proposition 2.1.4), a tight Borel measure.
Given 0<εn → 0, let Kn be a compact set such that ν(Kc

n)< εn/2, let An,1, . . . ,An,kn be a finite
partition of Kn consisting of sets of diameter at most εn/2, pick up a point xn,k ∈ An,k for each
k and define the simple function Xn =∑kn

k=1 xn,kI(X∈An,k). Then E‖Xn −X‖ ≤ εn/2+ ν(Kc
n) <

εn → 0, showing that X is Bochner integrable. Summarizing:

Lemma 2.6.3 Let B be a separable Banach space, and let X be a B-valued random variable.
Then X is Bochner integrable if and only if E‖X‖<∞. Moreover, if X is Bochner integrable,
then X is also Pettis integrable and both integrals coincide.

Recall that as defined in Section 2.1, a B-valued random variable X is centred Gaussian
if f (X) is a normal random variable for every f ∈ B∗. Then, as shown in Example 2.1.6,
‖X‖ = sup f ∈D f (X), where D is a countable subset of B∗

1, the unit ball of the dual of B.
Thus, the process f �→ f (X), f ∈ D, is Gaussian, separable and sup f ∈D | f (X)| = ‖X‖<∞
a.s. Hence, the Borell-Sudakov-Tsirelson theorem (Theorem 2.2.7) applies, and so do its
corollaries, so we have not only E‖X‖ <∞ but also Eeλ‖X‖2

<∞ for all λ < 1/2σ 2, for
σ = sup f ∈D(E f 2(X))1/2 ≤ E‖X‖. In particular, then X is Bochner and hence also Pettis
integrable.

It should be mentioned that in the case of a separable Banach space, the process f �→
f (X), f ∈ B∗

1, defined by a centred Gaussian B-valued random variable is also a separable
Gaussian process, and therefore, so is the process defined over all of B∗. To see this, note
that by the Banach-Alaoglu theorem (see Exercise 2.6.2), the unit ball B∗

1 is compact for the
weak∗ topology, which is metrisable. Recall that the weak∗ topology of B∗ is the topology
of pointwise convergence over B, fn →w∗ f iff fn(x)→ f (x), for all x ∈ B. Then, if D̃ is
countable and weak-*dense in B∗

1, f ∈B∗
1, there are hk ∈ D̃ such that hk(X(ω))→ f (X(ω)) for

all ω, proving the separability of the process defined on B∗
1. Since B∗ =∪n(nB∗

1), separability
of the whole process { f (X) : f ∈ B∗} follows as well: B∗

0 :=∪n(nD̃) is countable and weak∗

sequentially dense in B∗.
Now we construct the RKHS of a centred Gaussian B-valued random variable X. Let

F = { f (X) : f ∈ B∗} ⊂ L2(�,
,Pr), which is a vector space, and let F̄ be its completion
in L2. For every h ∈ F̄, define φ(h) = E(hX). Then hX is measurable, and E‖hX‖ ≤
(Eh2)1/2(E‖X‖2)1/2 <∞ because h ∈ L2(Pr) and ‖X‖ enjoys very strong integrability, in
particular being square integrable. Hence, by Lemma 2.6.3, hX is Bochner integrable and its
integral satisfies f (E(hX))= E(h f (X)) for all f ∈ B∗.

Definition 2.6.4 Let B be a separable Banach space, and let X be a B-valued centred
Gaussian variable. The reproducing kernel Hilbert space H = HX of X (or of its probability
law or of its covariance) is the vector space H = {E(hX) : h ∈ F̄} ⊂ B with inner product
〈E(h1X),E(h2X)〉H := E(h1h2).

This definition is very similar to Definition 2.6.1 because the space F in the process case
is also the linear span of f (X), where f ∈ (RT)∗ (this is immediate from Exercise 2.6.1).
The only difference is that RT is not a Banach space. We could unify both definitions by
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2.6 Reproducing Kernel Hilbert Spaces 69

considering Fréchet topological vector spaces, but on the one hand, this requires some
technicalities about duality, and on the other hand, this level of generality is not necessary
for the applications developed in this book.

Remark 2.6.5 In both definitions we do have H = {
E(kX) : k ∈ L2(�,
,Pr)

}
, the reason

being that if k ∈ L2 and πF̄(k) is its orthogonal projection onto F̄, then E(kX)= E(πF̄(k)X).
In the case of RT, this follows just by definition, and in the case of a separable Banach space
B, it follows because it is obviously true that E(k f (X)) = E(πF̄(k) f (X)) for all f ∈ B∗, as
f (X) ∈ F̄, and the Bochner integral coincides with the Pettis integral.

The following lemma is helpful in the construction of RKHSs:

Lemma 2.6.6 The map ϕ : B∗ �→ H defined as ϕ( f ) = φ( f (X)) = E( f (X)X) is weak*
sequentially continuous. Consequently, if B∗

0 is sequentially dense in B∗ for the weak*
topology, H is the completion of ϕ(B∗

0) for the norm of H, ‖ · ‖H.

Proof If fn →w∗ f , then fn(X)→ f (X) a.s. and hence also in L2 (e.g., Exercise 2.1.4).
Then, as n →∞,

‖ϕ( fn)−ϕ( f )‖H =√
E( fn(X)− f (X))2 → 0.

Example 2.6.7 (The RKHS of Brownian motion.) Brownian motion on [0,1] is a centred
sample continuous Gaussian process W whose covariance is E(W(s)W(t)) = s ∧ t, s, t ∈
[0,1] (see Exercise 2.3.2). It also can be equivalently thought of as a B-valued random
variable, where B = C([0,1]), the space of continuous function on [0,1], endowed with the
supremum norm. Then B∗ is the space of finite signed measures on [0,1], and the subspace
B∗

0 of finite linear combinations of point masses
∑n

i=1 aiδti is weak* sequentially dense in B∗

(Exercise 2.6.3). Then, assuming ti increasing and letting t0 = 0, tk+1 = 1, we have

ϕ

(
k∑

i=1

aiδti

)
(t)=

k∑
i=1

ai(ti ∧ t)=
k−1∑
r=0

(
r∑

i=1

aiti + t
k∑

i=r+1

ai

)
I(tr,tr+1](t)+

k∑
i=1

aitiI(tk,tk+1],

a piecewise linear continuous function which is zero at zero and has constant slope
∑k

i=r+1 ai

on the interval (tr, tr+1], r= 0, . . . ,k. Hence, ϕ(B∗
0) is the set of all piecewise linear continuous

functions on [0,1] which are zero at zero. Then∥∥∥∥ϕ( k∑
i=1

aiδti

)∥∥∥∥2

H

= E

( k∑
i=1

aiW(ti)

)2

= E

(( k∑
i=1

ai

)
W(t1)+

( k∑
i=2

ai

)
(W(t2)−W(t1))+·· ·+ ak(W(tk)−W(tk−1))

)2

=
k−1∑
r=0

( k∑
i=r+1

ai

)2

(tr+1 − tr).

That is, writing F(t) = ϕ
(∑k

i=1 aiδti

)
, we have ‖F‖2

H = ∫ 1
0 (F

′(t))2dt, where F′ is a step

function. Since step functions are dense in L2, the closure of ϕ(B∗
0) for the ‖ · ‖H norm is the
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set of absolutely continuous functions on [0,1] which are zero at zero and whose derivative
is in L2([0,1]). By Lemma 2.6.6, this set of functions is the RKHS of Brownian motion,
that is,

H = {
f : f (0)= 0, f is absolutely continuous, f ′ ∈ L2([0,1])} , ‖ f ‖2

H =
∫ 1

0
( f ′(x))2dx.

(2.73)
Not surprisingly, one obtains the same RKHS if Brownian motion is considered as a
stochastic process (as opposed to a C([0,1])-valued random variable) and Definition 2.6.1 is
applied. (The fact that both RKHS definitions produce the same object is not a coincidence
and can in fact be deduced from a general proposition, which can be inferred by modifying
the statement of Exercise 2.6.5).

Here is another characterization of H:

Proposition 2.6.8 Let X be a centred Gaussian B-valued random variable, let H be its
RKHS and let CX( f ,g)= E( f (X)g(X)), f ,g ∈ B∗, be its covariance. Then

H =
{

x ∈ B : sup
f ∈B∗

f 2(x)/CX( f , f ) <∞
}

,

and ‖x‖2
H equals this supremum.

The proof is sketched in Exercise 2.6.4. The following topological properties of H ⊆ B
are important:

Proposition 2.6.9 Let X be a centred B-valued Gaussian variable and B a separable Banach
space. Then H is a separable Hilbert space and a measurable subset of B. The imbedding
of H into B is continuous, and in fact, the unit ball OH = {h ∈ H : ‖h‖H ≤ 1} is a compact
subset of B.

Proof By the argument just preceding Definition 2.6.4, there exists a countable set B∗
0

which is weak∗ sequentially dense in B∗, and by Lemma 2.6.6, H is the completion of
ϕ(B∗

0) for the norm of H. Applying the Gram-Schmidt ortho-normalisation to ϕ(B∗
0) (or to a

maximal linearly independent subset of it) produces a countable ortho-normal basis of H, in
particular showing that H is separable.

Next, observe that, by definition, if h ∈ H, then h = E(kX) for some k ∈ F ⊂ L2, and we
obtain

‖h‖ = sup
f ∈B∗1

|E(k f (X))| ≤ (Ek2)1/2 sup
f ∈B∗1
(E( f 2(X)))1/2 = σ‖h‖H,

where σ 2 := sup f ∈B∗1 E( f 2(X)), showing that the imbedding of H into B is continuous. We
should recall that here and elsewhere in this section, given a centred Gaussian B-valued
random variable X, F stands for the closure in L2 of F= { f (X) : f ∈ B∗}, as in the definition
of H.

In fact, let K be a convex symmetric compact subset of B such that Pr{X ∈ K}> 0, which
exists by tightness of X, and consider the semi-norm induced by K, ‖x‖K = inf{λ : x ∈ λK}.
By Exercise 2.6.7, E‖X‖2

K <∞, which implies that for any h ∈ H, if k ∈ F defines h,

‖h‖K = ‖E(kX)‖K = E(|k|‖X‖K)≤ (Ek2)1/2(E‖X‖2
K)

1/2 = ‖h‖H(E‖X‖2
K)

1/2.
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2.6 Reproducing Kernel Hilbert Spaces 71

Hence the unit ball OH of H is contained in the compact set (E‖X‖K)
1/2K. To see that OH is

closed, let x belong to its boundary for the topology of B, and let hn ∈ OH, ‖hn − x‖ → 0.
Let kn ∈ F be such that hn = E(knX), and note that ‖kn‖2 = ‖hn‖H ≤ 1. The unit ball of L2 is
compact for its weak* topology, so there exists a subsequence kn� converging in the weak*
topology of L2 to some k in the unit ball of L2. Then, for all f ∈ B∗, we have

f (x)= lim
n→∞ f (hn)= lim

�→∞
E(kn� f (X))= E(k f (X))= f (E(kX)),

showing that x = E(kX). Since ‖k‖2 ≤ 1, Remark 2.6.5 shows that x ∈ OH. Thus, OH is
closed for the topology of B and hence compact in this topology. Moreover, since H is the
countable union of the closed subsets nOH of B, it is a Borel set of B.

The following result, the Karhunen-Loève expansion of X, develops the random variable
X as a series of independent Gaussian vectors of the form hg, with h ∈ H and g standard
normal. If we equip F̄ ⊂ L2(�,
,Pr) with the L2-norm, then, by definition, the map φ :
F̄ �→ H given by φ(k) = E(kX) is a linear isometry. In particular, since H is separable by
Proposition 2.6.9, it follows that F̄ is a separable closed subspace of L2.

Theorem 2.6.10 Let X be a centred B-valued Gaussian variable and B a separable Banach
space, and let H be its RKHS. Let kj, j ∈ N, be a complete ortho-normal system of F̄. Then
the series

∑∞
j=1 E(kjX)kj converges a.s. to X in the norm of B (and the series reduces to a

finite sum if dim(H) <∞).

Alternatively, we may state the theorem in terms of hj ∈ H: let hj, j ∈ N, be a complete
ortho-normal system of H, and let kj = φ−1(hj). Then

∑∞
j=1 hjkj converges a.s. to X in the

norm of B. Note that by definition of F̄, the kj are i.i.d. N(0,1) random variables.

Proof Note that for each f ∈ B∗, the random series
∑∞

j=1 f (E(kjX))kj =∑∞
j=1 E(kj f (X))kj

is just the L2-expansion of f (X) in the ortho-normal basis {kj} (as f (X) ∈ F ⊂ F̄), and
therefore, this series converges a.s. to f (X) by Lévy’s theorem on convergence equivalence
for series of independent random variables (or, somewhat less directly, by the three-series
theorem). We infer that if V ⊂ B∗ is countable then for almost every ω, the series∑∞

j=1 f (E(kjX)kj(ω) converges to f (X(ω)) for all f ∈ V. We may take V = B∗
0 as the

countable weak-*dense subset of B∗ constructed before Definition 2.6.4 (and already used in
the proof of Proposition 2.6.9). Since this set is weak∗ dense, it determines points of B; that
is, if f (x)= f (y) for all f ∈B∗

0, then x= y. Therefore, if we show that the sequence of partial
sums {Sm(ω) :=∑m

j=1 E(kjX)kj(ω) : m ∈N} is relatively compact in the norm of B for almost
every ω, it will follow that its subsequential limits s(ω) will all satisfy f (s(ω))= f (X(ω))
on a set of probability 1 and hence that Sm(ω)→ X(ω) a.s.

Next, we show that {Sm(ω)} is relatively compact ω a.s. For each n ∈ N, there exists a
compact convex symmetric set Kn ⊂ B such that Pr

{
X ∈ Kc

n

}
< 1/n, and we can assume that

Kn is increasing with n. Fix n and momentarily set K = Kn to ease notation. Let vi, i ∈N, be
an enumeration of a countable set DK ⊂ B∗ such that ‖x‖K = sup f ∈DK

| f (x)| for all x∈B (see
the proof of Proposition 2.6.9 for the definition of ‖x‖K and Exercise 2.6.7 for the existence
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of DK). For M<∞, set ‖x‖M = maxn≤M |vn(x)| ≤ ‖x‖K, and note that

‖SN‖M = max
n≤M

∣∣∣∣∣∣
N∑

j=1

E(kjvn(X))kj

∣∣∣∣∣∣→ max
n≤M

|vn(X)| = ‖X‖M a.s.

Then, by Lévy’s maximal inequality (Exercise 2.6.8) applied for the semi-norms ‖x‖M, we
have

Pr

{
sup
m∈N

‖Sm‖M > 1

}
= lim

N→∞
Pr

{
max
m≤N

‖Sm‖M > 1

}
≤ 2 lim

N→∞
Pr {‖SN‖M > 1}

= 2Pr {‖X‖M > 1} ≤ 2Pr {‖X‖K > 1} ,

for each M <∞ (note that Pr{‖X‖M = 1} = 0 because ‖X‖M has a density except perhaps
at 0; see Exercise 2.4.4). Since ‖S‖M ↗ ‖S‖K, we obtain from these inequalities applied to
K = Kn that

Pr

{
sup
m∈N

‖Sm‖Kn > 1

}
≤ 2Pr {‖X‖K > 1}< 2/n

or

Pr

(⋂
n

{
sup
m≤N

‖Sm‖Kn > 1

})
= 0,

proving that for almost every ω there is a compact set Kn(ω) that contains Sm(ω) for
all m.

Using Ito-Nisio’s theorem, which is a Banach space version of Lévy’s theorem on
convergence equivalence for sums of independent random variables, one can produce a
slicker proof of the preceding theorem, but the present proof is more elementary.

Corollary 2.6.11 With the same notation as in the preceding theorem, we have Pr{X∈ H̄} =
1, where H̄ is the closure of H in B. If H is finite dimensional, then Pr{X ∈ H} = 1, whereas
if H is infinite dimensional, Pr{X ∈ H} = 0.

Proof Recall that by Proposition 2.6.9, H is a Borel set of B. Now the result follows
immediately from the preceding theorem and the fact that

∥∥∑n
i=1 kiE(kiX)

∥∥2

H
=∑n

i=1 k2
i tends

almost surely to infinity in the infinite-dimensional case (recall that the variables ki are i.i.d.
standard normal).

2.6.2 Some Applications of RKHS: Isoperimetric Inequality,
Equivalence and Singularity, Small Ball Estimates

In this section we collect three of the most interesting results on Gaussian processes where
the RKHS plays an important role. They will be used at different instances in this book.
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The General Form of the Gaussian Isoperimetric Theorem

Theorem 2.6.12 Let OH be the unit ball centred at zero of the RKHS H of X, where X is
a centred Gaussian B-valued random variable, B a separable Banach space. Let μ be the
probability law of X, a probability measure on the Borel σ -algebra BB of B. Then, for every
set A ∈BB and every ε > 0,

μ(A+ εOH)≥�
(
�−1(μ(A))+ ε), (2.74)

where � is the standard normal distribution function.

Proof Let hj, j∈N in the infinite-dimensional case and j≤ n in the finite-dimensional case,
be an ortho-normal basis of H. By Theorem 2.6.10, we may as well assume (by restricting
the probability space if necessary) that X =∑

jφ
−1(hj)hj, with convergence in the norm of

B. Let A ∈ BB, define Ã = {x ∈ RN :
∑

j xjhj ∈ A} and set ρ = �−1(μ(A)). Let γ denote
the probability law of a sequence of independent standard normal random variables, say, of
{φ−1(hj)}, which is a Borel probability measure on RN in infinite dimensions or Rn in finite
dimensions. Then

γ (Ã)= γ {x ∈RN :
∑

j

xjhj ∈ A} = Pr{X ∈ A} =μ(A)=�(ρ)

(replace N by n in finite dimensions). Hence, by the isoperimetric inequality for γ ,
Theorem 2.2.4, we have

γ (Ã+ εO)≥�(ρ+ ε),
where O is the unit ball of �2 (or of Rn). Now, if v ∈ O, then, by definition,

∑
vjhj ∈ OH,

and this series converges in H and then also in B (as the imbedding H �→ B is continuous);
therefore, if x ∈ Ã+ εO, then

∑
j xjhj converges in B and is an element of the set A+ εOH.

Therefore,

μ(A+ εOH)= Pr{X ∈ A+ εOH} ≥ γ {Ã+ εOH} ≥�(ρ+ ε).

This result is often more readily applicable than Theorem 2.2.4.

Equivalence and Singularity of Translates of Gaussian Measures

The following theorem about equivalence of translates of Gaussian measures is known as
the Cameron-Martin theorem, and it states that a Gaussian measure and its translates by
vectors in the RKHS of μ are mutually absolutely continuous. It is also true that μ and any
translate of μ by a vector not in its RKHS are mutually singular.

Recall that given a centred Gaussian random variable X, since F̄ ⊂ L2(�,
,Pr) is in the
closure in L2 of functions of X ( f (X), f ∈B∗), any function k∈ F̄ equals a.s. a function of X;
that is, k(ω)= k̃(X(ω)) a.s. for some measurable function k̃ : B �→R. We drop the tilde from
k̃; that is, we identify it with k. Recall also that φ(k)= E(kX) ∈ H.

Theorem 2.6.13 (Cameron-Martin formula) Let B be a separable Banach space, let μ
be a centred Gaussian Borel measure on B, let H be its RKHS and let h ∈ H. Then the
probability measure τhμ defined as τhμ(A) = μ(A − h) = μ{x : x + h ∈ A}, is absolutely
continuous with respect to μ, and

dτhμ

dμ
(x)= e(φ

−1h)(x)−‖h‖2
H/2.
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Moreover, if v 
∈ H, then τvμ and μ are mutually singular.

Proof Let X be a random vector with law μ. Recall that φ−1h = (φ−1h)(X) (with the
previously mentioned abuse of notation) is a normal random variable as it is the L2-limit
of fk(X) for some sequence fk ∈ B∗. Moreover, E( f (X)φ−1h) = f (E(Xφ−1h)) = f (h) by
the definitions, and E(φ−1h)2 = ‖h‖2

H, because φ is an isometry. This shows that for all
f ∈ B∗, the random vector of R2 ( f (X),φ−1h) has covariance matrix

A :=
(

Cμ( f , f ) f (h)
f (h) ‖h‖2

H

)
.

Consider the Borel probability measure on B

dπ(x)= e(φ
−1h)(x)−‖h‖2

Hdμ(x).

The theorem will be proved if we show that π = τhμ, and for this it suffices to show that
both measures have the same characteristic functional (Exercise 2.6.10). Let f ∈ B∗. Then
the usual computation for the characteristic function of a multivariate normal variable gives

π̂( f )=
∫

ei f (x)e(φ
−1h)(x)−‖h‖2

H/2dμ(x)= e−‖h‖2
H/2E

(
ei f (X)+φ−1(h)

)
= e−‖h‖2

H/2Eexp

(
(i,1)

(
f (X)
φ−1h

))
= e−‖h‖2

H/2e
1
2 (i,1)A(i,1)

t

= e−Cμ( f , f )/2+i f (h) = ei f (h)μ̂( f )= (τhμ)ˆ( f ).

To prove the converse, if dim(H) <∞, then μ(H)= 1, which together with the fact that
if v 
∈H, then (H− v)∩H=∅ gives τvμ(H)= 0. If dim(H)=∞, we assume that τvμ and μ
are not mutually singular, and we would like to conclude v ∈ H. Since F is dense in F̄, there
exist fi ∈ B∗, i ∈ N, such that the sequence { fi(X)} is an ortho-normal basis of F̄. Hence,
{hi := φ( fi(X))} is an ortho-normal basis of H, and we have by Theorem 2.6.10 that the
series

∑
i fi(X)hi converges a.s. to X in the sense of convergence in B. Expressed in terms

of μ, if

C = {x ∈ B :
∑

i

fi(x)hi converges in B to x},

then, μ(C)= 1. But then, since τvμ is not singular with μ, we have that μ(C− v) 
= 0 and
hence C ∩ (C − v) 
= ∅, or there exists x ∈ C such that x − v ∈ C as well. Subtracting the
series for x and x− v, we obtain that the series

∑
i fi(v)hi converges in B to v. Since fi(X)

are independent standard normal, Lévy’s theorem on convergence of series of independent
terms (or, alternatively, the three-series theorem) shows that if u = (ui) ∈ �2, then the series
of real random variables

∑
i ui fi(X) converges a.s., and the preceding argument applied to

Cu = {x ∈ B :
∑

i ui f (vi) converges}, u ∈ �2, shows that the series
∑

i ui fi(v) converges
for all u ∈ �2. This implies that the vector ( fi(v) : i ∈ N) is in �2; that is,

∑
i f 2

i (v) <∞.
Therefore, the series

∑
i fi(v)hi converges in the sense of H (H is a Hilbert space, and hi is

an ortho-normal basis of H). Since the embedding H ⊂ B is continuous, it follows that the
sum of the series

∑
i fi(v)hi in the sense of H must be the same as its sum in the sense of B,

that is, v, which shows v ∈ H by completeness of H.
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2.6 Reproducing Kernel Hilbert Spaces 75

Remark 2.6.14 Since, by the Cameron-Martin formula, the Radon-Nikodym derivative
of τhμ with respect to μ is everywhere positive, it follows that μ and τhμ are mutually
absolutely continuous for any h ∈ H. As a consequence, if h,� ∈ H, we have both

dτhμ

dμ

dμ

dτhμ
= 1 and

dτhμ

dτ�μ
= dτhμ

dμ

dμ

dτ�μ
, μa.s.,

by the chain rule for Radon-Nikodym derivatives.

Example 2.6.15 Let B be a separable Hilbert space and X a B-valued centred Gaussian
random variable. Without loss of generality, we may take X =∑∞

i=1λigiei, where {gi} is a
sequence of independent N(0,1) random variables, {ei} is a complete ortho-normal system
in B and λi ≥ 0 satisfy

∑∞
i=1λ

2
i <∞ (Exercise 2.6.14). It follows from Remark 2.6.5 that

since E(kX)= 0 if k ∈ L2(�,σ ,Pr) is orthogonal to the sequence {gi}, the RKHS of X is

H =
{
E
((∑

kigi

)
X
)

:
∑

k2
i <∞

}
=
{∑

λikiei :
∑

k2
i <∞

}
=
{
h ∈ B :

∑
h2

i /λ
2
i <∞

}
, (2.75)

where hi = 〈h,ei〉, with inner product 〈h, h̄〉H =∑
hih̄i/λ

2
i . Given h =∑

hiei ∈ H, clearly
φ−1(h)(ω) = ∑

i(hi/λi)gi(ω) or, as a function of X, φ−1(h)(X(ω)) = 〈∑(hi/λ
2
i )ei,X(ω)〉.

Then the Cameron-Martin formula for the probability law μ of X can formally be written as

dτhμ

dμ
(x)= e〈h,x〉H−

∑
h2

i /2λ
2
i . (2.76)

In a coordinate-free formulation when B is the range of X, if Q is the covariance operator
of X (Q : B �→ B is defined as 〈Q(v),w〉 = E(〈X,v〉〈X,w〉) for all w ∈ B), (2.75) and (2.76)
become

H = {h = Q−1/2(v) : v ∈ B}, dτhμ

dμ
= e〈Q

−1h,x〉−〈Q−1h,h〉/2.

The case B = Rn and X = (g1, . . . ,gn) corresponds to λ1 = ·· · = λn = 1 (or Q = I), and we
have:

H =Rn,
dτhμ

dμ
= e〈h,x〉−‖h‖2/2, x,h ∈Rn.

The Cameron-Martin formula in Rn can, of course, be derived much more easily. In R, if
μ= N(0,σ 2) and τhμ= N(h,σ 2), h ∈R, σ 
= 0, then, for all x ∈R,

dτhμ

dμ
(x)= e−(x−h)2/2σ 2

e−x2/2σ 2 = ehx/σ 2− 1
2 h2/σ 2

,

and then, since the density of a (finite) product of measures is the product of their densities,
we obtain that if μn =∏n

i=1 N(0,σ 2
i ) and τhμn =∏n

i=1 N(hi,σ 2
i ), then, for all x ∈Rn,

ϕn(x) := dτhμn

dμn
(x)= exp

(
n∑

i=1

hixi/σ
2
i −

1

2

n∑
i=1

h2
i /σ

2
i

)
. (2.77)

Example 2.6.15 shows how Theorem 2.6.13 extends this differentiation formula to countably
infinite products of normal random variables when they are tight Borel measures, and the
question arises as to whether there is a further extension. The setting is � = RN, 
 = C
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the cylindrical σ -algebra of RN (see Section 2.1), and μ=∏∞
i=1 N(0,σ 2

i ) for a sequence of
strictly positive numbers σi; that is, μ is the probability law in C of the sequence {σigi}, gi

i.i.d. standard normal. It can be argued as in Example 2.6.2 that the RKHS of μ (or of the
process {σigi}) is the set of all sequences {h = (hi : i ∈ N)} such that

∑
i h

2
i /σ

2
i <∞, which

we denote by �2({σ−2
i }), the L2-space for the measure

∑∞
n=1σ

−2
n δn on N. Since RN is not a

separable Banach space, Theorem 2.6.13 does not apply to μ or its translates.

Proposition 2.6.16 Let {gi}∞i=1 be a sequence of independent standard normal random
variables, let σi > 0, i ∈ N, be arbitrary positive numbers and let μ = ∏∞

i=1 N(0,σ 2
i ) be

the probability law of the sequence {σigi}, defined on the cylindrical σ -algebra C of RN. If
h∈ �2({σ−2

i }) and x= (xi : i∈N)∈RN, then the measures τhμ and μ are mutually absolutely
continuous, and

dτhμ

dμ
(x)= ϕ(x) := exp

( ∞∑
i=1

hixi/σ
2
i −

1

2

∞∑
i=1

h2
i /σ

2
i

)
, μ a.s. (2.78)

If h ∈RN \ �2({σ−2
i }), then μ and τhμ are mutually singular.

Proof For any 1 ≤ n<m ≤∞ and λ > 0,∫
RN

eλ
∑m

i=n+1 hixi/σ
2
dμ(x)= Eeλ

∑m
i=n+1 higi/σi = eλ

2∑m
i=n+1 h2

i /σ
2
.

In particular, assuming that h ∈ �2({σ−2
i }), we have (a)

∫
RN eλ

∑∞
i=1 hixi/σ

2
dμ(x) =

e−λ2∑∞
i=1 h2

i /σ
2
<∞, which shows that ϕ(x) is μ a.s. finite, and (b)

E
[
e
∑m

i=1 higi/2σi − e
∑n

i=1 higi/2σi

]2 = e
∑n

i=1 h2
i /σ

2
i + e

∑m
i=1 h2

i /σ
2
i − 2e

∑n
i=1 h2

i /σ
2
i e

∑m
i=n+1 h2

i /2σ
2

converges to zero as n → ∞, which proves that if we set, with some abuse of notation,
ϕn(x)= ϕn(x1, . . . ,xn), for x ∈RN, where ϕn is as in (2.77), then

√
ϕn →√

ϕ in L2(RN,C,μ).

Therefore, if E is a finite-dimensional cylinder, say,

E = {x ∈RN : (x1, . . . ,xn) ∈ E1,...,n,xj ∈R for j ≥ n},
where E1,...,n is a Borel set of Rn, then, using also (2.77), we have, for all m> n,

τhμ(E)=
∫

E1,...,n

(√
ϕn(x1, . . . ,xn)

)2
dμn(x1, . . . ,xn)

=
∫

E

(√
ϕn(x)

)2
dμ(x)=

∫
E

(√
ϕm(x)

)2
dμ(x)=

∫
E

(√
ϕ(x)

)2
dμ(x).

The algebra A of finite-dimensional cylinders generates the cylindrical σ -algebra, and
therefore, given any E ∈ C, we can find En ∈A, decreasing and containing E, such that both
τhμ(En)↘ τhμ(E) and μ(En)↘ μ(E) and the preceding identities then give, by dominated
convergence, that

τhμ(E)= lim
n
τhμ(En)= lim

n

∫
En

ϕdμ=
∫

E
ϕdμ,

proving (2.78).
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For the converse, it suffices to prove that for every ε > 0 there exists B ∈ C such that
μ(B)< ε and τhμ(Bc)< ε (if Bn corresponds to ε= 2−n, then B= (Bn i.o.) satisfies μ(B)= 0
and τhμ(Bc)= 0). If

∑∞
i=1 h2

i /σ
2
i =∞, then∫

Rn

√
ϕndμn = e−

∑n
i=1 h2

i /8σ
2 → 0, as n →∞.

Then, given ε > 0, let n be such that
∫
Rn
√
ϕndμn < ε, let B1,...,n = {x ∈ Rn : ϕn(x) > 1} and

B = B1,...,n ×R×·· · ∈ C. We have

μ(B)=
∫

B1,...,n

dμn ≤
∫

B1,...,n

√
ϕndμn < ε

and

τhμ(B
c)=

∫
Rn\B1,...,n

ϕndμ≤
∫
Rn\B1,...,n

√
ϕndμn < ε.

We conclude with an interesting consequence of Theorem 2.6.13 that adds to the
relevance of the RKHS. Recall that the support of a Borel measure on a metric space is
the set of points x such that μ{y : d(x,y) < ε}> 0, for all ε > 0.

Corollary 2.6.17 Let μ be a centred Gaussian measure on a separable Banach space B,
and let H be its RKHS. Then the support of μ is H̄, the closure in B of H.

Proof Let X be a Gaussian random variable with law μ. First, by Anderson’s lemma,
(Theorem 2.4.5), Pr(‖X‖< ε) > 0 for all ε > 0. Next, by Theorem 2.6.13, the law of X+ h,
h∈H, has a positive density λh with respect to the law of X, and therefore, Pr{‖X+h‖<ε}=∫
‖x‖<ε λh(x)dμ(x) > 0, for all h ∈ H and ε > 0. Then, since any ball around x ∈ H̄ contains a

ball around a point in H, the same is true for all x ∈ H̄. Hence, the support of μ contains H̄.
For the reverse inclusion, just note that as recorded in Corollary 2.6.11, the

Karhunen-Loève expansion of X (Theorem 2.6.10) implies that Pr{X ∈ H̄} = 1. Thus,
the support of μ is contained in H̄.

Application to Estimation of the Probabilities of Small Balls

Theorem 2.6.13 together with Anderson’s lemma (Theorem 2.4.5) provides a quite exact
two-sided relationship between the Gaussian probability of small balls centred at the origin
and that of small balls centred at other points in the support of the measure.

Here is a useful first consequence of Theorem 2.6.13 regarding balls shifted by h ∈ H,
in the opposite direction to Anderson’s lemma (already somewhat implicit in the preceding
proof):

Corollary 2.6.18 Let C⊂B be a symmetric Borel set, where B is a separable Banach space,
and let X be a centred Gaussian B-valued random variable. Then, for every h ∈ H,

Pr{X− h ∈ C} ≥ e−‖h‖2
H/2 Pr{X ∈ C}.
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Proof By Theorem 2.6.13 and by symmetry of C, and since (ea+e−a)/2≥ 1, for all a∈R,

2Pr{X− h ∈ C} = Pr{X− h ∈ C}+Pr{X+ h ∈ C}
= E

[(
eφ

−1(h)+ eφ
−1(−h)

)
e−‖h‖2

H/2IC(X)
]

≥ 2e−‖h‖2
H/2E(IC(X)).

Given a centred Gaussian B-valued random variable X with law μ, define its
concentration function φx(ε), for x in the support of μ and hence x ∈ H̄ and ε ≥ 0, as

φx(ε)= inf
h∈H,‖h−x‖≤ε

[
1

2
‖h‖2

H − logPr{‖X‖< ε}
]

, (2.79)

and note that φ0(ε) = − logPr{‖X‖ < ε}; that is, Pr{‖X‖ < ε} = e−φ0(ε). We will prove the
following proposition:

Proposition 2.6.19 Let X be a centred Gaussian B-valued random variable, where B is a
separable Banach space. Let x ∈ supp(L(X))= H̄ (see Corollary 2.6.17) and ε > 0. Then

φx(ε)≤− logPr{‖X− x‖< ε} ≤ φx(ε/2). (2.80)

Proof If ‖h − x‖ ≤ ε/2, then ‖X − x‖ ≤ ε/2 + ‖X − h‖, so if moreover h ∈ H, by
Corollary 2.6.18,

Pr{‖X− x‖< ε} ≥ Pr{‖X− h‖< ε/2} ≥ e−‖h‖2
H/2 Pr{‖X‖< ε/2},

which yields the upper estimate in (2.80).
For the lower estimate, suppose that given x ∈ H̄ and ε > 0 there exists hε such that

φ−1(hε)≥ 0 a.s. on the event {‖X+ hε− x‖< ε}. (2.81)

Then, applying first the Cameron-Martin theorem (Theorem 2.6.13) and then Anderson’s
lemma (Theorem 2.4.5) and finally the continuity of the distribution of ‖X‖ outside 0
(Exercise 2.4.4), we have

Pr{‖X− x‖< ε} = Pr{‖(X− hε)− x+ hε‖< ε} = E
(
e−φ

−1(hε)−‖hε‖2
H/2I‖X−x+hε‖<ε

)
≤ e−‖hε‖2

H/2EI‖X−x+hε‖<ε ≤ e−‖hε‖2
H/2EI‖X‖≤ε = e−‖hε‖2

H/2EI‖X‖<ε,

proving the proposition modulo the statement in (2.81). The proof of (2.81) is carried out in
Lemmas 2.6.20 and 2.6.21.

Lemma 2.6.20 With the notation of Proposition 2.6.19, given x ∈ H̄ and ε > 0, set Bε,x =
{h ∈ H : ‖h− x‖ ≤ ε}. Then there exists hε ∈ Bε,x such that ‖hε‖H = inf{‖h‖H : h ∈ Bε,x}, and
hε satisfies 〈h,hε〉H ≥ ‖hε‖2

H, for all h ∈ Bε,x.

Proof The set Bε,x is closed in H: if hn → h in H, then hn → h in B by continuity of the
embedding of H into B (Proposition 2.6.9), so if, moreover, hn ∈ Bε,x, then ‖h − x‖ ≤ ε,
that is, h ∈ Bε,x. If the infimum of ‖h‖H in Bε,x is zero, then there exist hn ∈ Bε,x such that
‖hn‖ → 0 in H, and since Bε,x is closed, it contains 0. Suppose now that the infimum is
c> 0. If cn ↘ c, cn> c, then we have {h∈H : ‖h‖H ≤ cn}∩ B̄ε,x 
= ∅, where B̄ε,x is the closure
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2.6 Reproducing Kernel Hilbert Spaces 79

in B of B̄ε,x, but these sets are compact by Proposition 2.6.9, and hence their intersection
is not empty. Now B̄ε,x ⊂ {y ∈ B : ‖y− x‖ ≤ ε}, so the not-empty intersection is precisely
{h ∈ H : ‖h‖ ≤ c} ∩ B̄ε,x = {h : ‖h‖ = c,‖h− x‖ ≤ ε} ⊂ Bε,x. Thus, the infimum of ‖ · ‖H on
Bε,x is attained at some hε ∈ Bε,x.

Next, Bε,x is convex, and therefore, for any h ∈ Bε,x and 0 ≤ λ ≤ 1, we have ‖λh+
(1−λ)hε‖2

H ≥ ‖hε‖2
H, which gives, after developing and dividing by λ,

λ〈h,h〉H + 2(1−λ)〈h,hε〉H ≥ 2(1−λ)‖hε‖2
H, 0< λ≤ 1.

Letting λ→ 0, λ > 0, we obtain 〈h,hε〉H ≥ ‖hε‖2
H.

Lemma 2.6.21 With the notation of Proposition 2.6.19 and Lemma 2.6.20, φ−1(hε) ≥ 0
almost surely on the event {‖X+ hε− x‖< ε}.

Proof Let hi, i ∈ N, be an ortho-normal basis of H. Then, by Theorem 2.6.10, X =∑∞
i=1φ

−1(hi)hi a.s., with convergence in B. The partial sums Xm =∑m
i=1φ

−1(hi)hi are in
H, and

〈Xm,hε〉H =
m∑

i=1

φ−1(hi)〈hi,hε〉H = φ−1

(
m∑

i=1

〈hi,hε〉Hhi

)
.

The right-hand side converges to φ−1(hε) in L2 (recall that φ−1 is an isometry onto F̄ ⊂ L2);
hence, so does the left-hand side. Therefore, there is a subsequence mk → ∞ such that
〈Xmk ,hε〉H →φ−1(hε). Now, on the event ‖X+hε−x‖<ε, eventually a.s. ‖Xm+hve−x‖<ε;
that is, Xm + hε ∈ Bε,x, for all m ≥ m0(ω), m0(ω),∞ a.s., and therefore, Lemma 2.6.20
implies that eventually a.s. 〈Xm + hε,hε〉H ≥ ‖hε‖2

H, implying 〈Xm,hε〉H ≥ 0 eventually a.s.
This, together with 〈Xmk ,hε〉H → φ−1(hε) a.s., implies that on the event ‖X+hε−x‖<ε, we
have φ−1(hε)≥ 0 a.s.

2.6.3 An Example: RKHS and Lower Bounds for Small Ball Probabilities
of Integrated Brownian Motion

In this subsection we obtain the reproducing kernel Hilbert space of Gaussian processes
defined as iterated integrals of Brownian motion and of their ‘released’ versions and estimate
as well their small ball concentration functions. These results will be put to use later in
Bayesian density estimation.

The Reproducing Kernel Hilbert Space of Integrated Brownian
Motion Released at Zero

Let W be Brownian motion on [0,1]. See Exercise 2.3.2 for its definition and smoothness
properties. In particular, it follows from this exercise that the sample paths of W are all in
Cα([0,1]), the space of Hölder continuous functions of order α on [0,1] for all 0<α < 1/2.
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Let (I0+ f )(t) = ∫ t
0 f (x)dx denote the primitive of f which is zero at zero for any

continuous function f on [0,1], and let (Ik
0+ f )(t) = ∫ t

0(I
k−1
0+ f )(x)dx denote its iterations

for k ∈N. We consider now the successive integrals of Brownian motion

I0
0+W = W, (Ik

0+W)(t)=
∫ t

0
(Ik−1

0+ W)(s)ds, k ≥ 1.

This is a string of stochastic processes with sample paths of increasing smoothness: for
each k, the sample paths of Ik

0+(W) are almost all in Ck+α([0,1]), the space of functions on
C([0,1]) with k derivatives, the kth being Hölder continuous with index α, for any α < 1/2.
They would constitute nice prior models for smooth functions if the sample paths and their
derivatives were not zero at zero. This can be easily remedied, for example, by considering
instead the ‘released’ processes

Wk(t)=
k∑

j=0

tjgj/j!+ (Ik
0+W)(t), t ∈ [0,1], k ≥ 0, (2.82)

where gi, i ≥ 0, are i.i.d. standard normal variables independent of W (W0 is the released
Brownian motion, W0(t)= g0+W(t)). Next, we obtain the RKHS of Wk as a C([0,1])-valued
random variable.

Recall that Ck([0,1]), the space of functions on [0,1] with k continuous derivatives, has
norm ‖ f ‖Ck =∑k

j=0 ‖ f (j)‖∞ and hence that the map Ik
0+ : C([0,1]) �→Ck([0,1]) is continuous

and one to one. Then Example 2.6.7 in Section 2.6.1 and Exercise 2.6.5 immediately give
the following lemma.

Lemma 2.6.22 The RKHS HIkW of Ik
0+W as a C([0,1])-valued random variable is

HIkW = Ik
0+HW = {

Ik
0+ f : f ∈ HW

}
= {

f : [0,1] �→R : f (j)(0)= 0, j = 0,1, . . . ,k, f (k) abs. cont, f (k+1) ∈ L2([0,1])}
with inner product

〈 f ,g〉H
IkW

=
∫ 1

0
f (k+1)(s)g(k+1)(s)ds.

Note that, again by Exercise 2.6.5, since the inclusion Cj ⊂ C is continuous, the RKHS
of Ik

0+W as a Cj([0,1])-valued random variable, j ≤ k, is also HIkW.

Let Zk =∑k
j=0 tjgj/j!. Then, for any points s,s1,s2 in [0,1], we have

δs(Zk)=
k∑

j=0

sjgj/j!, E(δs(Zk)Zk(t))=
k∑

j=0

(sj
j/j!)tj/j!, E(δs1(Zk)δs2(Zk))=

k∑
j=0

sj
1s

j
2/(j!)2.

This implies the following lemma by the definitions and elementary properties in
Section 2.6.1:

Lemma 2.6.23 The RKHS HZk of the process Zk =∑k
j=0 tjgj/j! as a C([0,1])-valued random

variable, hence as a C�([0,1])-valued random variable for all �, is the set of polynomials of
degree k or lower with the inner product

〈P,Q〉HZk
=

k∑
j=0

P(j)(0)Q(j)(0).
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2.6 Reproducing Kernel Hilbert Spaces 81

We now combine these two lemmas into the following proposition:

Proposition 2.6.24 For k ≥ 0, the RKHS of Wk as a C([0,1])-valued random variable is

HW,k =
{

f : [0,1] �→R : f is k times differentiable, f (k) is abs. cont. and f (k+1) ∈ L2([0,1])}
with inner product

〈 f ,g〉HW,k =
k∑

j=0

f (j)(0)g(j)(0)+
∫ 1

0
f (k+1)(s)g(k+1)(s)ds.

Proof To ease notation, set Z = Zk and V = Ik
0+W. As indicated earlier, it suffices to obtain

the RKHS of Z+W as a Ck = Ck([0,1])-valued random variable. The support of Z is the
set of polynomials of degree k or lower, say, BZ, and the support BV of V is contained in
the closed linear subspace of functions in Ck that vanish at zero together with their first
k derivatives. Therefore, if we define � : Ck �→ BZ on Ck by � f (t) = ∑k

j=0 f (j)(0)tj/j!,
then � is continuous, �(BZ) = BZ and �(BV) = 0. Now take f ∈ (Ck)∗, and note that by
independence of Z and V, and since �(Z)= Z and �(W)= 0 a.s.,

φZ+V( f )= E( f (Z+V)(Z+V))= E( f (Z)Z)+E( f (V)V)= φZ( f )+φV( f )

φZ+V( f ◦�)= E( f (Z)(Z+V))= E( f (Z)Z)= φZ( f )

φZ+V( f ◦ (I−�))= φV( f ).

This implies that

φZ((C
k)∗), φV((C

k)∗)⊂ φZ+V((C
k)∗), φZ((C

k)∗)+φV((C
k)∗)= φZ+V((C

k)∗).

Then, again by independence, if f1, f2 ∈ (Ck)∗,

〈φZ( f1),φV( f2)〉HZ+V = 〈φZ+V( f ◦�),φZ+V( f ◦ (I−�))〉HZ+V

= E( f1 ◦ (Z+V) f2 ◦ (I−�)(Z+V))= E( f1(Z) f2(V)= 0,

whereas
‖φZ( f )‖2

HZ+V
= ‖φZ+V( f ◦�)‖2

HZ+V
= E f 2(Z)= ‖φZ( f )‖2

HZ
,

and similarly, ‖φV( f )‖HZ+V = ‖φV( f )‖HV . That is,

‖φZ( f1)+φV( f2)‖2
HZ+V

= ‖φZ( f1)‖2
HZ

+‖φV( f2)‖2
HV

.

This proves, by completion, that HZ+V = HZ +HV, where the sum is orthogonal and where
the norm of HZ+V restricted to HZ (resp. HV) coincides with the norm of HZ (resp. of HV).
The proposition follows from this fact and the preceding two lemmas.

Remark 2.6.25 The RKHS HW,k of Wk, k≥ 0, coincides with the Sobolev space Hk+1
2 ([0,1]),

and the RKHS norm is equivalent to any of the usual Sobolev norms, in particular, to∑k+1
j=0 ‖ f (j)‖2 (see Chapter 4). In the next section, in order to estimate the small ball

concentration function of these processes, we will require estimates of the covering number
of the unit ball of HW,k with respect to the supremum norm. Let us record here that if FW,k is
the unit ball of HW,k, then there exists Ck <∞ such that

logN(FW,k,‖ · ‖∞,ε)≤ Ckε
−1/(k+1), ε > 0 (2.83)

(Corollary 4.3.38).
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The Small Ball Concentration Functions of Brownian Motion and
Its Released Iterated Integrals

We will obtain upper bounds for the concentration function

φX
0 (ε)=− logPr{‖X‖∞ < ε}, 0< ε < τ ,

τ small, when X is a released at zero multiple integral of W (i.e., lower bounds for their
small ball probabilities). We begin with the concentration of Brownian motion, which will
provide an a priori rough bound for the concentration of the released integrated processes.
Then, with this rough bound and an argument relating the metric entropy of the unit ball of
the RKHS of a Gaussian process to the size of its small ball probabilities, we will obtain
upper bounds of the right order for φX

0 in the remaining cases.
Recall from Exercise 2.6.9 that the Karhunen-Loève expansion of Brownian motion is

W(t)= h0g0 +
∞∑

n=0

2n∑
k=1

hn,k(t)gn,k, (2.84)

where g0, gn,k are i.i.d. standard normal variables, h0(t)= t and hn,k, n ≥ 0 and, for each n,
k = 1, . . . ,2n, are the ‘tent’ functions hn,k =

∫ t
0 2n/2(I[(k−1)/2n,(k−1/2)/2n)− I[(k−1/2)/2n,k/2n])(u)du.

Since for each n the functions hn,k, k = 1, . . . ,2n, have supports [(k− 1)/2n,k/2n], and since
‖hn,k‖∞ = 2−n/2−1, it follows that there exists C > 0 such that, for all n ≥ 0 and for all
a1, . . . ,a2n ,∥∥∥∥∥

2n∑
k=1

akhn,k

∥∥∥∥∥
∞
=
∥∥∥∥∥

2n∑
k=1

|ak||hn,k|
∥∥∥∥∥
∞
= 1

2
2−n/2 max

i≤2n
|ak| ≥ 1

2
2−n/2

(
2−n

2n∑
k=1

|ak|
)

. (2.85)

This observation and Anderson’s inequality are all that is needed to prove the following:

Theorem 2.6.26 Let W be Brownian motion on [0,1]. Then there exists C ∈ (0,∞) such
that, for all 0< ε ≤ 1,

−Cε−2 ≤ logPr

{
sup

t∈[0,1]
|W(t)|< ε

}
≤− 1

C
ε−2, (2.86)

that is, the exact order of (supremum norm) small ball concentration function φW
0 of

Brownian motion is φW
0 = O(ε−2) as ε→ 0.

Proof Let bn, n ≥ 0, be positive numbers. Then, on the event

Ab =
{|g0|< b0, |gn,k|< bn, n ≥ 0, 1 ≤ k ≤ 2n for each n

}
,

we have, using the identities in (2.85),

‖W‖∞ ≤ |g0|+
∞∑

n=0

∥∥∥∥∥
2n∑

k=1

gn,khn,k

∥∥∥∥∥
∞
< b0 +

∞∑
n=0

2−n/2−1bn.

Now, given an integer q ≥ 1, we choose bn = bn(q) = 23(n−q)/4 if n ≤ q and bn = bn(q) =
2(n−q)/4, for n> q. A simple computation with geometric series yields

b0 +
∞∑

n=0

2−n/2−1bn ≤ C12
−q/2.
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Using that, for g standard normal,

Pr{|g| ≤ t} ≥ t/3 for 0 ≤ t ≤ 1 and Pr{|g| ≤ t} ≥ 1− e−t2/2 ≥ exp(−2e−t2/2) for t ≥ 1,

we obtain

logPr(Ab)= logPr{|g|< b0}+
∞∑

n=0

2n logPr{|g|< bn}

≥ −3(log2)q

4
− (log3)

q∑
n=0

2n − 3(log2)

4

q∑
n=0

2n(q− n)−
∞∑

n=q+1

2e−2(n−q)/2/2

≥−
(

3log2

4
+ 2log3+

∞∑
r=1

r

2r
+ 4

∞∑
r=1

exp
(
(log2)r− 2r/2/2

))
2q.

Then there exist C1, C2 positive, finite, independent of q such that

logPr{‖W‖∞ < C12
−q/2} ≥ logPr(Ab)≥ C22

q,

proving the left-hand side of (2.86).
Now let Prn denote the conditional probability with respect to all the normal variables

in the representation (2.84) of W that do not have n in their subindex (or, what is the same,
integration with respect to the gn,k, k= 1, . . . ,2n, variables only). Then Anderson’s inequality
(Theorem 2.4.5) and Fubini’s theorem give that, for all ε > 0 and all n ≥ 0,

Pr{‖W‖∞ ≤ ε} = E

[
Prn

{∥∥∥∥∥h0g0 +
∞∑

m=0

2m∑
k=1

hm,kgm,k

∥∥∥∥∥
∞
≤ ε

}]
≤ Pr

{∥∥∥∥∥
2n∑

k=1

hn,kgn,k

∥∥∥∥∥
∞
≤ ε

}
.

Then the inequality in (2.85) gives

Pr{‖W‖∞ ≤ ε} ≤ Pr

{
2n∑

k=1

|gn,k| ≤ (2n/2−1ε)2n

}
.

Define c by the equation Ee−|g| = e−2c, where g is standard normal, and let ε= εn = 2c2−n/2.
Then, since

Pr

{
2n∑

k=1

|gn,k| ≤ c2n

}
= Pr

{
exp

(
−

2n∑
k=1

|gn,k|
)
≥ e−c2n

}
≤ (Ee−|g|)2n

ec2n ≤ e−c2n
,

we conclude that for these values of ε = εn, for any n ≥ 0,

Pr{‖W‖∞ ≤ ε} ≤ e−4c3ε−2
,

and, possibly with different constants, this extends to any 0< ε ≤ 1, proving the right-hand
side of inequality (2.86).

This proof does not give the best constants: in fact, limε→0 logPr
{
supt∈[0,1] |W(t)| ≤ ε

}=
−π 2/8. However, the proof is simple, and in fact, we are only interested in the order
of magnitude of φW

0 , actually in its upper bound; the lower bound is given only to show
that the upper bound obtained is of the right order. It is interesting to note that exactly the
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same method of proof yields the small ball order of concentration for the Lp([0,1]) norms
(which is also ε−2) and for the Hölder norms of order 0<α < 1/2 (which is ε−2/(1−2α)). See
Exercises 2.6.12 and 2.6.13.

Corollary 2.6.27 Let W0 = g+W, g a standard normal variable independent of W. Then
there exists C> 0 such that, for all 0< ε ≤ 1,

−Cε−2 ≤ logPr

{
sup

t∈[0,1]
|W0(t)|< ε

}
≤− 1

C
ε−2, 0< ε ≤ 1. (2.87)

As a consequence, for each k ∈N, there exist Ck > 0 such that

logPr

{
sup

t∈[0,1]
|Wk(t)|< ε

}
≥−Ckε

−2. (2.88)

Proof Just note that − logPr{|g| < ε} is of the order of logε−1 for 0 < ε < 1/2, much
smaller than ε−2 as ε→ 0, and use it together with the preceding theorem in the obvious
inequality

Pr{‖g+W‖∞ < ε} ≥ Pr{‖W‖∞ < ε/2}Pr{|g|< ε/2}
in order to obtain the left-hand side inequality in (2.87). For the right-hand side, just note
that integrating first with respect to W with g fixed (by Fubini) and applying Anderson’s
inequality (Theorem 2.4.5), we have Pr{‖g+W‖∞ < ε} ≤ Pr{‖W‖∞ < ε}.

For the second inequality, note that Wk = g + I0+Wk−1 and, proceeding by induction,
assume that inequality (2.88) is true for Wk−1. Then, since ‖I0+Wk−1‖∞ ≤ ‖Wk−1‖∞, we
obtain Pr{‖I0+Wk−1‖∞ < ε} ≥ Pr{‖Wk−1‖∞ < ε} ≥ e−Cε−2

, and now we can use the first
argument in the first part of the proof to obtain the inequality for g+ I0+Wk−1.

The following lemma for general Gaussian processes expresses part of the relationship
between entropy and small balls (for more on this, including the reverse direction, see the
notes and references at the end of this chapter).

Lemma 2.6.28 Let X be a B-valued centred Gaussian random variable and B a separable
Banach space, and let H1 be the unit ball centred at zero of its reproducing kernel Hilbert
space. Set N(H1,ε) := N(H1,‖ · ‖,ε), ε > 0, where ‖ · ‖ denotes the norm of B. Let � denote
the standard normal distribution function, and let φ0(ε)=− logPr{‖X‖< ε}. Then, for all
λ > 0 and ε > 0,

φ0(2ε)≤ logN(H1,ε/λ)− log�
(
λ+�−1(e−φ0(ε))

)
. (2.89)

Proof Let Tε be the centres of a minimal set of ‖ · ‖ balls of radius ε covering λH1 (Tε is
finite because H1 is compact in B by Proposition 2.6.9). Then Card(Tε)= N(H1,ε/λ). Use
the notation Bε(h)= {x∈ B : ‖x−h‖< ε}. Then, since the collection of balls {Bε(h) : h∈ Tε}
covers λH1, we have

λH1 +Bε(0)⊂
⋃
h∈Tε

B2ε(h).

Therefore, for μ=L(X),

N(λH1,ε)max
h∈Tε

μ(B2ε(h))≥μ(Bε(0)+λH1).
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Now, applying Anderson’s inequality (Theorem 2.4.5) on the left-hand side and the
isoperimetric inequality (Theorem 2.6.12) on the right-hand side, we obtain

N(λH1,ε)μ(B2ε(0))≥�(�−1(μ(Bε(0))+λ),
proving the lemma.

When there is an a priori upper estimate of φ(ε), the preceding lemma and an iteration
procedure give a precise relationship between the order of the metric entropy of H1 and the
order of φ0 as follows:

Theorem 2.6.29 With the notation of the preceding lemma, if there is γ > 0 such that, for
C1 <∞ and τi > 0,

φ0(ε)≤ C1ε
−γ , 0< ε ≤ τ1,

and if
logN(H1,ε)≤ C2ε

−α, 0< ε < τ2,

for some 0< α < 2, then there exist C3 <∞ and τ3 > 0 such that for every 0< ε < τ3

φ0(ε)≤ C3ε
−2α/(2−α).

Proof Set θε =�−1(e−φ0(ε)). By the standard normal estimate (2.23),

φ0(ε)=− log�(θε)=− log(1−�(−θε))≥ θ2
ε /2.

Thus, if we take λ=√
2φ0(ε), then λ+ θε =√

2φ0(ε)+ θε ≥ 0, and inequality (2.89) then
implies

φ0(2ε)≤ logN(H1,ε/
√

2φ0(ε))− log(1/2),

or, re-scaling and using the hypothesis on N and that φ0(ε)→∞ as ε→ 0,

φ0(ε)≤ log2+ logN(H1,ε/
√

8φ0(ε/2))≤ Cε−αφα/20 (ε/2),

for some C<∞ and for all ε small enough. Setting ψ(ε)= Cε−α, we then have

logφ0(ε)≤ α
2

logφ0(ε/2)+ logψ(ε).

Iterating, this gives

logφ0(ε)≤
(α

2

)n
logφ0(ε/2

n)+
n−1∑
j=0

(α
2

)j
logψ(ε/2j).

The hypothesis on φ0 gives that logφ0(2/2n)≤ log(C12nγ /εγ ), a bound of the order of n, so

logφ0(ε)≤
∞∑
j=0

(α
2

)j
logψ(ε/2j)= 2

2−α logψ(ε)+
∞∑
j=1

log
ψ(ε/2j)

ψ(ε)
.

Now, since log(ψ(ε/2j)/ψ(ε))= log2αj, the last series is convergent, and we obtain

logφ0(ε)≤ 2

2−α logψ(ε)+C′ ≤ C′′ε−α ,

for some finite constants C′, C′′ and all ε small enough.
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This theorem, Corollary 2.6.27, Proposition 2.6.24 on the RKHS of Wk and the bound
(2.83) on the covering numbers of Sobolev balls yield the following:

Corollary 2.6.30 (Small Ball Concentration of Integrated Brownian Motion Released at
Zero) For all k∈N∪{0}, the concentration function φWk

0 of the k times integrated Brownian
motion on [0,1] released at zero, Wk, satisfies the estimate

φWk

0 (ε)=− logPr{‖Wk‖∞ < ε} ≤ Ckε
−2/(2k+1),

for some Ck <∞ and all ε small enough.

Combined with Proposition 2.6.19, this corollary gives a lower bound for Pr{‖Wk−
x‖∞ < ε}, for all x ∈ H̄W,k, the closure in C([0,1]) of the Sobolev space HW,k.

Exercises

2.6.1 Show that the topological dual of RT is the space of measures of finite support on T; that is,
f ∈ (RT)∗ if and only if there exist n <∞, t1, . . . , tn ∈ T and a1, . . .an ∈ R such that f (x) =∑n

i=1 aix(ti), where x = (x(t) : t ∈ T), and conversely. Hint: Reduce the problem to RN, and
show that f linear is continuous at zero for the metric of RN, defined prior to Theorem 2.2.4
if and only if f is a finite linear combination of point masses at points k ∈N.

2.6.2 Let B be a Banach space. (a) Show that the unit ball B∗
1 of its dual is compact for the weak*

topology. Hint: The weak* topology of B∗
1 is the restriction of the product topology of [−1,1]B,

which is compact by Tychonoff’s theorem, and B∗
1 is closed in [−1,1]B. (b) If B is separable,

then the weak* topology is metrisable on B∗
1. Hint: Let B0 be a countable subset of B. Then,

if fn ∈ B′
1 and f ∈ B∗, we have that fn →w∗ f iff fn(x)→ f (x), for all x ∈ B0 (use the

uniform boundness principle and a 3-ε argument). Now use that [−1,1]N is metrisable (see the
discussion before Theorem 2.2.4).

2.6.3 Show that the Borel measures with finite support on [a,b] are weak* sequentially dense in
the space of finite signed measures on [a,b] (which is the dual of C([a,b])). Hint: By the
Jordan-Hahn decomposition, it suffices to consider positive finite measures μ. The discrete
part of μ obviously can be approximated in the sense of convergence in distribution by
a sequence of measures with finite support, and for the continuous part, approximate the
distribution function by a sequence of step functions, for example, each with all the steps
of size 1/n.

2.6.4 Prove Proposition 2.6.8. Hint: If x ∈ H, then x = E(hX) for some h ∈ L2, and one can use
Hölder’s inequality to bound f (x), f ∈ B∗. Conversely, if | f (x)|2 ≤DCX( f , f ) for all f ∈ B∗,
then the map x �→ f (x) extends by uniform continuity to F̄, but, F̄ being a Hilbert space,
F̄ = F̄

′
, and hence there is k ∈ F̄ such that E(k f (X)) = f (x), for all f ∈ B∗, showing that

x = φ(k) ∈ H.
2.6.5 Let A : B1 �→ B2 be a continuous linear map between two separable Banach spaces B1 and

B2, let X be a B1-valued centred Gaussian variable and let H1 be the RKHS of X. Prove that
the RKHS H2 of the B2-valued Gaussian variable A(X) is H2 = A(H1), that ‖Ax‖H2 ≤ ‖x‖H1

and that equality holds for at least one pre-image of Ax. In particular, if A is one to one, then
A : H1 �→H2 is an isometry. What does this say if A is a continuous imbedding? Hint: If x∈H1,
x= E(k1X) for k1 ∈ F̄1 ⊂ L2 and ‖x‖H1 = ‖k1‖L2 . Then Ax= E(k1A(X)) ∈H2 by Remark 2.6.5,
and ‖Ax‖H2 ≤ ‖k1‖L2 (as k1 may not be in F̄2). Conversely, if y ∈ H2, then y = E(k2A(X)) for
some k2 ∈ F̄2 ⊂ L2, ‖y‖H2 = ‖k2‖L2 and x := E(k2X) satisfies that Ax = y and ‖x‖H1 ≤ ‖k2‖L2 .

2.6.6 State and prove the analogues of Proposition 2.6.9 and Theorem 2.6.10 for separable Gaussian
processes.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.003
http:/www.cambridge.org/core


2.6 Reproducing Kernel Hilbert Spaces 87

2.6.7 Let B be a separable Banach space, let K 
= ∅ be a compact, convex, symmetric subset of B,
let ‖ · ‖K be the induced norm, ‖x‖K = inf{λ : x ∈ λK}, and let BK = {x : ‖x‖K <∞} equipped
with this norm. Show that there exists a countable subset DK of the unit ball of B∗ such that
‖x‖K = sup f ∈DK

| f (x)| for all x ∈ B. Hence, if X is Gaussian and Pr{‖X‖K <∞}> 0, then the
process X( f )= f (X), f ∈ DK, is separable, and for example Theorem 2.1.20 applies to it, in
particular, E‖X‖2

K <∞. [Hint: Use the Hahn-Banach separation theorem for convex sets.]
2.6.8 (Lévy’s maximal inequality or the reflection principle for sums of independent random

vectors.) Prove that if Xi, i≤ n, are independent, symmetric B-valued random vectors where B
is a separable Banach space, then, for all t> 0,

Pr

{
max
1≤i≤n

‖Sk‖> t

}
≤ 2Pr{‖Sn‖> t} ,

where Sk =∑k
i=1 Xi. Hint: See Section 3.1.3.

2.6.9 (Lévy’s series representation of Brownian motion.) On [0,1], let φ0 ≡ 1, ψ0 = I[0,1/2)− I[1/2,1]
and ψn,k(t) = 2n/2ψ0(2nt − k + 1), n ∈ N ∪ {0}, and for each n, k = 1, . . . ,2n. φ0 and ψn,k

constitute the Haar complete ortho-normal system (cons) of L2([0,1]) (see Chapter 4). Show
that the functions h0(t) =

∫ t
0 φ0(u)du = t and hn,k(t) =

∫ t
0ψn,k(x)dx, t ∈ [0,1], for n ∈ N∪ {0},

and for each n, k = 1, . . . ,2n, constitute a cons of HW, the RKHS of Brownian motion (see
(2.73)). Conclude that, if g0, gn,k are i.i.d. N(0,1), then the series h0g0 +∑∞

n=0

∑2n

k=1 hn,kgn,k

convergences uniformly on [0,1] a.s. and also in Lp([0,1]) a.s., for every p, and that the process
it defines is Brownian motion on [0,1]. Hint: Apply the Karhunen-Loève expansion to obtain
that W= h0φ

−1(h0)+∑∞
n=0

∑2n

k=1 hn,kφ
−1(hn,k) a.s., and note that the random variables φ−1(h0)

and φ−1(hn,k) are i.i.d. N(0,1).
2.6.10 For a Borel probability measure μ on a separable Banach space, let μ̂( f ) = ∫

ei f (x)dμ(x),
f ∈B∗, be its characteristic functional. Prove that μ̂= ν̂ implies μ= ν. Hints: By separability,
the Borel σ -algebra of B coincides with the cylindrical σ -algebra, the algebra generated by sets
of the form {x : ( f1(x), . . . , fk(x)) ∈ A, fi ∈ B∗,A ∈ B(Rk),k ∈N}. Thus, it suffices to show that
for all k finite and f1, . . . , fk ∈ B∗, the Borel measures μ ◦ ( f1, . . . , fk)

−1 and ν ◦ ( f1, . . . , fk)
−1

of Rk are equal, and for this one can apply the uniqueness of characteristic functions in Rk (or,
by Cramér-Wold, just in R).

2.6.11 Prove that the support of a centred Gaussian measure μ on B coincides with the closure in B
of the set F = {E( f (X)X) : f ∈ B∗}, where L(X)= μ.

2.6.12 In the notation of Theorem 2.6.26, show that if ‖ · ‖Lp denotes the Lp-norm with respect to
Lebesgue measure on [0,1], 1 ≤ p<∞, then there exists Cp ∈ (0,∞) such that

−Cpε
−2 ≤ logPr

{‖W‖Lp < ε
}≤− 1

Cp
ε−2.

Hint: Proceed as in the proof of Theorem 2.6.26, but use the fact that, for all n,∥∥∥∥∥
2n∑

k=1

akhn,k

∥∥∥∥∥
Lp

= C′
p2

−n/2

(
2−n

2n∑
k=1

|ak|p
)1/p

and that the �p-norm of {ak}2n

k=1 is between its �1- and its �∞-norms instead of (2.85).
2.6.13 Let ‖x‖Lip(α)= sup0≤s
=t<1 |x(t)−x(s)|/|t−s|α , for 0<α< 1, be the α-Hölder norm of x. Show

that

−Cαε
−2/(1−2α) ≤ logPr

{‖W‖Lip(α) < ε
}≤− 1

Cα
ε−2/(1−2α),
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for 0< α < 1/2. Hint: Show first that for all n,∥∥∥∥∥
2n∑

k=1

akhn,k

∥∥∥∥∥
Lip(α)

is comparable to 2−(1/2−α)n maxk≤2n |ak|, use this instead of (2.85) and take bn = bn(q) =
2(3/2−α/2)(n−q) for n ≤ q and bn(q)= 2(1/4−α/2)(n−q) for n> q in the proof of Theorem 2.6.26.

2.6.14 In a separable Hilbert space B, the covariance operator Q of a centred random variable
X satisfying E‖X‖2 < ∞, defined by 〈Q(x),y〉 = E (〈X,x〉〈X,y〉) for all x,y ∈ B, is a
self-adjoint positive definite Hilbert-Schmidt operator on B. These operators admit a complete
ortho-normal system {ei} of eigenvectors, with eigenvalues λ2

i ≥ 0 satisfying
∑
λ2

i <∞ (e.g.,
Gelfand and Vilenkin (1967)). For such a system of eigenvectors and eigenvalues, prove that
the random variable X̃ =∑

λigiei, where {gi} is an i.i.d. standard normal sequence, has the
same law as X.

2.6.15 Let (�i,
i), i ∈N, be measurable spaces, let �=∏∞
i=1�i and let

C = σ
{

E1,...,n ×
∞∏

i=n+1

�i : n ∈N,E1,...,n ∈⊗n
i=1
i

}
be the cylindrical σ -algebra of�. Let μi and μ′

i be equivalent probability measures on (�i,
i)

(i.e., mutually absolutely continuous measures), and let fi = dμ′
i/dμi be the Radon-Nikodym

derivative of μ′
i with respect to μi. Let μ = ∏∞

i=1μi and μ′
i =

∏
μ′

i be the corresponding
infinite product measures. Then either μ and μ′ are equivalent or mutually singular, and this
happens according to whether

∏∞
i=1

∫ √
fidμi > 0 or

∏∞
i=1

∫ √
fidμi = 0. In the first case,

(dμ′/dμ)(ω)=∏∞
i=1 fi(ωi) μ a.s. Hint: Mimick the proof of Proposition 2.6.16.

2.6.16 (The reproducing kernel Hilbert space of the Brownian bridge.) If W(t), t ∈ [0,1] is Brownian
motion, the Brownian bridge B(t), t ∈ [0,1], is defined as B(t) = W(t)− tW(1). Notice that
B(1) = 0. Using computations similar to those in Example 2.6.7 but now for the covariance
s∧ t− st of B, show that the RKHS HB of B is

HB =
{

f : f (0)= f (1)= 0, f is absolutely continuous and f ′ ∈ L2([0,1])} ,

with ‖ f ‖2
H = ∫ 1

0 ( f ′(x))2dx.

2.7 Asymptotics for Extremes of Stationary Gaussian Processes

This section differs from previous ones in that the Gaussian processes treated in it are not
general but very particular: stationary Gaussian process on N (Gaussian sequences) and
on R+. We are interested in the limiting distribution of max1≤k≤n |Xn| for sequences and
of sup0≤t≤T |X(t)| for processes on the positive real line, suitably centred and normalised.
Asymptotic distributional theory for the supremum of X(t) (or of |X(t)|) has been developed
primarily for two types of Gaussian processes, stationary, for which the variance of X(t)
is constant, and cyclostationary, for which, among other properties, the variance of X(t) is
periodic and its maximum on each period is attained at a single point. These results for both
types of processes are of some use in nonparametric statistics, concretely in the construction
of confidence bands, although it may be argued that their interest is only theoretical because
the speed of convergence for these limit theorems is unfortunately very slow (e.g., for
sequences, of the order of 1/ logn). For brevity, only the more classical case of stationary
processes will be developed here. The main tool for proving these results, aside from the
usual probability theory, will be the comparison inequalities from Section 2.4.2.
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2.7 Asymptotics for Extremes of Stationary Gaussian Processes 89

Gaussian Sequences

We first consider a sequence of independent standard normal random variables.

Theorem 2.7.1 Let gi, i ≤ n, be independent standard normal random variables. For each
n ≥ e2, set

an = (2logn)1/2, bn = an − log logn+ logπ

2an
.

Then, for all x ∈R,

lim
n→∞Pr

{
an(max

1≤i≤n
|gi|− bn)≤ x

}
= exp

(−e−x
)
. (2.90)

Proof For g standard normal, let �(x)= Pr{|g| ≤ x} = (2/π)1/2 ∫ x
0 e−t2/2dt, and let φ(x)=

(2/π)1/2e−x2/2, x ≥ 0, be, respectively, the distribution function and the density of |g|. Then
recall that, by (2.23), for u> 0,

u

1+ u2
φ(u)≤ 1−�(u)≤ 1

u
φ(u). (2.91)

For x ∈R fixed, set un = x/an + bn. First we see that by the definition of un,

nφ(un)

un
= n

o(1)+√
π logn

exp

(
− logn− x+ 1

2
log(π logn)+ o(1)

)
→ e−x, (2.92)

as n → ∞. Then, since 1 −�(un) ≥ 0, we have, using |an − bn| ≤ (a ∨ b)n−1|a − b| for
a,b> 0, ∣∣e−n(1−�(un))− (1− (1−�(un))

n
∣∣≤ n

∣∣e−(1−�(un))− (1− (1−�(un))
∣∣

≤ n(1−�(un))
2/2 = O(1/n),

by (2.91) and (2.92). Also, the inequalities (2.91) readily give |n(1−�(un))−nφ(un)/un| =
O(1/ logn). Using the notation αn � βn iff |αn−βn|→ 0, we then see that the last two limits
together with the limit in (2.92) yield

Pr

{
max
i≤n

|gi| ≤ un

}
=�n(un)= [1− (1−�(un))]

n

� e−n(1−�(un)) � e−nφ(un)/un → exp
(−e−x

)
.

We will obtain the limit theorem for stationary sequences from this theorem by means
of the comparison theorem for Gaussian vectors (Theorem 2.4.7). The following lemma
translates the bound in that theorem to a sensible condition on the covariance. In what
follows, � is the distribution function of |g| as in the preceding proof.

Definition 2.7.2 A sequence {ξn} of random variables is stationary if for any natural
numbers n1, . . . ,nm, m> 0 and for any k≥ 0, the joint probability law of the random variables
ξn1+k, . . . ,ξnm+k does not depend on k.

If {ξn} is a centred (jointly) Gaussian sequence, then it is stationary if and only if the
covariances E(ξmξn+m) do not depend on m. In this case, the function r(n) = E(ξmξn+m) is
the covariance function of the sequence.
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Lemma 2.7.3 Let {rj} be a sequence of numbers such that supn |rn|< 1 and rn logn → 0 as
n →∞, and let {un} be a sequence of positive constants such that supn n(1−�(un)) <∞.
Then

lim
n→∞n

n∑
j=1

|rj|exp

(
− u2

n

1+|rj|
)
= 0. (2.93)

Proof Let K be such that supn(1 −�(un)) ≤ K, and let vn be defined by the equation
n(1−�(vn))= K (this equation has only one solution as � is strictly increasing). Suppose
that the lemma holds for {vn}. Then, since vn ≤ un, it follows that the lemma is also true
for un.

By (2.23),
n

vn
e−v2

n/2 → K
√
π/2 := K′, and therefore,

vn√
2logn

→ 1. (2.94)

If δ= supn |rn|, let α be such that 0<α < (1−δ)/(1+δ), and let us divide the sum in (2.93)
into two, the first sum only up to [nα] and the second between [nα]+1 and n. Using the two
limits in (2.94) (as inequalities), the first sum is bounded by

n
[nα ]∑
j=1

|rj|exp

(
− v2

n

1+|rj|
)
≤ n1+αe−v2

n/(1+δ) ≤ K′′n1+α
(vn

n

)2/(1+δ)

≤ K′′′n1+α−2/(1+δ)(logn)1/(1+δ)→ 0.

For the second sum, set δn = supj≥n |rj|, and note that δn logn ≤ supj≥n |rj| log j → 0, which
implies that, by the second limit in (2.94),

δ[nα ]v2
n =

(
δ[nα ] log[nα]) v2

n

log[nα] → 0. (2.95)

Then, using the first limit in (2.94) and (2.95), we obtain, for some C<∞,

n
n∑

j=[nα ]+1

|rj|exp

(
− v2

n

1+|rj|
)
≤ nδ[nα ]e−v2

n

n∑
j=[nα ]+1

ev2
n|rj|/(1+|rj|)

≤ n2δ[nα ]e−v2
neδ[nα ]v

2
n ≤ Cδ[nα ]v2

ne
δ[nα ]v2

n → 0,

thus completing the proof of the lemma.

Theorem 2.7.4 Let {ξn}∞n=1 be a stationary sequence of standard normal random variables
such that its sequence of covariances rn = E(ξmξn+m) satisfies rn logn → 0. Let an and bn be
the constants in Theorem 2.7.1. Then, for all x ∈R,

lim
n→∞Pr

{
an(max

1≤i≤n
|ξi|− bn)≤ x

}
= exp

(−e−x
)
. (2.96)

Proof Inequality (2.56) in Theorem 2.4.7 applied to the sequences {ξi} and {gi}, gi i.i.d.
N(0,1) with μi =−un and λi = un, where un = bn + x/an, gives∣∣∣∣Pr

{
max
1≤i≤n

|ξi| ≤ un

}
−Pr

{
max
1≤i≤n

|gi| ≤ un

}∣∣∣∣≤ 2

π
n

n∑
j=1

|rj|exp

(
− u2

n

1+|rj|
)

,

and the right-hand side tends to zero by Lemma 2.7.3, proving the theorem.
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Gaussian Processes Indexed by [0,∞)
As for sequences, a stochastic process ξ(t), t ≥ 0, is stationary if the finite-dimensional
marginal distributions of ξ(t1 + s), . . . ,ξ(tn + s) do not depend on s, for all n and for any
s such that ti + s ≥ 0, i = 1, . . . ,m. If ξ(t), t ≥ 0, is a centred Gaussian process, then it
is stationary if and only if the covariances E(ξ(s)ξ(s + t)) do not depend on s. In this
case, we write r(t) = Eξ(0)ξ(t) for the covariance function of the process. A stationary
Gaussian process is normalised if ξ(0), and hence ξ(t), for all t, is standard normal.
Now let ξ(t), t ∈ [0,∞), be a normalised stationary Gaussian process with continuous
sample paths and with covariance r(t)= E(ξ(s)ξ(s+ t)) satisfying, for some α ∈ (0,2] and
C ∈ (0,∞),

r(t) < 1, for t> 0 and r(t)= 1−C|t|α+ o(|t|)α, as t → 0. (2.97)

Note that since E(ξ(t)− ξ(s))2 = 2− 2r(|t− s|) = 2C|t− s|α + o(|t− s|α), Theorem 2.3.7
implies that there exists a version of ξ with continuous sample paths (this theorem shows that
any separable version of ξ has uniformly continuous sample paths on [0,T] for any T<∞
with respect to d(s, t)= |t− s|α/2 and hence on [0,∞) w.r.t. d′(s, t)= |t− s|). In this section
we will prove a theorem similar to Theorem 2.7.4 for these continuous time processes. The
proof, quite long, may be divided into three parts. In the first and main part a limit theorem
for the high excursions of the process over a fixed finite interval is proved, in the second
part the process is replaced by its absolute value, and in the third part the limit theorem for
an interval increasing to infinity is finally completed.

In what follows, we set �(u) = (2π)−1/2
∫∞

u ex2/2dx, the tail probabilty function for
the standard normal distribution. An auxiliary nonstationary Gaussian process needs to
be introduced: for each α ∈ (0,2], ζ(t) will be a Gaussian process with mean −|t|α and
covariance rζ (s, t)= tα + sα − |t− s|α . As part of the proof of the following theorem, it will
be shown that the limit

Hα = lim
a↓0

1

a
Pr

{
sup
k∈N
ζ(ak)+η≤ 0

}
(2.98)

exists and is finite, where η is an exponential random variable with unit mean independent
of ζ . Note that for α = 2, which is the case of main interest for us, ζ(t)=√

2tg− t2, and in
this case, Hα is directly computable and easily seen to be H2 = 1/

√
π .

Theorem 2.7.5 Let ξ(t), t ∈ [0,∞), be a normalised centred stationary Gaussian process
with continuous sample paths and with covariance r(t) satisfying condition (2.97) for some
α ∈ [0,2] and C ∈ (0,∞). Then, for any h ∈ (0,∞),

lim
u→∞

1

u2/αh�(u)
Pr

{
sup

t∈[0,h]
ξ(t) > u

}
= C1/αHα, (2.99)

where Hα ∈ (0,∞) is given by the limit (2.98), in particular, H2 = 1/
√
π .

Proof Set q = q(u) = u−2/α and � =�(u). For each u, we discretise ξ at the points aqk,
k = 0,1, . . . [h/(aq)], and then let a ↓ 0. Since, clearly, �(u+ x/u)/�(u)→ e−x as u →∞,
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we have

limsup
u→∞

q

�
Pr

{
sup

t∈[0,h]
ξ(t) > u

}
= limsup

u→∞
q(u+ aα/4/u)

�(u+ aα/4/u)
Pr

{
sup

t∈[0,h]
ξ(t) > u+ aα/4

u

}
≤ limsup

u→∞
q

e−aα/4�
Pr

{
sup

t∈[0,h]
ξ(t) > u+ aα/4

u
, max
k∈{0,...,[h/aq]}

ξ(aqk)≤ u

}
+ limsup

u→∞
q

e−aα/4�
Pr

{
max

k∈{0,...,[h/aq]}
ξ(aqk) > u

}
(2.100)

and

liminf
u→∞

q

�
Pr

{
sup

t∈[0,h]
ξ(t) > u

}
≥ limsup

a↓0
liminf

u→∞
q

�
Pr

{
max

k∈{0,...,[h/aq]}
ξ(aqk) > u

}
, (2.101)

and a sensible strategy consists in studying the two probabilities appearing on the right-hand
side of (2.100). We start with the second (the next three claims).

Claim 1 Let ξu(t) := u(ξ(qt)− u). Then the finite-dimensional distributions of the process
ξu(t), t > 0, conditioned on the event ξu(0) > 0 converge in law to those of the process
ζ(C1/αt)+η, t> 0, as u →∞, where η and ζ are as defined for (2.98).

Proof of Claim 1 The processes ξu(t)− r(qt)ξu(0) and r(qt)ξu(0) are independent (as is
easily seen by checking covariances). Hence, it suffices to show that the finite-dimensional
distributions of the first process converge in law to those of ζ(C1/αt) (t > 0) and that the
finite-dimensional distributions of the second, conditioned on ξu(0) > 0, converge to the
exponential law with unit variance. The first limit follows easily by computing means and
covariances, and the second holds because, for all x> 0, Pr {ζu(0) > x|ζu(0) > 0} =�(u+
x/u)/�(u)→ e−x as u →∞. Claim 1 is proved.

Claim 2 For any a> 0,

lim
n→∞ lim

u→∞
1

n�
Pr

{
max
0≤k≤n

ξ(aqk) > u

}
= Pr

{ ∞⋂
�=1

{ζ(C1/αa�)+η≤ 0}
}

.

Proof of Claim 2 By recurrence, for any collection of events Ai,

Pr

{
n⋃

i=0

Ai

}
= Pr(An)+Pr

{
n−1⋃
i=0

(Ai ∩Ac
n)

}

= Pr(An)+Pr(An−1 ∩Ac
n)+Pr

{
n−2⋃
i=0

(Ai ∩Ac
n−1 ∩Ac

n)

}

= ·· · = Pr(An)+
n−1∑
k=0

Pr

{
Ak

⋂(
n⋂

�=k+1

Ac
�

)}
.
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By stationarity and the definition of ξu, and recalling that ξ(t) is N(0,1) for all t, we have

Pr {ξ(aqk) > u),ξ(aq(k+ 1))≤ u, . . . ,ξ(aqn)≤ u} = Pr {ξu(0) > 0,ξu(a)≤ 0, . . . ,

× ξu(a(n− k))≤ 0} =�Pr

{
n−k⋂
�=1

{ξu(a�)≤ 0}
∣∣∣ ξu(0) > 0

}
.

Putting these two observations together and applying Claim 1, we obtain

1

n�
Pr

{
max
0≤k≤n

ξ(aqk) > u

}
= 1

n
+ 1

n

n∑
m=1

Pr

{
m⋂
�=1

{ξu(a�)≤ 0}
∣∣∣ ξu(0) > 0

}

→ 1

n
+ 1

n

n∑
m=1

Pr

{
m⋂
�=1

{ζ(C1/αa�)+η≤ 0}
}

, as u →∞.

Letting n→∞ yields the claim (as the sequence of averages of a convergent sequence tends
to its limit).

Claim 3:

lim
u→∞

q

�
Pr

{
max

0≤k≤[h/(aq(u))]
ξ(aq(u)k) > u

}
= h

a
Pr

{ ∞⋂
k=1

{ζ(C1/αak)+η≤ 0}
}

, (2.102)

where [x] denotes the largest integer less than or equal to x.

Proof of Claim 3 Using that the probability of a union is dominated by the sum of the
probabilities, stationarity and the preceding claim, we have

limsup
u→∞

q

�
Pr

{
max

0≤k≤[h/(aq)]
ξ(aqk) > u

}
≤ limsup

n→∞
limsup

u→∞
h

an�
Pr

{
max

k=0,...,n
ξ(aqk) > u

}

= h

a
Pr

{ ∞⋂
�=1

{ζ(C1/αa�)+η≤ 0}
}

. (2.103)

For the limes inferior, using Bonferroni’s inequality and stationarity, we have

q

�
Pr

{
max

0≤k≤[h/(aq)]
ξ(aqk) > u

}

≥ q

�
Pr

{[h/(aqn)]⋃
i=1

{
max

0≤k≤[h/(aq)]
ξ(aqk) > u

}}

≥ q

�

[h/(aqn)]∑
i=1

Pr

{
max

(i−1)n≤k≤in−1
ξ(aqk) > u

}

− q

�

∑
1≤i<j≤[h/(aqn)]

Pr

{
max

(i−1)n≤k≤in−1
ξ(aqk) > u, max

(j−1)n≤k≤jn−1
ξ(aqk) > u

}
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≥ q

�

[
h

aqn

]
Pr

{
max

0≤k≤n−1
ξ(aqk) > u

}
− h

an�
Pr

{
max

0≤k≤n−1
ξ(aqk) > u, max

n≤k≤2n−1
ξ(aqk) > u

}

− h

a

[h/(aq)]∑
k=n

Pr{ξ(0) > u,ξ(aqk) > u}
�

. (2.104)

Now we must show that the rightmost last two terms tend to zero as u→∞ and then n→∞.
By inclusion-exclusion and stationarity,

1

n�
Pr

{
max

0≤k≤n−1
ξ(aqk) > u, max

n≤k≤2n−1
ξ(aqk) > u

}
= 2

n�
Pr

{
max

0≤k≤n−1
ξ(aqk) > u

}
− 2

2n�
Pr

{
max

0≤k≤2n−1
ξ(aqk) > u

}
,

and both terms have the same double limit limn→∞ limu→∞ by Claim 2; hence, this double
limit of the first of the last two terms in (2.104) is zero. Now we consider the last term
in (2.104). Since by convexity and tangent line approximation at x = 1, 2/

√
2+ 2x) ≥ 1+

(1− x)/4, x ≥ 0, we have

Pr{ξ(0) > u,ξ(aqk) > u} ≤ Pr{ξ(0)+ ξ(aqk) > 2u}

=�
(

2u√
2+ 2r(aqk)

)
≤�

(
u+ u

1− r(aqk)

4

)
.

Let ε > 0 be such that 1− r(t)≥ C|t|α/2, for 0 ≤ t ≤ ε, and let δ(ε)= supε≤t≤h r(t); ε exists,
and δ(ε) < 1 by the hypothesis (2.97) on r. Then 1− r(aqk)≥ min(1− δ(ε),C(ak)α/(8u2))

(recall that q= q(u)= u−2/α). Note also that�(u+x/u)/�(u)≤ e−x for all u,x> 0. The last
three observations then give

limsup
u→∞

[h/(aq)]∑
k=n

Pr{ξ(0) > u,ξ(aqk) > u}
�

(2.105)

≤ limsup

(
hu2/α

a
e−(1−δ(ε))/4 +

[h/(aq)]∑
k=n

e−C(ak)α/8

)

=
∞∑

k=n

e−C(ak)α/8 → 0 as n →∞.

Combining these two limits and the limit in Claim 2 with (2.104) gives

liminf
u→∞

q

�
Pr

{
max

0≤k≤[h/(aq)]
ξ(aqk) > u

}
≥ h

a
Pr

{ ∞⋂
�=1

{ζ(C1/αa�)+η≤ 0}
}

,

which, together with (2.103), proves Claim 3.
Having dealt with the discretisations of ξ , we finally deal with the first probability on the

right-hand side of (2.100), which constitutes the link between these discretisations and the
process.
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Claim 4.

lim
a↓0

limsup
u→∞

q

�
Pr

{
sup

t∈[0,h]
ξ(t) > u+ aα/4

u
, max
0≤k≤[h/aq]}

ξ(aqk)≤ u

}
= 0. (2.106)

Proof of Claim 4 We fix a and set un = u+ aα/4(1− 2−nα/4)/u, and note that u = u0 < un,
for all n. Stationarity and continuity of ξ allow us to write

Pr

{
sup

t∈[0,h]
ξ(t) > u+ aα/4

u
, max
0≤k≤[h/aq]}

ξ(aqk)≤ u

}

≤ 2h

aq
Pr

{
sup

t∈[0,aq]
ξ(t) > u+ aα/4

u
,ξ(0)≤ u

}

= 2h

aq
Pr

{ ∞⋃
n=0

2n−1⋃
k=0

{ξ(aqk2−n) > u+ aα/4u−1},ξ(0)≤ u

}

≤ 2h

aq
Pr

{ ∞⋃
n=0

2n−1⋃
k=0

{ξ(aqk2−n) > un},ξ(0)≤ u

}
.

First, with Fn =⋃2n−1
k=0 {ξ(aqk2−n) > un}, we use that

⋃∞
n=1 Fn = F0

⋃(∪∞
n=1(Fn ∩Fc

n−1)
)

and
that F0 ∩{ξ(0)≤ u} = ∅ to obtain that the preceding probability is dominated by

2h

aq

∞∑
n=1

2n−1∑
k=1

Pr

⎧⎨⎩{ξ(aqk2−n) > un}
⋂⎛⎝2n−1−1⋂

�=0

{ξ(aq�2−n+1)≤ un−1}
⎞⎠⎫⎬⎭ .

Second, notice that, by stationarity, for each n, if k is odd, the probabilities in the nth sum
are all dominated by Pr{ξ(aq2−n) > un,ξ(0)≤ un−1} (e.g., subtract (k− 1)2−n from the first
event and from {ξ(aq2�2−n)≤ un−1} for 2�= k−1), and likewise, for k even, this probability
is dominated by Pr{ξ(aq2 · 2−n) > un,ξ(0)≤ un−1}. We thus obtain

Pr

{
sup

t∈[0,h]
ξ(t) > u+ aα/4

u
, max
0≤k≤[h/aq]}

ξ(aqk)≤ u

}
≤ 2h

aq

∞∑
n=1

2n−1
(
Pr{ξ(aq2−n)

> un,ξ(0)≤ un−1}+Pr{ξ(aq2−n+1) > un,ξ(0)≤ un−1}
)
. (2.107)

Third, since 1 − r(t) ≤ C|t|α , for all t small enough, in particular, for t = aq2−n and t =
aq2−n+1, for all n, and for all u, is large enough depending on a, it follows that for all a> 0
sufficiently small there is ua such that, for u≥ ua, on the event {ξ(aq2−n+1)> u,ξ(0)≤ un−1},
we have

r(aq2−n+1)ξ(aq2−n+1)− ξ(0)
≥ (aq2−n+1)un − un−1

≥ aα/4(2α/4 − 1)2−nα/4

u
− (1− r(aq2−n+1)

(
u+ aα/4(1− 2−nα/4)

u

)
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≥ aα/4(2α/4 − 1)2−nα/4

u
− 21+αCaα2−nα

u

(
1+ aα/4(1− 2−nα/4)

u2

)
≥ aα/4(2α/4 − 1)2−nα/4−1

u
,

and, similarly,

r(aq2−n)ξ(aq2−n)− ξ(0)≥ aα/4(2α/4 − 1)2−nα/4−1

u

on the event {ξ(aq2−n) > u,ξ(0)≤ un−1}. Then it follows from this and (2.107) that for all a
small enough,

limsup
u→∞

q

�
Pr

{
sup

t∈[0,h]
ξ(t) > u+ aα/4

u
, max
0≤k≤[h/aq]}

ξ(aqk)≤ u

}

≤ 2h

a�

∞∑
n=1

2n Pr

{
r(aq2−n)ξ(aq2−n)− ξ(0)≥ aα/4(2α/4 − 1)2−nα/4−1

u
,ξ(aq2−n) > u

}
(where we also use that u < un). Now r(t)ξ(t)− ξ(0) and ξ(t) are uncorrelated and hence
independent, and therefore, this quantity is dominated by

limsup
u→∞

2h

a

∞∑
n=1

2n�

(
aα/4(2α/4 − 1)2−nα/4−1

u(1− r(aq2−n)2)1/2

)
≤ limsup

u→∞
2h

a

∞∑
n=1

2n�

(
aα/4(2α/4 − 1)2−nα/4−1

u(2(1− r(aq2−n))1/2

)

≤ 2h

a

∞∑
n=1

2n�

(
aα/4(2α/4 − 1)2−nα/4−1

2C1/2aα/22−nα/2

)
.

The last sum has the form 2h
∑

n(2
n/a)�

(−C(α)(2n/a)α/4
)

for some positive constant
C(α), so it tends to zero as a → 0 (note that for all a small enough, the sum of this series is
dominated by a constant times the first term). Claim 4 is proved.

Now, combining Claims 3 and 4 with inequalities (2.100) and (2.101), we obtain

limsup
u→∞

q

�
Pr

{
sup

t∈[0,h]
ξ(t) > u

}
≤ liminf

a↓0

h

a
Pr

{ ∞⋂
k=1

{ζ(C1/αak)+η≤ 0}
}

= liminf
a↓0

hC1/α

a
Pr

{ ∞⋂
k=1

{ζ(ak)+η≤ 0}
}

and

liminf
u→∞

q

�
Pr

{
sup

t∈[0,h]
ξ(t) > u

}
≥ limsup

a↓0

hC1/α

a
Pr

{ ∞⋂
k=1

{ζ(ak)+η≤ 0}
}

.

Thus, the limits of both quantities exist (although they could be 0 or infinity) and are equal,
proving inequality (2.99). Now, the right-hand side of (2.102) is finite; therefore, by Claims
3 and 4 and (2.100), limsupu→∞(q/�)Pr

{
supt∈[0,h] ξ(t) > u

}
<∞. This implies by the limit

in the last display that limsupa↓0((hC1/α)/a)Pr
{⋂∞

k=1{ζ(ak)+η≤ 0}}<∞, so Hα is finite.
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Finally, using Bonferroni’s inequality and stationarity, we have

lim
u→∞

q

�
Pr

{
sup

t∈[0,h]
ξ(t) > u

}
≥ lim

u→∞
q

�
Pr

{[h/(aqn)]⋃
k=n

{ξ(aqnk) > u}
}

≥ liminf
u→∞

h

an�

(
�−

[h/(aqn)]∑
k=n

Pr{ξ(aqk) > u,ξ(0) > u}
)

,

and by (2.105), this limit inferior equals h/(2an) for n large enough, hence positive.

It is surprising that the proof of the very precise Theorem 2.7.5 uses only elementary
probability, albeit in an intricate and delicate way (Pickands’ ‘double sum’ method).

Corollary 2.7.6 Under the assumptions of Theorem 2.7.5,

lim
u→∞

1

u2/αh�(u)
Pr

{
sup

t∈[0,h]
|ξ(t)|> u

}
= 2C1/αHα, (2.108)

and, for all a> 0,

lim
u→∞

1

u2/αh�(u)
Pr

{
max

0≤k≤[h/(aq)]
|ξ(aqk)|> u

}
= 2

a
Pr

{ ∞⋂
k=1

{ζ(C1/αak)+η≤ 0}
}

, (2.109)

where q = q(u)= u−2/α .

Proof For the second limit, by inclusion-exclusion,

Pr

{
max

0≤k≤[h/(aq)]
|ξ(aqk)|> u

}
= Pr

{
max

0≤k≤[h/(aq)]
ξ(aqk) > u

}
+Pr

{
max

0≤k≤[h/(aq)]
(−ξ(aqk)) > u

}
−Pr

{
max

0≤k≤[h/(aq)]
ξ(aqk) > u, max

0≤k≤[h/(aq)]
(−ξ(aqk)) > u

}
.

The first two terms are equal by symmetry and have been dealt with in Claim 3 of the
preceding proof. Thus, to prove (2.109), it suffices to show that q/� times the third term
tends to zero. This term is bounded by Pr

{
max0≤k,�≤[h/(aq)] ξ(aqk)− ξ(aq�) > 2u

}
. We can

decompose the maximum in this probability into two parts: one over all k,�≤ [h/(aq)] such
that |aq(k− �)| ≤ ε, 0< ε < C−1/α , chosen so that 1− r(t)≤ 2C|t|α , for all |t| ≤ ε, and the
other over the remaining k,�. We have, for the first part

q

�
Pr

{
max

0≤k,�≤[h/(aq)],|k−�|≤ε/(aq)
ξ(aqk)− ξ(aq�) > 2u

}
≤ q

�

hε

(aq)2
e−4u2/(8Cεα)→ 0,

as u →∞, since in this case E(ξ(aqk)− ξ(aq�)2 = 2(1− r(aq|k− �) ≤ 4Cεα < 4. For the
other part, noting that |r(t)| ≤ δ(ε) < 1 for |t|> ε, we have

q

�
Pr

{
max

0≤k,�≤[h/(aq)],|k−�|>ε/(aq)
ξ(aqk)− ξ(aq�) > 2u

}
≤ q

�

h2

(aq)2
e−4u2/(4(1+δ(ε))→ 0

because in this case 2(1− r(aq|k−�))≤ 2(1+ δ(ε)) < 4. This and Claim 3 in the preceding
proof proves (2.109).
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To prove (2.108), we can use the Borell-Sudakov-Tsirelson inequality (e.g., in its form
(2.20)) after decomposing sup0≤s,t≤h(ξ(t)− ξ(s)) into the same two parts as in the proof of
(2.109) and noting that Esups,t∈[0,h] |ξ(t)− ξ(s)| = M<∞ by Theorem 2.1.20 (a). Let ε be
as earlier, so sup|s−t|≤ε,0≤s,t≤h E(ξ(t)− ξ(s))2 ≤ 2Cεα. We then have

q

�
Pr

{
sup

|s−t|≤ε,0≤s,t≤h
ξ(t)− ξ(s) > 2u

}
≤ q

�
exp

(
− (2u− 2

√
2/πCεα−M)2

4Cεα

)
→ 0,

as u →∞, since Cεα < 1. Similarly, since |r(t) < δ(ε) < 1 for |t| ≤ ε,
q

�
Pr

{
sup

|s−t|>ε,0≤s,t≤h
ξ(t)− ξ(s) > 2u

}
≤ q

�
exp

(
− (2u− 2(1+ δ(ε))−M)2

4(1+ δ(ε))
)
→ 0.

Then, as before,

lim
u→∞

q

h�(u)
Pr

{
sup

t∈[0,h]
|ξ(t)|> u

}
= lim

u→∞
q

h�(u)
Pr

{
sup

t∈[0,h]
ξ(t) > u

}
+ lim

u→∞
q

h�(u)
Pr

{
sup

t∈[0,h]
(−ξ(t)) > u

}
,

and (2.108) follows from Theorem 2.7.5.

Use of the deep Borell-Sudakov-Tsirelson inequality in the preceding proof seems
excessive, but it is certainly very convenient.

In the next theorem we obtain a limit theorem for the interval [0,h] increasing to infinity,
and the main ingredient of the proof will be, besides Corollary 2.7.6, the comparison
theorem for Gaussian processes, Theorem 2.4.7. In order to have a sensible condition
on r(t) as t grows, we need a continuous analogue of Lemma 2.7.3. Since its proof is
similar to that lemma and only involves calculus, we omit it. First, some notation. We
set μ=μ(u)= 2C1/αHαu2/α�̄(u), and assume that T= T(μ) satisfies the condition Tμ→ τ

for some 0< τ <∞. That is,

μ=μ(u)= 2C1/αHαu
2/α�̄(u) and Tμ→ τ , as u →∞. (2.110)

Taking logarithms and using �(u)� (2π)−1/2e−u2/2/u, we have

logT+ log(2C1/αHα)+ 2−α
α

logu− u2

2
→ logτ ,

as u →∞. Then u2/(2logT)→ 1 or logu = 1
2 (log2+ log logT)+ o(1), and replacing this

in the preceding display, we obtain

u2 = 2logT+ 2−α
α

log logT−2logτ +2log((2π)−1/22(2−α)/(2α)2C1/αHα)+o(1). (2.111)

Conversely, if u= uT satisfies equation (2.111), then Tμ(uT)→ τ , as T→∞. This equation
is used in the proof of the following analogue of Lemma 2.7.3 (see Exercise 2.7.1).

Lemma 2.7.7 Let α ∈ (0,2), and let r(t) be a function on [0,∞) such that r(0)= 1, |r(t)|< 1,
for t > 0 and r(t) = 1 − C|t|α + o(|t|α). Let T and μ satisfy (2.111) for some τ > 0, let
q(u)= u−2/α and let a> 0. Then, if

r(t) log t → 0, as t →∞, (2.112)
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we have that for every ε > 0,

lim
u→∞

T

q

∑
ε≤aqk≤T

|r(aqk)|exp

(
− u2

1+|r(aqk)|
)
= 0. (2.113)

The following proposition contains the main steps in the proof of the limit theorem for
the supremum of a stationary process over increasing intervals:

Proposition 2.7.8 Let ξ(t), t∈ [0,∞), be a normalised centred stationary Gaussian process
with continuous sample paths and with covariance function r(t) satisfying conditions (2.97)
for some α ∈ (0,2] and (2.112). Let τ > 0, and for each T, let u = uT be such that condition
Tμ(uT)→ τ , as T →∞, where μ=μ(uT), is as in (2.110). Then

lim
T→∞

Pr

{
sup

0≤t≤T
|ξ(t)| ≤ uT

}
→ e−τ .

Proof We take 0 < ε < h < T and define n = [T/h]; then we divide the interval [0,nh]
into n adjacent intervals of length h, say, [tj, tj+1], j = 1, . . . ,n, and split each interval into
two, Ij = [tj, tj+1 − ε] and I∗j = [tj+1 − ε, tj+1] of lengths 1 − ε and ε, respectively. Given
a > 0, let Hα(a) = 1

a Pr
{
supk∈N ζ(ak)+η≤ 0

}
, and define ρa(α) = 1 − Hα(a)/Hα. Then

ρa(α)→ 0 as a → 0 by (2.98) (actually, by Theorem 2.7.5). The proposition will follow by
comparing Pr

{
sup0≤t≤nh |ξ(t)| ≤ u

}
to
(
Pr
{
sup0≤t≤h |ξ(t)| ≤ u

})n
, and this comparison will

take four steps as it will go through the sup of the process over ∪Ij, the maximum of the
discretisation over ∪Ij, which will be compared to the discretized process independent on
the different Ik using Theorem 2.4.7 (the comparison theorem for Gaussian vectors), and
then we will compare back to independent copies of the original. Three of the comparisons
will only use Theorem 2.7.5 in its version for absolute values (Corollary 2.7.6).

First comparison:

0 ≤ limsup
u→∞

(
Pr

{
sup

t∈∪n
j=1Ij

|ξ(t)| ≤ u

}
−Pr

{
sup

t∈[0,nh]
|ξ(t)| ≤ u

})
≤ τε

h
. (2.114)

Proof To see this, note that the difference of the two probabilities is nonnegative and is
dominated by

n∑
j=1

Pr

{
sup
t∈I∗j

|ξ(t)|> u

}
= nμε+ o(nμ)→ τε

h
,

since nμ� Tμ/h → τ/h.

Second and fourth comparisons:

0 ≤ limsup
u→∞

(
Pr

{
max

aqk∈∪n
j=1Ij

|ξ(aqk)| ≤ u

}
−Pr

{
sup

t∈∪n
j=1Ij

|ξ(t)| ≤ u

})
≤ τρa (2.115)

and

0 ≤ limsup
u→∞

⎛⎝ n∏
j=1

Pr

{
max
aqk∈Ij

|ξ(t)| ≤ u

}
−
(

Pr

{
sup

t∈[0,h]
|ξ(t)| ≤ u

})n
∣∣∣∣∣∣≤ τρa. (2.116)
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Proof First, we observe that for any interval I of length h, by Corollary 2.7.6 and
stationarity,

0 ≤ Pr

{
max
akq∈I

|ξ(akq)| ≤ u

}
−Pr

{
sup

0≤t≤h
|ξ(t)| ≤ u

}
≤μhρa + o(μ). (2.117)

Note that, in fact, if I = [0,h], this statement follows directly from Corollary 2.7.6, and
by stationarity, we can replace the interval I by [0,h], with equality for the second term;
however, regarding the first term, the number of jqk in I may be the same or one less than in
[0,h] (at least for u large and a small). This difference is not significant because Pr{ξ(jqk) >
u} = o(μ)).

Now (2.117) gives

0 ≤ Pr

{
max

aqk∈∪n
j=1Ij

|ξ(aqk)| ≤ u

}
−Pr

{
sup

t∈∪n
j=1Ij

|ξ(t)| ≤ u

}

≤ n max
1≤j≤n

(
Pr

{
max
aqk∈Ij

|ξ(aqk)| ≤ u

}
−Pr

{
sup
t∈Ij

|ξ(t)| ≤ u

})
≤ nμ(h− ε)+ o(nμ)→ τ(1− ε/h)≤ τρa.

Let ξj be independent copies of ξ , and consider the process ξ(t) = ∑n
j=i ξj(t)IIj(t). The

preceding string of inequalities applied to ξ(t), t ∈ ∪n
j=1Ij, proves inequality (2.116). This

completes the proof of these two comparisons.

Third comparison:

lim
u→∞

⎛⎝Pr

{
max

aqk∈∪n
i=1Ij

|ξ(aqk)| ≤ u

}
−

n∏
j=1

Pr

{
max
aqk∈Ij

|ξ(t)| ≤ u

}⎞⎠= 0. (2.118)

Proof We will apply inequality (2.56) in the comparison Theorem 2.4.7 to the
finite-dimensional Gaussian vectors (ξ(aqk) : aqk ∈ ∪n

j=1Ij and ξ(aqk) : aqk ∈ ∪n
j=1Ij) with

λi = u and μi = u for all i. Now note that

E(ξ(aqk)ξ(aq�))= E(ξ(aqk)ξ(aq�))= r(aq|k− �|), if aqk,aq� ∈ Ij, j = 1, . . . ,n,

E(ξ(aqk)ξ(aq�))= r(aq|k− �|), but E(ξ(aqk)ξ(aq�))= 0, if aqk ∈ Ii,aq� ∈ Ij, i 
= j.

Then inequality (2.56) gives∣∣∣∣∣∣Pr

{
max

aqk∈∪n
i=1Ij

|ξ(aqk)| ≤ u

}
−

n∏
j=1

Pr

{
max
aqk∈Ij

|ξ(aqk)| ≤ u

}∣∣∣∣∣∣
≤ 2

π

∑
aqk∈Ii,aq�∈Ij,i<j

|r(aq|k− �|)exp

(
− u2

1+|r(aq|k− �|
)

≤ 2

π

T

aq

∑
ε≤aqk≤T

|r(aqk)|exp

(
− u2

1+|r(aqk)|
)

, (2.119)

which tends to zero as u →∞ by Lemma 2.7.7, proving the third comparison.
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The conclusion of these four comparisons is that

limsup
T→∞

∣∣∣∣Pr{ sup
t∈[0,nh]

|ξ(t)| ≤ uT}−
(

Pr{ sup
t∈[0,h]

|ξ(t)| ≤ uT}
)n∣∣∣∣≤ 2τ(ρa + ε/(2h)).

Letting ε→ 0 and a→ 0 (recall that ρa → 0 as a→ 0 by (2.98)), we obtain that this limit is
zero, but, by Corollary 2.7.6,(

Pr{ sup
t∈[0,h]

|ξ(t)| ≤ uT}
)n

= (1−μh+ o(μ))n,

and since Tμ→ τ and n/(T/h)→ 1, this last expression has limit eτ . To complete the proof
of the proposition, just note that

0 ≤ Pr

{
sup

t∈[0,nh]
|ξ(t)| ≤ uT

}
−Pr

{
sup
t∈T

|ξ(t)| ≤ uT

}
≤ Pr

{
sup

t∈[0,h]
|ξ(t)|> uT

}
,

and by Corollary 2.7.6, the last probability is eventually smaller than a constant times
u2/α

T �(uT), which tends to zero.

Let now uT = x/aT + bT, with

aT = (2logT)1/2, bT = aT + (2−α)/α log logT+ 2log((2π)−1/22(2+α)/αC1/αHα)

2aT
.

(2.120)
Then

u2
T = 2xbT/aT + b2

T + o(1)

=−2loge−x + (2logT)+ 2−α
α

log logT+ 2log((2π)−1/22(2+α)/αC1/αHα)+ o(1),

which is just (2.111) with τ = e−x. Thus, Proposition 2.7.8 gives the following weak
convergence result for the supremum norm of ξ(t) over increasing intervals:

Theorem 2.7.9 Let ξ(t), t ∈ [0,∞), be a normalised, centred stationary Gaussian process
with continuous sample paths and with covariance r(t) satisfying r(t) < 1, for t> 0, r(t)=
1−C|t|α + o(|t|α), for some α ∈ (0,2] as t → 0, and r(t) log t → 0, as t →∞. Let Hα be
defined by equation (2.98) (hence H2 = 1/

√
π ), and let aT and bT be defiened by equations

(2.120). Then, for all x ∈R,

lim
T→∞

Pr

{
aT( sup

t∈[0,T]
|ξ(t)|− bT)≤ x

}
= exp

(−e−x
)
.

Exercises

2.7.1 Prove Lemma 2.7.7. Hint: Split the sum in (2.113) into two parts, ε ≤ aqk ≤ Tβ and the rest,
where β ∈ (0,(1 − δ)/(1 + δ)), where δ = supt≥ε |r(t)|. The sum for the smaller k is easy to
handle. Using the notation δ(t) := sups≥t |r(s) logs|, bound the sum for the larger k by

T

q

∑
tβ≤aqk≤T

|r(aqk)|exp

(
−u2

(
1− δ(Tβ)

logTβ

))

≤
(

T

q

)
exp

(
−u2

(
1− δ(Tβ)

logTβ

))
1

logTβ

∑
Tβ≤aqk

≤ T|r(aqk)| log(aqk).
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The behaviour of r at infinity shows that (q/t)
∑

Tβ≤aqk ≤ T|r(aqk)| log(aqk), and the remaining
factor can be handled using (2.111).

2.7.2 Prove that under the hypotheses of Theorem 2.7.9,

lim
T→∞Pr

{
aT( sup

t∈[0,T]
ξ(t)− bT)≤ x

}
= exp

(−e−x
)
,

where bT = bT − (log2)/aT. Hint: Use Theorem 2.7.5 and Claim 3 from its proof directly
(without the corollary).

2.7.3 Prove that H1/2 = 1/
√
π , where H2 is as defined in (2.98) for α = 2.

2.8 Notes

Section 2.1 Proposition 2.1.4 is a classical result due to Oxtoby and Ulam (1939). Proposition 2.1.7
on bounded stochastic processes with tight Borel probability laws comes from Hoffmann-Jørgensen
(1991). We learned the results on Gaussian processes in this section mainly from Fernique (1975).
The proof of the 0-1 law comes from Fernique (1974) (the result itself is due to Dudley and Kanter
(1974)), and the simple proof of the concentration inequality given here is due to Maurey and Pisier
(see Pisier (1986)). The Paley-Zygmund argument is due to Paley and Zygmund (1932). See also
Salem and Zygmund (1954) and Kahane (1968).

Section 2.2 In Section 2.2.1 we follow the excellent presentation of Benyamini (1984) of the proof of
the isoperimetric inequality on the sphere by Baernstein and Taylor (1976). See Figiel, Lindenstrauss
and Milman (1977) for another proof. The theorem itself if due to Lévy (1951) and Schmidt (1948).

The exposition of Sections 2.2.2 and 2.2.3 is adapted from accounts in Ledoux and Talagrand
(1991) and Fernique (1997), particularly from the last reference. The Gaussian isoperimetric
inequality is due independently to Borell (1975) and to Sudakov and Tsirelson (1974), and so are
their consequences for Lipschitz functions and supremum norms. Corollary 2.2.9 is due to Marcus
and Shepp (1972).

Section 2.3 The chaining argument, the entropy-sufficient condition for sample boundedness and
continuity of Gaussian processes and the entropy bound on the modulus of continuity are due to
R. M. Dudley (1967, 1973). The entropy bounds on Lp norms and Orlicz norms were noticed by
G. Pisier (1983), including the argument in (2.33) and (2.34). Lemma 2.3.4 is from Boucheron,
Lugosi and Massart (2013). According to R. Dudley (Math. Reviews MR0431359 (55#4359), current
version), Sudakov was the first to relate metric entropy to sample boundedness and continuity of
Gaussian processes, although his first results were only announced in 1969. Fernique (1975) proved
that finiteness of the metric entropy integral is also necessary for sample continuity of stationary
Gaussian processes. The exposition here is based on Dudley’s papers and the expositions in de la
Peña and Giné (1999) and Ledoux and Talagrand (1991).

Although metric entropy provides sharp results, it does not provide general necessary and sufficient
conditions for sample boundedness or continuity of Gaussian processes. M. Talagrand (1987a)
obtained such conditions in terms of another characteristic of the metric space (T,dX), the existence
of a majorising measure (sufficiency had been obtained by X. Fernique, and M. Talagrand proved
necessity). This was a major achievement, solving a very natural question, namely, characterising
sample boundedness of a Gaussian process X only in terms of properties of the metric space (T,dX).
Later on, Talagrand (2005) provided a nice book account of his work, with simpler proofs and several
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applications. Here is the sufficiency part of the simplest version of his theorem, the simplest example
showing how it goes beyond metric entropy and its relation to metric entropy:

Theorem 2.8.1 (Generic chaining) Let (T,d) be a countable pseudo-metric space, and let X(t), t∈ T,
be a stochastic process sub-Gaussian with respect to d. Let Nn = 22n

, and let Tn ⊂ T, n ∈ N, be sets
such that Card(Tn)≤ Nn and ∪nTn = T. Then, for any F⊂ T, F finite, and t0 ∈ F, setting T0 = {t0}, we
have

Emax
t∈F
(X(t)−X(t0))≤ Lmax

t∈F

∑
n≥0

2n/2d(t,Tn), (2.121)

where L is a universal constant that can be taken to be L = (1+√
2)(1+ 3log2)/

√
3log2 < 5.16.

The same bound holds for the supremum over T.

Proof By identifying points of F at zero distance d from each other, we can assume that d is a
distance on F. For each t∈F, let πn : F �→ Tn be a map such that d(t,πn(t))= d(t,Tn) (= infs∈Tn d(s, t)).
Since F ⊆∪nTn, for each t, there is n(t) <∞ such that πn(t)= t. We then have

X(t)−X(t0)=
n(t)∑
n=1

(X(πn(t))−X(πn−1(t)), t ∈ F. (2.122)

Let S = maxt∈F
∑n(t)

n=1 2n/2d(πn(t),πn−1(t)), and note that, by the triangle inequality,

S ≤ (1+√
2)max

t∈F

∑
n≥0

2n/2d(t,Tn).

Now, for u > 0, observe that if X(πn(t))− X(πn−1(t)) ≤ u2n/2d(πn(t),πn−1(t)) for all (t,n), t ∈ F,
n ≤ n(t), then, by (2.122), maxt∈F |X(t)−X(t0)| ≤ uS, that is,

Pr

{
max
t∈F
(X(t)−X(t0)) > uS

}
≤

∑
(n,πn(t),πn−1(t)):t∈F,1≤n≤n(t)

Pr
{|X(πn(t))−X(πn−1(t)|> u2n/2d(πn(t),πn−1(t))

}
.

By the sub-Gaussian inequality (2.22), these probabilities are bounded, respectively, for each n, by
e−u22n/2 independently of t, and hence, since for each n the cardinality of the set {(πn(t),πn−1(t)) : t∈F}
is dominated by NnNn−1 ≤ 23·2n−1

, the preceding inequality gives

Pr

{
max
t∈F
(X(t)−X(t0)) > uS

}
≤
∑
n≥1

23·2n−1
e−u22n−1

.

The random variable maxt∈F(X(t)−X(t0)) is nonnegative, so

Emax
t∈F
(X(t)−X(t0))/S =

∫ ∞

0
Pr

{
max
t∈F
(X(t)−X(t0)) > uS

}
du

≤√
3log2+

∑
n≥1

23·2n−1
∫ ∞
√

3log2
e−u22n−1

du,

which gives the theorem.
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Note that the same bound (2.121) with twice the constant holds for Emaxt∈F |X(t)− X(t0)|. Of
course, for this theorem to be useful, a method (or methods) to find the approximating sets is required.
One of the methods leads to majorising measures, and it can be proved that there is a lower bound of
the same type for the expectation of maxt∈F(X(t)−X(t0)), X centred Gaussian.

Example 2.8.2 Let T= {2,3, . . . ,∞}, let {gn} be a sequence of independent standard normal variables
and set X(n) = gn/

√
logn, for 2 ≤ n <∞ and X∞ = 0. Then d(n,∞) = 1/

√
logn and d(n,m) ∈(

1/
√

log(m∧ n),2/
√

log(m∧ n)
)
, for 2 ≤ n 
= m <∞. Set Tn = {2, . . . ,Nn,∞}, for n ≥ 2. Then

d(m,Tn)= 0 if m ≤ Nn or if m =∞, and d(m,Tn)= 1/
√

logm if Nn <m<∞. This shows that

sup
m

∑
n

2n/2d(m,Tn)≤ sup
m

1√
logm

∑
n:2n<logm

2n/2 < 4.

Hence, taking t0 =∞, Theorem 2.8.1 proves Esupn |gn|/
√

logn<∞. However, N(T,d,1/
√

logm)≥
m because the set {2, . . . ,m+ 1} cannot be covered by less than m balls of radius 1/

√
logm (no two

of these points can be in the same ball); hence, N(T,d,ε) ≥ e1/2ε2 , for all ε ≤ 1/
√

2, and the entropy
integral is bounded from below by a constant times

∫
0 ε

−1dε = ∞. Thus, sample boundedness of
the process X(n) does not follow from the metric entropy bound, but it does indeed follow from the
generic chaining bound.

To see the relation of this theorem to entropy, set

en(T)= inf
Tn⊆T: Card(Tn)≤Nn

sup
t∈T

d(t,Tn), n ≥ 0, (2.123)

where, consistently with T0 consisting of one point, we take N0 = 1. The en(T) are called the entropy
numbers of T. These numbers are finite for T finite, but they can be finite or infinite if T is infinite.
Let us assume that T finite for the moment. For each n, let Tn be such that en(T)= supt d(t,Tn), n ≥ 1,
T0 = {t0}. Then Theorem 2.8.1 gives

Esup
t∈T

|X(t)−X(t0)| ≤ 2Lsup
t∈T

∑
n≥0

2n/2d(t,Tn)

≤ 2L
∑
n≥0

2n/2 sup
t∈T

d(t,Tn)

= 2L
∑
n≥0

2n/2en(T). (2.124)

It is easy to see that this inequality also holds for T arbitrary (not just finite) because en(U)≤ 2en(T),
if U ⊂ T. It turns out that this inequality is equivalent up to constants to the entropy bound (2.41).
We show only that it implies (2.41) and leave the reverse implication to the reader. If en(T) < ε,
then there exists Tn ⊆ T of cardinality bounded by Nn such that supt d(t,Tn) < ε, which implies that
N(T,d,ε) ≤ Nn; conversely, if N(T,d,ε) ≤ Nn, then taking Tn to be the set of centres of the balls of
d-radius ε that constitute a minimum cardinality covering of T yields en(T)≤ ε. We thus have

en(T) < ε ⇒ N(T,d,ε)≤ Nn ⇒ en(T)≤ ε.
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By the right-hand-side inequality, if en(T) > ε, then N(T,d,ε)≥ 1+Nn, so√
log(1+Nn)(en(T)− en+1(T))≤

∫ en(T)

en+1(T)

√
logN(T,d,ε) dε,

which, summing over n ≥ 0, gives√
log2

∑
n≥0

2n/2(en(T)− en+1(T))≤
∫ e0(T)

0

√
logN(T,d,ε) dε.

But
∑

n≥0 2n/2(en(T)−en+1(T))≥ (1−1/
√

2)
∑

n≥0 2n/2en(T), and e0(T) is the diameter D(T) of (T,d),
thus giving √

log2(1− 1/
√

2)
∑
n≥0

2n/2en(T)≤
∫ D(T)

0

√
logN(T,d,ε) dε,

which shows that the bound (2.124) implies the metric entropy bound (2.41). The converse is also
true, so (2.124) shows that the entropy bound follows from the generic chaining bound essentially by
replacing the supremum of a sum with the sum of suprema.

Section 2.4 The proof of the main theorem in Section 2.4.1 (log-concavity of the integral with
respect to Lebesgue measure on Rn (Theorem 2.4.2)) belongs to Ball (1986), with ideas from Prékopa
(1972) and Leindler (1973), and we learned it from Pisier (1989). This theorem has a simpler proof
than the usual proof of Brunn-Minkowski for volumes and directly produces the log-concavity of
Gaussian measures as well as its immediate consequence, Anderson’s (1955) lemma, as indicated,
for example, in Bogachev (1998). The present proof of the Khatri-Sidak inequality (Khatri (1967);
Sidak (1967, 1968)) belongs to Li and Shao (2001). Khatri-Sidak is a first result on the well-known
‘Gaussian correlation conjecture’, not yet completely settled at this writing. Gardner (2002) surveys
these inequalities, their proofs and their relationships, with history and references. The comparison
theorem (Theorem 2.4.8) is due to Slepian (1962), and it has been a basic tool in the development
of the theory of Gaussian processes. The more quantitative Theorem 2.4.7 is due to Berman (1964,
1971), and its proof here follows Leadbetter, Lindgren and Rotzén (1983). Fernique (1975) proved
the comparison theorem Corollary 2.4.10 with the constant 2 replaced by the best possible constant
1 in its conclusion. Sudakov’s minorisation is due to Sudakov (1969, 1973); Chevet (1970) contains
the first published proof of it. The proof of Corollary 2.4.14 comes from Ledoux and Talagrand
(1991).

Section 2.5 The log-Sobolev inequality for Gaussian processes was proved by L. Gross (1975),
and the idea to derive from it a bound on the Laplace transform of the (sup of the) process was
described by I. Herbst in an unpublished letter to Gross (see Davies and Simon (1984)). The proof of
the log-Sobolev inequality for Gaussian processes given here, using the Prékopa-Leindler convexity
inequality for integrals from the preceding section, belongs to Bobkov and Ledoux (2000) and extends
to measures other than Gaussian. The subsection on the different definitions and tensorisation of
entropy follows Ledoux (2001).

Section 2.6 Reproducing kernel Hilbert spaces have been in use in analysis for a long time, at
least since the 1920s (e.g., Bergman’s kernel). See Aronszajn (1950) for early developments and
historical remarks. They have become a basic component in the theory of Gaussian processes
after the work of Cameron and Martin (1944), Karhunen (1947) and Loève (e.g., (1978)), Gross
(1967), Kallianpur (1971), Borell (1976) and Sudakov and Tsirelson (1974), among many others.
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The series expansion (Theorem 2.6.10) is due to Karhunen and Loève, the isoperimetric inequality
(Theorem 2.6.12) to Borell and Sudakov and Tsirelson, the formula for differentiation of translated
Gaussian measures to Cameron and Martin, and the result on equivalence and singularity of product
measures (Proposition 2.6.16 and Exercise 2.6.15) to Kakutani (1948). The consequence of the
Cameron-Martin theorem for the Gaussian measure of translates of symmetric sets, Corollary 2.6.18,
was observed by several authors, including Borell (1976), Hoffmann-Jørgensen, Dudley and Shepp
(1979) and de Acosta (1983). Proposition 2.6.19 is essentially in Kuelbs, Li and Linde (1994) and
exactly in the present form in van der Vaart and van Zanten (2008a). The relationship between metric
entropy and small balls was discovered by Kuelbs and Li (1993) and has been developed further by
several authors; see Li and Shao (2001) for a survey; Lemma 2.6.28 comes from Kuelbs and Li (1993)
and Theorem 2.6.29 from Li and Linde (1999) (which contains a stronger result). The inequality in
Corollary 2.6.30 is in fact two sided; see Li and Linde (1999). Of course, the distribution of the
supremum norm of Brownian motion is classical (Kolmogorov and Smirnov), but the proof of the less
exact Theorem 2.6.26 is taken from Stolz (1994) and Ledoux (1996); this proof also gives the small
balls bound for Lp-norms (Borovkov and Mogulskii (1991)) and Hölder norms (Baldi and Roynette
(1992)) (Exercises 2.6.12 and 2.6.13). The present exposition owes much to the chapter on RKHS’s
in Fernique’s (1997) book and to articles by van der Vaart and van Zanten (2008a) and Li and Shao
(2001).

Section 2.7 The limit theorem for Gaussian stationary sequences is due to Berman (1964), and
the theorem for processes is due to Pickands (1969) with complements by Berman (1971, 1971a)
and others. The proof of the limit theorem for a fixed interval is taken from Albin and Choi
(2010), as their proof is simpler than previous ones. The monographs of Leadbetter, Lindgren and
Rootzén (1983) and Piterbarg (1996) cover different aspects of the extremal theory of Gaussian
processes, the first focussing on stationary processes and the second on cyclostationary processes
and fields, and we refer to them for further reading. A drawback on the limit theorems in this
section is that the speed of convergence is very slow, of the order of 1/ logn (or logT) (Hall (1979)).
The convergence can be improved to n−δ (T−δ) for some unspecified δ by changing the exponent
of the limit to e−x−x2/(4log(T/2π)) and replacing aT and bT by (2log(T/2π))1/2 at least for α = 2;
see Piterbarg (1996, p. 32), or Rootzén (1983) and Katz and Rootzén (1997) for similar rates in
Proposition 2.7.8.

Next, we describe a result of Piterbarg and Seleznjev (1994) which will be used later; see also
Konstant and Piterbarg (1993). A centred Gaussian process Y(t), t ∈ R, is cyclostationary if its
covariance function t �→ r(t, t + v) := E(Y(t)Y(t + v) is periodic in t for every v ∈ R with period
independent of v. Such processes appear, for example, as approximations of density estimators based
on wavelets (see Section 2.5). A situation in which an extremal theory has been developed as in the
stationary case is for cyclostationary processes whose variance σ 2(t) = EY2(t) attains its absolute
maximum on each of its periodicity intervals at a single point or at a finite number of points. Here is
the theorem, which in this form can be found in Giné and Nickl (2010):

Theorem 2.8.3 Let X(t), t ∈ R, be a cyclostationary, centred Gaussian process with period 1,
variance σX(t) and covariance rX(s, t). Assume that

1. X(t) is mean square differentiable and a.s. continuous,
2. rX(s, t)= σX(s)σX(t) only at s = t,
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3. supt∈[0,1] σ 2
X(t)= σ 2

X(t0)= 1 for a unique t0 ∈ (0,1), σ 2
X(t) is twice continuously differentiable at t0,

σ ′
X(t0)= 0, σ ′′

X (t0) < 0 and E(X′(t0))2 > 0, and
4. (logv)sups,t:|s−t|≥v |rX(s, t)|→ 0, as v →∞.

Then, for all x ∈R,

lim
T→∞Pr

{
aT

(
sup

t∈[0,T]
|X(t)|− bT

)
≤ x

}
= exp

(−e−x
)
,

where

aT =
√

2logT and bT = aT −
log logT+ log(π)− log

(
1− E(X′(t0))2

σ ′′X (t0)

)
2aT

.
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3

Empirical Processes

Empirical process theory has become, in the course of the last three or four decades, an
invaluable tool in statistics. This chapter develops empirical process theory with an emphasis
on finite sample sizes rather than on asymptotic theory (although asymptotics came first
historically). Thus, just as with Gaussian processes, key elements of this chapter are
concentration inequalities for the supremum of empirical processes about their means – the
celebrated Talagrand inequalities (for empirical processes but also for Rademacher
processes) – and upper bounds for these means (by chaining methods, already introduced
in Chapter 2, here combined with randomisation and Vapnik-Červonenkis combinatorics
or modified via ’bracketing’ techniques). The chapter begins with an introduction to
basic inequalities, among them exponential, randomisation and symmetrisation, moment
and maximal inequalities for sums of independent random variables and vectors, needed
in the rest of the chapter, and it ends with a succinct account of the more classical
asymptotic theory, concretely uniform laws of large numbers and uniform central limit
theorems.

3.1 Definitions, Overview and Some Background Inequalities

In this section we set up some notation, define empirical processes, give a brief outline of the
chapter and prove several inequalities that will be useful throughout, namely, the classical
exponential inequalities for sums of centred bounded independent random variables – the
Hoeffding, Bennett, Prokhorov and Bernstein inequalities – and inequalities related to
symmetrisation and randomisation.

3.1.1 Definitions and Overview

Let (S,S ,P) be a probability space, and let Xi, i ∈ N, be the coordinate functions of
the infinite product probability space (�,
,Pr) := (SN,SN,PN), Xi : SN �→ S, which are
independent identically distributed S-valued random variables with law P. In fact, we will
always take independent variables (equally distributed or not) to be the coordinate functions
on product probability spaces. The empirical measure corresponding to the ‘observations’
X1, . . . , Xn, for any n ∈N, is defined as the random discrete probability measure

Pn := 1

n

n∑
i=1

δXi , (3.1)

109
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110 Empirical Processes

where δx is Dirac measure at x, that is, unit mass at the point x. In other words, for each
event A, Pn(A) is the proportion of observations Xi, 1 ≤ i ≤ n, that fall in A; that is,

Pn(A)= 1

n

n∑
i=1

δXi(A)=
1

n

n∑
i=1

I(Xi ∈ A), A ∈ S .

For any measure Q and Q-integrable function f , we will use the following operator notation
for the integral of f with respect to Q:

Q f = Q( f )=
∫
�

f dQ.

Let F be a collection of P-integrable functions f : S �→ R, usually infinite. For any such
class of functions F , the empirical measure defines a stochastic process

f �→ Pn f , f ∈F , (3.2)

which we may call the empirical process indexed by F , although we prefer to reserve the
notation ‘empirical process’ for the centred and normalised process

f �→ νn( f ) :=√
n(Pn f −P f ), f ∈F . (3.3)

The object of empirical process theory is to study the properties of the approximation of
P f by Pn f , uniformly in F , concretely, to obtain both probability estimates for the random
quantities

‖Pn −P‖F := sup
f ∈F

|Pn f −P f |

and probabilistic limit theorems for the processes {(Pn −P)( f ) : f ∈F}.
This programme has a long history, starting with Bernoulli and de Moivre, who studied

the approximation of the probability of an event PA by its frequency PnA, continuing
with Glivenko, Cantelli, Kolmogorov, Smirnov, Skorokhod, Kiefer, Wolfowitz, Kac,
Doob, Donsker and many others, who considered the classical case of the empirical
distribution function, where F = {I(−∞, t] : t ∈ R}. The point of view taken here started
with work of Vapnik and Červonenkis (1971) and Dudley (1978). This more general
viewpoint of empirical processes has proven very useful in statistics. We could mention
M-estimation: if the parameter of interest is argmaxθ∈	P fθ , then it makes sense to define θ̂n

as argmaxθ∈	Pn fθ , so this estimator is implicitly based on the empirical process indexed by
the class { fθ : θ ∈ 	}. Or we can use the functional delta method, where functions of the
empirical process are expanded about the function {P f : f ∈F}, and the linear term is then
the empirical process. Empirical processes are also pervasive in statistical learning theory.
Or, closer to the subject of this book, very often linear function estimators are empirical
processes. For instance, given a probability kernel K (e.g., a tent or bump function with
finite support integrating to 1, or the standard normal density), the usual density estimator
f̂n,h(t) is defined by convolution of the compressed kernel Kh with the empirical measure,
namely,

f̂n,h =
∫

1

h
K

(
t− x

h

)
dPn(x)= 1

nh

n∑
i=1

K

(
t−Xi

h

)
, t ∈R, (3.4)
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3.1 Definitions, Overview and Some Background Inequalities 111

where Xi are independent identically distributed real-value random variables. In this case,

F = {
h−1K((t−·)/h) : t ∈R, h> 0

}
.

If we assume that
sup
f ∈F

| f (x)−P f |<∞, for all x ∈ S, (3.5)

then the maps from F to R,

f �→ f (x)−P f , x ∈ S,

are bounded functionals over F , and therefore, so is f �→ (Pn −P)( f ). That is,

Pn −P ∈ �∞(F),
where �∞(F) is the space of bounded real functions on F , a Banach space if we equip it
with the supremum norm ‖ · ‖F . A large literature is available on probability in separable
Banach spaces, but unfortunately, �∞(F) is only separable when the class F is finite
(Exercise 3.1.3), and measurability problems arise because the probability law of the process
{(Pn − P)( f ) : f ∈ F} does not extend to the Borel σ -algebra of �∞(F) even in simple
situations (Exercise 3.1.4).

If we are interested only in ‖Pn − P‖F instead of in the process per se, then we still
have a measurability problem: uncountable suprema of measurable functions may not
be measurable. However, there are many situations where this is actually a countable
supremum, as in the case of the empirical distribution function: for example, for probability
measures P on R, because of right continuity,

sup
t∈R

|(Pn −P)(−∞, t]| = ‖Fn −F‖∞ = sup
t∈Q

|Fn(t)−F(t)| = sup
t∈Q

|(Pn −P)(−∞, t]|,

as well as in the case of the kernel density estimator if we take K to be right or left
continuous. If F is countable or if there exists F0 countable such that

‖Pn −P‖F = ‖Pn −P‖F0 a.s.,

then the measurability problem for ‖Pn − P‖F disappears (here stochastic separability
is relevant; see Chapter 2). There are more subtle conditions on F to ensure that ‖Pn −P‖F
is a random variable, but for the next few sections we will simply assume that the class F is
countable.

Part of the theory of empirical processes does not require the variables Xi to be identically
distributed. Thus, we will sometimes assume that the variables Xi are coordinates in the
probability space (SN,SN,

∏∞
i=1 Pi), where Pi is the law of Xi for each i∈N. Moreover, since

empirical processes are sample-bounded processes if condition (3.5) holds, it will sometimes
be more natural to prove some facts in the context of sample-bounded processes.

At times, the empirical process variables Xi will need to be considered jointly with other
random variables, such as, for example, random signs εi independent among themselves
and of the Xj. In these instances, we assume that all the variables are defined as coordinates
in an infinite product probability space, where the probability measure is the product of
the individual laws of the variables and processes involved. Then EX will denote conditional
expectation with respect to the variables Xi only, and likewise for Eε. Similarly, if we have an
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112 Empirical Processes

explicit product of probabilities, say, P×Q, EP will denote partial integration with respect
to P, and likewise for EQ, so if Fubini’s theorem applies to F, we have EF = EPEQF =
EQEPF = EEPF = EEQF.

This chapter addresses three main questions about the empirical process, the first two
being analogous to questions considered for Gaussian processes in Chapter 2. The first
question has to do with concentration of ‖Pn − P‖F about its mean when F is uniformly
bounded. The relevant question is: how concentrated is the variable ‖Pn − P‖F about its
mean? Can we obtain exponential inequalities for the difference ‖Pn −P‖F −E‖Pn −P‖F
that are as good as the classical inequalities for

∑n
i=1 ξi, ξi centred and bounded, or is there

a penalty to be paid for the fact that we are now simultaneously considering infinitely many
sums of independent random variables instead of only one? The remarkable and surprising
answer to this question is that the classical exponential inequalities do hold for empirical
processes as well, assuming that the parameters (size and variance) are properly defined.
This is one of the most important and powerful results from the theory of empirical processes
and goes by the name of Talagrand’s inequality. Later in this section we remind the reader
of the classical exponential inequalities for real random variables as background for the
corresponding section on empirical processes.

The second question is, of course, as with Gaussian processes, do good estimates for
E‖Pn − P‖F exist? After all, it is good to know, from Talagrand’s inequality, that the
empirical process is ‘almost’ constant, but it is even better to know what this constant
is or at least to have good approximations for it. We will examine two main techniques
that give answers to this question, both related to metric entropy and chaining, as with
Gaussian processes. One of them, called bracketing, uses chaining in combination with
truncation and Bernstein’s inequality. The other one applies to Vapnik-Červonenkis classes
of functions, which are classes of functions that admit relatively small bounds for their Lp(Q)
covering numbers uniformly in Q ∈ Pd(S), the set of discrete probability measures on S,
and consists only of randomisation by independent random signs (independent variables
εi taking the values ±1 with probability 1/2 each), together with conditional use of the
sub-Gaussian metric entropy bound from Chapter 2. Concretely, one proves that moments
(as well as tail probabilities) of ‖Pn − P‖F are comparable to the same quantities for∥∥n−1

∑n
i=1 εi f (Xi)

∥∥
F and then applies the sub-Gaussian metric entropy bound because this

random variable is sub-Gaussian for every set of fixed values of the variables Xi. To carry
out this program, it will be convenient to have randomisation inequalities comparing the
supremum norms of the empirical process and its randomised counterpart, and we develop
such inequalities in this section. We will also consider in this section the by now classical
Lévy and Hoffmann-Jørgensen inequalities, respectively, for maxima of partial sums and
for higher moments of the empirical process.

Finally, the last question about the empirical process refers to limit theorems, mainly
the law of large numbers and the central limit theorem, in fact, the analogues of the
classical Glivenko-Cantelli and Donsker theorems for the empirical distribution function.
Formulation of the central limit theorem will require some more measurability because we
will be considering convergence in law of random elements in not necessarily separable
Banach spaces. Other limiting results for empirical processes, such as the law of the iterated
logarithm and large deviations, will not be considered.

In the rest of this section we prove, as announced, several useful inequalities, namely,
(1) exponential inequalities for sums of independent centred real random variables and the
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associated maximal inequalities, (2) Lévy’s ‘reflection principle’ for sums of independent
symmetric random processes (Lévy’s inequality), which is useful when proving convergence
a.s. but not only for this, and Hoffmann-Jørgensen’s inequality, which allows one to obtain
bounds for moments of sums of independent symmetric or centred processes from bounds
on moments of lower order, and (3) several randomisation/symmetrisation inequalities,
with the aim of comparing tail probabilities and moments for the supremum of a sum of
independent centred random processes and the supremum of the sum of the same processes
each multiplied by 1 or −1 randomly and independently (Rademacher randomisation);
randomisation with other multipliers such as normal variables is also briefly considered.

3.1.2 Exponential and Maximal Inequalities for Sums of Independent
Centred and Bounded Real Random Variables

Let ξn,i, i ∈ N, be independent centred real random variables. If their sum Sn =∑n
i=1 ξn,i

converges in law, the limiting distribution is the convolution of a normal and a (generalised)
compound Poisson probability law. Therefore, it is somewhat reasonable to expect that the
tail probabilities of Sn are in general similar to those of Poisson random variables and even,
under the right circumstances, of a normal variable. At any rate, we should not be generally
content with Chebyshev’s inequality, which, even in the most favorable case of bounded and
centred random variables, bounds the tail probabilities of Sn by

Pr{|Sn| ≥ t} ≤
∑n

i=1 Eξ 2
n,i

t2
, t> 0,

an inverse polynomial function in t instead of a negative exponential.
Typically one constructs exponential inequalities for Sn by estimating its moment-

generating function, applying Markov’s inequality to eλSn using the estimate obtained and
then minimising in λ. There are two main such types of inequalities when the variables ξn,i

are bounded, which is mostly the case we consider: one that takes only the range of the
variable into consideration but not its variance, which produces good results when the range
of each variable is essentially between minus and plus its standard deviation, and the other
that also takes the variance into account irrespective of its relationship to the range of the
variable. Hoeffding’s inequality belongs to the first type and the inequalities of Bernstein,
Prokhorov and Bennett to the second. Not only will we use them repeatedly, but they also
set the bar for what to expect regarding tail probability inequalities for empirical processes,
that is, for collections of sums of independent random variables. We next derive all of them
for the reader’s convenience. We also derive a simple yet very useful bound on the expected
value of the maximum of several random variables whose moment-generating functions are
well behaved.

We begin with Hoeffding’s inequality, which is based on the following lemma on
moment-generating functions of bounded variables:

Lemma 3.1.1 Let X be a centred random variable taking values in [a,b] for some −∞ <

a< 0 ≤ b<∞. Then, for all λ > 0, setting L(λ) := logEeλX, we have

L(0)= L′(0)= 0, L′′(λ)≤ (b− a)2/4 (3.6)
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and hence
EeλX ≤ eλ

2(b−a)2/8. (3.7)

Proof L(0)= log1 = 0, L′(λ)= E(XeλX)/EeλX so that L′(0)= EX = 0, and

L′′(λ)= E
(
X2eλX

)
EeλX − (

E
(
XeλX

))2(
EeλX

)2

= E
(
X2eλX

)
/EeλX − (

E
(
XeλX

)
/EeλX

)2

=
∫ b

a
x2dQ(x)−

(∫ b

a
xdQ(x)

)2

,

where dQ(x)= eλxdL(X)(x)/EeλX is a probability measure with support contained in [a,b].
If a random variable Z takes values in [a,b], then Z(ω) differs from the midpoint of [a,b]
by at most (b− a)/2 for all ω, and therefore, its variance is bounded by infc E(Z− c)2 ≤
(b − a)2/4. We thus conclude that L′′(λ) ≤ (b − a)2/4 and that (3.6) is proved. Then, by
Taylor expansion, L(λ)≤ sup0≤η≤λ |L′′(η)|λ2/2 ≤ λ2(b− a)2/8, proving (3.7)

Theorem 3.1.2 Let Xi be independent centred random variables taking values, respectively,
in [ai,bi] for some −∞< ai < 0 ≤ bi <∞, i = 1, . . . ,n, for any n ∈N, and let Sn =∑n

i=1 Xi.
Then, for all λ > 0,

EeλSn ≤ eλ
2∑n

i=1(bi−ai)
2/8, (3.8)

and for all t ≥ 0,

Pr {Sn ≥ t} ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
, Pr {Sn ≤−t} ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
. (3.9)

Proof By the preceding lemma and independence,

EeλSn =
n∏

i=1

EeλXi ≤ eλ
2∑n

i=1(bi−ai)
2/8,

which is (3.8). We then have, by Markov’s inequality,

Pr {Sn ≥ t} = Pr
{
eλSn ≥ eλt

}≤ EeλSn/eλt ≤ exp

(
λ2

n∑
i=1

(bi − ai)
2/8−λt

)
.

This bound is smallest for λ = 4t/
∑n

i=1(bi − ai)
2, which gives the first inequality in (3.9).

The second inequality follows by applying the first to −Xi.

Example 3.1.3 Let εi, 1 ≤ i ≤ n, be a Rademacher sequence, that is, a sequence of
independent identically distributed random variables such that Pr{εi = 1} = Pr{εi = −1} =
1/2. Then Hoeffding’s inequality gives

Pr

{
n∑

i=1

εi ≥ t

}
≤ e−t2/2n, t ≥ 0,

and similarly for the lower tail. Note that this bound is very close to the N(0,n) tail and
that ES2

n = n, so this bound is what we would expect based on the central limit theorem for
Sn/

√
n.
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Example 3.1.4 (Varshamov-Gilbert bound) If Z is binomial with p = 1/2, then Z−EZ =∑n
i=1 ηi, with ηi =±1/2 and symmetric, so

∑n
i=1(bi − ai)

2 = n, and Hoeffding’s inequality

yields the upper bound e−2t2/n for both Pr{Z−EZ ≥ t} and Pr{Z−EZ ≤−t}. Here is a nice
combinatorial application that will be used in a later chapter. Let � = {−1,1}n, for n ≥ 8.
Write ω= (ω1, . . . ,ωn) for points in �, and define on � the distance ρ(ω,ω′)=∑n

i=1 Iωi 
=ω′i
(the Hamming distance). It is of interest to find lower bounds on the largest number of
αn-separated (for ρ) points that� can support, for some 0<α< 1. It turns out that a natural
construction can be combined with the preceeding left tail inequality for Z− EZ to obtain
the following result: there exists in � = {−1,1}n an (n/8)-separated set for the Hamming
distance whose cardinality is larger than 3n/4. For the proof, we let Bρ(ω,r) denote the
closed ball of radius r∈N∪{0} about ω in Hamming distance and observe that, by definition
of this distance, the cardinality of each such ball is

∑r
i=0

(n
i

)
. To construct a separated set,

let r = 'n/8(, let F0 = ∅ and take ω(0) ∈ Fc
0 = �; then define F1 = Bρ(ω(0),r), and take

ω(1) ∈ Fc
1; recursively, define Fj =∪j−1

i=0Bρ(ω
(i),r) and take ω(j) ∈ Fc

j unless Fj =�. Let m be
the smallest number for which Fm =�. Obviously, the points ω(i), 0≤ i<m, are r-separated:
ρ(ω(i),ω(j)) ≥ r+ 1 ≥ n/8. Moreover, � = ∪m−1

j=0 (F
c
j ∩ Bρ(ω(j),r)), and this is a union of m

disjoint sets each contained in a ball of radius r. Thus, if we denote their cardinalities,
respectively, by nj, j = 0, . . . ,m− 1, we have

2n =
m−1∑
j=0

nj ≤ m
r∑

i=0

(
n

i

)
or m ≥ 1/Pr{Z ≤ r}. Now

Pr{Z ≤ r} ≤ Pr{Z− n/2 ≤−3n/8} ≤ exp
(−2(3n/8)2/n

)
< 3−n/4,

which gives the result.

Note that if bi − ai is much larger than the standard deviation σi of Xi then, although
the tail probabilities prescribed by Hoeffding’s inequality for Sn are of the normal type,
they correspond to normal variables with the ‘wrong’ variance. Thus, perhaps we should
experiment with bounds on EeλXi that are closer to the moment-generating function of
Poisson random variables. Let X be Poisson with parameter a (i.e., a = EX = Var(X)).
Then

Eeλ(X−a) = e−a(λ+1)
∞∑

k=0

eλkak/k! = ea(eλ−1−λ), λ ∈R. (3.10)

Here is an estimate of this kind for the moment-generating function of a sum of bounded
centred variables. In fact, the exponential bounds that depend on both the bound and the
variance of the variables are all based on it.

Theorem 3.1.5 Let X be a centred random variable such that |X| ≤ c a.s., for some c<∞,
and EX2 = σ 2. Then

EeλX ≤ exp

(
σ 2

c2
(eλc − 1−λc)

)
, (3.11)
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for all λ > 0. As a consequence, if Xi, 1 ≤ i ≤ n <∞, are centred, independent and a.s.
bounded by c<∞ in absolute value, then setting

σ 2 = 1

n

n∑
i=1

EX2
i (3.12)

and Sn =∑n
i=1 Xi, we have

EeλSn ≤ exp

(
nσ 2

c2
(eλc − 1−λc)

)
, (3.13)

for all λ > 0, and the same inequality holds for −Sn.

Proof Since EX = 0, expansion of the exponential gives

EeλX = 1+
∞∑

k=2

λkEXk

k! ≤ exp

( ∞∑
k=2

λkEXk

k!

)
,

whereas, since |EXk| ≤ ck−2σ 2, for all k ≥ 2, this exponent can be bounded by∣∣∣∣∣
∞∑

k=2

λkEXk

k!

∣∣∣∣∣≤ λ2σ 2
∞∑

k=2

(λc)k−2

k! = σ
2

c2

∞∑
k=2

(λc)k

k! = σ
2

c2
(eλc − 1−λc).

This gives inequality (3.11). Inequality (3.13) follows from (3.11) by independence. The
foregoing also applies to Yi =−Xi.

Note that by (3.10), the bound (3.13) for the moment-generating function of a sum
of independent bounded and centred random variables bounded by 1 and with variance
nσ 2 is in fact the moment-generating function of a centred Poisson random variable with
variance nσ 2.

It is standard procedure to derive tail probability bounds for a random variable Z based
on a bound for its Laplace transform. We will obtain four such bounds, three of them giving
rise, respectively, to the Bennett, Prokhorov and Bernstein classical inequalities for sums of
independent random variables and one where the bound on the tail probability function is
inverted. It is convenient to introduce two new functions

φ(x)= e−x − 1+ x, for x ∈R, and h1(x)= (1+ x) log(1+ x)− x, for x ≥ 0. (3.14)

Proposition 3.1.6 Let Z be a random variable whose moment-generating function satisfies
the bound

EeλZ ≤ exp
(
v(eλ− 1−λ)) , λ > 0, (3.15)

for some v> 0. Then, for all t ≥ 0,

Pr {Z ≥ t} ≤ exp(−vh1(t/v))≤ exp

(
−3t

4
log

(
1+ 2t

3v

))
≤ exp

(
− t2

2v+ 2t/3

)
(3.16)

and
Pr
{
Z ≥√

2vx+ x/3
}
≤ e−x, x ≥ 0. (3.17)
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Proof The bound (3.15) together with the exponential form of Markov’s inequality gives

Pr{Z ≥ t} = inf
λ>0

Pr
{
eλZ ≥ eλt

}≤ ev infλ>0[φ(−λ)−λt/v].

It is a routine calculus computation to check that the infimum of the function y = φ(−λ)−
λz = eλ− 1−λ(1+ z) (any z>−1) is attained at λ= log(1+ z) and that its value is

inf
λ∈R

{φ(−λ)−λz} = z− (1+ z) log(1+ z) :=−h1(z). (3.18)

This proves the first inequality in (3.16). It is equally routine to verify, by checking the value
of the corresponding functions at t = 0 and then comparing derivatives, that

h1(t)≥ 3t

4
log

(
1+ 2t

3

)
≥ t2

2+ 2t/3
, t> 0, (3.19)

thus completing the proof of the three inequalities in (3.16).
To prove (3.17), we begin by observing that as can be seen by Taylor development,

(1−λ/3)(eλ−λ− 1)≤ λ2/2, λ≥ 0. Thus, if

ϕ(λ) := vλ2

2(1−λ/3) , λ ∈ [0,3),

then inequality (3.15) yields, again by the exponential Markov’s inequality,

Pr {Z ≥ t} ≤ exp

[
inf

0≤λ<3
(ϕ(λ)−λt)

]
= exp

[
− sup

0≤λ<3
(λt−ϕ(λ))

]
. (3.20)

Consider the function γ (s) = supλ∈[0,3)(λs − ϕ(λ)). Then, since ϕ and ϕ ′ are strictly
increasing, ϕ(0) = 0 and ϕ(x) ↗ ∞ as x ↗ 3, it follows that the maximum is attained
at the point λ0 where the tangent line to the graph of y = ϕ(λ) at (λ0,ϕ(λ0)) has slope
s. Or, what is the same, γ (s) = x if (and only if) the tangent line to the curve y = ϕ(λ)
through the point (0,−x) has slope s. The slope of this tangent is precisely (x+ ϕ(λ0))/λ0.
Now any other straight line through (0,−x) and (λ,ϕ(λ)), 0 < λ < 3, has a larger slope
(x+ϕ(λ))/λ > (x+ϕ(λ0))/λ0. It follows that

γ −1(x)= inf
0<λ<3

ϕ(λ)+ x

λ
= inf

0<λ<3

(
vλ

2(1−λ/3) +
x

λ

)
.

With the change of variables u = (1 − λ/3)/(vλ), we have γ −1(x) = inf0<u<∞
(1/2u+ x(uv+ 1/3)), and the last function attains its infimum at u = 1/

√
2vx. This gives

γ −1(x)=√
2vx+ x/3. This together with inequality (3.20) yields (3.17).

The last two lines in the proof of Proposition 3.1.6 show that inf0<λ<3(ϕ(λ)+ x)/λ =√
2vx+x/3, and replacing 1/3 by any positive constant c and making the change of variables

u = (1− cx)/λv, it is equally easy to obtain

inf
0<λ<1/c

ϕv,c(λ)+ x

λ
=√

2vx+ cx, where ϕv,c(λ)= vλ2

2(1− cλ)
, 0< λ< 1/c, (3.21)

which we record for further use. It is also worth noting that again from the proof of the
preceding proposition,

v(eλ−λ− 1)≤ ϕv,1/3(λ), 0< λ< 3. (3.22)
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Thus, ϕv,1/3(λ) is a bound for the logarithm of the moment-generating function of
sums of independent centred and bounded random variables; in fact, ϕv,c(λ) for con-
venient parameters v, c are also bounds for the logarithm of the moment-generating
function of random variables with the centred exponential and gamma distributions (see
Exercise 3.1.1).

Now note that if Sn is as in Theorem 3.1.5, then Z = Sn/c satisfies the hypothesis of
Proposition 3.1.6 with v = nσ 2/c2, where σ 2 is defined by (3.12). Thus we have the
following exponential inequalities, which go by the names of Bennett’s, Prohorov’s and
Bernstein’s (in this order):

Theorem 3.1.7 (Inequalities of Bennett, Prokhorov and Bernstein) Let Xi, 1 ≤ i ≤ n,
be independent centred random variables a.s. bounded by c <∞ in absolute value. Set
σ 2 = 1/n

∑n
i=1 EX2

i and Sn =∑n
i=1 Xi. Then, for all u ≥ 0,

Pr {Sn ≥ u} ≤ exp

(
−nσ 2

c2
h1

( uc

nσ 2

))
≤ exp

(
−3u

4c
log

(
1+ 2uc

3nσ 2

))
≤ exp

(
− u2

2nσ 2 + 2cu/3

)
(3.23)

and
Pr
{
Sn ≥

√
2nσ 2u+ cu

3

}
≤ e−u, (3.24)

where h1 is as defined in (3.14), and the same inequalities hold for Pr {Sn <−u}.
Bennett’s inequality is the sharpest, but Prokhorov’s and Bernstein’s inequalities are

easier to interpret. Prokhorov’s inequality exhibits two regimes for the tail probabilities
of Sn: if uc/nσ 2 is small, then the logarithm is approximately 2uc/3nσ 2, and the tail
probability is only slightly larger than e−u2/2nσ 2

, Gaussian-like, whereas if uc/nσ 2 is
not small or moderate, then the exponent for the tail probability is of the order of
−(3u/4c) log(2cu/3nσ 2), Poisson-like. Bernstein’s inequality keeps the Gaussian-like
regime for small values of uc/nσ 2 but replaces the Poisson regime by the larger, hence less
precise, exponential regime. Since the limit distributions of sums of independent random
variables

∑n
i=1 Xi,n satisfying maxi≤n Pr{|Xi,n| > δ} → 0 for all δ > 0 are convolutions of

normal and generalised Poisson random variables by the central limit theorem, the order of
the Bennet and Prokhorov bounds cannot be improved without imposing extra conditions
on the random variables, and the order of the Bernstein bound is only off by a logarithm for
larger values of u.

Proposition 3.1.6 together with (3.10) also yields the typical ‘Poisson tail’ for Poisson
random variables (which may be obtained directly): if X is Poisson with parameter a, then

Pr{X− a ≥ t} ≤ exp

{
−3t

4
log

(
1+ 2t

3a

)}
, t ≥ 0.

It should be noted that except for constants, this bound is two sided (see Exercise 3.1.2), and
this is relevant to the comment in the preceding paragraph on the optimality of Prohorov’s
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inequality. Exercise 3.1.2 also contains an upper bound for the ‘left’ tail of a Poisson
variable.

It is natural to ask whether Theorem 3.1.7 extends to unbounded random variables.
In fact, Bernstein’s inequality does hold for random variables Xi with finite exponential
moments, that is, such that Eeλ|Xi| <∞, for some λ > 0. The inequality is usually stated
under a condition on the growth of moments which is equivalent to exponential integrability.

Proposition 3.1.8 (Bernstein’s inequality) Let Xi, 1 ≤ i ≤ n, be centred independent
random variables such that, for all k ≥ 2 and all 1 ≤ i ≤ n,

E|Xi|k ≤ k!
2
σ 2

i ck−2, (3.25)

and set σ 2 =∑n
i=1σ

2
i , Sn =∑n

i=1 Xi. Then

Pr{Sn ≥ t} ≤ exp

(
− t2

2σ 2 + 2ct

)
, t ≥ 0. (3.26)

Proof Assuming that c|λ|< 1, the moment-growth hypothesis implies that, for 1 ≤ k ≤ n,

EeλXk ≤ 1+ σ
2
k

2

∞∑
k=2

|λ|kck−2 = 1+ λ2σ 2
k

2(1−|λ|c) ≤ eλ
2σ 2

k /(2−2c|λ|),

which, by independence and the exponential Chebyshev’s inequality, implies that

Pr{Sn ≥ t} ≤ EeλSn

eλt
≤ exp

(
λ2σ 2

2− 2c|λ| −λt
)

.

The result obtains by taking λ= t/(σ 2 + ct).

It is worth noting that the inequalities of Hoeffding, Bennet, Bernstein and Prohorov
also hold for the maximum of the partial-sums maxk≤n Sk by virtue of Doob’s submartingale
inequality (see Exercise 3.1.10).

Another important class of random variables that have a behaviour similar to exponential
variables is the class of quadratic forms in independent normal variables, or Gaussian
chaoses of order 2. The corresponding exponential inequality goes by the name of
Hanson-Wright’s inequality, and we prove it now in a version sharper than the original, as
well as a related result on concentration of centred χ2 random variables. Given a symmetric
matrix A with eigenvalues λi, its Hilbert-Schmidt norm ‖A‖HS is defined as ‖A‖2

HS =
∑
λ2

i ,
and we will denote by ‖A‖ the maximum of its eigenvalues (the maximum of the absolute
values of its eigenvalues is the operator norm, which does dominate ‖A‖). Note that if the
trace of A is zero, then ‖A‖> 0 because at least one eigenvalue of A must be positive. Recall
the definition of the function ϕv,c from (3.21).

Theorem 3.1.9 Let A = (aij)
n
i,j=1 be a symmetric matrix with all its diagonal terms aii equal

to zero, let gi, i = 1, . . . ,n, be independent standard normal variables and set

X =
∑

i,j

aijgigj = 2
∑
i<j

aijgigj.
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Alternatively, let A be a diagonal matrix with eigenvalues τi, and set

X =
∑

i

τi(g
2
i − 1),

gi independent N(0,1), as earlier. Then both random variables satisfy

EeλX ≤ e‖A‖2
HSλ

2/(1−2λ‖A‖) = e
ϕ

2‖A‖2
HS ,2‖A‖(λ), for 0< λ< 1/2‖A‖. (3.27)

Consequently, for t ≥ 0,

Pr{X> t} ≤ e−t2/4(‖A‖2
HS+‖A‖t) or Pr

{
X ≥

√
4‖A‖2

HSt+ 2‖A‖t

}
≤ e−t, (3.28)

and the same inequalities hold for −X.

Proof If τi are the eigenvalues of A = (aij), an ortho-normal change of coordinates yields
X =∑n

i=1 τig̃
2
i , where the variables g̃i are also independent standard normal. Then, since∑

τi = 0, we have X =∑n
i=1 τi(g̃

2
i − 1), showing that the first case reduces to the second.

Now, for t< 1/2 and g standard normal,

Eet(g2−1) = 1√
2π

∫
R

et(x2−1)−x2/2dx = e−t/
√

1− 2t = e1/2[− log(1−2t)−2t].

By Taylor development, valid for |t|< 1/2,

1

2
[− log(1− 2t)− 2t] = t2

(
1+ 2

3
2t+·· ·+ 2

k+ 2
(2t)k +·· ·

)
≤ t2

1− 2t
.

Hence,

logEeλX ≤
∑ τ 2

i λ
2

1− 2τiλ
≤ λ2

∑
τ 2

i

1− 2λmaxi τi
= 2λ2

∑
τ 2

i

2(1− 2λmaxi τi)
,

for 0 ≤ λ < 1/2‖A‖, which gives (3.27). Now, inequality (3.21) gives the second inequality
in (3.28) if one proceeds as in the derivation of (3.17) from (3.20). If we use the exponential
Markov inequality in conjunction with (3.27), we obtain Pr{X≥ t}≤ exp[λ2v/2(1−cλ)−λt],
for v = 2‖A‖2

HS and c = 2‖A‖, and then the first inequality in (3.28) just follows by taking
λ= t/(v+ ct). This proof applies as well to −X, which, in particular, shows that the bounds
in (3.28) also hold for the lower tails of X.

For instance, in the case of centred chi-squared random variables
∑n

i=1(g
2
i − 1), where

‖A‖2
HS = n and ‖A‖ = 1, Theorem 3.1.9 yields

Pr

{∣∣∣∣∣
n∑

i=1

(g2
i − 1)

∣∣∣∣∣≥ t

}
≤ 2e−t2/4(n+t) and Pr

{∣∣∣∣∣
n∑

i=1

(g2
i − 1)

∣∣∣∣∣≥ 2
(√

nt+ t
)}

≤ 2e−t,

(3.29)
where the factor 2 in front of e can be removed in the one-sided versions of these inequalities.

In general, if gi, i≤ n, are independent standard normal variables, then the first case in the
preceding theorem covers all linear combinations of the products gigj, 1 ≤ i 
= j ≤ n (since∑

i<j aijgigj = 2−1
∑

i,j aijgigj if we define aji = aij for j < i and aii = 0), and the two cases
of the theorem, in combination with the triangle inequality for probabilities, also produce
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exponential bounds for centred quadratic Gaussian homogeneous polynomials
∑

i≤j aijgigj−∑
i aii, with aij, i ≤ j, arbitrary.
Finally, we see that control of the moment-generating function of a collection of random

variables translates into control of the expected value of their maximum: we have already
seen an instance of this in the section on entropy bounds for the supremum of a Gaussian
process (Section 2.3). The starting point is inequality (2.33) in that section: if�(x) is convex,
non-negative and nondecreasing, then

�

(
Emax

i≤N
Xi

)
≤ Nmax

i≤N
E�(Xi), (3.30)

which, in particular, holds for �(x)= eλx.

Theorem 3.1.10 (a) Let Xi, i = 1, . . . ,N, be random variables such that EeλXi ≤ eλ
2σ 2

i /2, for
0 ≤ σi <∞ for all λ > 0 and i ≤ N. Then

Emax
i≤N

Xi ≤
√

2logNmax
i
σi. (3.31)

(b) Let Xi be random variables such that EeλXi ≤ eϕvi ,c(λ), for 0 < λ ≤ 1/c and i = 1, . . . ,N,
where vi,c> 0 and ϕv,c is defined in (3.21). In particular, by (3.22), this holds with c = 1/3
if EeλXi ≤ exp(vi(eλ− 1−λ)). Then

Emax
i≤N

Xi ≤
√

2v logN+ c logN, (3.32)

where v = maxi≤N vi.

Proof For part (a), see Lemma 2.3.4. For Xi as in part (b), note that with �(x) = eλx, we
have that maxi≤N E�(Xi) ≤ eϕv,c(λ), so inequality (3.30) gives, by inverting � (i.e., taking
logarithms and dividing by λ),

Emax
i≤N

Xi ≤�−1
(
Neϕv,c(λ)

)= logN+ϕv,c(λ)

λ
, 0< λ< 1/c.

Now the inequality in part (b) follows from (3.21).

3.1.3 The Lévy and Hoffmann-Jørgensen Inequalities

We now switch to sample bounded stochastic processes (see Chapter 2). In order to avoid
too many measurability considerations so that we can concentrate on the purely probabilistic
arguments, we will assume the index set to be countable. Let T be a countable set, and
let �∞(T) be the set of real bounded functions defined on T. Note that �∞(T), with the
supremum norm

‖x‖T = sup
t∈T

|x(t)|,

is a Banach space, and this Banach space is separable if and only if T is finite
(Exercise 3.1.3). A stochastic process with index set T, X(t), t ∈ T, with bounded sample
paths (or with almost all its sample paths bounded, i.e., sample bounded) is a random
element of �∞(T) but not necessarily an �∞(T)-valued random variable (i.e., it may not
be Borel measurable) (see Exercise 3.1.4). However, if T is countable, then ‖X‖T :=
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supt∈T |X(t)| is measurable because this is the supremum of a countable set of real random
variables (i.e., real measurable functions). Similar observations have already been made
earlier.

Let B be a separable Banach space. As shown in Example 2.1.6, there exists a countable
subset D of the unit ball of the dual B∗ such that ‖x‖= sup f ∈D | f (x)|, for all x ∈ B. Hence, if
B is separable, B-valued random variables are sample bounded stochastic processes indexed
by a countable set D. As in most of Chapter 2, we will continue using the language of
processes, and it then should be clear that any statement for sample bounded processes
over countable sets also will be true for B-valued random variables, B separable, or more
generally, B such that there exists a subset D of the unit ball of its dual space B∗ such that if
x ∈ B and ‖x‖ is its B-norm, then ‖x‖ = sup f ∈D f (x).

We will take independence of stochastic processes Yi, i = 1, . . . ,n ≤∞, to mean, without
further mention, that these processes are defined on a product probability space, and each
depends on the corresponding coordinate: Yi : (

∏
�i,⊗
i,Pr =∏

Pi) �→ (�∞(T),C), where
Yi(ω) = Yi(ωi), with ω = (ω1, . . . ,ωi, . . . ). Here C is the cylindrical σ -algebra of �∞(T),
which, T being countable, contains the closed and open balls. Then, for instance, EYi will
denote integration with respect to Pi only, that is, conditional expectation with respect to
{Yj : j 
= i}.

Let Yi be independent symmetric stochastic processes indexed by T. Recall that Y is
symmetric if Pr{Y ∈ A} = Pr{−Y ∈ A} for all A in the cylindrical σ -algebra. The first
theorem in this subsection is Lévy’s inequality, which is a sort of reflection principle for the
partial-sum process k �→∑k

i=1 Yi and is quite useful, for example to derive a.s. convergence
from convergence in probability. It will also be shown that although the statement is not quite
true for nonsymmetrical variables, a weaker but still useful statement also holds (Ottaviani’s
inequality). Another very useful inequality to be proved here is Hoffmann-Jørgensen’s:
the Lp-norm of a sum of independent symmetric processes is dominated by the Lp-norm
of the maximum of their norms plus a quantile of the sum. This is an excellent tool for
the derivation of uniform integrability given tightness, hence, of convergence of moments
given convergence in law or for bounding moments of

∥∥∑Yi

∥∥ in terms of bounds for lower
moments. This inequality may be considered to be a generalisation to unbounded variables
of one of the classical Kolmogorov inequalities used in the proof of the three-series theorem.
We begin with Lévy’s inequality.

Given a sequence of independent sample bounded processes Yi, i = 1, . . . ,n, indexed by
T, we set

Sk =
k∑

i=1

Yi, i = 1, . . . ,n, and Y∗
n = max

1≤i≤n
‖Yi‖T.

Also, for conciseness, we introduce the following notation:

Notation We say that a process Y indexed by a set T is SBC(T) if almost all its sample
paths are bounded and the set T is countable.
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Theorem 3.1.11 (Lévy’s inequalities) Let Yi, 1 ≤ i ≤ n, be independent symmetric SBC(T)
processes. Then, for every t> 0,

Pr

{
max
1≤k≤n

‖Sk‖T > t

}
≤ 2Pr

{
‖Sn‖T > t

}
(3.33)

and
Pr
{
Y∗

n > t
}≤ 2Pr {‖Sn‖T > t} . (3.34)

In particular,

E

(
max
1≤k≤n

‖Sk‖T

)p

≤ 2E‖Sn‖p
T , E(Y∗

n)
p ≤ 2E‖Sn‖p

T ,

for all p> 0.

Proof We drop the subindex T from the norms in most proofs if no confusion may arise.
Consider the sets

Ak := {‖Si‖ ≤ t, for 1 ≤ i ≤ k− 1,‖Sk‖> t
}
, k = 1, . . . ,n,

which are disjoint and whose union is the event
{
max1≤k≤n ‖Sk‖> t

}
. (Ak is the event ‘the

random walk Si leaves the ball of radius t for the first time at time k’.) For each k ≤ n, we
define

S(k)n := Sk −Yk+1 −·· ·−Yn

and note that, by symmetry and independence, the joint probability law of the n processes
(Y1, . . . ,Yn) is the same as that of (Y1, . . . ,Yk,−Yk+1, . . . ,−Yn), so Sn and S(k)n both have the
same law. On the one hand, since Ak depends only on the first k processes, we obviously
have

Pr
[
Ak ∩{‖Sn‖> t}]= Pr

[
Ak ∩{‖S(k)n ‖> t}]

and, on the other,

Ak =
[
Ak ∩{‖Sn‖> t}]∪ [Ak ∩{‖S(k)n ‖> t}],

since otherwise there would exist ω ∈ Ak such that 2‖Sk(ω)‖ = ‖Sn(ω)+ S(k)n (ω)‖ ≤ 2t, a
contradiction with the definition of Ak. The last two identities imply that

Pr(Ak)≤ 2Pr
[
Ak ∩{‖Sn‖> t}], k = 1, . . . ,n,

and therefore,

Pr
{

max
1≤k≤n

‖Sk‖> t
}
=

n∑
k=1

PrAk ≤ 2
n∑

k=1

Pr
[
Ak ∩{‖Sn‖> t}]

≤ 2Pr
{‖Sn‖> t

}
,

which gives inequality (3.33). The second inequality is proved in the same way if we
redefine Ak as

Ak := {‖Yi‖ ≤ t, for 1 ≤ i ≤ k− 1,‖Yk‖> t}
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and S(k)n as

S(k)n :=−Y1 −·· ·−Yk−1 +Yk −Yk+1 −·· ·−Yn.

The statements about expected values follow from (3.33) and (3.34) using integration by
parts (

∫ |ξ |pdP = p
∫

tp−1 Pr{|ξ |> t}dt).

If the random vectors are not symmetric, we have the following weaker inequality
(Lévy-Ottaviani’s inequality):

Proposition 3.1.12 Let Yi, i ≤ n <∞, be independent SBC(T) processes. Then, for all
u,v> 0,

Pr

{
max
1≤k≤n

‖Sk‖> u+ v

}
≤ 1

1−maxk≤n Pr{‖Sn − Sk‖> v} Pr{‖Sn‖> u} (3.35)

and, for all t ≥ 0,

Pr

{
max
1≤k≤n

‖Sk‖T > t

}
≤ 3max

k≤n
Pr

{
‖Sk‖T >

t

3

}
. (3.36)

Proof Almost as in the preceding proof we define, for all u,v ≥ 0 and 1 ≤ k ≤ n,

Ak = {‖Si‖ ≤ u+ v, for i< k, and ‖Sk‖> u+ v} .

These sets are disjoint, and their union is
{
max1≤k≤n ‖Sk‖> u+ v

}
. Therefore,

Pr{‖Sn‖> u} ≥ Pr{‖Sn‖> u, max
1≤k≤n

‖Sk‖> u+ v}

≥
n∑

k=1

Pr
{
Ak ∩{‖Sn − Sk‖ ≤ v}}

=
n∑

k=1

Pr{Ak}Pr{‖Sn − Sk‖ ≤ v}

≥ [
1−max

k≤n
Pr{‖Sn − Sk‖> v}]Pr

{
max
1≤k≤n

‖Sk‖> u+ v
}
,

proving (3.35). This is the typical form of the Lévy-Ottaviani inequality. Taking u= t/3 and
v = 2t/3 in this inequality gives

Pr
{

max
1≤k≤n

‖Sk‖> t
}
≤ Pr{‖Sn‖> t/3}

1−maxk≤n Pr{‖Sn − Sk‖> 2t/3}
≤ maxk≤n Pr{‖Sk‖> t/3}

1− 2maxk≤n Pr{‖Sk‖> t/3} .

This proves inequality (3.36) if max1≤k≤n Pr{‖Sk‖ > t/3} < 1/3. But (3.36) is trivially
satisfied otherwise.

Next, we consider Hoffmann-Jørgensen’s inequality. We emphasize that the main
ingredient for Hoffmann-Jørgensen’s inequality is a bound for the tail probabilities of ‖Sn‖T

in terms of the square of its own tail probabilities but at a smaller level and the tail
probabilities of max1≤k≤n ‖Yk‖. We only derive the inequality for symmetric variables, and
in the next subsection we will use symmetrisation to extend it to centred variables.
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Lemma 3.1.13 Let Yi, i ≤ n <∞, be independent symmetric SBC(T) processes, and set
Sk =∑k

i=1 Yi, Y∗
n = max1≤k≤n ‖Yk‖T. Then, for every s, t,u> 0,

Pr{‖Sn‖T > s+ t+ u} ≤ Pr{Y∗
n > u}+ 4Pr{‖Sn‖> t}Pr{‖Sn‖> s}. (3.37)

Proof We set Aj = {‖Si‖≤ t, for 1≤ i≤ j−1,‖Sj‖> t} as in the proof of Lévy’s inequality.
Then ‖Sj−1‖ ≤ t on Aj, and therefore, on Aj, ‖Sn‖ ≤ t+‖Yj‖+‖Sn − Sj‖, which gives

Pr{Aj,‖Sn‖> s+ t+ u} ≤ Pr{Aj,Y
∗
n > u}+Pr{Aj,‖Sn − Sj‖> s}, 1 ≤ j ≤ n.

Then, since the sets Aj are disjoint and their union is {max1≤k≤n ‖Sk‖ > t}, and each Aj

depends only on the first j variables, it follows, by addition followed by two applications of
Lévy’s inequality, that

Pr{‖Sn‖> s+ t+ u} ≤ Pr{Y∗
n > u}+

∑
j

Pr(Aj)Pr
{‖Sn − Sj‖> s

}
≤ Pr{Y∗

n > u}+ 2Pr{max
1≤k≤n

‖Sk‖> t}Pr{‖Sn‖> s}
≤ Pr{Y∗

n > u}+ 4Pr{‖Sn‖> t}Pr{‖Sn‖> s}.

Proposition 3.1.14 Let Yi, i ≤ n<∞, be as in Lemma 3.1.13. Then, for all t,p> 0,

E‖Sn‖p
T ≤

[
41/(p+1)tp/(p+1)+ (‖Y∗

n‖p

)p/(p+1)

1− (
4Pr{‖Sn‖T > t})1/(p+1)

]p+1

. (3.38)

Proof If we take s = αv, t = βv and u = γ v in inequality (3.37), multiply by pvp−1 and
integrate with respect to dv, we obtain

1

(α+β+ γ )p E‖Sn‖p ≤ 1

γ p
E(Y∗

n)
p + 4

∫ ∞

0
pvp−1 Pr{‖Sn‖> βv}Pr{‖Sn‖> αv}dv.

Thus, letting v′ = βv and changing variables, we have

1

(α+β+ γ )p E‖Sn‖p ≤ 1

γ p
E(Y∗

n)
p + 4

βp

∫ ∞

0
pvp−1 Pr{‖Sn‖> v}Pr{‖Sn‖> αv/β}dv

≤ 1

γ p
E(Y∗

n)
p + 4

βp

∫ ∞

βt
α

pvp−1 Pr{‖Sn‖> v}Pr{‖Sn‖> αv/β}dv

+ 4

βp

∫ βt
α

0
pvp−1dv

≤ 1

γ p
E(Y∗

n)
p + 1

βp
4E‖Sn‖p Pr{‖Sn‖> t}+ 1

αp
4tp.

We now minimize the right-hand side of this inequality with respect to α, β and γ such that
α+ β + γ = 1, α, β, γ ≥ 0. It can be seen using Lagrange multipliers that for any a, b, c
nonnegative,

min
x+y+z=1,x,y,z≥0

(x−pa+ y−pb+ z−pc)= (
a1/(p+1)+ b1/(p+1)+ c1/(p+1)

)p+1
.
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It then follows that

E‖Sn‖p ≤ [
(E(Y∗

n)
p)1/(p+1)+ (4E‖Sn‖p Pr{‖Sn‖> t})1/(p+1)+ (4tp)1/(p+1)

]p+1
,

which is just inequality (3.38).

Inequality (3.38) can be put in a nicer way. In what follows, when writing Lp norms
of quantities such as ‖Sn‖T, we will omit the subindex T even in statements of theorems
(we have already been omitting them in proofs). Thus, we write, for example, ‖Sn‖p, for
‖‖Sn‖T‖p.

Theorem 3.1.15 (Hoffmann-Jørgensen’s inequality) For each p> 0, if Yi, i≤ n<∞, are
independent symmetric SBC(T) processes, and if t0 ≥ 0 is defined as

t0 = inf
{
t> 0 : Pr{‖Sn‖T > t} ≤ 1/8

}
,

then
‖Sn‖p ≤ 2(p+2)/p(p+ 1)(p+1)/p

[
41/pt0 +‖Y∗

n‖p

]
. (3.39)

Proof Since 1− xα ≥ α(1− x), for 0 ≤ x ≤ 1 and 0 ≤ α ≤ 1 (e.g., by convexity), and since
(also by convexity) (a+ b)(p+1)/p ≤ 21/p

(
a(p+1)/p + b(p+1)/p

)
, inequality (3.38) yields

‖Sn‖p ≤
[

p+ 1

1− 4Pr{‖Sn‖> t}
](p+1)/p

21/p
[
41/pt+‖Y∗

n‖p

]
.

Hence, by the definition of t0,

‖Sn‖p ≤ 2(p+2)/p(p+ 1)(p+1)/p
[
41/pt0 +‖Y∗

n‖p

]
,

proving the theorem.

Note that by Markov’s inequality, t0 ≤ 81/p‖Sn‖p, and that by Lévy’s inequality, ‖Y∗
n‖p ≤

21/p‖Sn‖p; hence, Hoffmann-Jørgenssen’s inequality (3.39) is two sided up to constants.
Taking t = 2 · 41/q‖Sn‖q in inequality (3.38), it becomes

E‖Sn‖p ≤
[

41/(p+1)(2 · 41/q · ‖Sn‖q)
p/(p+1)+ (‖Y∗

n‖p)
p/(p+1)

1− (1/2)q/(p+1)

]p+1

,

which, proceeding as in the preceding proof, gives

‖Sn‖p ≤
[

2(p+ 1)

q

](p+1)/p

21/p
[
41/(p+1)/q · 2‖Sn‖q +‖Y∗

n‖p

]
. (3.40)

It is easy to check that for all c> 0,

sup
p,q:c<q≤p

q

p

[
2(p+ 1)

q

](p+1)/p

2(1+1)/p41/(p+1)/q <∞,

so inequality (3.40) gives the following result about comparison of moments:

Theorem 3.1.16 For every c> 0 there exists a constant Kc <∞ such that if Yi, i ≤ n<∞,
are independent symmetric SBC(T) processes and c ≤ q< p, then

‖Sn‖p ≤ Kc
p

q

[‖Sn‖q +‖Y∗
n‖p

]
. (3.41)
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For p= 2 and q= 1, inequality (3.39) gives better constants than (3.41): with t0 = 8‖Sn‖1,
the first inequality gives

‖Sn‖2 ≤ 12
√

3
[
16‖Sn‖1 +‖Y∗

n‖2

]
. (3.42)

Using symmetrisation, to be considered next, the inequality in the preceding theorem
extends from symmetric to centred processes (with larger constants).

3.1.4 Symmetrisation, Randomisation, Contraction

If the independent processes Yi are symmetric, then some computations simplify:
compare, for instance, Lévy’s inequality with the Lévy-Ottaviani inequality, or consider
Hoffmann-Jørgensen’s inequalities in the preceding section. Thus, it is sometimes useful to
relate moments and tail probabilities of

∥∥∑Yi

∥∥
T

to the same parameters of symmetrised
sums such as ‖∑(Yi − Y′

i)‖T, where the sequence {Y′
i} is an independent copy of the

sequence {Yi}, or
∥∥∑εiYi

∥∥
T
, where εi are random signs independent of the sequence

{Yi}. Randomisation has the added advantage of allowing us to conditionally treat our
variable as a simpler one; for instance, conditionally on the variables Yi, the randomised
sum

∑
εiYi is a Rademacher process, which is sub-Gaussian, and therefore, the metric

entropy bound from Chapter 2 applies to it. In this subsection we prove a few useful and
simple randomisation and symmetrisation inequalities. The inequalities for moments are
based on the following basic proposition, which is an instance of a contraction principle.
Randomisation by multipliers different from random signs is also briefly considered.

Theorem 3.1.17 For n∈N, let Yi, i≤ n<∞, be independent SBC(T) processes, let ai, i≤ n,
be real numbers and let F be a nonnegative, nondecreasing convex function on [0,∞). Then,
if either

a. 0 ≤ ai ≤ 1 and the processes Yi are centered (meaning E‖Yi‖<∞ and EYi = 0), or
b. |ai| ≤ 1 and the processes Yi are symmetric,

we have

EF

(∥∥∥∥∥
n∑

i=1

aiYi

∥∥∥∥∥
T

)
≤ EF

(∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
T

)
. (3.43)

Proof The proof of (a) reduces, by iteration, to proving that

EF(‖aY+Z‖)≤ EF(‖Y+Z‖), (3.44)

where 0 ≤ a ≤ 1, and Y and Z are independent and centred. Since F is convex and
nondecreasing, we have

EF(‖aY+Z‖)= EF(‖a(Y+Z)+ (1− a)Z‖)
≤ EF(a‖Y+Z‖+ (1− a)‖Z‖)
≤ aEF(‖Y+Z‖)+ (1− a)EF(‖Z‖).

But Y being centred, by the same properties of F, Jensen’s inequality and Fubini’s theorem,
we also have

EF(‖Z‖)= EF(‖EY+Z‖)≤ EF(EY‖Y+Z‖)≤ EEYF(‖Y+Z‖)= EF(‖Y+Z‖),
and part (a) follows.
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For part (b), assume first that ai 
= 0 for all i. We then observe that, by symmetry, the
processes (a1/|a1|)Y1, . . . ,(an/|an|)Yn have the same joint probability law as the original
processes Y1, . . . ,Yn. But now we can apply part (a) to the centred processes Zi = (ai/|ai|)Yi

and the constants |ai| ≥ 0 to obtain

EF
(∥∥∥∑aiYi

∥∥∥)= EF
(∥∥∥∑ |ai|Zi

∥∥∥)≤ EF
(∥∥∥∑Zi

∥∥∥)= EF
(∥∥∥∑Yi

∥∥∥) ,

which is part (b). If only ai1 , . . . ,ain are different from zero, the preceding argument and the

fact that, also by a), EF
(∥∥∥∑k

j=1 Yij

∥∥∥)≤ EF
(∥∥∥∑k

i=1 Yi

∥∥∥) again yield (3.43).

Corollary 3.1.18 If |ai| ≤ 1 and Yi are independent and centred SBC(T) processes, 1 ≤ i ≤
n<∞, then, for all p ≥ 1,

E

∥∥∥∥∥
n∑

i=1

aiYi

∥∥∥∥∥
p

T

≤ 2pE

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
p

T

.

Proof Setting a+i = max(a,0), a−i = max(−a,0), we have∥∥∥∑aiYi

∥∥∥p ≤ 2p−1
(∥∥∥∑a+i Yi

∥∥∥p +
∥∥∥∑a−i Yi

∥∥∥p)
,

and we can apply Theorem 3.1.17, part (a), to the two random variables on the
right-hand side.

Usually the preceding contraction inequalities are applied to random ai, with the sequence
{ai} independent of the sequence {Yi}, in combination with Fubini’s theorem. The most
frequent random multipliers are Rademacher sequences or multiples thereof.

Definition 3.1.19 A sequence of random variables {εi : i ∈ I}, I ⊆ N, is a Rademacher
sequence if the variables εi are independent and Pr{εi = 1} = Pr{εi =−1} = 1/2 for all i ∈ I.

Here is an application of Theorem 3.1.17 to truncation.

Corollary 3.1.20 Let {εi} be a Rademacher sequence independent of a sequence {Zi}
consisting of independent SBC(T) processes. Let Ci ⊂ �∞(T) be such that the variable∥∥∑n

i=1 τiZiIZi∈Ci

∥∥
T

is measurable for all choices of τi =±1. Then, for all p ≥ 1,

E

∥∥∥∥∥
n∑

i=1

εiZiIZi∈Ci

∥∥∥∥∥
p

T

≤ E

∥∥∥∥∥
n∑

i=1

εiZi

∥∥∥∥∥
p

T

.

In particular this holds for Ci ={‖x‖T ≤M} or Ci ={‖x‖T ≥M} for any M. If the processes Zi

are symmetric and the Ci’s are symmetric, then the Rademacher variables in this inequality
are superfluous.

Proof Let Eε denote integration with respect to the Rademacher sequence only. Now, we
apply Theorem 3.1.17 to E = Eε, Yi = εiZi (that has mean zero conditionally on Zi) and
ai = IZi∈Ci , to obtain

Eε

∥∥∥∥∥
n∑

i=1

εiZiIZi∈Ci

∥∥∥∥∥
p

≤ Eε

∥∥∥∥∥
n∑

i=1

εiZi

∥∥∥∥∥
p

, (3.45)
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and the result follows by integrating with respect to the variables Zi. If Zi are symmetric
variables and Ci are symmetric sets, then each side of the inequality equals respectively
E
∥∥∑n

i=1 ZiIZi∈Ci

∥∥p
and E

∥∥∑n
i=1 Zi

∥∥p
.

This corollary shows how randomization or symmetrization may allow truncation. More
substantial is the following corollary on the behavior of moments under Rademacher
randomization.

Theorem 3.1.21 Let Yi, i ≤ n < ∞, be independent centered SBC(T) processes with
supremum norms in Lp for some p ≥ 1, and let εi, i ≤ n, be a Rademacher sequence
independent of the sequence of processes Yi. Then,

2−pE

∥∥∥∥∥
n∑

i=1

εiYi

∥∥∥∥∥
p

T

≤ E

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
p

T

≤ 2pE

∥∥∥∥∥
n∑

i=1

εi(Yi − ci)

∥∥∥∥∥
p

T

, (3.46)

for any functions ci = ci(t), and

Emax
k≤n

∥∥∥∥∥
k∑

i=1

Yi

∥∥∥∥∥
p

T

≤ 2p+1E

∥∥∥∥∥
n∑

i=1

εiYi

∥∥∥∥∥
p

T

. (3.47)

Proof Let {Y′
i} be a copy of the sequence {Yi} independent of {Yi} and of the Rademacher

sequence, and let E′ denote integration with respect to these variables only (i.e., conditional
expectation given the variables Yi). Jensen’s inequality and Fubini’s theorem, symmetry and
independence give

E
∥∥∥∑Yi

∥∥∥p = E
∥∥∥∑Yi −E

∑
Y′

i

∥∥∥p = E
∥∥∥E′

(∑
Yi −

∑
Y′

i

)∥∥∥p

≤ E
∥∥∥∑(Yi −Y′

i)
∥∥∥p = E

∥∥∥∑(Yi − ci − (Y′
i − ci))

∥∥∥p

= E
∥∥∥∑εi(Yi − ci − (Y′

i − ci))
∥∥∥p ≤ 2pE

∥∥∥∑εi(Yi − ci)
∥∥∥p

,

which is the right-hand-side inequality in (3.46). The left-hand-side inequality in (3.46)
follows from Corollary 3.1.18 by taking E=EY and ai = εi and then integrating with respect
to the Rademacher variables.

Inequality (3.47) will follow from Lévy’s inequality once we introduce a new norm
that incorporates the maximum. For this, we define on T× {1, . . . ,n} the bounded random
processes

Z1(t,k)= Y1(t), for k = 1, . . . ,n and t ∈ T,

and in general, for 1< i ≤ n and all t ∈ T,

Zi(t,k)= 0, for k = 1, . . . , i− 1, and Zi(t,k)= Yi(t), for k = i, . . . ,n.

Then the processes Zi(t,k) with index set T′ := T×{1, . . . ,n}, countable, satisfy that

n∑
i=1

Zi(t,1)= Y1(t),
n∑

i=1

Zi(t,2)=
2∑

k=1

Yi(t), . . . ,
n∑

i=1

Zi(t,n)=
n∑

i=1

Yi(t),
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and thus we have∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
T′
= max

1≤k≤n

∥∥∥∥∥
k∑

i=1

Yi

∥∥∥∥∥
T

and

∥∥∥∥∥
n∑

i=1

εiZi

∥∥∥∥∥
T′
= max

1≤k≤n

∥∥∥∥∥
k∑

i=1

εiYi

∥∥∥∥∥
T

.

Hence, inequality (3.46) applied to these processes gives

Emax
k

∥∥∥∥∥
k∑

i=1

Yi

∥∥∥∥∥
p

≤ 2pEmax
k

∥∥∥∥∥
k∑

i=1

εiYi

∥∥∥∥∥
p

and since εiYi are symmetric, we can apply to them the moment form of Lévy’s inequality
(3.33), which gives

Emax
k

∥∥∥∥∥
k∑

i=1

εiYi

∥∥∥∥∥
p

≤ 2E

∥∥∥∥∥
n∑

i=1

εiYi

∥∥∥∥∥
p

,

and inequality (3.47) follows.

As an application of the preceding theorem, here is an extension of Hoffmann-Jørgensen’s
inequality with only moments (Theorem 3.1.16) to centred random variables. Recall the
notation Sk =∑k

i=1 Yi for partial sums.

Theorem 3.1.22 If Yi, i≤ n<∞, are independent centred SBC(T) processes and 1≤ q< p,
then∥∥∥∥max

1≤k≤n
‖Sk‖T

∥∥∥∥
p

≤
[

2(p+ 1)

q

](p+1)/p

21+2/p
[
4(1+1)/(p+1)/q‖‖Sn‖T‖q +‖‖Y∗

n‖T‖p

]
. (3.48)

Proof It follows from inequality (3.40), by combination with inequality (3.47) and the
left-hand-side inequality in (3.46).

One may ask if it is also possible to symmetrise tail probabilities just as we have
symmetrised moments. The results are not as clean as inequality (3.46) but still useful.
In one direction, we have the following:

Proposition 3.1.23 Let Yi be SBC(T) independent processes, and let |ai| ≤ 1, 1≤ i≤ n<∞.
Then, for all t> 0,

Pr

{∥∥∥∥∥
n∑

i=1

aiYi

∥∥∥∥∥
T

> t

}
≤ 3max

j≤n
Pr
{‖Sj‖T > t/9

}
.

The same inequality holds true if the sequence {ai} is replaced by a Rademacher
sequence {εi}.

Proof We can assume that −1 ≤ an ≤ an−1 ≤ ·· · ≤ a1 ≤ 1. Then, taking σ1 = a1 − a2, . . . ,
σn−1 = an−1 − an, σn = an − (−1), we have that aj =−1+∑n

i=jσi for 1 ≤ j ≤ n, σi ≥ 0 for
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1 ≤ i ≤ n and
∑n

i=1σi = a1 + 1 ≤ 2. Therefore, for any bounded functions xi, we have∥∥∥∥∥∥
n∑

j=1

ajxj

∥∥∥∥∥∥=
∥∥∥∥∥∥

n∑
j=1

(
n∑

i=j

σi − 1

)
xj

∥∥∥∥∥∥=
∥∥∥∥∥∥

n∑
j=1

σj

j∑
i=1

xi −
n∑

i=1

xi

∥∥∥∥∥∥
≤
⎛⎝ n∑

j=1

σi

⎞⎠max
1≤j≤n

∥∥∥∥∥
j∑

i=1

xi

∥∥∥∥∥+
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥≤ 3max
i≤j≤n

∥∥∥∥∥
j∑

i=1

xi

∥∥∥∥∥ .

Combined with the second Ottaviani inequality (3.36) in Proposition 3.1.12, this gives

Pr

{∥∥∥∥∥
n∑

i=1

aiYi

∥∥∥∥∥
T

> t

}
≤ Pr

{
max
1≤j≤n

‖Sj‖T > t/3

}
≤ 3max

j≤n
Pr
{‖Sj‖T > t/9

}
.

The result for ai random, in particular, for ai = εi, follows by an extra integration and
Fubini’s theorem.

See Exercise 3.1.5 for an inequality with better constants when ai = εi and the processes
Yi are identically distributed. In the other direction, we have the following classical
symmetrisation inequality:

Proposition 3.1.24 (a) Let Y(t), Y′(t), t∈ T, be two SBC(T) processes defined on the factors
of (�×�′,
 ⊗
′,Pr = P × P′); that is, Y(t,ω,ω′) = Y(t,ω) and Y′(t,ω,ω′) = Y′(t,ω′),
t ∈ T, ω ∈�, ω′ ∈�′. Then, for all s> 0 and 0< u ≤ s such that supt∈T Pr{|Y′(t)| ≥ u}< 1,
we have

Pr{‖Y‖T > s} ≤ 1

1− supt∈T Pr{|Y′(t)| ≥ u}Pr{‖Y−Y′‖T > s− u}.

(b) If θ ≥ supt∈T E(Y′(t)2), then for any s ≥ (2θ)1/2,
Pr {‖Y‖T > s} ≤ 2Pr

{‖Y−Y′‖T > s− (2θ)1/2} .

Proof If ω is such that ‖Y(ω)‖T > s, then there exists t ∈ T such that |Yt(ω)|> s (note that
t = t(ω)), and then if, moreover, |Y′

t| ≤ u, we have |Yt(ω)−Y′
t|> s− u. This implies that for

such ω,

inf
t∈T

P′{|Y′
t| ≤ u} ≤ P′{‖Y(ω)−Y′‖T > s− u}.

Then, integrating this inequality on the set {‖Y(ω)‖T > s}, we obtain

Pr{‖Y−Y′‖T > s− u} ≥ EPP′{‖Y‖T > s,‖Y−Y′‖T > s− u}
≥ EP

(
I{‖Y‖T>s}P′{‖Y−Y′‖T > s− u})

≥ P
(
{‖Y‖T > s} inf

t∈T
P′{|Y′

t| ≤ u}
)

= inf
t∈T

P′{|Y′
t| ≤ u}Pr{‖Y‖T > s}.

This proves part (a), and part (b) follows from part (a) and Chebyshev’s inequality.
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Corollary 3.1.25 Let Yi, 1 ≤ i ≤ n <∞, be centred independent SBC(T) processes, and
let {εi}n

i=1 be a Rademacher sequence independent of the processes Yi. Let σ 2 = supt∈T

EY2
1(t) <∞. Then, for all s ≥√

2nσ 2 and for any real numbers ai,

Pr

{∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
T

> s

}
≤ 4Pr

{∥∥∥∥∥
n∑

i=1

εi(Yi − ai)

∥∥∥∥∥
T

> (s−√
2nσ 2)/2

}
.

Proof Part (b) of the preceding proposition gives, for {Y′
i} an independent copy of {Yi},

Pr

{∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
T

> s

}
≤ 2Pr

{∥∥∥∥∥
n∑

i=1

(Yi − ai − (Y′
i − ai))

∥∥∥∥∥> s−√
2nσ 2

}
.

But, by symmetry, the variables
∥∥∑n

i=1(Yi − ai − (Y′
i − ai)

∥∥ and
∥∥∑n

i=1 εi(Yi − ai − (Y′
i − ai))

∥∥
are identically distributed, and so are the variables

∥∥∑n
i=1 εi(Yi − ai)

∥∥ and
∥∥∑n

i=1 εi(Y′
i − ai)

∥∥.
Then the result follows by the triangle inequality for probabilities Pr{U+V> t} ≤ Pr{U>
t/2}+Pr{V> t/2}.

Sometimes it is convenient to randomise
∑

Yi not by Rademacher variables but by normal
or even Poisson variables. We only consider the case of moments. If two-sided inequalities
are to hold between the original partial-sum process and the randomised 1 process, the
multipliers should not be too large in distribution, and the following condition turns out to
be precisely what is needed for identically distributed processes. For real random variables
ξ , we define

 2,1(ξ) :=
∫ ∞

0

√
Pr{|ξ |> t}dt. (3.49)

Note that  2,1(ξ) <∞ implies that Eξ 2 <∞ and that E|ξ |2+δ <∞ for some δ > 0 implies
that  2,1(ξ) <∞.

Proposition 3.1.26 Let {Yi}n
i=1 be a finite set of independent identically distributed SBC(T)

processes such that E‖Yi‖T <∞ for each i ≤ n, and let {εi}n
i=1 and {ξi}n

i=1 be, respectively, a
Rademacher sequence and a sequence of symmetric i.i.d. real random variables independent
of each other and of the sequence {Yi}. Then, for 0 ≤ n0 < n, we have

(E|ξ1|)E
∥∥∥∥∥

n∑
i=1

εiYi

∥∥∥∥∥
T

≤ E

∥∥∥∥∥
n∑

i=1

ξiYi

∥∥∥∥∥
T

≤ n0E‖Y1‖TEmax
i≤n

|ξi|+√
n 2,1(ξ1) max

n0<k≤n
E

∥∥∥∥∥
∑k

i=n0+1 εiYi√
k

∥∥∥∥∥
T

. (3.50)

If the variables ξi are centred but not necessarily symmetric, inequality (3.50) holds with the
following modifications: E|ξ1| on the left is replaced by E|ξ1 − ξ2|/2, and the first summand
on the right is multiplied by 2 and the second by 2

√
2.

Proof The left-side inequality in (3.50) follows from the observation that, by symmetry,
the joint distribution of the variables ξi coincides with the joint distribution of the variables
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εi|ξi|, which gives

E

∥∥∥∥∥
n∑

i=1

ξiYi

∥∥∥∥∥= E

∥∥∥∥∥
n∑

i=1

εi|ξi|Yi

∥∥∥∥∥≥ E

∥∥∥∥∥
n∑

i=1

εi (E|ξi|)Yi

∥∥∥∥∥ .

The following chain of inequalities, which are self-explanatory, gives the proof of the
right-hand-side inequality:

E

∥∥∥∥∥
n∑

i=1

ξiYi

∥∥∥∥∥= E

∥∥∥∥∥
n∑

i=1

εi|ξi|Yi

∥∥∥∥∥
= E

∥∥∥∥∥
n∑

i=1

(∫ ∞

0
It≤|ξi|dt

)
εiYi

∥∥∥∥∥
≤
∫ ∞

0
E

∥∥∥∥∥
n∑

i=1

It≤|ξi|εiYi

∥∥∥∥∥dt

=
∫ ∞

0
E

∥∥∥∥∥
#{i≤n: |ξi|≥t}∑

i=1

εiYi

∥∥∥∥∥dt

≤
∫ ∞

0

(
n∑

k=1

Pr

{
n∑

i=1

I|ξi|≥t = k

}
E

∥∥∥∥∥
k∑

i=1

εiYi

∥∥∥∥∥
)

dt

≤
(∫ ∞

0
Pr

{
n∑

i=1

I|ξi|≥t > 0

}
dt

)
max
k≤n0

E

∥∥∥∥∥
k∑

i=1

εiYi

∥∥∥∥∥
+√

n

⎛⎝ 1√
n

∫ ∞

0

n∑
k=n0+1

√
kPr

{
n∑

i=1

I|ξi|≥t = k

}
dt

⎞⎠ max
n0<k≤n

E

∥∥∥∥∥∥ 1√
k

k∑
i=n0+1

εiYi

∥∥∥∥∥∥
≤
(∫ ∞

0
Pr

{
max
i≤n

|ξi| ≥ t

}
dt

)
n0E‖Y1‖+√

n 2,1(ξ) max
n0<k≤n

E

∥∥∥∥∥∥ 1√
k

k∑
i=n0+1

εiYi

∥∥∥∥∥∥
= n0E‖Y1‖Emax

k≤n
|ξi|+√

n 2,1(ξ) max
n0<k≤n

E

∥∥∥∥∥∥ 1√
k

∑
n0<i≤k

εiYi

∥∥∥∥∥∥ .

For the last inequality, note that

∞∑
k≥0

√
kPr

{
n∑

i=1

I|ξi|≥t = k

}
= E

(
n∑

i=1

I|ξi|≥t

)1/2

≤
(

E
n∑

i=1

I|ξi|≥t

)1/2

.

When ξ is not symmetric, but still centred, the theorem follows from the preceding estimates
applied to ξi − ξ ′i , where {ξ ′i } is an independent copy of {ξi}.

Exercises

3.1.1 If ξ is exponential with parameter 1/α and X = ξ − Eξ , then logEeλX ≤ (α2λ2)/

(2(1−αλ))= ϕα2,α(λ), for 0< λ< 1/α. If Y is the sum of r independent centred exponential
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random variables, then logEeλY ≤ ϕrα2,α(λ). This also extends to any centred gamma random
variables. Hint: EeλX = e−λα/(1 − λα), and by Taylor development, −x − log(1 − x) ≤
x2/(2(1− x)).

3.1.2 (a) If X is Poisson with parameter a, then Pr{X − a ≤ −t} ≤ e−t2/(2a), t > 0. (b) Show also
that for the same variable X and for t > a + 1, there exists c > 0 such that Pr{X − a ≥ t} ≥
ce−2t log(1+(t+1)/a). Hint: (a) It suffices to prove this inequality for t< a; hence, it follows from
(3.10) and the facts that e−λ + λ− 1 ≤ λ2/2 for 0 ≤ λ < 3 and λ2a/2 − λt is smallest for
λ= t/a< 1. (b) Use the nonasymptotic Stirling formula.

3.1.3 Prove that �∞(T) equipped with the supremum norm is a Banach space and that it is separable
if and only if T is finite.

3.1.4 Work out the details of the following example showing that the law of a simple sample bounded
process, which is a probability measure on the cylindrical σ -algebra of �∞(T), does not extend
to its Borel σ -algebra. Set Xt = I[0,t)(U) = I(U,1](t), t ∈ Q (or t ∈ R), where U is a uniform,
for example, (�,
,Pr) = ([0,1],B,μ), μ Lebesgue measure. Then X is a sample bounded
process indexed by T =Q∩ [0,1]. Let A be any subset of [0,1], and set FA = {I(s,1] : s ∈ A} ⊂
�∞(T). Then argue that FA is closed (it is discrete) and hence Borel measurable but that if A
is not measurable, then the pre-image X−1(FA) = {ω : I(U(ω),1] ∈ FA} = {ω : U(ω) ∈ A} is not
measurable. Thus, the law of the map X : � �→ �∞(T) is not a Borel measure; that is, the
process X is not an �∞(T)-valued random variable.

3.1.5 Prove the following improvement on Proposition 3.1.23 in a particular case: if Yi are i.i.d.
(sample bounded processes over a countable index set T) and {εi} is a Rademacher sequence
independent of the processes Yi, then

Pr

{∥∥∥∥∥
n∑

i=1

εiYi

∥∥∥∥∥
T

> t

}
≤ 2max

k≤n
Pr

{∥∥∥∥∥
k∑

i=1

Yi

∥∥∥∥∥
T

> t/2

}
.

(And then, using Montgomery-Smith’s (1994) reflection principle for i.i.d. summands, there
exist c1, c2 finite such that the right-hand side is dominated by c1 Pr

{∥∥∑n
i=1 Yi

∥∥
T
> c2t

}
.)

3.1.6 Let ξi be centred independent identically distributed real random variables with E|ξ1|p <∞
for some p> 2 and Eξ = 0. Show that supn E

(∣∣∑n
i=1 ξi

∣∣/n1/2
)p
<∞. More generally, if Yi are

centred independent identically distributed sample bounded processes with countable index
set T such that the sequence {Sn/n1/2} is stochastically bounded and E‖Y1‖p <∞ for some
p ≥ 2, then supn E(‖Sn‖T/n1/2)p <∞.

3.1.7 (A proof of Glivenko-Cantelli’s theorem.) Let P be a probability measure on R, let Xi be i.i.d.
random variables with probability law P and let Fn be, for each n, the empirical distribution
function corresponding to X1, . . . ,Xn. Prove that E‖Fn − F‖∞ ≤ 4/

√
n, which, combined

with reverse submartingale convergence, gives ‖Fn − F‖∞ → 0 a.s. (as well as in L1). Hint:
Use randomisation and Lévy’s inequality: a simple randomisation result from the text gives
E‖Fn −F‖∞ ≤ 2Esupt∈R

∣∣n−1
∑n

i=1 εiI(Xi ≤ t)
∣∣, and then we observe that for each fixed value

of X1, . . . ,Xn, there is a permutation {nk} of {1, . . . ,n}, such that this last supremum equals

max�≤n

∣∣∣∑�
k=1 εnk

∣∣∣. Now use Lévy’s inequality conditionally on the Xi variables followed by

Fubini’s theorem.
3.1.8 (An exponential inequality for binomial probabilities.) Show that if ξi are i.i.d. random

variables with Pr{ξi = 1} = p = 1−Pr{ξi = 0}, then

Pr

{
n∑

i=1

ξi ≥ k

}
≤
(enp

k

)k
,
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and compare with the inequalities from Section 3.1.2 that apply. Hint: The left-hand side is

obviously bounded by
(n

k

)
Pr
{∑k

i=1 ξi = k
}
= (n

k

)
pk, and logk! > ∫ k

1 logx dx = log(k/e)k, so(n
k

)≤ (en/k)k.
3.1.9 (Expected value of maxima of independent random variables.) Let ξi, i ≤ n, be nonnegative

independent random variables in Lp, p> 0. (a) Prove that, for all δ > 0,

E max
1≤i≤n

ξ
p
i ≤ δp + p

∫ ∞

δ

tp−1
n∑

i=1

Pr{ξi > t}dt.

(b) Use that 1− x ≤ e−x and 1− e−x ≥ x/(1− x) to show that

Pr
{
max

i
ξi > t

}
≥

∑
i Pr{ξi > t}

1+∑
i Pr{ξi > t} .

(c) Suppose now that δ0 = inf{t :
∑n

i=1 Pr{ξi > t} ≤ λ} for some λ > 0. Use the preceding
inequality and the monotonicity of the function x/(1+x) to deduce Pr {maxi ξi > t}≥∑Pr{ξi>
t}/(1+λ) for t ≥ δ0 and Pr{maxi ξi > t} ≥ λ/(1+λ) otherwise. Conclude

E max
1≤i≤n

ξ
p
i ≥ λ

1+λδ
p
0 +

p

1+λ
∫ ∞

δ0

tp−1
n∑

i=1

Pr{ξi > t}dt.

3.1.10 (The maximal form of some inequalities.) Let ξi, i ∈ N, be independent centred random
variables such that Eeλξi <∞, for all 0 < λ < λ0, λ0 ≤ ∞, and set Sk = ∑k

i=1 ξi, k ∈ N.
Show that for 0<λ<λ0, the sequence {(eλSk ,Sk)}, where Sk = σ(ξi : i≤ k), is a submartingale
(Eeλξk ≥ 1), and apply Doob’s maximal inequality to obtain

Pr

{
max
k≤n

Sk > t

}
≤ EeλSn/eλt, t> 0.

Use this to replace Sn by maxk≤n Sk in the Hoeffding, Bennet, Bernstein and Prohorov
inequalities.

3.1.11 Let gi, i ∈N, be i.i.d. standard normal random variables. Prove that

max
1≤k≤n

1√
k

∣∣∣∣∣
k∑

i=1

(g2
i − 1)

∣∣∣∣∣= Opr(
√

log logn).

Hint: Use Theorem 3.1.9, the preceding exercise and blocking. For the blocking, argue that if
rk = min{r : k ≤ 2r}, it suffices to consider ±∑k

i=1(g
2
i − 1)/

√
2rk ; then set Sk =∑k

i=1(g
2
i − 1)

and note that

Pr

{
max
k≤n

1√
2rk

Sk > t

}
≤ Pr

{
max
r≤rn

max
2r−1<k≤2r

1√
2rk

Sk ≥ t

}
≤
∑
r≤rn

Pr

{
max
r≤rn

1√
2rk

Sk ≥ t

}
.

Now it is easy to apply the two results just mentioned and obtain that if one takes t =√
M log logn, for M ≥ 9, M(log logn)/n< 1, then these probabilities tend to zero as n →∞.

3.2 Rademacher Processes

As can be inferred from the preceding section and will be corroborated in later sections,
randomisation may be a useful tool in the study of empirical processes, particularly
Rademacher randomisation, which consists in replacing

∑n
i=1( f (Xi)−P f ) by

∑n
i=1 εi f (Xi),

where εi, i = 1, . . . ,n, are independent Rademacher variables, independent of the variables
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Xi: these two processes have comparable ‘sizes’, and the second is easier to estimate
because, conditionally on the variables Xi, the process f �→∑n

i=1 εi f (Xi) is sub-Gaussian.
More exactly, it is a Rademacher process of the form

t �→
n∑

i=1

tiεi, t = (t1, . . . , tn) ∈ T ⊆Rn. (3.51)

The object of this section is to collect some relevant results on Rademacher processes
needed in later sections. Although they are less well understood than Gaussian processes,
Rademacher processes share many properties with them, and for us, they may be at least as
useful because Rademacher randomisation produces stochastically smaller processes than
Gaussian randomisation; in particular, it produces bounded processes if the class F is
bounded.

Since Rademacher processes are sub-Gaussian, the metric entropy moment bounds for
sub-Gaussian processes given in Section 2.3 apply to these processes. However, analogues
or partial analogues of the Slepian comparison theorem, of Sudakov’s lower bound for the
expected value of the supremum of a Gaussian process or of the Borell-Tsirelson-Sudakov’s
concentration inequality do require separate proofs. In this section we start with a
comparison principle for Rademacher processes, then consider the concentration inequality
in more generality than just for these processes and conclude with a Sudakov-type
minorisation inequality. These results are both interesting per se and useful in the theory
of empirical processes.

3.2.1 A Comparison Principle for Rademacher Processes

In the first theorem of this section we compare the sizes of the Rademacher processes
∑
εiti

and
∑
εiϕi(ti), t ∈ T ⊂ Rn, where the functions ϕi : R �→ R are contractions vanishing at 0;

that is, the ϕi satisfy

|ϕi(s)−ϕi(t)| ≤ |s− t|, for all s, t ∈R and ϕi(0)= 0.

In particular, this result will greatly generalise inequality (3.45) from the preceding section.

Theorem 3.2.1 Let F be a nonnegative, convex and nondecreasing function defined on
[0,∞). Let ϕi : R �→ R be contractions vanishing at 0, and let T be a bounded set of Rn,
n<∞. Then

EF

(
1

2

∥∥∥∥∥
n∑

i=1

εiϕi(ti)

∥∥∥∥∥
T

)
≤ EF

(∥∥∥∥∥
n∑

i=1

εiti

∥∥∥∥∥
T

)
, (3.52)

where t = (t1, . . . , tn) and ‖ · ‖T denotes, as usual, supremum over all t ∈ T.

Proof Since F and ϕi are continuous and so is the map t �→∑n
i=1 εiti, the random quantities

involved in inequality (3.52) are measurable; in fact, we may assume that T is a finite set of
Rn. We begin with several reductions of the problem to simpler ones.

First, we see that proving the theorem reduces to showing that

EG

(
1

2
sup
t∈T

∑
εiϕi(ti)

)
≤ EG

(
sup
t∈T

∑
εiti

)
, (3.53)
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for all G : R �→R convex and nondecreasing. To prove that (3.53) implies (3.52), note first
that since the two sequences {εi} and {−εi} are equi-distributed and since a+ = (−a)−, where
a+ = max(a,0) and a− =−min(a,0), it follows that

EF

(
1

2

∥∥∥∑εiϕi(ti)
∥∥∥

T

)
≤ EF

(
sup
t∈T

(∑
εiϕi(ti)

)+)+EF

(
sup
t∈T

(∑
εiϕi(ti)

)−)
= 2EF

(
sup
t∈T

(∑
εiϕi(ti)

)+)
.

Now (3.52) follows from applying (3.53) to G(·) = F((·)+), which is convex and
nondecreasing.

Next, we observe that by conditioning and iteration, in order to prove (3.53), it suffices
to show that if T ⊂ R2, ε is a Rademacher variable, and ϕ is a contraction on R vanishing
at 0; then

EG

(
sup
t∈T
(t1 + εϕ(t2))

)
≤ EG

(
sup
t∈T
(t1 + εt2)

)
. (3.54)

Moreover, since we can assume T⊂R2 finite, the maximum of t1 +ϕ(t2) over T is attained,
and so is the maximum of t1 − ϕ(t2) over T. If t ∈ T denotes an argument where the first
maximum is obtained and s denotes an argument for the second maximum, then s and t
satisfy

t1 +ϕ(t2)≥ s1 +ϕ(s2) and s1 −ϕ(s2)≥ t1 +ϕ(t2), (3.55)

and

EG

(
sup
t∈T
(t1 + εϕ(t2))

)
= 1

2
G(t1 +ϕ(t2))+ 1

2
G(s1 −ϕ(s2))=: I(t,s,ϕ).

Finally then, the theorem reduces to proving

I(t,s,ϕ)≤ EG

(
sup
t∈T
(t1 + εt2)

)
, (3.56)

for all contractions ϕ vanishing at 0 and points s and t in T satisfying conditions (3.55) for ϕ.
We distinguish two cases.

Case 1: s2 and t2 have different signs. Suppose first that t2 ≥ 0 and s2 ≤ 0. Then, since
by definition |ϕ(t)| ≤ |t| (|ϕ(t)− ϕ(0)| ≤ |t − 0| and ϕ(0) = 0), we have ϕ(t2) ≤ t2 and
−ϕ(s2)≤−s2, so

I(t,s,ϕ)≤ 1

2
(G(t1 + t2)+G(s1 − s2))≤ EG

(
sup
t∈T
(t1 + εt2)

)
,

which is (3.56). The subcase t2 ≤ 0 and s2 ≥ 0 reduces to the preceding one: since −ϕ is a
contraction and vanishes at 0, and since I(t,s,ϕ)= I(s, t,−ϕ), the preceding inequality gives

I(t,s,ϕ)= I(s, t,−ϕ)≤ 1

2
(G(t1 − t2)+G(s1 + s2))≤ EG

(
sup
t∈T
(t1 + εt2)

)
.

Case 2: s2 and t2 have equal signs. Let us assume that 0≤ s2 ≤ t2. As in case 1, it suffices to
show that G(t1 +ϕ(t2))+G(s1 −ϕ(s2)≤ G(t1 + t2)+G(s1 − s2), or

G(s1 −ϕ(s2))−G(s1 − s2)≤ G(t1 + t2)−G(t1 +ϕ(t2)). (3.57)
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Set a= s1−ϕ(s2), b= s1−s2, a′ = t1+ t2 and b′ = t1+ϕ(t2). Then s2 ≥ 0 implies s2 ≥ |ϕ(s2)|
and hence a≥ b and, using also (3.55), b′ ≥ b. Moreover, since ϕ is a contraction and s2 ≤ t2,
we have that ϕ(t2)− ϕ(s2) ≤ t2 − s2, which gives a− b = s2 − ϕ(s2) ≤ t2 − ϕ(t2)= a′ − b′.
Now, since G is convex, the function G(· + c)−G(·) for c> 0 is nondecreasing (recall that
for convex functions G, if u< v< u+ c, then,

G(u+ c)−G(u)

u
≤ G(u+ c)−G(v)

u+ c− v
≤ G(v+ c)−G(v)

c
,

and similarly if v ≥ u+ c). Therefore, G(a)−G(b)= G(b+ (a− b))−G(b)≤ G(b′ + (a−
b))− G(b′), which, since b′ + a − b ≤ a′ and G is nondecreasing, gives G(a)− G(b) ≤
G(a′)− G(b′), proving (3.57). The subcase 0 ≤ t2 ≤ s2 reduces to the preceding situation
just as in case 1, interchanging s and t and replacing ϕ with −ϕ. The subcase s2 ≤ 0, t2 ≤ 0
reduces to the preceding ones by taking t′ = (t1,−t2), s′ = (s1,−s2) and ϕ̃(x)= ϕ(−x).

This theorem is very useful in estimation of the diameter of a class of functions
with respect to the L2(Pn) pseudo-distance, where Pn is the empirical measure. Let Xi,
i = 1, . . . ,n, be independent S-valued random variables, let F be a countable class of
measurable functions S �→ R such that F(x) = sup f ∈F | f (x)| is finite for all x ∈ S and set
U = maxn

i=1 |F(Xi)| and σ 2 = sup f ∈F
∑n

i=1 E f 2(Xi)/n, which we assume to be finite. Let
also εi, i = 1, . . . ,n, be independent Rademacher variables independent of the X variables,
and let Eε denote conditional expectation given the variables Xi. In order to compare
Eε
∥∥∑n

i=1 εi f 2(Xi)
∥∥
F to Eε

∥∥∑n
i=1 εi f (Xi)

∥∥
F , we apply the comparison principle just proved.

For X1, . . . ,Xn fixed, we take in Theorem 3.2.1 ti = U f (Xi), i = 1, . . . ,n, T = {(U f (Xi) : i =
1, . . . ,n) : f ∈ F} and ϕi(s) = ϕ(s) = s2/2U2 ∧U2/2. It is clear that ϕ is a contraction and
that ϕ(0)= 0. Also note that U2 f 2(Xi)/(2U2)≤ U2/2, so ϕ(U f (Xi))= f 2(Xi)/2. Then the
preceding theorem gives

1

4
Eε

∥∥∥∥∥
n∑

i=1

εi f 2(Xi)

∥∥∥∥∥
F

≤ UEε

∥∥∥∥∥
n∑

i=1

εi f (Xi)

∥∥∥∥∥
F

.

Integrating with respect to the variables Xi and then applying the basic randomisation
inequality (3.46), we further obtain

E

∥∥∥∥∥
n∑

i=1

f 2(Xi)

∥∥∥∥∥
F

≤ nσ 2 +E

∥∥∥∥∥
n∑

i=1

( f 2(Xi)−E f 2(Xi))

∥∥∥∥∥
F

≤ nσ 2 + 2E

∥∥∥∥∥
n∑

i=1

εi f 2(Xi)

∥∥∥∥∥
F

≤ nσ 2 + 8E

[
U

∥∥∥∥∥
n∑

i=1

εi f (Xi)

∥∥∥∥∥
]

.

Summarising:

Corollary 3.2.2 With the immediately preceding notation, we have

E

∥∥∥∥∥
n∑

i=1

εi f 2(Xi)

∥∥∥∥∥
F

≤ 4E

[
U

∥∥∥∥∥
n∑

i=1

εi f (Xi)

∥∥∥∥∥
F

]
(3.58)

and

E

∥∥∥∥∥
n∑

i=1

f 2(Xi)

∥∥∥∥∥
F

≤ nσ 2 + 8E

[
U

∥∥∥∥∥
n∑

i=1

εi f (Xi)

∥∥∥∥∥
F

]
. (3.59)
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Further randomising, if U is dominated by a constant K, then the preceding inequality
yields

E

∥∥∥∥∥
n∑

i=1

f 2(Xi)

∥∥∥∥∥
F

≤ nσ 2 + 16KE

∥∥∥∥∥
n∑

i=1

( f (Xi)−P f (Xi))

∥∥∥∥∥
F

. (3.60)

3.2.2 Convex Distance Concentration and Rademacher Processes

As seen in Theorem 2.2.6, Lipschitz functions of Gaussian processes are highly concentrated
about their medians or, abusing language a little, are almost constant. In this subsection
and the following section we will see that this phenomenon is not only typical of Gaussian
processes but also that, in Talagrand’s words, ‘a random variable that depends in a “smooth”
way on the influence of many independent variables (but not too much on any of them) is
essentially constant’ where ‘essentially constant’ in the present context means that it satisfies
an exponential inequality of Hoeffding type. Whereas in the following section we will use
log-Sobolev-type differential inequalities and Herbst’s method, as in the case of Gaussian
processes, in this subsection we use the direct method originally employed by Talagrand. For
any n ∈N, let (Sk,Sk), 1 ≤ k ≤ n, be measurable spaces, let Xk, k = 1, . . . ,n, be independent
Sk-valued random variables and let X denote the random vector X = (X1, . . . ,Xn), taking
values in the product space S =∏n

k=1 Sk. Let us denote by P the probability law of X, P =
μ1 × ·· · × μn, where μk = L(Xk). We have in mind Xk = εk, where εk are independent
Rademacher variables, but the variables Xk may just be bounded variables. In fact, the
smooth, in our case Lipschitz, functions of X will be almost constant because the probability
law P of X will be shown to be highly concentrated about any set of large P measure.
We begin with the distance that will measure the concentration about a set A, the convex
distance.

The Hamming distance d on S is defined as

d(x,y)= Card{1 ≤ i ≤ n,xi 
= yi},
the number of indices for which the coordinates of x and y do not coincide. Given a vector
a ∈Rn with nonnegative coordinates ai, the weighted Hamming distance da is defined as

da(x,y)=
n∑

i=1

aiIxi 
=yi .

Denote by |a|, the Euclidean norm of a ∈ Rn, |a| = (∑n
i=1 a2

i

)1/2
. Then the convex distance

on S is defined by

dc(x,y)= sup
|a|≤1

da(x,y), x,y ∈ S, and for A ⊂ S and x ∈ S,

dc(x,A)= inf{dc(x,y) : y ∈ A}. (3.61)

We will need an alternative definition of the convex distance. Given A ⊆ S, let

UA(x)= {u = (ui)
n
i=1 ∈ {0,1}n : ∃y ∈ A with yi = xi if ui = 0};

that is, u ∈ UA(x) if we may obtain from x a point y in A by changing only coordinates xi

such that ui = 1 (without necessarily exhausting all the i such that ui = 1). Let VA(x) denote
the convex hull of UA(x) as a subset of [0,1]n. Then:
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Lemma 3.2.3

dc(x,A)= inf{|v| : v ∈ VA(x)},
and the infimum is attained at a point in VA(x).

Proof The infimum is attained because VA(x) is compact. If x ∈ A, then both quantities
above are zero. Thus, we may assume that x 
∈A, in which case both are positive. Letting 〈·, ·〉
denote inner product in Rn, we have, by the definition of UA(x), the fact that the maximum
of a linear functional over the convex hull V of a finite set U is attained at a point in U and
the Cauchy-Schwarz inequality,

da(x,A) := inf
y∈A

da(x,y)= min
u∈UA(x)

〈a,u〉 = min
v∈VA(x)

〈a,v〉 ≤ |a||v|. (3.62)

This proves the inequality dc(x,A)≤ inf{|v| : v ∈ VA(x)}.
For the converse inequality, if the infimum of |v| is achieved at ṽ ∈ VA(x), let a = ṽ/|ṽ|.

Let v ∈ VA(x). Then, since V is convex, we have ṽ+ λ(v− ṽ) ∈ VA(x), for all 0 ≤ λ ≤ 1.
Hence, by definition of ṽ, |ṽ+λ(v− ṽ)| ≥ |ṽ|, and developing the squares in this inequality
and dividing by λ yield

2〈ṽ,v− ṽ〉+λ|v− ṽ|2 ≥ 0,

which, letting λ↘ 0, implies 〈ṽ,v− ṽ〉 ≥ 0. Hence,

〈a,v〉 ≥ 〈a, ṽ〉 = |ṽ|2/|ṽ| = min{|v| : v ∈ VA(x)}.
But then, by (3.62),

dc(x,A)≥ da(x,A)= min
v∈VA(x)

〈a,v〉 ≥ min{|v| : v ∈ VA(x)}.

Here is Talagrand’s concentration inequality for the convex distance. The elegant in-
equality (3.64) quantifies the concentration of the law of X about the set A (with respect to
the convex distance) when the probability of X being in A is large.

Theorem 3.2.4 (Talagrand’s inequality for the convex distance) For any n ∈ N, if X =
(X1, . . . ,Xn) is a vector of independent random variables taking values in the product space
S(n) =∏n

k=1 Sk, and A ⊆ S(n), then

E
(
ed2

c (x,A)/4
)
≤ 1

Pr (X ∈ A} ; (3.63)

hence, for all t ≥ 0,
Pr {X ∈ A}Pr {dc(x,A)≥ t} ≤ e−t2/4. (3.64)

Proof For n = 1, dc(x,A)= 1− IA(x), and we have

E
(
ed2

c (X,A)/4
)
≤μ1(A)+ e1/4(1−μ1(A))≤ μ1(A)+ 2(1−μ1(A))= 2−μ1(A)≤ 1

μ1(A)
,

proving (3.63) in this case.
Now we proceed by induction. Let n ≥ 1, assume that inequality (3.63) holds for n (and

for 1) and consider the case n+1. Set S=∏n+1
k=1 Sk and S(n)=∏n

k=1 Sk so that S= S(n)×Sn+1.
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Recall μk = L(Xk), and set X(n) = (X1, . . . ,Xn), P(n) = μ1 × ·· · ×μn, X = (X1, . . . ,Xn+1) =
(X(n),Xn+1) and P = P(n) ×μn+1. For z ∈ S, write z = (x,s) with x ∈ S(n) and s ∈ Sn+1. For
each s ∈ Sn+1, define

As = {x ∈ S(n) : (x,s) ∈ A}, B =∪s∈Sn+1As,

the section of A along s and the the projection of A on S(n), respectively. The following
convexity inequality relates the squares of the convex distances dc(z,A), dc(x,As) and
dc(x,B), for z = (x,s) ∈ A and 0 ≤ λ≤ 1:

d2
c(z,A)≤ λd2

c(x,As)+ (1−λ)d2
c(x,B)+ (1−λ)2. (3.65)

To see this, note that (a) if t ∈UAs(x), then (t,0) ∈UA(z) (if y ∈ As, then (y,s) ∈ Az) and (b) if
u∈UB(x), then (u,1)∈UA(z) (if y∈B, then (y,s) is not necessarily in A). Thus, if v∈VAs(x),
then (v,0) ∈ VA(z), and if v ∈ VB(x), then (v,1) ∈ VA(z). Lemma 3.2.3 ensures that there are
t ∈ VAs(x) with |t| = dc(x,As) and u ∈ VB(x) with |u| = dc(x,B), and the preceding discussion
implies that both (t,0) and (u,1) ∈ VA(z) so that, by convexity of VA(z), we also have, for
0 ≤ λ≤ 1,

v = λ(t,0)+ (1−λ)(u,1)= (λt+ (1−λ)u,1−λ) ∈ VA(z).

Then, by Lemma 3.2.3 again and convexity of f (x)= x2, we have

d2
c(z,A)≤ |v|2 = |λt+ (1−λ)u|2 + (1−λ)2

≤ λ|t|2 + (1−λ)|u|2 + (1−λ)2
= λd2

c(x,As)+ (1−λ)d2
c(x,B)+ (1−λ)2,

proving (3.65).
For s ∈ Sn+1 fixed, inequality (3.65) and Hölder’s inequality with p = 1/λ and q = 1/

(1−λ) give

Eed2
c ((X

(n),s),A)/4 ≤ e(1−λ)
2/4E

[
eλd

2
c (X

(n),As)/4+(1−λ)d2
c (X

(n),B)/4
]

≤ e(1−λ)
2/4
(
Eed2

c (X
(n),As)/4

)λ(
Eed2

c (X
(n),B)/4

)1−λ
,

and the induction applied to these two expected values yields

Eed2
c ((X

(n),s),A)/4 ≤ e(1−λ)
2/4(P(n)(As))

−λ(P(n)(B))−(1−λ)

= 1

P(n)(B)
e(1−λ)

2/4

(
P(n)(As)

P(n)(B)

)−λ
.

At this point we optimize in λ ∈ [0,1]. Observe that by Exercise 3.2.1, for all 0 ≤ r ≤ 1,
inf0≤λ≤1 r−λe(1−λ)2/4 ≤ 2− r. Applying this bound for r = P(n)(As)/P(n)(B) and integrating
with respect to μn+1 (note that EP(n)(AXn+1)= PA), we obtain

Eed2
c (X,A)/4 ≤ 1

P(n)(B)

(
2− P(A)

P(n)(B)

)
≤ 1

P(A)
,

where for the preceding inequality we multiply and divide by P(A) and use that u(2−u)≤ 1
for all u ∈ R. This proves inequality (3.63). Inequality (3.64) follows from it by Markov’s
inequality applied to ed2

c (X,A)/4.
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142 Empirical Processes

As a consequence of Theorem 3.2.4, we have the following concentration result for
Lipschitz functions:

Corollary 3.2.5 Let S = S1 × ·· · × Sn be a product of measurable spaces, and let P be a
product probability measure on it. Let F : S �→ R be a measurable function satisfying the
following Lipschitz property for the distance da: for every x ∈ S, there is a = a(x) ∈Rn with
|a| = 1 such that

F(x)≤ F(y)+ da(x,y), y ∈ S.

Let mF be a median of F for P. Then, for all t ≥ 0,

P{|F−mF| ≥ t} ≤ 4e−t2/4.

Proof Taking A = {F ≤ m} (any m), we obviously have

F(x)≤ m+ da(x,A)≤ m+ dc(x,A).

Therefore, Theorem 3.2.4 implies that

P{F ≥ m+ t} ≤ P{dc(x,A)≥ t} ≤ 1

P(A)
e−t2/4, t ≥ 0;

that is,

P{F ≤ m}P{F ≥ m+ t} ≤ e−t2/4, t ≥ 0.

Now take m = mF − t and m = mF to obtain the result.

Corollary 3.2.6 (Concentration inequality for Rademacher (and other) processes) Let
Xi, 1 ≤ i ≤ n, be independent real random variables such that, for real numbers ai, bi,

ai ≤ Xi ≤ bi, 1 ≤ i ≤ n.

Let T be a countable subset of Rn, and set

Z = sup
t∈T

n∑
i=1

tiXi,

where t = (t1, . . . , tn). Let mZ be a median of Z. Then, if σ̃ := supt∈T

(∑n
i=1 t2i (bi − ai)

2
)1/2

is
finite, we have that, for every r ≥ 0,

Pr {|Z−mZ| ≥ r} ≤ 4e−r2/4σ̃ 2
,

|EZ−mZ| ≤ 4
√
πσ̃ and Var(Z)≤ 16σ̃ 2.

Proof We will apply the preceding corollary for S = ∏n
i=1[ai,bi], P the product of the

probability laws of X1, . . . ,Xn and F(x) = supt∈T

∑n
i=1 tiXi. We can and do assume that T is

finite. For x ∈ S, let t = t(x) achieve the supremum in the definition of F(x). Then, for any
y ∈ S,

F(x)=
n∑

i=1

tixi ≤
n∑

i=1

tiyi +
n∑

i=1

|ti||xi − yi|

≤ F(y)+ σ̃
n∑

i=1

|ti|(bi − ai)

σ̃
Ixi 
=yi ,
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showing that the function F/σ̃ satisfies the Lipschitz condition in Corollary 3.2.5 for a =
a(x) = (|t1|(b1 − a1)/σ̃ , . . . , |tn|(bn − an)/σ̃ ). Then this corollary implies the concentration
inequality for Z. The comparison between the mean and the median of Z follows from

|EZ−mZ| ≤ E|Z−mZ| ≤ 4
∫ ∞

0
e−r2/4σ̃ 2

dr

and the variance bound from

Var(Z)≤ E|Z−mZ|2 ≤ 8
∫ ∞

0
re−r2/4σ̃ 2

dr.

This result is a striking generalisation of Hoeffding’s inequality (3.9): it is a Hoeffding
inequality holding simultaneously for infinitely many sums of independent variables. The
constants, however, are a little worse.

For Rademacher variables Xi = εi, that is, for Z= supt∈T

∑n
i=1 tiεi, the preceding corollary

yields

Pr {|Z−mZ| ≥ r} ≤ 4e−r2/16σ 2
,

where σ 2 = supt∈T

∑n
i=1 t2i . The constant 16 is not best possible. A more specialised convex

distance inequality allows 16 to be replaced by 8. We record this result and sketch its proof
in Exercises 3.2.2 and 3.2.3.

Theorem 3.2.7 For n<∞ and a countable set T ⊂Rn, set

Z = sup
t∈T

n∑
i=1

tiεi, σ = sup
t∈T

(
n∑

i=1

t2i

)1/2

,

and let mZ be a median of Z. Then, if σ <∞,

Pr {|Z−mZ| ≥ r} ≤ 4e−r2/8σ 2
(3.66)

and, consequently,

E|Z−mZ| ≤ 4
√

2πσ and Var(Z)≤ 32σ 2. (3.67)

Next we consider an important consequence of this theorem (or Corollary 3.2.6)
regarding integrability of Rademacher processes in analogy with Gaussian processes.

Proposition 3.2.8 (Khinchin-Kahane inequalities) For Z as in Theorem 3.2.7, for all p>
q> 0, there exists Cq <∞ such that

(E|Z|p)1/p ≤ Cq
√

p(E|Z|q)1/q . (3.68)

Moreover, there are τ > 0 and c> 0 such that Pr {|Z|> c‖Z‖2} ≥ τ .

Proof First, we see that integrating the exponential inequality (3.66) with respect to
ptp−1dt, p ≥ 2, gives

‖Z‖p ≤ mZ +
(
8
√

2/π
)1/p ‖g‖pσ ,
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where g is a standard normal variable. Since mZ ≤
√

2‖Z‖2, σ ≤ ‖Z‖2 and ‖g‖p is of the
order of

√
p, it follows that for a universal constant K,

‖Z‖p ≤ K
√

p‖Z‖2.

We now observe that for 0< τ < 1, by Hölder’s inequality,

EZ2 ≤ τ 2EZ2 +E
(
Z2I(|Z|> τ‖Z‖2)

)≤ τ 2EZ2 + (
EZ4

)1/2
(Pr {|Z|> τ‖Z‖2})1/2

≤ τ 2EZ2 + 4K2EZ2 (Pr {|Z|> τ‖Z‖2})1/2 ,

and hence,

Pr {|Z|> τ‖Z‖2} ≥ (1− τ
2)2

16K4
.

This is an instance of the Paley-Zigmund argument; see Exercise 2.1.4. Then, if m′
Z =

sup{m : Pr{|Z| ≥ m} ≥ 9/(4K)4}, this inequality with τ = 1/4 gives ‖Z‖2 ≤ 4m′
Z. But

for each q > 0, by Markov’s inequality, 9/(4K)4 ≤ Pr{|Z| ≥ m′
Z} ≤ E|Z|q/m′q

Z ; that is,
m′

Z ≤ ((4K)4/9)1/q(E|Z|q)1/q or ‖Z‖2 ≤ 4((4K)4/9)1/q(E|Z|q)1/q, for any 0< q< 2.

This result is only best possible up to constants. For instance, it is know that for p> q> 1,

‖Z‖p ≤
(

p− 1

q− 1

)1/2

‖Z‖q.

See the notes at the end of the chapter.

3.2.3 A Lower Bound for the Expected Supremum of a Rademacher Process

Sudakov’s lower bound for centred bounded Gaussian processes X (Theorem 2.4.12),
namely, that for all ε > 0, ε

√
logN(T,dX,ε) ≤ KEsupt∈T |X(t)|, does not extend to

Rademacher processes without substantial modifications: if Tn = {e1, . . . ,en}, the canonical
basis of Rn, then Emaxt∈Tn

∣∣∑n
i=1 εiti

∣∣ = 1, whereas for ε < 1, N(Tn,d2,ε) = n, where d2 is
Euclidean distance in Rn, which is the distance induced by the process on Tn.

Here we present a first variation on Sudakov’s inequality, just what we need in a later
section.

Theorem 3.2.9 There exists a finite constant K> 0 such that for every n ∈ N and ε > 0, if
T is a bounded subset of Rn such that

Esup
t∈T

∣∣∣∣∣
n∑

i=1

εiti

∣∣∣∣∣≤ 1

K

ε2

max1≤i≤n |ti| , for all t ∈ T, (3.69)

then

ε
√

logN(T,d2,ε)≤ KEsup
t∈T

∣∣∣∣∣
n∑

i=1

εiti

∣∣∣∣∣ . (3.70)

We need two lemmas. The first gives a bound on the moment-generating function of a
normal random variable truncated from below, and the second is just Proposition 3.2.8 for
p = 1 and q = 2 when T consists of a single point, which in this case has a simpler proof.
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Lemma 3.2.10 Let g be a standard normal random variable, and let h = gI|g|>s for some
s> 0. Then

Eeλh ≤ 1+ 16λ2e−s2/32 ≤ exp
(
16λ2e−s2/32

)
,

for all 0 ≤ λ≤ s/4.

Proof It suffices to prove the first inequality. Set f (λ) = Eeλh − 1− 16λ2e−s2/32, λ ≥ 0.
Then f (0) = f ′(0) = 0, and therefore, it suffices to prove that f ′′(λ) ≤ 0 for 0 ≤ λ ≤ s/4.
But, on the one hand,

f ′′(λ)= E
(
h2eλh

)− 32e−s2/32,

and on the other, we have, first by change of variables and then by observing that λ ≤ s/4
(< s/2) and s < |x+ λ| imply that {x : |x+ λ| > s} ⊆ {x : |x| > s/2} because s < |x+ λ| ≤
|x|+ s/2 and that |x+λ|> 2|x| on the first set,

E
(
h2eλh

)= eλ
2/2

∫
|x+λ|>s

(x+λ)2e−x2/2dx/
√

2π

≤ 4eλ
2/2

∫
|x|>s/2

x2e−x2/2dx/
√

2π

≤ 16eλ
2/2

∫
|x|>s/2

e−x2/4dx/
√

2π

≤ 32eλ
2/2−s2/16 ≤ 32e−s2/32,

proving the lemma.

A fast way to obtain inequalities of the type (3.2.2) for q ≤ 4 and a single point t ∈Rn is
as follows: first, we observe that, by symmetry,

E
(∑

εiti
)4 =

∑
t4i + 6

∑
i<j

t2i t
2
j ≤ 3

(∑
t2i

)2 = 3

[
E
(∑

tiεi

)2
]2

.

The Paley-Zygmund argument would allow us to obtain reverse Hölder inequalities down
to quantiles, but if we just want to bound the L2-norm by the L1-norm, we may use the
Littlewood argument, given in the proof of the next lemma. It does not give the best constant,
but the constant obtained is small enough for our purposes.

Lemma 3.2.11 For any n and ti ∈R, i = 1, . . . ,n,∥∥∥∑ tiεi

∥∥∥
2
≤√

3
∥∥∥∑ tiεi

∥∥∥
1
.

Proof Set R = ∣∣∑ tiεi

∣∣ . Applying Hölder’s inequality for 1/p = α and 1/q = 1− α, for
0< α < 1, we have

ER2 = E
(
RαR2−α)≤ (ER)α

(
ER(2−α)/(1−α)

)1−α
.

Then, taking α = 2/3 so that (2−α)/(1−α)= 4, this gives

ER2 ≤ (ER)2/3
(
ER4

)1/3
,

which, combined with the bound ER4 ≤ 3(ER2)2 obtained earlier, yields the lemma.
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146 Empirical Processes

The best constant in the preceding inequality is
√

2 (see the notes at the end of this
chapter). We now prove Theorem 3.2.9.

Proof Set B2 := {x ∈Rn : |x| ≤ 1} and RT := Esupt∈T

∣∣∑n
i=1 εiti

∣∣. The main step in the proof
is to show that if T ⊂ B2 and condition (3.69) holds for ε = 1, then

(logN(T,d2,1/2))
1/2 ≤ KRT, (3.71)

for some universal constant K (and then, by increasing the constants, if necessary, we may
take K to be the same in this inequality and in condition (3.69)).

To prove (3.71), we first note that if T is contained in the ball about zero of radius 1/2,
there is nothing to prove. Thus, we can assume that there is a point in T with norm larger than
1/2, |t|> 1/2. Then, by Lemma 3.2.11, RT is bounded from below; in fact, RT ≥ 1/2

√
3. Let

now U ⊆ T be a set of cardinality N(T,d2,1/2) satisfying d2(u,v)≥ 1/2 whenever u,v ∈ U,
u 
= v (N(T,d2,ε)<∞ for all ε > 0 because T is bounded). Such a set exists by the definition
of covering numbers. Define now ‖G‖U := maxu∈U

∣∣∑n
i=1 giui

∣∣, where gi are i.i.d. N(0,1)
random variables. This is the supremum of a Gaussian process, and Sudakov’s inequality
(Theorem 2.4.12) gives

E‖G‖U ≥ C1(logCard(U))1/2,

for some universal constant C1. Also, by the integrability properties of Gaussian processes,
concretely Exercise 2.1.3, if mG is the median of ‖G‖U, then mG ≥ C2E‖G‖U, for another
universal constant C2. This and Sudakov’s inequality give mG ≥ (K′)−1(logCard(U))1/2 for
K′ = 1/C1C2, which we may and do assume larger than 1; that is,

Pr
{‖G‖U > (logCard(U))1/2/K′}≥ 1

2
. (3.72)

Let now K = (100K′)2 and assume that maxi |ti| ≤ 1/KRT for all t ∈ T. Since RT is bounded
from below, there exists α ≥ 1 such that (logCard(U))1/2 ≤ αKRT. Suppose that we prove
that for such α,

Pr

{
‖G‖U > α

K

2K′ RT

}
<

1

2
. (3.73)

Then the two sets in (3.72) and (3.73) have a nonvoid intersection, and this implies that

(logCard(U))1/2 ≤ α
2

KRT.

If α/2 ≤ 1, inequality (3.71) is proved. If α/2> 1, we may repeat the argument and reduce
the constant by another half, and so on, to conclude, in any case, that (logCard(U))1/2 ≤
KRT, that is, (3.71). We proceed to prove (3.73). For s > 0 to be determined later, set hi =
giI|gi|>s and ki = gi − hi, i = 1, . . . ,n. We may write

Pr

{
‖G‖U >

αK

2K′ RT

}
≤ Pr

{
max
u∈U

∣∣∣∣∣
n∑

i=1

kiui

∣∣∣∣∣> αK

4K′ RT

}
+Pr

{
max
u∈U

∣∣∣∣∣
n∑

i=1

hiui

∣∣∣∣∣> αK

4K′ RT

}
.

By symmetry and the contraction principle (Theorem 3.1.17), the first probability is
bounded by

Pr

{
max
u∈U

∣∣∣∣∣
n∑

i=1

kiui

∣∣∣∣∣> αK

4K′ RT

}
≤ 4K′sEgEε supu∈U

∣∣∑n
i=1 εiuiki/|ki|

∣∣
αKEmaxu∈U

∣∣∑n
i=1 εiui

∣∣ ≤ 4K′s
αK

.
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3.2 Rademacher Processes 147

Before estimating the second probability, let us note that if λ ≤ sKRT/4 and u ∈ U ⊂ B2,
then, by condition (3.69), λui ≤ s/4, and therefore, by Lemma 3.2.10,

Eeλhiui ≤ exp
(
16λ2u2

i e
−s2/32

)
,

which implies that

Eexp

(
λ

∣∣∣∣∣
n∑

i=1

hiui

∣∣∣∣∣
)
≤ 2Eexp

(
λ

n∑
i=1

hiui

)

≤ 2
n∏

i=1

exp

(
16λ2

n∑
i=1

u2
i e

−s2/32

)
≤ 2

n∏
i=1

exp
(
16λ2e−s2/32

)
,

where we use that if X is symmetric, then

Eeλ|X| ≤ E
(
eλXIX≥0

)+E
(
e−λXIX≤0

)≤ EeλX +Ee−λX = 2EeλX.

Hence, by Markov’s inequality after exponentiating,

Pr

{
max
u∈U

∣∣∣∣∣
n∑

i=1

hiui

∣∣∣∣∣> αK

4K′ RT

}
≤ 2(Card(U)exp

[
−λ αK

4K′ RT + 16λ2e−s2/32

]
.

Collecting the two probability estimates and setting s = αK/10K′ and λ= αK2RT/40K′, we
obtain

Pr

{
‖G‖U >

αK

2K′ RT

}
≤ 2

5
+ 2exp

[
α2K2R2

T

(
1− K

160(K′)2
+ 16K2

(40K′)2
exp

(
− α2K2

32(10K′)2

))]
.

Since K = (100K′)2, α ≥ 1, and RT ≥ 1/2
√

3, this exponent is negative and large enough in
absolute value to yield a bound of less the 1/2, proving (3.73).

Finally, it remains to be shown that the theorem follows from the case ε = 1/2. This
will follow by iteration. Since N(αT,d2,ε) = N(T,d2,ε/α) and RαT = αRT, both sides of
inequality (3.70) are homogeneous of degree 1 in α (as functions of αT). Also, if αT satisfies
(3.69) for a given ε, then T satisfies the same condition for ε/α. Hence, we can assume
without loss of generality that T⊂B2. Given ε > 0, let k be such that 2−k<ε≤ 2−k+1. Given
a covering of T by balls of radius 2−�+1, we can always produce a covering of T by balls
of radius 2−� by combining coverings by balls of radius 2−� of each of the balls of radius
2−�+1. Therefore,

N(T,d2,ε)≤ N(T,d2,2
−k)≤

k∏
�=1

sup
t∈T

N(T∩B2(t,2
−�+1),d2,2

−�),

where B2(t,ε) denotes the Euclidean ball of radius ε and centre t. Now, if T′ =T∩B2(t,2−�+1)

and T̃ = 2�−1T′ ⊆ B2, then

RT̃ = 2�−1RT′ ≤ 2�−1RT, N(T̃,d2,1/2)= N(2�−1T′,d2,1/2)= N(T′,d2,2
−�),

and, by (3.69),

sup
t∈T̃

max
i≤n

|ti| = sup
t∈T′

max
i≤n

2�−1|ti| ≤ 2�−1ε2/KRT ≤ 22�−2ε2/KRT̃ ≤ 1/KRT̃.
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Hence, (3.73) gives

logN(T∩B2(t,2
−�+1),d2,2

−�)= logN(T̃,d2,1/2)≤ K2R2
T̃
≤ 22�−2K2R2

T,

and, adding up,

logN(T,d2,ε)≤ K2R2
T

k∑
�=1

22�−2 < 2K2R2
T/ε

2,

proving the theorem.

Exercises

3.2.1 Prove that for all 0 ≤ r ≤ 1, inf0≤λ≤1 r−λe(1−λ)2/4 ≤ 2− r. Hints: Take derivatives to show that
the minimum of the function of λ in the statement of the exercise is attained at λ= 1+2logr, in
particular, (a) the function is nondecreasing on [0,1] for 0 ≤ r ≤ e−1/2, its minimum is at λ= 0
and it does not exceed 2− r (this follows from e1/8+1≤ 2e1/2); for e−1/2 ≤ r≤ 1, the minimum
is e−(logr)(1+2logr)e(logr)2 , and proving the inequality reduces to showing that (logr)2 + logr +
log(2− r)≥ 0. Since the value of this function is 0 at r = 1, check that its derivative for r ≤ 1,
whose value at r= 1 is 0, is not positive by observing that the second derivative is nonnegative.

3.2.2 Set Sn = {−1,1}n, μn = 1
2δ−1 + 1

2δ1 and Pn = μn. For x ∈ Sn and A ⊆ Sn, define dA(x) =
inf{|x− y| : y ∈ Conv(A)}, where | · | denotes Euclidean distance and Conv(A) is defined as the
convex hull of A on [−1,1]n. Then

Pn(A)
∫

Sn

ed2
A/8dPn ≤ 1.

Hint: If Card(A) = 1, then the integral is 2−n
∑n

i=1

(n
i

)
ei/2 = ((1 + e1/2)/2)n ≤ 1/Pn(A). In

particular, the theorem is proved for n = 1 because the theorem is obviously true for the
remaining case of A = {−1,1}. Thus, we can assume that the theorem is proved for k ≤ n,
and we must prove that it also holds for A ⊂ {−1,1}n+1, with A containing at least two
points. We may also assume that these two points differ on the last coordinate and write
A = A−1 × {−1} ∪ A+1 × {+1}, with Ai 
= ∅ and, for example, PnA−1 ≤ PnA+1. Prove that,
in analogy with the convexity inequality (3.65), for all 0 ≤ λ≤ 1 and x ∈ Sn,

d2
A((x,−1))≤ 4λ2 +λd2

A+1
(x)+ (1−λ)d2

A−1
(x),

and observe as well that dA((x,1)) ≤ dA+1(x). Set ui =
∫

ed2
i /8dPn, vi = 1/Pn(Ai), i = −1,+1.

The induction hypothesis simply reads ui ≤ vi, and this and the preceding two estimates give∫
Sn+1

ed2
A/8dPn+1 ≤ 1

2
v+1

[
1+ eλ

2/2

(
v−1

v+1

)1−λ]
.

Taking λ = 1− v+1/v−1 (which approximates the minimiser − log(v+1/v−1) and is dominated
by 1), this bound becomes

1

2
v+1

[
1+ eλ

2/2 (1−λ)1−λ
]
≤ 1

2
v+1

4

2−λ = 1/Pn+1(A).

3.2.3 Check that the function F(x) = supt∈T

∑n
i=1 tixi, x = (x1, . . . ,xn) ∈ {−1,1}n, is convex and is

Lipschitz with constant σ = supt∈T

(∑n
i=1 ti

)1/2
with respect to the Euclidean distance, and

conclude from the preceding exercise that if Z = supt∈T

∑n
i=1 tiεi, then

Pr{|Z−mZ| ≥ t} ≤ 4e−t2/8σ 2
, t ≥ 0.

Hint: Proceed by analogy with Corollary 3.2.5.
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3.3 The Entropy Method and Talagrand’s Inequality 149

3.2.4 Let E denote the L2-closure of a sequence εi of independent Rademacher variables. Show that
on E the Lp-topologies are all equivalent for 0 ≤ p<∞, where the L0-topology is the topology
of convergence in probability. For p ≥ 1, all the Lp-metrics are equivalent on E .

3.3 The Entropy Method and Talagrand’s Inequality

The object of this section is to prove Talagrand’s inequality, which is one of the deepest
results in the theory of empirical processes. This inequality may be thought of as a Bennett,
Prokhorov or Bernstein inequality uniform over an infinite collection of sums of independent
random variables, that is, for the supremum of an empirical process. As such, it constitutes
an exponential inequality of the best possible kind (see the discussion about the optimality
of Prohorov’s inequality just after Theorem 3.1.7). Talagrand’s inequality has several proofs,
arguably the most efficient being the one based on log-Sobolev inequalities. These are
bounds for

Entμ f := Eμ( f log f )− (Eμ f )(logEμ f )

in terms of f and its derivatives, which, when applied to f (z) = eλz, yield differential
inequalities for the Laplace transform of μ, F(λ) = EeλZ, where L(Z) = μ. Note that if
f (z) = eλz, then Entμ f = λF′(λ) − F(λ) logF(λ). These differential inequalities can be
integrated in many important cases and produce bounds for the Laplace transform F(λ)
which, in turn, translate into exponential inequalities for the tail probabilities of Z. The
prototype for this procedure is again Gaussian: the log-Sobolev inequality for Gaussian
processes yields, via the entropy method (or Herbst’s method), the Borell-Sudakov-Tsirelson
inequality for the concentration about its mean of the supremum of a sample bounded
Gaussian process, as shown in Section 2.5. Here we examine modified log-Sobolev
inequalities for functions of independent random variables satisfying sets of conditions that
allow for the inequalities to be integrated once suitably modified. The classes of functions
examined here are, in order of increasing complexity, functions of bounded differences,
self-bounding functions and subadditive functions, although they are not examined in this
order. Talagrand’s inequality follows from differential inequalities for subadditive functions.

3.3.1 The Subadditivity Property of the Empirical Process

There are several types of random variables Z = f (X1, . . . ,Xn) defined on product spaces
for which the entropy Entμ(eλ f ) can be bounded by functions of their Laplace transform
and/or their first derivative (log-Sobolev-type inequalities) and such that these inequalities
can be transformed into solvable differential inequalities for the logarithm of their Laplace
transforms, in turn, implying useful exponential deviation or concentration inequalities.
These log-Sobolev-type inequalities follow from tensorisation of entropy and are less ‘user
friendly’ than the log-Sobolev inequality for Gaussian processes in the sense that usually
one needs to transform them in clever ways to integrate them, particularly if one wishes to
obtain best (or close to best) constants in the bounds.

We begin with a simple modified log-Sobolev inequality that will allow us to then isolate
the properties of the variable Z that are relevant. Let (S,S) be a measurable space. Let, for
some n ∈ N, f : Sn �→ R and fk : Sn−1 �→ R, k = 1, . . . ,n, be measurable functions. Let Xi,

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.004
http:/www.cambridge.org/core


150 Empirical Processes

1≤ i≤ n, be independent S-valued random variables with laws L(Xi)=μi, let μ=∏n
i=1μi.

Let Z = f (X1, . . . ,Xn) and let Zk = fk(X1, . . . ,Xk−1,Xk+1, . . . ,Xn). Then tensorisation of
entropy together with the variational formula for entropy yield the following modified
log-Sobolev inequality for the Laplace transform of Z.

Notation remark With μ, f , Xi and Z as in the preceding paragraph, abusing notation, we
will write Entμ(eλZ) for Entμ(eλ f ). Also, we will let Ek denote integration with respect to Xk

only (i.e., conditional expectation given Xi, 1≤ i≤ n, i 
= k). Finally, it is convenient to give
names to two functions that appear often in the following inequalities:

φ(λ)= e−λ+λ− 1, ν(λ)= e−λφ(−λ)= 1− (1+λ)e−λ, λ ∈R. (3.74)

These notations are in force for the rest of Section 3.3.

Proposition 3.3.1 Assume that Z, Zk have finite Laplace transforms for all λ (or for λ in an
interval). Then, for all λ ∈R (or in an interval),

Entμ
(
eλZ
)≤ n∑

k=1

E
(
eλZkEk

[
φ(λ(Z−Zk))e

λ(Z−Zk)
])= n∑

k=1

E
[
eλZkν(−λ(Z−Zk))

]
=

n∑
k=1

E
[
φ(λ(Z−Zk))e

λZ
]
, (3.75)

Proof By tensorisation of entropy (Proposition 2.5.3), homogeneity of entropy and the
variational formula for the entropy of exponentials (Lemma 2.5.5), we obtain

Entμ
(
eλZ
)≤ E

n∑
k=1

Entμk

(
eλZ
)

= E
n∑

k=1

eλZkEntμk

(
eλ(Z−Zk)

)
(3.76)

≤ E
n∑

k=1

eλZkEk

[
φ(λ(Z−Zk))e

λ(Z−Zk)
]

=
n∑

k=1

E
[
φ(λ(Z−Zk))e

λZ
]
.

Now, φ is convex and φ(0)= 0; therefore, for any 0 ≤ x ≤ 1 and any λ ∈R,

φ(λx)≤ xφ(λ), or
ν(−λx)
ν(−λ) ≤ xeλ(x−1). (3.77)

Then, if Z, Zk satisfy

0 ≤ Z−Zk ≤ 1, for 1 ≤ k ≤ n and
∑

k

(Z−Zk)≤ Z, (3.78)

we have φ(λ(Z−Zk))≤ (Z−Zk)φ(λ), and the preceding inequality gives

Entμ
(
eλZ
)≤ φ(λ) n∑

k=1

E
[
(Z−Zk)e

λZ
]≤ φ(λ)E(ZeλZ

)
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or, with Z̃ = Z−EZ,

Entμ
(
eλZ̃
)
≤ φ(λ)E

(
Z̃eλZ̃

)
+φ(λ)(EZ)EeλZ̃, λ ∈R.

Setting F(λ)= EeλZ̃, this becomes

λF′(λ)−F(λ) logF(λ)≤ φ(λ)F′(λ)+φ(λ)(EZ)F(λ), λ ∈R,

or, letting L(λ) := logF(λ),

(λ−φ(λ))L′(λ)−L(λ)≤ φ(λ)EZ, (3.79)

a relatively easy to integrate differential inequality. Random variables Z defined on a product
probability space that satisfy the conditions in (3.78) are called self-bounding. However, the
supremum of an empirical process is not self-bounding unless it is indexed by nonnegative
functions f bounded by 1, whereas we are interested in centred empirical processes. It
turns out these satisfy (3.78) except for the fact that Z− Zk may take negative values, but
this lack of ‘nonnegativeness’ is a source of considerable complications. Other important
classes of random variables that satisfy modified log-Sobolev inequalities leading to good
exponential bounds are variables defined by functions with bounded differences (see later)
and by functions that are Lipschitz separately in each coordinate.

Definition 3.3.2 A function f : Sn �→R is subadditive if there exist n functions fk : Sn−1 �→R
such that, setting x = (x1, . . . ,xn) and, for each k, x(k) = (x1, . . . ,xk−1,xk+1, . . . ,xn), we have
both

f (x)− fk(x
(k))≤ 1

and
n∑

k=1

(
f (x)− fk(x

(k))
)≤ f (x),

for all x ∈ Sn. If Xi are independent random variables taking values in S and Z =
f (X1, . . . ,Xn), Zk = fk(X1, . . . ,Xk−1,Xk+1, . . . ,Xn), where f is subadditive with respect to
the functions f1, . . . , fk, we say that Z is a subadditive random variable with respect to the
variables Zk.

Next, we show that suprema of empirical process indexed by uniformly bounded and
centred functions are subadditive. We will need a little more in order to upset the lack of
positivity of Z− Zk: the modified log-Sobolev inequality to be obtained in Corollary 3.3.6
will be in part in terms of

∑n
k=1 EkY2

k for any variables Yk such that both Yk ≤ Z− Zk and
EYk ≥ 0, and the following lemma also shows that such variables Yk exist for suprema of
empirical process and gives as well a nice bound for

∑n
k=1 EkY2

k :

Lemma 3.3.3 Let F be a finite set of measurable functions on (S,S), P-centred and
bounded above by 1, and let X, Xi be independent S-valued random variables. Let Z =
max f ∈F

∑n
i=1 f (Xi), and set Zk := max f ∈F

∑
1≤i≤n,i
=k f (Xi), for some n ∈ N. Then Z is

subadditive with respect to Zk, k = 1, . . . ,n; that is,

Z−Zk ≤ 1 (3.80)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.004
http:/www.cambridge.org/core


152 Empirical Processes

and
n∑

k=1

(Z−Zk)≤ Z. (3.81)

Moreover,

Z−EkZ ≤ 1, (3.82)

where we denote by Ek-integration with respect to the variable Xk only (conditional
expectation given Xi, i 
= k). Finally, there exist random variables Yk, 1 ≤ k ≤ n, such that
Yk ≤ Z−Zk, EkYk = 0 and, if F ⊂ L2(P), also

n∑
k=1

EkY
2
k ≤

n∑
k=1

max
f ∈F

E f 2(Xk)= nσ 2, (3.83)

where

σ 2 := 1

n

n∑
k=1

max
f ∈F

E f 2(Xk). (3.84)

If the functions in F are bounded by 1 in absolute value, then |Yk| ≤ 1 and |Z − Zk| ≤
1. In this case, the preceding conclusions also hold for F ∪ (−F), that is, for Z =
max f ∈F |∑n

i=1 f (Xi)| and Zk := max f ∈F |∑1≤i≤n,i
=k f (Xi)|.

Proof For ω fixed, let f ω0 ∈F be such that Z(ω)=∑n
i=1 f ω0 (Xi(ω)). For ease of notation,

we drop the superindex ω. Then, obviously, Z−Zk ≤ f0(Xk)≤ 1. Also,

(n− 1)Z = (n− 1)
n∑

i=1

f0(Xi)=
n∑

k=1

∑
i
=k,1≤i≤n

f0(Xi)≤
n∑

k=1

Zk;

that is,
∑n

k=1(Z−Zk)≤ Z.
Let now fk = f ωk be such that Zk(ω) =∑

i
=k,1≤i≤n f ωk (Xi(ω)), and note that fk does not
depend of Xk, in particular, Ek fk(Xk)= 0=E fk(Xk). (Note that fk in this proof has a different
meaning than fk in Definition 3.3.2.) Then we have

Z−EkZ ≤ Z−Ek

⎛⎝∑
i
=k

fk(Xi)+ fk(Xk)

⎞⎠= Z−
∑
i
=k

fk(Xi)= Z−Zk ≤ 1

by (3.80).
Set Yk = fk(Xk), which is bounded in absolute value by 1 and, as just observed, is centred.

Then

Yk =
n∑

i=1

fk(Xi)−Zk ≤ Z−Zk ≤ 1.

Also,
∑n

k=1 EkY2
k =

∑n
k=1 Ek f 2

k (Xk)≤ nσ 2.
If the functions in F are bounded by 1 in absolute value, then obviously |Yk| =

|Ek f (Xk)| ≤ 1, and by the inequalities in the preceding display, also |Z−Zk| ≤ 1.
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3.3.2 Differential Inequalities and Bounds for Laplace Transforms of
Subadditive Functions and Centred Empirical Processes, λ ≥ 0

In this subsection, Z = Z(X1, . . . ,Xn), where Xi are independent and not necessarily
identically distributed, denotes a subadditive random variable, that is, a random variable
such that there exist random variables Zk = Zk(X1, . . . ,Xk−1,Xk+1, . . . ,Xn) for which
inequalities (3.80) and (3.81) hold.

As indicated in the preceding subsection, in order to reduce the modified log-Sobolev
inequality (3.76) to an integrable differential inequality, we need a decoupling inequality
such as (3.77). Of course, (3.77) is not useful in the present situation because it only works
for x ∈ [0,1], and now the range of Z−Zk includes negative values. Thus, we must obtain a
bound for ν(−λx)/ν(−λ) that is nonnegative on (−∞,1] and is still in terms of xeλx and, at
most, of x2 and x. To this end, write, for α > 0,

ν(−λx)= ν(−λx)
xeλx +αx2 − x

(xeλx +αx2 − x), λ≥ 0, x ≤ 1,

and note that the function xeλx+αx2−x≥ 0 in the stated range (as x(eλx−1)≥ 0, for λ≥ 0);
actually, it is strictly positive for x 
= 0. Also note that

lim
x→1

ν(−λx)
xeλx +αx2 − x

= ν(−λ)
eλ+α− 1

.

We have the following:

Lemma 3.3.4 For λ≥ 0, α > 0 and x ≤ 1,

ν(−λx)≤ ν(−λ)
eλ+α− 1

(xeλx +αx2 − x).

As a consequence, if f ≤ 1 μ a.s., λ≥ 0 and α > 0, then

Entμ(e
λ f )≤ ν(−λ)

eλ+α− 1

∫ (
f eλ f +α f 2 − f

)
dμ. (3.85)

Proof By the preceding considerations, it suffices to prove that the function f (x)/g(x) :=
ν(−λx)/(xeλx +αx2 − x) attains its absolute maximum over (−∞,1] at x = 1. Note that
f (0)= g(0)= f ′(0)= g′(0)= 0 and that limx→0 f (x)/g(x) exists (and equals λ2/2(λ+α)).
Also, g(x) > 0 for x 
= 0, g′(x) > 0 for x> 0 and g′(x) < 0 for x< 0. Now consider(

f

g

)′
= g′

g

(
f ′

g′
− f

g

)
.

Since by the mean value theorem f (x)/g(x) = f ′(c)/g′(c) for some c between 0 and x, it
follows that if f ′/g′ is nondecreasing on (−∞,0) and on (0,1], then ( f/g)′ ≥ 0 on the same
intervals. If this is the case, the maximum of f/g over (−∞,1] is attained at x= 1. Now, the
derivative of f ′/g′ has the same sign as the function y = eλx − 1− λx+ 2λαx2. For α > 0,
this function attains its absolute minimum at x = 0, and it is 0, proving the claim.

For the second part, we combine the variational definition of entropy (2.63) with the
preceding inequality to obtain

Entμ(e
λ f )≤

∫ (
e−λ f − 1+λ f

)
eλ f dμ=

∫
ν(−λ f )dμ

≤ ν(−λ)
eλ+α− 1

∫ (
f eλ f +α f 2 − f

)
dμ.
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Now we combine the bound in (3.85) with tensorisation of entropy as given in
Proposition 3.3.1.

Proposition 3.3.5 Let Z be a subadditive random variable such that Z−EkZ ≤ 1. Then, for
all α > 0 and λ≥ 0,

Entμ(e
λZ)≤ ν(−λ)

eλ+α− 1
E

[
ZeλZ +

n∑
k=1

(Zk −Ek(Z)+αVark(Z))e
λZ

]
. (3.86)

Proof Let Entk denote entropy with respect to the probability law of Xk, k= 1, . . . ,n. Taking
f = Z−EkZ ≤ 1 in (3.85), we obtain

Entk
(
eλ(Z−EkZ)

)≤ ν(−λ)
eλ+α− 1

Ek

[
(Z−EkZ)e

λ(Z−EkZ)+α(Z−EkZ)
2 − (Z−EkZ)

]
= ν(−λ)

eλ+α− 1

[(
Ek

(
ZeλZ

)− (EkZ)(Eke
λZ)
)
e−λEkZ +αEk(Z−EkZ)

2
]
.

Then, by Proposition 2.5.3 and using first the homogeneity of entropy and then that by
Jensen, eλEkZ ≤ EkeλZ, we obtain

Entμ
(
eλZ
)≤ E

[
n∑

k=1

eλEkZEntk
(
eλ(Z−EkZ)

)]

≤ ν(−λ)
eλ+α− 1

E

[
n∑

k=1

(
Ek

(
ZeλZ

)− (EkZ)
(
Eke

λZ
)+αVark(Z)Eke

λZ
)]

.

By the subadditivity property (3.81), (n− 1)Z ≤∑n
k=1 Zk, and hence,

E
n∑

k=1

Ek

(
ZeλZ

)= E
(
nZeλZ

)≤ E
(
ZeλZ

)+E
n∑

k=1

ZkEke
λZ.

Since neither Zk nor Vark(Z) nor EkZ depends on Xk, the last two inequalities yield (3.86) by
Fubini.

Corollary 3.3.6 Let Z be a subadditive random variable such that Z− EkZ ≤ 1, let Yk be
random variables satisfying Yk ≤ Z−Zk ≤ 1, EkYk ≥ 0 and Yk ≤ a for some a ∈ (0,1] and let
α = 1/(1+ a). Then, for all λ≥ 0,

Entμ(e
λZ)≤ ν(−λ)

eλ+α− 1
E

[
ZeλZ +α

n∑
k=1

Ek(Y
2
k)e

λZ

]
(3.87)

and, as a consequence, letting Z̃ = Z−EZ,

Entμ(e
λZ̃)≤ ν(−λ)

eλ+α− 1
E

[
Z̃eλZ̃ +

(
α

n∑
k=1

Ek(Y
2
k)+EZ

)
eλZ̃
]

. (3.88)

Proof Since Zk = EkZk and Vark(Z)≤ Ek(Z−Zk)
2, we have

Zk −EkZ+αVark(Z)≤ Ek

[
α(Z−Zk)

2 − (Z−Zk)
]
.
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Next, the function y(x) = (1 + a)−1x2 − x is decreasing for x ≤ x0 = (1 + a)/2 and is
symmetric about x0. Since Yk ≤ a ≤ (1 + a)/2 and Yk ≤ Z − Zk ≤ 1, it follows that
y(Z−Zk)≤ y(1)= y(a)≤ y(Yk), and we obtain

Zk −EkZ+αVark(Z)≤ Ek(αY2
k −Yk)≤ αEkY

2
k .

Now, inequality (3.87) is a direct consequence of the preceding proposition. Inequality
(3.88) follows from (3.87) by homogeneity of entropy.

Assume now that EZ≥ 0 and that, as in Lemma 3.3.3, α
∑n

k=1 Ek(Y2
k) is bounded a.s., and

let γ be any number such that α
∑n

k=1 Ek(Y2
k)+EZ ≤ γ . Set

f (λ) := λ− ν(−λ)
eλ+α− 1

, h(λ)= ν(−λ)
eλ+α− 1

γ ,

L(λ) := log
(
EeλZ̃

)
.

Then it follows from the preceding corollary that the function L satisfies the differential
inequality

f (λ)L′(λ)−L(λ)≤ h(λ), 0 ≤ λ <∞, (3.89)

and it also follows, for example, using L’Hôpital’s rule, that L(0) = L′(0) = 0. We wish to
show that this differential inequality yields a bound for L. Note that

f (λ)= eλ+λ(α− 1)− 1

eλ+α− 1
= κ(λ)

κ ′(λ)
,

where we define κ(λ) := eλ+λ(α− 1)− 1. Similarly (note that ν(−λ)= λκ ′(λ)− κ(λ)),

h(λ)= γ λκ
′(λ)− κ(λ)
κ ′(λ)

.

Now, κ ′(λ)= eλ+α−1> 0 on [0,∞), so we can multiply both terms of (3.89) by κ ′/κ2 to
obtain that L satisfies the equation

κ(λ)L′(λ)− κ ′(λ)L(λ)
κ2(λ)

≤ γ λκ
′(λ)− κ(λ)
κ2(λ)

, λ > 0,

that is, (
L(λ)

κ(λ)

)′
≤ γ

(
− λ

κ(λ)

)′
, λ > 0. (3.90)

In fact, both functions are differentiable from the right at zero because L is differentiable and
L(0)= L′(0)= 0. Then, since limλ→0 L(λ)/κ(λ)= L′(0)/α = 0 and limλ→0 γ (−λ/κ(λ))=
−γ /α, integrating, we obtain

logEeλZ̃ = L(λ)≤ γ κ(λ)
[

1

α
− λ

κ(λ)

]
= γ
α

(
eλ−λ− 1

)= γ
α
φ(−λ). (3.91)

Thus, under certain natural conditions, the differential inequality (3.86), more precisely,
(3.88), integrates into the upper bound (3.91) for the logarithm of the Laplace transform of
Z−EZ. This is another instance of the entropy or Herbst’s method. Summarising, we have
proved the following:
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Theorem 3.3.7 Let Z = Z(X1, . . . ,Xn), Xi independent, be a subadditive random variable
relative to Zk = Zk(X1, . . . ,Xk−1,Xk+1, . . . ,Xn), k = 1, . . . ,n, such that EZ ≥ 0 and for which
there exist random variables Yk ≤ Z− Zk ≤ 1 such that EkYk ≥ 0. Let σ 2 <∞ be any real
number satisfying

1

n

n∑
k=1

Ek(Yk)
2 ≤ σ 2,

and set
v := 2EZ+ nσ 2. (3.92)

Then
logEeλ(Z−EZ) ≤ v(eλ−λ− 1)= vφ(−λ), λ≥ 0, (3.93)

where φ(x)= e−x − 1+ x.

It is standard procedure to derive tail probability bounds for Z − EZ based on a bound
for its Laplace transform (see Proposition 3.1.6). By this proposition, we obtain four such
bounds, three of them mimicking, respectively, the Bennett, Prokhorov and Bernstein
classical inequalities for sums of independent random variables and one in which the bound
on the probability tail function is inverted. Recall the notation

h1(x)= (1+ x) log(1+ x)− x, x ≥ 0. (3.94)

Then Theorem 3.3.7 and Proposition 3.1.6 give the following:

Corollary 3.3.8 Let Z be as in Theorem 3.3.7. Then, for all t ≥ 0,

Pr {Z ≥ EZ+ t} ≤ exp(−vh1(t/v))≤ exp

(
−3t

4
log

(
1+ 2t

3v

))
≤ exp

(
− t2

2v+ 2t/3

)
(3.95)

and
Pr
{
Z ≥ EZ+√

2vx+ x/3
}
≤ e−x, x ≥ 0. (3.96)

As another consequence of inequality (3.93), we have, by Taylor development, the
following bound for the variance of Z:

Var(Z)≤ 2EZ+ nσ 2. (3.97)

Combining Lemma 3.3.3 with the preceding theorem, we obtain one of the most useful
results in the theory of empirical processes, Bousquet’s version of the upper half of
Talagrand’s inequality:

Theorem 3.3.9 (Upper tail of Talagrand’s inequality, Bousquet’s version) Let (S,S) be a
measurable space, and let n ∈N. Let X1, . . . ,Xn be independent S-valued random variables.
Let F be a countable set of measurable real-valued functions on S such that ‖ f ‖∞ ≤U<∞
and E f (X1)= ·· · = E f (Xn)= 0, for all f ∈F . Let

Sj = sup
f ∈F

j∑
k=1

f (Xk) or Sj = sup
f ∈F

∣∣∣∣∣
j∑

k=1

f (Xk)

∣∣∣∣∣ , j = 1, . . . ,n,
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and let the parameters σ 2 and v be defined by

U2 ≥ σ 2 ≥ 1

n

n∑
k=1

sup
f ∈F

E f 2(Xk), and vn = 2UESn + nσ 2.

Then
logEeλ(Sn−ESn) ≤ vn(e

λ− 1−λ), λ≥ 0. (3.98)

As a consequence,

Pr {Sn ≥ ESn + x} ≤ Pr

{
max
1≤j≤n

Sj ≥ ESn + x

}
≤ e−(vn/U2)h1(xU/vn),

(3.99)

Pr {Sn ≥ ESn + x} ≤ Pr

{
max
1≤j≤n

Sj ≥ ESn + x

}
≤ exp

[
− 3x

4U
log

(
1+ 2xU

3vn

)]
≤ exp

[
− x2

2vn + 2xU/3

]
, (3.100)

and

Pr
{
Sn ≥ ESn +

√
2vnx+Ux/3

}
≤ Pr

{
max
1≤j≤n

Sj ≥ ESn +
√

2vnx+Ux/3

}
≤ e−x, (3.101)

for all x ≥ 0, where h1 is as in (3.94).

Proof We may assume, without loss of generality, that U = 1 (just apply the result for
U = 1 to U−1F = {U−1 f : f ∈F}). By approximation, we also may assume the class F to
be finite. With these two reductions, it follows from Lemma 3.3.3 that Sn is subadditive with
respect to the variables Sk

n, defined by the same expression as Sn but with the kth term deleted
from the sum, and that there exist Yk ≤ Sn − Sk

n ≤ 1 satisfying EYk = 0 and
∑

k EkY2
k ≤ nσ 2.

Therefore, Theorem 3.3.7 applies and gives inequality (3.98).
Also, eλSk is a nonnegative submartingale; thus, by Doob’s submartingale maximal

inequality,

Pr

{
max
j≤n

eλSj ≥ eλt+λESn

}
≤ EeλSn

eλt−λESn
≤ evnφ(−λ)−λt,

for all λ≥ 0; in particular, the probability on the left side of inequality (3.99) is dominated
by the infimum over λ of the preceding expression, and we obtain inequalities (3.99) and
(3.100) for U = 1 as in Proposition 3.1.6 (Corollary 3.3.8).

It is worth recording that, by (3.97),

Var(Sn)≤ 2UESn + nσ 2. (3.102)

Notice the similarity between inequality (3.100) and the Prohorov and Bernstein inequalities
in Theorem 3.1.7: in the case of F = { f }, with ‖ f ‖∞ ≤ c, and E f (Xi) = 0, U becomes c,
and vn becomes nσ 2, and the right-hand side of Talagrand’s inequality becomes exactly the
Bernstein and Prohorov inequalities. Clearly, then, Talagrand’s inequality is essentially a
best possible exponential bound for the empirical process. These comments also apply to
Talagrand’s inequality for the lower tails of the empirical process in the next subsection.
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3.3.3 Differential Inequalities and Bounds for Laplace Transforms of Centred
Empirical Processes, λ < 0

Whereas the Bousquet-Talagrand upper bound for the Laplace transform EeλZ of the
supremum Z of an empirical process (or of a subadditive function) for λ≥ 0 is best possible,
there exist quite good results for λ < 0, but these do not exactly reproduce the classical
exponential bounds for sums of independent real random variables when specified to a single
function. Because of this, and because the proof of the best-known result for λ < 0 is quite
involved, we will only prove an inequality with slightly worse constants, although we will
state here and will use throughout the best result at this writing. The method of proof will
be the same as elsewhere in this section: starting from a (modified) log-Sobolev inequality,
we will obtain an integrable differential inequality for the logarithm of Ee−tZ, t> 0, and the
problem reduces, as usual, to finding a good bound for the right-hand side of the log-Sobolev
inequality. Here is the result we do prove:

Theorem 3.3.10 (Lower tail of Talagrand’s inequality: Klein’s version) Under the same
hypotheses and notation as in Theorem 3.3.9, we have

Ee−t(Sn−ESn) ≤ exp

(
vn

e4t − 1− 4t

16

)
= e

vn
16 φ(−4t), for 0 ≤ t< 1. (3.103)

As a consequence, for all x ≥ 0,

Pr {Sn ≤ ESn − x} ≤ exp

(
− vn

16U2
h1

(
4xU

vn

))
, where h1(x)= (1+ x) log(1+ x)− x,

(3.104)

Pr {Sn ≤ ESn − x} ≤ exp

(
− 3x

16U
log

(
1+ 8xU

3v+ n

))
≤ exp

(
− x2

2vn + 8xU/3

)
(3.105)

and
Pr
{
Sn ≤ ESn −

√
2vnx− 4Ux/3

}
≤ e−x. (3.106)

Remark 3.3.11 Here is the result proved by Klein and Rio (2005): setting

Vn = 2UESn + sup
f

n∑
k=1

E f 2(Xk), (3.107)

then

Ee−t(Sn−ESn) ≤ exp

(
Vn

e3t − 1− 3t

9

)
= e

Vn
9 φ(−3t), for 0 ≤ t< 1, (3.108)

and that, as a consequence, for all x ≥ 0,

Pr {Sn ≤ ESn − x} ≤ e
− Vn

9U2 h1

(
3xU
Vn

)
, where h1(x)= (1+ x) log(1+ x)− x, (3.109)

Pr {Sn ≤ ESn − x} ≤ exp

(
− x

4U
log

(
1+ 2xU

Vn

))
≤ exp

(
− x2

2Vn + 2xU

)
(3.110)

and
Pr
{
Sn ≤ ESn −

√
2Vnx−Ux

}
≤ e−x. (3.111)
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We will denote these inequalities as the Klein-Rio version of the lower tail of Talagrand’s
inequality. There is not much difference, in the i.i.d. case, between the Klein-Rio
inequalities and the Klein inequalities that we will now prove, as is readily seen by
comparing (3.103)–(3.106) to (3.108)–(3.111): for instance, the denominators in the
exponent for the Bernstein-type inequalities are, respectively, 2Vn + 2xU and 2vn + 8xU/3
and, in the i.i.d. case, vn = Vn. But if the variables are not i.i.d., vn may be much larger
than Vn. In any case, both bounds fall somewhat short from what we would expect this
denominator to be, namely, 2Vn + 2Ux/3.

Proof We prove Theorem 3.3.10. We may assume that U = 1. We write Z = Sn and v = vn

for ease of notation, and let Zk be Z with the kth summand deleted from the sum defining Z, as
in Lemma 3.3.3, and let Yk = fk(Xk) also be as in that lemma and its proof. The starting point
is again a modified log-Sobolev inequality, namely, inequality (3.75) in Proposition 3.3.1,
which, setting

F(t)= Ee−tZ, t ≥ 0,

can be written as

tF′(t)−F(t) logF(t)≤
n∑

k=1

E
[
e−tZkν(t(Z−Zk))

]
, t ≥ 0. (3.112)

Adding and subtracting t2(1− t)−1xe−tx, ν(tx)= 1− (1+ tx)e−tx becomes

ν(tx)= t2

1− t
xe−tx +

(
1−

(
1− t+ tx

1− t

)
e−tx

)
:= q(t)xe−tx + r(t,x),

where q(t)≥ 0 and r(t,x) is decreasing in x for all 0 ≤ t< 1 and x ≤ 1. Then the right-hand
side of inequality (3.112) becomes

q(t)
n∑

k=1

E
[
(Z−Zk)e

−tZ
]+ n∑

k=1

E
[
e−tZkr(t,Z−Zk)

]
.

By the properties of q and r, we can use
∑n

k=1(Z−Zk)≤ Z on the first term and Yk ≤ Z−Zk ≤
1 on the second to obtain

tF′(t)−F(t) logF(t)≤−q(t)F′(t)+ 1

1− t

n∑
k=1

E
[
e−tZk

(
1− t− e−tYk(1− t+ tYk)

)]
. (3.113)

Let Tk = 1 − t − e−tYk(1 − t + tYk), and note that E
(
e−tZkTk

) = E
(
e−tZkEkTk

)
because Zk

does not depend on Xk. To further simplify the differential inequality (3.113), note that, for
0 ≤ t< 1,

Tk = (1− t)(1− e−tYk)− tYke
−tYk ≤−t2Yk +Yk

∞∑
k=2

(
1

(k− 1)! − (1− t)
1

k!
)

tk

=−t2Yk +Y2
k

∞∑
k=2

(
2

(k− 1)! −
1

k!
)

tk =−t2Yk +Y2
k

[
et − 1− t+

∞∑
k=3

(
2

(k− 1)! −
2

k!
)

tk
]

=−t2Yk +Y2
k

[
et − 1− t+ t3 +

∞∑
k=3

2

k! (t
k+1 − tk)

]
≤−t2Yk + (et − 1− t+ t3)Y2

k .
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Then, since EYk ≥ 0, we have EkTk ≤ (et − 1− t+ t3)EkY2
k , and also since Z− Zk ≤ 1, we

have Ee−tZk = Ee−tZet(Z−Zk) ≤ etF(t). This, together with the facts that et − 1− t+ t3 ≥ 0 and
that

∑n
k=1 EY2

k ≤ nσ 2, yields

n∑
k=1

E
(
e−tZkTk

)= n∑
k=1

E
(
e−tZkEkTk

)≤ nσ 2et(et − 1− t+ t3),

which, plugged into (3.113), gives, after multiplying both sides by 1 − t and using (t +
q(t))(1− t)= t,

tF′(t)− (1− t) f (t)≤ F(t)nσ 2et(et − 1− t+ t3), 0 ≤ t< 1,

or, setting as usual L(t)= logF(t),

tL′(t)− (1− t)L(t)≤ nσ 2et(et − 1− t+ t3), 0 ≤ t< 1, (3.114)

an inequality that can be integrated. To see this, just observe that for any differentiable
function h, d(eth(t)/t)/dt = et(th′(t)− (1− t)h(t))/t2, which applied to (3.114) yields(

L(t)

te−t

)′
= et

t2
(tL′(t)− (1− t)L(t))≤ nσ 2e2t e

t − 1− t+ t3

t2
.

By l’Hôpital’s rule, limt→0 etL(t)/t =−EZ, and we obtain

L(t)≤−te−tEZ+ nσ 2te−t

∫ t

0
e2u eu − 1− u+ u3

u2
du, 0 ≤ t< 1.

Now, differentiating and expanding, we see that the smallest α > 0 for which

te−t

∫ t

0
e2u eu − 1− u+ u3

u2
du ≤ eαt − 1−αt

α2

is α = 4, and we obtain L(t)≤ nσ 2φ(−4t)/16− te−tEZ, 0 ≤ t< 1, or

logEe−t(Z−EZ) ≤ nσ 2φ(−4t)/16+ t(1− e−t)EZ ≤ (nσ 2 + 2EZ)φ(−4t)/16, 0 ≤ t< 1,

since t(1− e−t)≤ 2φ(−4t), t ≥ 0. This is just inequality (3.103).
To derive the probability inequalities in the theorem, we see first that inequality (3.103)

yields

Pr{Z−EZ ≤−x} ≤ inf
t>0

Pr
{
e−t(Z−EZ) ≥ etx

}≤ exp

(
inf

0≤t<1
[vφ(−4t)/16− tx]

)
.

The absolute minimum of the function in the exponent is attained at t = 4−1 log(1+ 4x/v)
and is −(v/16)h1(4x/v) (see, e.g., (3.18)), which proves inequality (3.104) if t= 4−1 log(1+
4x/v) < 1, that is, for x ≤ v(e4 − 1)/4.

If x ≥ v(e4 − 1)/4, inequality (3.104) is a consequence of Bennet’s inequality (3.16) for
sums of independent real random variables as follows: for f ∈F , we have

Pr {Z ≤ EZ− x} ≤ Pr

{
n∑

i=1

f (Xi)≤ EZ− x

}

≤ exp

(
−nσ 2h1

(
x−EZ

nσ 2

))
≤ exp

(
−vh1

(
x−EZ

v

))
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because the function vh(u/v) is decreasing in v. By definition of v, for x ≥ v(e4 − 1)/4, we
have x−EZ ≥ (e4 − 3)/2EZ ≥ 25.799EZ or x−EZ ≥ x− x/25 = 24x/25, so

Pr {Z ≤ EZ− x} ≤ exp

(
−vh1

(
24x

25v

))
.

Now (3.104) follows because, for these x, h1(24x/25v) ≥ h1(4x/v)/16, as is easily seen,
for example, by observing that both functions of x/v are zero at zero and checking first
derivatives.

Inequalities (3.105) and (3.106) follow from (3.104) by change of variables in the
relations (3.19) and in the proof of Proposition 3.1.6.

3.3.4 The Entropy Method for Random Variables with Bounded Differences
and for Self-Bounding Random Variables

There are a few more results (or types of results) that are also very useful because they
allow us to obtain exponential inequalities for complicated random variables that are
not necessarily suprema of sums of independent centred random variables. We consider
functions with bounded differences and self-bounding random variables.

We begin with the extension of Hoeffding’s inequality to processes based on multivariate
functions with bounded differences.

Definition 3.3.12 Let (Si,Si), i = 1, . . . ,n, be measurable spaces, and let f :
∏n

i=1 Si �→ R
be a measurable function. f has bounded differences if

sup
xi,x′j∈S,i,j≤n

| f (x1, . . . ,xn)− f (x1, . . . ,xi−1,x
′
i,xi+1, . . . ,xn)| ≤ ci,

where, for each i, ci is a measurable function of xj, j 
= i, and there exists a finite constant c
such that

∑n
i=1 c2

i ≤ c2 for all (x1, . . . ,xn) ∈ Sn. If Z = f (X1, . . . ,Xn), where Xi are Si-valued
independent random variables, we say that the random variable Z has bounded differences.

The typical example of a function with bounded differences is f (x1, . . . ,xn) =∑n
i=1 xi,

with xi ∈ [ai,bi] (with or without absolute values).

Example 3.3.13 (a) Let Xi be independent B-valued random variables where B is Banach
space. Then, if ‖Xi‖ ≤ ci/2, the random variable

Sn =
∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
has bounded differences because changing one Xi by X′

i (both with norm dominated by ci)
changes the norm of the sum by at most ci. In this case, c2 =∑n

i=1 c2
i .

(b) Similarly, if F is a class of functions taking values on [a,b] for some −∞< a< b<
∞, then

Z = ‖Pn −P‖F
has bounded differences, and in this case, c2 = (b− a)/n. For instance, if F is a class of
indicator functions, as is the case for the cumulative empirical distribution function, then
[a,b] = [0,1] and c2 = 1/n.
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(c) Let fn(x : x1, . . . ,xn) = (1/nh)
∑n

i=1 K((x − xi)/h), where K is an integrable real
function that integrates to 1, that is, fn is a kernel density estimator, and let g(x1, . . . ,xn)=∫ | fn(x;x1 . . . ,xn)− f (x)|dx for some f ∈ L1. Then, if (x1, . . . ,xn) and (x′1, . . . ,x

′
n) differ only

in one coordinate, say, xj 
= x′j, we have

|g(x1, . . . ,xn)− g(x′1, . . . ,x
′
n)| ≤

1

nh

∫ ∣∣∣∣K(x− xj

h

)
−K

(
x− x′j

h

)∣∣∣∣dx ≤ 2‖K‖L1

n
;

that is, g is a function of bounded differences for c2 = 4‖K‖2
L1/n.

Theorem 3.3.14 If Z has bounded differences and
∑

c2
i ≤ c2, then, for all λ≥ 0,

Eeλ(Z−EZ) ≤ eλ
2c2/8 (3.115)

so that, for all t ≥ 0,

Pr {Z ≥ EZ+ t} ≤ e−2t2/c2
, Pr {Z ≤ EZ− t} ≤ e−2t2/c2

. (3.116)

Moreover,

Var(Z)≤ c2

4
. (3.117)

Proof Let us first observe that if Y is a random variable with finite Laplace transform (for
some λ > 0), and if we set FY(λ)= Eeλ(Y−EY), LY = logFY, we have, for μ=L(Y),

Entμ(e
λ(Y−EY))= λF′

Y(λ)−FY(λ) logFY(λ)= FY(λ)(λL
′
Y(λ)−LY(λ))

and, by homogeneity of entropy,

EntμeλY = EeλY(λL′
Y(λ)−LY(λ)). (3.118)

Then, if a ≤ Y−EY ≤ b, (3.6) in Lemma 3.1.1 gives, by integration by parts,

λL′
Y(λ)−LY(λ)=

∫ λ

0
tL′′

Y(t)dt ≤ λ2(b− a)2/8,

Thus,

Entμ(e
λY)≤ (EeλY)

λ2(b− a)2

8
. (3.119)

By hypothesis,

0 ≤ sup
x

Z(X1, . . . ,Xi−1,x,Xi+1, . . . ,Xn)− inf
x

Z(X1, . . . ,Xi−1,x,Xi+1, . . . ,Xn)≤ ci,

so, conditionally on {Xj : 1 ≤ j ≤ n, j 
= i}, Z− EiZ has range of length at most ci, and we
can apply this inequality to it with μ = μi = L(Xi). This observation in combination with
tensorisation of entropy (Proposition 2.5.3) gives

Entμ(e
λZ)≤

n∑
i=1

E(Entμi(e
λZ))≤ E

n∑
i=1

λ2c2
i

8
Eie

λZ ≤ λ
2c2

8
EeλZ.

Then, by (3.118), λL′
Z −LZ ≤ (λ2c2)/8, where LZ = logEeλ(Z−EZ), or(

LZ(λ)

λ

)′
= λL

′
Z(λ)−LZ(λ)

λ2
≤ c2

8
.
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Since LZ(λ)/λ→ 0 as λ→ 0 (l’Hôpital), this yields

LZ(λ)/λ≤ λc2/8,

proving (3.115). Then, using the exponential Chebyshev’s inequality, for all λ≥ 0,

Pr {Z ≥ EZ+ t} ≤ eλ
2c2/8−λt,

and optimizing in λ (λ = 4t/c2), we obtain the first inequality in (3.116). The second
inequality follows because −Z also has bounded differences with the same v as Z. Finally,
the variance inequality follows from (3.115) and Taylor development.

Back to the preceding example, we see that Theorem 3.3.14 gives Hoeffding’s inequality
for sums of independent bounded random variables: if Xi are independent with ranges,
respectively, contained in [ai,bi], then, for all t ≥ 0,

Pr

{∣∣∣∣∣
n∑

i=1

(Xi −EXi)

∣∣∣∣∣> t

}
≤ 2e−2t2/

∑n
i=1(bi−ai)

2
,

a best-possible inequality, for example, for linear combinations of independent Rademacher
variables. In fact, Theorem 3.3.14 is a very useful generalisation of Hoeffding’s inequality.
Here is what it yields in the preceding example. For Example 3.3.13(a) it gives the
following generalisation of Hoeffding’s inequality in Banach spaces: if Xi are independent
and B-valued with ‖Xi‖ ≤ ci/2, then

Pr {|‖Sn‖−‖ESn‖| ≥ t} ≤ 2e−2t2/
∑n

i=1 c2
i , (3.120)

and Var(‖Sn‖)≤∑
c2

i /4.
For Example 3.3.13(c), on the L1-norm of the kernel density estimator, Theorem 3.3.14

yields that for Xi independent, identically distributed,

Pr

{√
n

∣∣∣∣∫ | fn(x;X1, . . . ,Xn)− f (x)|dx−E
∫

| fn(x;X1, . . . ,Xn)− f (x)|dx

∣∣∣∣≥ t

}
(3.121)

≤ 2e−t2/2‖K‖2
L1 ,

and Var
(∫ | fn − f |)≤ ‖K‖2

L1/n for any f ∈ L1(R) and h> 0.
Finally, for Example 3.3.13(b), specialized to the empirical distribution function,

Theorem 3.3.14 produces an inequality of the best kind, which should be compared to
Massart’s (1990) improvement of the classical Dvoretzky, Kiefer and Wolfowitz inequality:

Pr
{√

n |‖Fn −F‖∞−E‖Fn −F‖∞| ≥ t
}≤ 2e−2t2 , t ≥ 0, (3.122)

and Var(‖Fn −F‖∞)≤ 1
4n . See also Exercise 3.3.2.

However, Theorem 3.3.14 produces bounds that are much weaker than those obtained
from Theorem 3.2.4 for supremum norms Z = supt∈T

∑n
i=1 ti(Xi − EXi), Xi independent

and with bounded ranges. We now turn to self-bounding random variables, that is,
random variables Z = f (X1, . . . ,Xn), Xi independent, that satisfy condition (3.78) for
Zk = fk(X1, . . . ,Xk−1,Xk+1, . . . ,Xn), k = 1, . . . ,n; that is

0 ≤ Z−Zk ≤ 1, for 1 ≤ k ≤ n and
∑

k

(Z−Zk)≤ Z.
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We already observed that the logarithm of the Laplace transform of Z − EZ for Z
self-bounding satisfies the differential inequality (3.79), namely,

(λ−φ(λ))L′(λ)−L(λ)≤ φ(λ)EZ.

Integrating this inequality gives the following bounds:

Theorem 3.3.15 Let Z be a self-bounding random variable. Then

logE
(
eλ(Z−EZ)

)≤ φ(−λ)EZ, λ ∈R. (3.123)

This applies in particular to Z= sup f ∈F
∑n

k=1 f (Xi), where F is countable and 0≤ f (x)≤ 1
for all x ∈ S and f ∈F .

Proof To ease notation, set v=EZ. First, we note that since φ(λ)+φ(−λ)= φ′(λ)φ′(−λ),
the function ψ0(λ) := vφ(−λ) solves the differential equation

(1− e−λ)ψ ′
0(λ)−ψ0(λ)= vφ(λ).

Next, we show that if a function L satisfies the differential inequality (3.79), then

L ≤ψ0,

which will prove the theorem because, as a consequence of Proposition 3.3.1, L = logEeλZ̃

does satisfy inequality (3.79). The function ψ1 := L−ψ0 satisfies the inequality

(1− e−λ)ψ ′
1(λ)−ψ1(λ)≤ 0,

which can be written as (eλ − 1)ψ ′
1(λ)− eλψ1(λ) ≤ 0. This inequality has the form f g′ −

f ′g ≤ 0, with f 
= 0 for λ 
= 0, which implies that (g/ f )′ ≤ 0. In our case, g(λ) = ψ1(λ)/

(eλ − 1), and the conclusion is that g is nonincreasing. Now ψ1(0) = 0, and since EZ̃ = 0

and ψ ′
1(λ)= E

(
Z̃eλZ̃

)
− v(1− e−λ), also ψ ′

1(0)= 0. Hence, using l’Hôpital’s rule, g(0)= 0.

This implies that g ≤ 0 on [0,∞) and g ≥ 0 on (−∞,0], showing that ψ1(λ) ≤ 0, for all
λ ∈R.

Now (the proof of) Proposition 3.1.6 together with the easy-to-check fact that h1(−t) ≥
t2

2 for 0 ≤ t ≤ 1 (note also that t2/2 ≥ (3t/4) log(1+ 2t/3)) gives that if Z is self-bounding,
then for t ≥ 0,

Pr {Z ≥ EZ+ t} ≤ exp (−(EZ)h1(t/EZ)) ,

Pr {Z ≤ EZ− t} ≤ exp (−(EZ)h1(−t/EZ)) (3.124)

and, as a consequence,

Pr {Z ≥ EZ+ t} ≤exp

(
−3t

4
log

(
1+ 2t

3EZ

))
≤ exp

(
− t2

2EZ+ 2t/3

)
,

Pr {Z ≤ EZ− t} ≤exp
(−t2/(2EZ)

)
and

Var(Z)≤ EZ.

Suprema of empirical processes indexed by nonnegative, bounded functions are not
the only examples of self-bounding random variables. Here we only note that conditional
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expectations of suprema of randomised empirical processes are self-bounding; that is, if F
is a countable class of functions bounded by 1 in absolute value and Xi are independent
identically distributed random variables, independent of a Rademacher sequence ε1, . . . ,εn,
then

Eε

∥∥∥∥∥
n∑

i=1

εi f (Xi)

∥∥∥∥∥
F

:= E

(
sup
f ∈F

∣∣∣∣∣
n∑

i=1

εi f (Xi)

∣∣∣∣∣ ∣∣∣X1, . . . ,Xn

)
(3.125)

is self-bounding. The proof is not different from the proof of Lemma 3.3.3 and is omitted.

3.3.5 The Upper Tail in Talagrand’s Inequality for Nonidentically
Distributed Random Variables∗

Consider the ‘variance’ parameters occurring in Talagrand’s inequality for empirical
processes, namely,

vn = 2UESn +
n∑

k=1

sup
f ∈F

E f 2(Xk) and Vn = 2UESn + sup
f ∈F

n∑
k=1

E f 2(Xk).

(In this section, the first occurs in Theorems 3.3.9 and 3.3.10 and the second in the Klein-Rio
inequality (3.108) for the lower tails of the empirical process.) They coincide if the variables
Xi are identically distributed, but not in general, and the first could be quite larger than
the second. This is not much of an inconvenience in this book as we will deal mostly
with independent identically distributed random variables. For these, Bousquet’s version
(Theorem 3.3.9) is best, and Klein’s version (Theorem 3.3.10) is quite close to being best.
However, in the next section we will find a situation in which we need to apply the upper-tail
Talagrand inequality for nonidentically distributed summands and Theorem 3.3.9 does not
apply precisely because it is in terms of vn, not Vn.

The object of this subsection is to prove an upper-tail version of Talagrand’s inequality
for non-i.d. summands. The proof is quite involved.

Theorem 3.3.16 Let Xi, i ∈ N, be independent S-valued random variables, and let F be a
countable class of functions f = ( f 1, . . . , f n) : S �→ [−1,1]n such that E f k(Xk) = 0 for all
fi ∈ F and k = 1, . . . ,n. Set

Tn( f )=
n∑

k=1

f k(Xk), Z = sup
f ∈F

Tn( f )

and

Vn = sup
f ∈F

ET2
n( f )= sup

f ∈F

n∑
k=1

E[ f k(Xk)]2, Vn = 2EZ+Vn. (3.126)

Then, for all t ∈ [0,2/3],

L(t) := log(EetZ)≤ tEZ+ t2

2− 3t
Vn, (3.127)

and therefore, for all x ≥ 0,

Pr

{
Z ≥ EZ+√

2Vnx+ 3x

2

}
≤ e−x. (3.128)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.004
http:/www.cambridge.org/core


166 Empirical Processes

Note that F could be F = {( f , . . . , f ) : f ∈ F}, and then we would obtain Tn( f ) =∑n
k=1 f (Xk), the empirical process indexed by F , and in this case

Vn = sup
f ∈F

n∑
k=1

E f 2(Xk)= sup
f ∈F

Var

(
n∑

k=1

f (Xk)

)
.

But the present setting allows for f changing with k. Also, taking F ∪ (−F), we obtain
Z= sup f ∈F |Tn( f )|, so the supremum of the absolute values of the empirical process are also
included in the theorem.

We now prove the theorem. First, we observe that it suffices to prove the theorem
for F finite, say, F = { f1, . . . , fm} for m finite, and fi = ( f 1

i , . . . , f m
i ). We begin with a

decomposition of entropy based on tensorisation and the variational formula. Recall that
Ek denotes integration with respect to the variable Xk. We set μk = L(Xk), k = 1, . . . ,n, and
P = μ1 ×·· ·×μn. The range of the variable t in what follows will be [0,∞).
Lemma 3.3.17 Let F(t)=EetZ, let g(t;X1, . . . ,Xn)= etZ and let gk(t;X1, . . . ,Xn), k= 1, . . . ,n,
be nonnegative functions such that E(gk loggk) <∞ for all t ≥ 0. Then

tF′(t)−F(t) logF(t)= EntP(g(t))≤
n∑

k=1

E[gk log(gk/Ekgk)]

+
n∑

k=1

E[(g− gk) log(g/Ekg)]. (3.129)

Proof By tensorisation of entropy (Proposition 2.5.3),

EntP(g)≤
n∑

k=1

E
(
Entμk(g)

)= n∑
k=1

E(Ek(g logg)− (Ek(g logEkg))

=
n∑

k=1

(E(g logg)− (E(g logEkg))=
n∑

k=1

E(g log(g/Ekg))

=
n∑

k=1

E(gk log(g/Ekg))+E((g− gk) log(g/Ekg)) .

Now Ek(g/Ekg)= 1, and therefore, by Lemma 2.5.2,

E(gk log(g/Ekg))≤ Esup
{
Ek(gkh) : Eke

h = 1
}= E(Entμk(gk))= E(gk log(gk/Ekgk)) ,

which combined with the preceding inequality gives the lemma.

The point is now to choose functions gk(t;X1, . . . ,Xn) whose μk-entropy is computable
and such that g− gk ≥ 0. The functions

gk(t;X1, . . . ,Xn)=
m∑

i=1

μk{τ = i}etTn( fi), (3.130)

where τ is the first i ≤ m such that Z = Tn( fτ ) will be shown to work. Note that gk is a
weighted average of variables etTn( fi); hence, gk ≤ etZ = g.

The next lemma bounds the second term at the right-hand side of inequality (3.129):
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Lemma 3.3.18 For g = etZ and the functions gk, 1 ≤ k ≤ n, defined by (3.130), we have

E((g− gk) log(g/Ekg))≤ tE(g− gk).

Proof Let Tk
n( f )= Tn( f )− f k(Xk), and Zk = sup f ∈F Tk

n( f ). Then Zk is independent of Xk

and Z−Zk ≤ 1. In particular,

g = etZ ≤ etetZk .

Next, if τk is the smallest integer such that Zk = Tk
n( fτk), then τk is independent of Xk, and

therefore, Ek f k
τk
(Xk)= 0 (recall that E f k(Xk)= 0, for all f ∈ F); hence,

Zk = Tk
n( fτk)= EkTn( fτk)≤ EkZ.

By conditional Jensen’s inequality this gives

etZk ≤ etEkZ ≤ Eke
tZ = Ekg a.s.

We conclude that g ≤ etEkg a.s., and the lemma follows.

Before estimating the first term on the right-hand side of (3.129), we will slightly modify
its inequality. Set

hk = Eke
tTk

n( fτ ) =
m∑

i=1

μk{τ = i}etTk
n( fi), (3.131)

a strictly positive function of the random variables Xi, i 
= k. Then, by Young’s inequality
(2.62),

gk

hk
log

gk

Ekgk
≤ gk

hk
log

gk

hk
− gk

hk
+ gk

Ekgk
,

which, multiplying by hk and integrating with respect to the variable Xk only, gives

Ek

(
gk log

gk

Ekgk

)
≤ Ek

(
gk log

gk

hk

)
−Ekgk + hk,

and, integrating, gives

E

(
gk log

gk

Ekgk

)
≤ E

(
gk log

gk

hk
− gk + hk

)
.

Using this inequality and Lemma 3.3.18 in inequality (3.129), we obtain

tF′(t)−F(t) logF(t)≤
n∑

k=1

E

(
gk log

gk

hk
+ (1+ t)(hk − gk)

)
+ t

n∑
k=1

E(g− hk). (3.132)

We further estimate the last term: by convexity of the exponential function,

n∑
k=1

E(g− hk)= n

(
Eg− 1

n

n∑
k=1

EetTk
n( fτ )

)
≤ n

(
Eg−Eet

∑n
k=1 Tk

n( fτ )/n
)

,

and note that
∑n

k=1 Tk
n( fτ )= (n− 1)Tn( fτ )= (n− 1)Z. Therefore, using the convexity of F,

we obtain
n∑

k=1

E(g− hk)≤ n(F(t)−F(t(n− 1)/n)≤ tF′(t). (3.133)
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For the first term on the right-hand side of inequality (3.132), we have the following
upper bound:

Lemma 3.3.19

E

(
gk log

gk

hk
+ (1+ t)(hk − gk)

)
≤ t2etVn

2
F(t). (3.134)

Proof It is convenient to introduce the function

s(t,x)= x logx+ (1+ t)(1− x), (3.135)

which is convex in x for all t. With this notation

gk log
gk

hk
+ (1+ t)(hk − gk)= hks(t,gk/hk)

and the convexity of s in x together with the fact that
∑m

i=1μk{τ = i}etTk
n( fi)/hk = 1 by

definition of hk, we obtain

hks(t,gk/hk)≤
m∑

i=1

μk{τ = i}etTk
n( fi)s(t,et f k

i (Xk)).

Integrating the variable Xk, we obtain

Ek(hks(t,gk/hk))≤
n∑

k=1

μk{τ = i}etTk
n( fi)E

(
s(t,et f k

i (Xk))
)

.

Now it is a calculus exercise to show that for each t≥ 0, the function ηt(x)= s(t,etx) satisfies
the inequality ηt(x) ≤ xη′t(0)+ (tx)2/2 for all x ≤ 1. Since E f k(Xk) = 0 for all f ∈ F, this
inequality implies that

Es(t,et f k
i (Xk))≤ t2

2
E( f k

i (Xk))
2. (3.136)

These two estimates give (recall that Tk
n( f )= Tn( f )− f k(Xk)≤ 1+Tn( f ))

n∑
k=1

Ek(hks(t,gk/hk))≤ t2et

2
Ek

(
m∑

i=1

1τ=ie
tTn( fi)

n∑
k=1

E( f k
i (Xk))

2

)
or, since

∑n
k=1(E fi(Xk))

2 ≤ Vn and E
∑m

i=1 1τ=ietTn( fi) = F(t),

n∑
k=1

E(hks(t,gk/hk))≤ t2etVn

2
F(t),

proving the lemma.

Setting as usual L(t)= logEetZ = logF(t), the decomposition (3.132) in combination with
the bounds (3.134) and (3.133) gives the differential inequality

t(1− t)L′(t)−L(t)≤ t2etVn/2.

Dividing both sides by t2 and noting that (L/t)′ = L′/t−L/t2, it becomes(
L

t

)′
−L′ ≤ etVn

2
.
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Since L(0)= 0 and L(t)/t → L′(0)= EZ, integrating between 0 and t, we obtain

L(t)

t
−L(t)−EZ ≤ et − 1

2
Vn

or

1− t

t
L(t)≤ et − 1

2
Vn +EZ.

Now,

et − 1

2
=

∞∑
k=1

tk

2 · k! ≤
∞∑

k=1

(
t

2

)k

= t

2− t
,

so, for 0 ≤ t< 2/3,

L(t)− tEZ ≤ t2

(2− t)(1− t)
Vn + t2

1− t
EZ = t2(Vn + (2− t)EZ)

(2− t)(1− t)
≤ t2(Vn + 2EZ)

2− 3t
.

This proves (3.127). To prove (3.128), one proceeds as in the last part of the proof of
Proposition 3.1.6 with the function ϕ(λ) there redefined as ϕ(λ)= Vnλ

2/(2(1− 3λ/2)).

Exercises

3.3.1 If Xi, 1≤ i≤ n, are independent symmetric random variables, prove that Eeλ
∑n

I=1 Xi/(
∑n

i=1 X2
i )

1/2 ≤
eλ

2/2 and hence

Pr

⎧⎨⎩
n∑

i=1

Xi/

(
n∑

i=1

X2
i

)1/2

> t

⎫⎬⎭≤ e−t2/2.

3.3.2 Let F be a countable class of measurable functions bounded by 1. Prove that

Eeλ(‖Pn−P‖F−E‖Pn−P‖F ) ≤ eλ
2/2n

and hence that Pr {|‖Pn −P‖F −E‖Pn −P‖F )| ≥ t} ≤ 2e−2nt2 . In particular, the sequence
{√n‖Pn − P‖F } is stochastically bounded if and only if the sequence of its expected values
is bounded.

3.3.3 (The Dvoretzky-Kiefer-Wolfowitz inequality.) Let F be a cumulative distribution function
(c.d.f.) on R, and let Fn be the empirical c.d.f. corresponding to n i.i.d. random variables
with common c.d.f. F. Massart’s (1990) improvement of the bounds in the classical
Dvoretzky-Kiefer-Wolfowitz (1956) inequality states that, for all t ≥ 0,

Pr
{√

n‖Fn −F‖∞ ≥ t
}≤ 2e−2t2 .

The proof is a real tour de force, and we do not reproduce it here (see Dudley (2014) for a
detailed proof). However, use techniques from this Section and from Section 3.1.3 to prove
that, for all u ≥ 4,

Pr
{√

n‖Fn −F‖∞ ≥ u
}≤ 2e−2(u−4)2 .

Hint: From Exercise 3.1.7,
√

nE‖Fn −F‖∞ ≤ 4 (actually, this bound can be improved to 1 by
Massart’s inequality!), and the result follows from this and inequality (3.122) applied for t ≥ 4.
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3.3.4 (a) Use Theorem 3.3.16 to show that if Sn = sup f ∈F
∣∣∑n

k=1 f (Xk)
∣∣ with Xi independent and F

countable and such that for each f ∈F , ‖ f ‖∞ ≤ U/2, then

E(Sn −ESn)
p
+ ≤ Np((1+ δ)vn)

p/2 +Ep(3U(1+ δ−1))p,

for all p> 1 and δ > 0, where Np =
∫∞

0 pup−1e−u2/2du = 2p/2�(p/2+ 1), which is bounded by
3(p/2)1/2(p/e)p/2, and Ep =

∫∞
0 pup−1e−udu = �(p+ 1), bounded by 3p1/2(p/e)p (by Stirling’s

formula). Hint: First obtain a Bernstein-type inequality for Sn −ESn from (3.127) like (3.100)
but with 3 instead of 2/3 as coefficient of xU.

(b) Deduce from (a) and the fact that Sn is nonnegative, which implies that (Sn−ESn)− ≤ESn,
that for all p> 1 and δ,τ > 0,

‖Sn‖p ≤ ‖(Sn −ESn)+‖p +ESn ≤ (1+ τ)ESn +N1/p
p (1+ δ)1/2V1/2

n

+
[

N2/p
p (1+ δ)
τ

+ 3E1/p
p (1+ δ−1)

]
U,

where ‖X‖p := (E|X|p)1/p. For instance, taking δ = τ = 1, we obtain

‖Sn‖p ≤ 2ESn +
(

9p

2

)1/(2p)
√

2p

e
Vn + (9p)1/p

4

e
pU

≤ 2ESn + 1.24 · 31/p
√

pVn + 2.13 · 91/ppU.

3.3.5 Prove that the coefficient of U in the preceding inequality can be improved if the variables Xi

are i.i.d. (use Theorem 3.3.9 instead of Theorem 3.3.16).
3.3.6 Show that if F is a countable class of functions bounded by 1 in absolute value and Xi are

independent identically distributed random variables, independent of a Rademacher sequence
ε1, . . . ,εn, then for all n, the random variables Eε

∥∥∑n
i=1 εi f (Xi)

∥∥
F in (3.125) are self-bounding.

3.3.7 Show that the exponential inequality (3.128) holds for Z∗ = maxk≤n sup f ∈F
∑k

i=1 f i(Xi)

(keeping EZ unchanged).
3.3.8 For what theorems for empirical processes in this section can the class F = {( f , . . . , f )} be

replaced by F = {( f 1, . . . , f n)} as in Theorem 3.3.16?
3.3.9 (Sums of independent Banach space–valued random variables.) Use the equivalence between

empirical processes and norms of sums of independent random variables to translate all the
exponential inequalities for empirical processes in this section into exponential inequalities for
sums of independent random variables. More concretely, as an example: let B be a Banach space
satisfying the property that there exists a countable subset D of the unit ball of its dual space
such that, for all x∈B, ‖x‖= sup f ∈B f (x), where ‖x‖ denotes the Banach space norm of x. (For
instance, by the Hahn-Banach theorem, separable Banach spaces satisfy this property, but other
Banach spaces satisfy it as well, such as �∞.) Then, if Xi are independent identically distributed
B-valued random variables such that ‖Xi‖ ≤ U and EXi = 0 – recall Lemma 2.6.3 – and setting
σ 2 = sup f ∈D E f 2(X1) and vn = nσ 2 + 2UE

∥∥∑n
i=1 Xi

∥∥, we have

Pr

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥≥ E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥+ x

}
≤ exp

(
− 3x

4U
log

(
1+ 2xU

3vn

))
,
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Pr

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥≤ E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥− x

}
≤ exp

(
− x

4U
log

(
1+ 2xU

vn

))
.

Slightly weaker inequalities hold if the variables Xi are not identically distributed.

3.4 First Applications of Talagrand’s Inequality

In this section we present a few important results related to empirical processes and
U-statistics. They are somewhat disconnected, perhaps their only connection being that their
proofs require Talagrand’s inequality in essential ways. The first is a moment inequality for
empirical processes which allows us to reduce the estimation of any moments to that of the
first or second moments. The second type of result is statistically important: Talagrand’s
inequality and symmetrisation (actually, randomisation by Rademacher variables) allow
us to replace the expected value of the supremum of the empirical process appearing in
Talagrand’s inequality by a completely data-based surrogate, thus rendering the inequality
statistically useful. The third consists of a Bernstein-type inequality for completely
degenerate or canonical U-statistics of order 2.

3.4.1 Moment Inequalities

As seen in Exercise 3.3.4, Talagrand’s inequality allows us to bound moments of the
empirical process based on a bounded class of functions in terms of the first moment,
the uniform bound on the functions and the supremum of the individual second moments
nσ 2 =∑n

i=1 sup f ∈F E f 2(Xi). Combining this with Hoffmann-Jørgensen’s inequality (after
symmetrising) yields a bound that applies to moments of the empirical processes over
classes of functions whose envelope is not necessarily bounded but just satisfies integrability
conditions. These inequalities are the analogues for the empirical process of very sharp
moment inequalities for sums of independent random variables: there exist C,K<∞ such
that if ξi are independent centred random variables, then, for all p ≥ 2,

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
p

≤ CKp

⎡⎣ppEmax
i≤n

|ξi|p + pp/2

(
n∑

i=1

Eξ 2
i

)p/2
⎤⎦ ,

for instance, with C= 16e+4 and K= 2e1/2. The dependence on p of the bounds as p→∞
is optimal in the sense that these inequalities for all p ≥ 2 and for bounded variables do
imply Bernstein’s inequality up to multiplicative constants (both in the inequality itself and
in the exponent). The constants in the following theorem may not be best possible (in large
part due to the use of symmetrisation), but they are reasonable. This theorem is designed for
classes with unbounded envelope: if a class of functions is uniformly bounded, the bound
on expectations given in Exercise 3.3.4 produces better constants.

Theorem 3.4.1 Let F be a countable collection of measurable functions on (S,S), and let
Xi be independent S-valued random variables such that Vn := sup f ∈F

∑n
i=1 E f 2(Xi) <∞
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and E f (Xi)= 0, for all f ∈F and all i. Set F = sup f ∈F | f |,

Sn =
∥∥∥∥∥

n∑
i=1

f (Xi)

∥∥∥∥∥
F

and Sn,M =
∥∥∥∥∥

n∑
i=1

( f (Xi)IF(Xi)≤M −E f (Xi)IF(Xi)≤M)

∥∥∥∥∥
F

,

where M> 0 is a positive constant. Then, for any n ∈N and any p> 1,

‖Sn‖p ≤ 2ESn,Mp +
(

9p

2

)1/(2p)
√

2p

e
Vn+

(
4

e
(72p)1/p + 16(4p)1/p

)
p
∥∥∥max

i
F(Xi)

∥∥∥
p
, (3.137)

where Mp
p = 8Emaxi Fp(Xi).

Proof We decompose Sn as

Sn ≤ Sn,Mp +
∥∥∥∥∥

n∑
i=1

( f (Xi)IF(Xi)>Mp −E f (Xi)IF(Xi)>Mp)

∥∥∥∥∥
F

.

Then we apply the inequality in Exercise 3.3.4 to the first term of this decomposition:

‖Sn,Mp‖p ≤ 2ESn,Mp +
(

9p

2

)1/(2p)
√

2p

e
Vn + (9p)1/p

4

e
pMp.

To estimate the second term, we note that by Rademacher randomisation (Theorem 3.1.21),

E

(∥∥∥∥∥
n∑

i=1

( f (Xi)IF(Xi)>Mp −E f (Xi)IF(Xi)>Mp)

∥∥∥∥∥
F

)1/p

≤ 2‖S̃
(Mp)

n ‖p,

where

S̃
(Mp)

n :=
∥∥∥∥∥

n∑
i=1

εi f (Xi)IF(Xi)>Mp

∥∥∥∥∥
F

and εi are independent Rademacher variables independent of the sequence {Xi}. To estimate

‖S̃
(Mp)

n ‖p, we use Hoffmann-Jørgensen’s inequality (Theorem 3.1.15), which gives

‖S̃
(Mp)

n ‖p ≤ 2(p+2)/p(p+ 1)(p+1)/p
[
41/pt0 +Mp/8

1/p
]
,

where t0 is any number such that Pr
{∥∥∑n

i=1 εi f (Xi)IF(Xi)>Mp

∥∥
F > t0

}≤ 1/8. But since

Pr

{∥∥∥∥∥
n∑

i=1

εi f (Xi)IF(Xi)>Mp

∥∥∥∥∥
F

> 0

}
= Pr

{
max

i
F(Xi) >Mp

}
≤ 1/8,

we can take t0 = 0. Hence,

‖S̃
(Mp)

n ‖p ≤ 2 · 41/p(p+ 1)(p+1)/pMp/8
1/p.

To simplify, we may use (p+1)(p+1)/p = ((p+1)/p)(p+1)/pp1+1/p ≤ 4p1+1/p. Collecting these
bounds yields the theorem.

In concrete situations, as with metric entropy expectation bounds for VC classes of
functions, one may have as good an estimate for ESn,M as for ESn, if not better. In general,
one can prove that ESn,M ≤ 2ESn (and that if the variables f (Xi) are symmetric, then ESn,M ≤
ESn): this follows by Theorem 3.1.21 (Rademacher randomisation) and Corollary 3.1.20.
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Remark 3.4.2 It is also worth noting that in (3.137) the coefficient 2 for ESn,Mp can be
replaced by 1+ δ at the expense of increasing the coefficients of the other two summands
from the bound for ‖Sn‖p. This follows readily, with the same proof as that of Theorem 3.4.1,
from one of the inequalities in Exercise 3.3.4.

Inequality (3.137) simplifies a bit by using the bound p1/p ≤ e1/e. Also, in the i.i.d.
case, one can do a little better in the last summand by using Exercise 3.3.5 instead of
Exercise 3.3.6, that is, by basing the derivation of the inequality on Theorem 3.3.9 instead
of Theorem 3.3.16.

3.4.2 Data-Driven Inequalities: Rademacher Complexities

Talagrand’s inequality (Theorems 3.3.7 and 3.3.10) gives an essentially best-possible rate
of concentration of the (supremum of the) empirical process about its expectation, whereas,
in general, the available expectation bounds for empirical processes are much less precise,
such as, for example, the metric entropy or the bracketing bounds for expected values.
Moreover, considering for simplicity the case of i.i.d. random variables Xi, the ‘parameters’
ESn and σ 2 = nmax f ∈F E f 2(X1) depend on the distribution of X1, which is usually partially
or totally unknown in statistical inference. Therefore, Talagrand’s inequality would be
much more useful if these quantities could be replaced by data-dependent surrogates or
estimates, particularly if the constants involved were reasonable. A similar comment applies
to the probability inequalities for empirical processes derived from bounded differences
(Theorem 3.3.14). Of the two parameters ESn and σ 2, the first is more complex than the
second, and the second can always be bounded by U and usually by much smaller quantities,
as, for instance, in density estimation. In this subsection we replace ESn in Talagrand’s and
in the bounded differences inequalities by random surrogates, namely,∥∥∥∥∥

n∑
i=1

εi f (Xi)

∥∥∥∥∥
F

or Eε

∥∥∥∥∥
n∑

i=1

εi f (Xi)

∥∥∥∥∥
F

.

These variables are sometimes called Rademacher complexities.

Theorem 3.4.3 Let F be a countable collection of measurable functions on (S,S) with
absolute values bounded by 1/2, let Xi, i ∈ N, be independent, identically distributed
S-valued random variables with common probability law P, let εi, i ∈ N, be a Rademacher
sequence independent from the sequence {Xi} and let σ 2 ≥ sup f ∈F P f 2. Then, for all n ∈ N
and x ≥ 0,

Pr

{∥∥∥∥∥1

n

n∑
i=1

( f (Xi)−P f )

∥∥∥∥∥
F

≥ 3

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
F

+ 4

√
2σ 2x

n
+ 70

3n
x

}
≤ 2e−x. (3.138)

Proof Set Sn =
∥∥∑n

i=1( f (Xi)−P f )
∥∥
F and S̃n =

∥∥∑n
i=1 εi f (Xi)

∥∥
F (as in the preceding

proof). Note that the second variable is also the supremum of an empirical process: the
variables are X̃i = (εi,Xi), defined on {−1,1} × S, and the functions are f̃ (ε,x) = ε f (x).
Thus, Talagrand’s inequalities apply to both Sn and S̃n. Then, using√

2x(nσ 2 + 2ES̃n)≤
√

2xnσ 2 + 2
√

xES̃n ≤
√

2xnσ 2 + 1

δ
x+ δES̃n,
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for any δ > 0, the Klein-Rio (3.111) version of Talagrand’s lower-tail inequality (that we use
instead of Theorem 3.3.10) gives

e−x ≥ Pr

{
S̃n ≤ ES̃n −

√
2x(nσ 2 + 2ES̃n)− x

}
≥ Pr

{
S̃n ≤ (1− δ)ES̃n −

√
2xnσ 2 − 1+ δ

δ
x

}
.

Similarly, Theorem 3.3.7 gives

Pr

{
Sn > (1+ δ)ESn +

√
2xnσ 2 + 3+ δ

3δ
x

}
≤ e−x

(and the analogous inequality for S̃n, which we will not use in this proof). Recall also that
by Theorem 3.1.21, ESn ≤ 2ES̃n. Then we have, on the intersection of the complement of
the events in the last two inequalities for, for example, δ = 1/5,

Sn <
6

5
ESn +

√
2xnσ 2 + 16

3
x ≤ 12

5
ES̃n +

√
2xnσ 2 + 16

3
x

<
12

5

[
5

4
S̃n + 5

4

√
2xnσ 2 + 7.5x

]
+√

2xnσ 2 + 16

3
x

= 3S̃n + 4
√

2xnσ 2 + 70

3
x;

that is, this inequality holds with probability at least 1− 2e−x.

Different values of δ (or even different δ from each of the two inequalities used) produce
different coefficients in inequality (3.138) (e.g., δ= 1/2 gives the coefficients 6, 7 and 61/3).

Remark 3.4.4 Since Rademacher complexities are self-bounding (see Exercise 3.3.6) and
the lower-tail exponential inequality for self-bounding variables is tighter than the Klein-Rio
inequality, if one is willing to use EεS̃n instead of the simpler S̃n as a surrogate for ESn in
inequality (3.138), one obtains a slightly better bound. The self-bounding inequality (3.124)
yields (see two lines below the inequality)

Pr
{
EεS̃n ≤ ES̃n − t

}
≤ e−t2/(2ES̃n),

and, with a change of variables t2 = 2xES̃n and using as in the preceding proof that the
arithmetic mean dominates the geometric mean,

Pr
{
EεS̃n ≤ (1− δ/2)ES̃n − x/δ

}
≤ e−x.

Then replacing Klein-Rio’s inequality with this inequality with δ = 2/7 in the preceding
proof yields

Pr

{∥∥∥∥∥1

n

n∑
i=1

( f (Xi)−P f )

∥∥∥∥∥
F

≥ 3Eε

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
F

+ 4

√
2σ 2x

n
+ 12x

n

}
≤ 2e−x. (3.139)
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If no estimate of the variance of f ∈ F other than the supremum norm of the envelope
of the class is available, then a cruder but more purely data-driven estimate can be obtained:
one just uses the fact that the class F has bounded differences. If a class of functions F is
bounded by 1, then when one replaces a single variable Xi in ‖∑n

i=1( f (Xi)−P f )/n‖F , the
variable changes by at most 2/n, which means that these random variables have bounded
differences with constant c2 = 4/n, and the same is true for the variables

∥∥ 1
n

∑n
i=1 εi f (Xi)

∥∥
F .

Then, as a consequence of the exponential inequality for functions of bounded differences
(3.116), we have the following:

Theorem 3.4.5 Let F be a countable collection of measurable functions on (S,S) with
absolute values bounded by 1, let Xi, i ∈N, be independent, identically distributed S-valued
random variables with common probability law P and let εi, i ∈ N, be a Rademacher
sequence independent from the sequence {Xi}. Then, for all n ∈N and x ≥ 0,

Pr

{∥∥∥∥∥1

n

n∑
i=1

( f (Xi)−P f )

∥∥∥∥∥
F

≥ 2

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
F

+ 3

√
2x

n

}
≤ 2e−x. (3.140)

Proof With the same notation as in the preceding proof, Theorem 3.3.14 gives, after a
change of variables, both

Pr

{
S̃n ≤ ES̃n −

√
2x

n

}
≤ e−x and Pr

{
Sn ≥ ESn +

√
2x

n

}
≤ e−x,

and we recall that ESn ≤ 2ES̃n. Hence, with probability at least 1− 2e−x,

Sn < ESn +
√

2x

n
< 2

[
S̃n +

√
2x

n

]
+
√

2x

n
,

and the result follows.

Consider the class of functions Fh = {y �→ K((x− y)/h) : x ∈ R}, where K is in L1(R)∩
L∞(R), and a probability measure dP(x) = f (x)dx, where f is bounded and continuous.
Then the envelope of the class is U = ‖K‖∞, whereas

σ 2 = sup
x

∫
K2

(
x− y

h

)
f (y)dy =

∫
K2(u) f (x− uh)du ≤ ‖ f ‖∞‖K‖2

L2h,

much smaller than the envelope as h→ 0. For the empirical process based on P and indexed
by classes of functions, which will occur in density estimation later, Theorem 3.4.3 is more
adequate than Theorem 3.4.5.

3.4.3 A Bernstein-Type Inequality for Canonical U-statistics of Order 2

A U-statistic is a sum of the form

Un =
∑

1≤i<j≤n

hij(Xi,Xj), (3.141)

where Xi are independent random variables taking values in a measurable space (S,S) and
with respective laws Pi and hij which are measurable functions of two variables hij : S2 �→R
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such that E|hij(Xi,Xj)|<∞ for all i, j. The U-statistic is degenerate or canonical if for all i, j
and x,y ∈ S,

Ehij(Xi,y)= Ehij(x,Xj)= 0. (3.142)

If Un is not canonical, it decomposes into a ‘linear’ term and a canonical U-statistic
(Hoeffding decomposition). For instance, in the case hij = h with h(x,y) = h(y,x) and Xi

identically distributed, this decomposition is as follows:

2(Un −EUn)=
∑
i
=j

[h(Xi,Xj)−EXh(X,Xj)−EXh(Xi,X)+Eh(Xi,Xj)]

+ 2(n− 1)
n∑

i=1

[EXh(Xi,X)−Eh(Xi,Xj)].

The second term is a sum of independent random variables, and its tail probabilities
assuming that h is bounded are well understood: they have two regimes, a Gaussian tail
regime and a Poisson tail regime, as made clear by Prokhorov’s inequality. The first sum
has more complex tail probabilities: they will be shown to have four regimes, with tail
probabilities of orders e−c1t2 , e−c2t, e−c3t2/3 and e−c4t1/2 on different ranges of t > 0; these
correspond, respectively, to tail probabilities such as those of Gaussian chaos (the first two)
and, up to logarithmic factors, of the product of a normal and a Poisson variables and of the
product of two Poisson variables. Whereas Bernstein’s inequality for sums of independent
random variables is in terms of two parameters, the supremum norm of the variables and
the sum of their variances, for canonical U-statistics we will need two more parameters,
which correspond to other norms of the matrix (hij). Here are the parameters entering in the
concentration inequality to be presented later:

A :=max
i,j

‖hij‖∞, C2 :=
n∑

j=2

j−1∑
i=1

Eh2
ij(Xi,Xj), (3.143)

B2 :=max

⎧⎨⎩max
j

∥∥∥∥∥
j−1∑
i=1

Eih
2
ij(Xi,x)

∥∥∥∥∥
∞

, max
i

∥∥∥∥∥∥
n∑

j=i+1

Ejh
2
ij(x,Xj)

∥∥∥∥∥∥
∞

⎫⎬⎭ , (3.144)

D =sup

⎧⎨⎩
n∑

j=2

j−1∑
i=1

E(hij(Xi,Xj)ξi(Xi)ζj(Xj)) :
n−1∑
i=1

Eξ 2
i (Xi)≤ 1,

n∑
j=2

ζ 2
j (Xi)≤ 1

⎫⎬⎭ . (3.145)

In the case of a single function h symmetric in its entries and the variables Xi identically
distributed, these parameters become

A = ‖h‖∞, C2 = n(n− 1)

2
Eh2(X1,X2), B2 = (n− 1)‖E1h

2(X1,x)‖∞, (3.146)

D = n

2
sup

{
E(h(X1,X2)ξ(X1)ζ(X2)) : Eξ 2(X1)≤ 1,Eξ 2(X2)≤ 1

}= n

2
‖h‖L2 �→L2 , (3.147)

where ‖h‖L2 �→L2 is the norm of the operator of L2(L(X1)) with kernel h, f �→
E(h(X1, ·) f (X1)).
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3.4 First Applications of Talagrand’s Inequality 177

Let us assume for the rest of this subsection that the U-statistic Un is canonical. We can
write Un as

Un =
n∑

j=2

(
j−1∑
i=1

hij(Xi,Xj)

)
=:

n∑
j=2

Yj.

Note that EjYj :=E(Yj|X1, . . . ,Xj−1)= 0 by (3.142), whereas Y� is σ(X1, . . . ,Xj−1)measurable
for � < j; hence, {Uk : k ≥ 2} is a martingale relative to the σ -algebras Gk = σ(X1, . . . ,Xk),
k≥ 2. This martingale can be extended to n= 0 and n= 1 by taking U0 =U1 = 0, G0 ={∅,�},
G1 =σ(X1). We will use the martingale structure of Un to effectively reduce it to an empirical
process that can be handled using Talagrand’s inequality. Before describing this reduction,
we need a lemma on martingales. In its proof and elsewhere in this subsection, we make
free use of discrete martingale theory, as found in most graduate probability texts.

Lemma 3.4.6 Let (Un,Gn), n ∈N∪ {0}, be a martingale with respect to a filtration Gn such
that U0 = U1 = 0. For each n ≥ 1 and k ≥ 2, define the ‘angle brackets’ Ak

n = Ak
n(U) of the

martingale U by

Ak
n =

n∑
i=1

E[(Ui −Ui−1)
k|Gi−1]

(and note Ak
1 = 0 for all k). Suppose that for λ > 0 and all i ≥ 1, Eeλ|Ui−Ui−1| <∞. Then(

En := eλUn−∑∞
k=2 λ

kAk
n/k!,Gn

)
, n ∈N,

is a supermartingale. In particular, EEn ≤ EE1 = 1, so, if Ak
n ≤wk

n for constants wk
n ≥ 0; then

EeλUn ≤ e
∑

k≥2 λ
kwk

n/k!. (3.148)

Proof Obviously,

E(En|Gn−1)= E
[
En−1e

λ(Un−Un−1)e−
∑

k≥2 λ
kE((Un−Un−1)

k|Gn−1)
∣∣Gn−1

]
= En−1e

−∑k≥2 λ
kE((Un−Un−1)

k|Gn−1)E(eλ(Un−Un−1)|Gn−1).

Now, using that {Un} is a martingale, the dominated convergence theorem for conditional
expectations and that 1+ x ≤ ex, we have

E(eλ(Un−Un−1)|Gn−1)= 1+E

(∑
k≥2

λk

k! (Un −Un−1)
k
∣∣∣Gn−1

)

= 1+
∑
k≥2

λk

k! E((Un −Un−1)
k
∣∣∣Gn−1)

≤ e
∑

k≥2 λ
k(λk/k!)E((Un−Un−1)

k|Gn−1),

which, plugged into the preceding identities, yields E(En|Gn−1) ≤ En−1, proving the
supermartingale property for En. Inequality (3.148) follows immediately from this.
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178 Empirical Processes

In our case, with Un a canonical U-statistic as defined in (3.141) and (3.142), we have

Ak
n =

n∑
j=2

Ej

[
j−1∑
i=1

hij(Xi,Xj)

]k

≤ Vk
n :=

n∑
j=2

Ej

∣∣∣∣∣
j−1∑
i=1

hij(Xi,Xj)

∣∣∣∣∣
k

, (3.149)

for all k ≥ 2 and n ≥ 1, and Ak
1 = Vk

1 = 0, for all k ≥ 2. Then, by duality (see Exercise 3.4.1),

(Vk
n)

1/k = sup
ξj∈Lk/(k−1)(P):

∑n
j=2 E|ξj(Xj)|k/(k−1)=1

n∑
j=2

j−1∑
i=1

Ej

(
hij(Xi,Xj)ξj(Xj)

)

= sup
ξj∈Lk/(k−1)(P):

∑n
j=2 E|ξj(Xj)|k/(k−1)=1

n−1∑
i=1

n∑
j=i+1

Ej

(
hij(Xi,Xj)ξj(Xj)

)
.

Thus, if we define random vectors Xi, i = 1, . . . ,n− 1, on Rn by

Xi = (0, . . . ,0,hi,i+1(Xi,xi+1), . . . ,hi,n(Xi,xn))

and for ξ = (ξ2, . . . ,ξn) ∈ ∏n
i=2 Lk/(k−1)(Pi), the function fξ : S �→ R defined as

fξ (h2, . . . ,hn) =∑n
j=2

∫
hj(x)ξj(x)dP(x), then, setting F = { fξ :

∑n
j=2 E|ξj(Xj)|k/(k−1) = 1},

we have

(Vk
n)

1/k = sup
f ∈F

∣∣∣∣∣
n−1∑
i=1

fξ (Xi)

∣∣∣∣∣ ,
and moreover, by separability of the Lp spaces of finite measures, F can be replaced by a
countable subset F0. Therefore, we can apply Talagrand’s inequality for non-i.i.d. random
variables (Theorem 3.3.16) to estimate the size of Vk

n.
The bound on the tail probabilities of Un will be obtained by bounding the variables

Vk
n on sets of large probability using Talagrand’s inequality and then using Lemma 3.4.6

on these sets by means of optional stopping. In the case of a single f (i.e., f i = f for
all f = ( f 1, . . . , f n) ∈ F in Theorem 3.3.16), and with the same transformations as in the
first part of the proof of Theorem 3.4.3, the exponential inequality (3.128) becomes, for Xi

independent (not necessarily identically distributed), F a countable collection of measurable
functions such that all f ∈F are centred (E f (Xi)= 0 for all 1 ≤ i ≤ n) and ‖ f ‖∞ ≤ U,

Pr

{∥∥∥∥∥
n∑

k=1

f (Xk)

∥∥∥∥∥
F

≥ (1+ ε)E
∥∥∥∥∥

n∑
k=1

f (Xk)

∥∥∥∥∥
F

+
√

2Vnx+ 2+ 3ε

2ε
Ux

}
≤ e−x,

for all x ≥ 0 and ε > 0, where Vn = sup f

∑n
k=1 E f 2(Xk). Thus we obtain

Pr
{
(Vk

n)
1/k ≥ (1+ ε)E(Vk

n)
1/k +

√
2Vkx+ κ(ε)bkx

}
≤ e−x (3.150)

for

Vk = sup∑n
j=2 E|ξj(Xj)|k/(k−1)=1

n−1∑
i=1

E

⎡⎣ n∑
j=i+1

Ej

(
hij(Xi,Xj)ξj(Xj)

)⎤⎦2

(3.151)

and

bk = sup∑n
j=2 E|ξj(Xj)|k/(k−1)=1

max
i

sup
x

∣∣∣∣∣∣
n∑

j=i+1

Ej

(
hij(x,Xj)ξj(Xj)

)∣∣∣∣∣∣ , (3.152)
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3.4 First Applications of Talagrand’s Inequality 179

where the suprema are extended over all ξj ∈ Lk/(k−1)(Pj), j = 2, . . . ,n, satisfying the stated
condition.

This gives the following lemma:

Lemma 3.4.7 For every u ≥ 0, with Vk and bk defined by (3.151) and (3.152), respectively,
we have

Pr
∞⋃

k=2

{
(Vk

n)
1/k ≥ (1+ ε)(EVk

n)
1/k +

√
2Vkku+ κ(ε)bkku

}
≤ 1+√

5

2
e−u ≤ 1.62e−u. (3.153)

Proof With the change of variables x = ku in the preceding exponential inequality for
(Vk

n)
1/k, we obtain that the probability on the left side of inequality (3.153) is dominated by

1∧
∞∑

k=2

e−ku ≤ 1∧ 1

eu(eu − 1)
=
(

eu ∧ 1

eu − 1

)
e−u ≤ 1+√

5

2
e−u.

Interchanging the first supremum in the definition of bk with the sum and using Hölder,
we obtain

bk ≤ max
i

sup
x

⎡⎣ n∑
j=i+1

Ej

∣∣hij(x,Xj)ξj(Xj)
∣∣k⎤⎦1/k

≤ (B2Ak−2)1/k, (3.154)

where A and B are as defined in (3.143) and (3.144). For Vk, we have, again using duality,

V1/2
k = sup∑n

j=2 E|ξj(Xj)|k/(k−1)=1∑n−1
i=1 Eζ2

i (Xi)=1

n−1∑
i=1

Ei

⎡⎣ n∑
j=i+1

Ej(hij(Xi,Xj)ξj(Xj)ζi(Xi))

⎤⎦

= sup∑n
j=2 E|ξj(Xj)|k/(k−1)=1∑n−1

i=1 Eζ2
i (Xi)=1

n∑
j=2

Ej

[
j−1∑
i=1

Ei(hij(Xi,Xj)ξj(Xj)ζi(Xi))

]

= sup∑n−1
i=1 Eζ 2

i (Xi)=1

⎡⎣ n∑
j=2

Ej

∣∣∣∣∣
j−1∑
i=1

Ei(hij(Xi,Xj)ζi(Xi))

∣∣∣∣∣
k
⎤⎦1/k

≤ (Bk−2)1/k sup∑n−1
i=1 Eζ 2

i (Xi)=1

⎡⎣ n∑
j=2

Ej

∣∣∣∣∣
j−1∑
i=1

Ei(hij(Xi,Xj)ζi(Xi))

∣∣∣∣∣
2
⎤⎦1/k

= (Bk−2D2)1/k, (3.155)

where D is defined in (3.145).
Now notice that for all θ1,θ2 ≥ 0 and 0< ε ≤ 1, by convexity,(

θ1 + θ2

1+ ε
)k

≤
(
θ1

1+ ε +
εθ2

1+ ε
)k

≤ 1

1+ ε θ
k
1 +

ε

1+ ε θ
k
2 ,

so

(θ1 + θ2)
k ≤ (1+ ε)k−1θ k

1 + ε(1+ ε)k−1θ k
2 ≤ (1+ ε)k−1θ k

1 + (1+ ε−1)θ k
2 .
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180 Empirical Processes

By symmetry, this inequality holds for all ε ≥ 0; that is, for all θ1,θ2,ε ≥ 0,

(θ1 + θ2)
k ≤ ε)k−1θ k

1 + (1+ ε−1)θ k
2 .

Using this inequality twice and the bounds (3.155) and (3.154), we have, for u> 0,[
(1+ ε)(EVk

n)
1/k +

√
2Vkku+ κ(ε)bkku

]k

≤
[
1+ ε)(EVk

n)
1/k + (Bk−2D2)1/k

√
2ku+ (B2Ak−2)1/kκ(ε)ku

]k

≤ (1+ ε)2k−1EVk
n + (1+ ε−1)k−1

[
(Bk−2D2)1/k

√
2ku+ (B2Ak−2)1/kκ(ε)ku

]k

≤ (1+ ε)2k−1EVk
n + (1+ ε−1)k−1(1+ ε)k−1Bk−2D2(2ku)k/2

+(1+ ε−1)2k−2B2Ak−2κ(ε)k(ku)k.

Thus, setting

wk
n := (1+ ε)2k−1EVk

n + (2+ ε+ ε−1)Bk−2D2(2ku)k/2

+ (1+ ε−1)2k−2B2Ak−2(ku)kκ(ε)k(ku)k, (3.156)

we have, by Lemma 3.4.7,

Pr
{
Vk

n ≤ wk
n for all k ≥ 2

}≥ 1− 1.62e−u, (3.157)

where we leave implicit the dependence of wk
n on u> 0.

Inequalities (3.148), (3.149) and (3.156) will combine to produce the following theorem,
which is the analogue of Bernstein’s inequality for canonical U-statistics of order 2:

Theorem 3.4.8 Let Un be a U-statistic as defined by (3.141), and assume that the functions
hij are uniformly bounded and canonical for X1, . . . ,Xn, that is, that they satisfy equations
(3.142). Let A, B, C, D be as defined by (3.143), (3.144) and (3.145). For ε > 0, define

κ(ε)= 3/2+ 1/ε, η(ε)=√
2(2+ ε+ ε−1),

β(ε)= e(1+ ε−1)2κ(ε)+[√2(2+ ε+ ε−1)∨ (1+ ε)2/√2],
γ (ε)= [e(1+ ε−1)2κ(ε)] ∨ (1+ ε)2/3.

Then, for all ε,u> 0,

Pr
{
Un ≥ 2(1+ ε)3/2C√u+η(ε)Du+β(ε)Bu3/2 + γ (ε)Au2

}≤ e1−u. (3.158)

For example, with ε = 1/2, inequality (3.4.8) becomes

Pr

{
Un ≥ 3

√
3√
2

C
√

u+ 9
√

2

2
Du+ 63e+ 9

√
2

2
Bu3/2 + 63e

2
Au2

}
≤ e1−u. (3.159)

Proof Let

T+ 1 := inf
{
� ∈N : Vk

� ≥ wk
n for some k ≥ 2

}
.

Then the event {T ≤ �} depends only on X1, . . . ,X� for all �≥ 1, so T is a stopping time for
the filtration G�, and therefore, UT

� = U�∧T, � = 0,1, . . . ,n, is a martingale with respect to
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3.4 First Applications of Talagrand’s Inequality 181

{G�} with UT
0 = U0 = 0 and UT

1 = U1 = 0 (Vk
1 = 0, whereas wk

n > 0; hence, T ≥ 1 a.s.). Note
that UT

j −UT
j−1 =Uj −Uj−1 if T≥ j and is zero otherwise and that {T≥ j} is Gj−1 measurable.

Then the angle brackets of this martingale admit the following bound:

Ak
n(U

T)=
n∑

j=2

E(UT
j −UT

j−1)
k|Gj−1)

≤ Vk
n(U

T) :=
n∑

j=2

E(|UT
j −UT

j−1|k|Gj−1)

=
n∑

j=2

E(|Uj −Uj−1|k|Gj−1)IT≥j

=
n∑

j=2

Ej

∣∣∣∣∣
j−1∑
i=1

hij(Xi,Xj)

∣∣∣∣∣
k

IT≥j

=
n−1∑
j=2

Vk
j IT=j +Vk

nIT≥n

≤ wk
n

⎛⎝ n∑
j=2

IT=j + IT≥n

⎞⎠≤ wk
n,

since, by definition of T, Vk
j ≤ wk

n for all k on {T ≥ j}. Hence, Lemma 3.4.6 applied to the
martingale UT

n implies that

EeλU
T
n ≤ exp

(∑
k≥2

λk

k!w
k
n

)
.

Also, since Vk
n is nondecreasing in n for each k, inequality (3.157) implies that

Pr{T< n} = Pr{Vk
n ≥ wk

n for some k ≥ 2} ≤ 1.62e−u.

We thus have, for all s ≥ 0,

Pr {Un ≥ s} ≤ Pr
{
UT

n ≥ s,T ≥ n
}+Pr{T< n} ≤ e−λs exp

(∑
k≥2

λk

k!w
k
n

)
+ 1.62e−u. (3.160)

Finally, we will simplify the right-hand side of this inequality. Plugging in the definition
of wk

n into (3.160), we need to estimate∑
k≥2

λk

k!w
k
n =

∑
k≥2

λk

k! (1+ ε)
2k−1EVk

n +
∑
k≥2

λk

k! (2+ ε+ ε
−1)k−1Bk−2D2(2ku)k/2

+
∑
k≥2

λk

k! (1+ ε
−1)2k−2Ak−2B2κ(ε)k(ku)k

:= α+β+ γ .
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182 Empirical Processes

To simplify the third term γ , we use the elementary inequality k! ≥ (k/e)k. To see it, just
note that

logk! =
k∑
�=1

log�≥
∫ k

1
logx dx = k logk− k+ 1 ≥ log(k/e)k.

Replacing k! by (k/e)k, the series-defining γ becomes geometric, and its sum gives, with
the notation δ(ε) := e(1+ ε−1)2κ(ε),

γ ≤ (δ(ε)Bu)2λ2

1−Aδ(ε)uλ
, (3.161)

for λ < (Aδ(ε)u)−1. To simplify β, we use the inequality k! ≥ kk/2. Since (k/e)k > kk/2 for
k≥ e2, the argument immediately preceding (3.161) gives the inequality for k> 7; for k≤ 7,
the inequality follows by direct verification. Then, setting η(ε)=√

2(2+ε+ε−1) and using
2+ ε+ ε−1 ≥ 4, we have, again by summing a geometric series,

β ≤ λ2D2η2(ε)u/4

1−Bη(ε)
√

uλ
, (3.162)

for λ < (Bη(ε)
√

u)−1.
Next, we consider the term α. Recall that

EVk
n = E

n∑
j=2

Ej

∣∣∣∣∣
j−1∑
i=1

hij(Xi,Xj)

∣∣∣∣∣
k

=
n∑

j=2

Ej

⎡⎣E

⎛⎝∣∣∣∣∣
j−1∑
i=1

hij(Xi,Xj)

∣∣∣∣∣
k ∣∣∣Xj

⎞⎠⎤⎦ .

Thus, setting Cj :=∑j−1
i=1 hij(Xi,Xj), we have

α = 1

1+ ε
n∑

j=2

Ej

[
E
(
eλ(1+ε)

2|Ci|
∣∣∣Xj

)
−λ(1+ ε)2E(|Ci||Xj)− 1

]
.

Now we symmetrise: since ex−x−1≥ 0 for all x, and since ea|x| +e−a|x| = eax+e−ax, adding

E
(
e−λ(1+ε)2|Ci|

∣∣∣Xj

)
+λ(1+ ε)2E(|Ci||Xj)− 1 to α, we obtain

α ≤ 1

1+ ε
n∑

j=2

Ej

[
E
(
eλ(1+ε)

2Ci

∣∣∣Xj

)
− 1+E

(
e−λ(1+ε)

2Ci

∣∣∣Xj

)
− 1

]
.

Conditionally on Xj, Ci is a sum of j− 1 independent centred random variables bounded in
absolute value by A and with sum of variances

vj(Xj)=
j−1∑
i=1

Eih
2
ij(Xi,Xj)≤ B2,

n∑
j=2

Ejv
k
j (Xj)≤ C2B2(k−1),

where A, B, C are the parameters defined by (3.143) and (3.144), respectively. Then, using
Bernstein’s inequality (Theorem 3.1.7), we obtain, for λ < [(1+ ε)2(A/3+B/

√
2)]−1,

α ≤ 2

1+ ε
n∑

j=2

Ej

(
exp

(
λ2(1+ ε)4vj(Xj)

2− 2Aλ(1+ ε)2/3
)
− 1

)

≤ 2

1+ ε
∞∑

k=1

λ2k(1+ ε)4kC2B2(k−1)

(2− 2Aλ(1+ ε)2/3)k
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= (1+ ε)3C2λ2

1−λA(1+ ε)3/3−λ2(1+ ε)4B2/2

≤ (1+ ε)3C2λ2

1− (1+ ε)2λ(A/3+B/
√

2)
. (3.163)

Putting together (3.163), (3.162) and (3.161), we obtain∑
k≥2

λk

k!w
k
n ≤ exp

(
λ2W2

1−λc
)

,

for

W = (1+ ε)3/2C+η(ε)D√
u/2+ δ(ε)Bu

and

c = max
[
(1+ ε)2(A/3+B/

√
2),η(ε)B

√
u,δ(ε)Au

]
.

Plugging this estimate in (3.160) and taking s= 2W
√

u+ cu and λ=√
u/(W+ c

√
u) in this

inequality yield

Pr
{
Un ≥ 2

√
u+ cu

}≤ 2.62e−u.

For u ≥ 1, cu ≤ (
(1+ ε)2/3∨ δ(ε))Au2 +

(
(1+ ε)2/√2∨η(ε)

)
Bu3/2, and this last

inequality gives the theorem in this case. For u < 1, the inequality trivially holds if we
replace the coefficient 2.62 by e.

The estimation of the quantity α in the preceding proof used symmetrisation, and this is
the reason we have a spurious factor of 2 in front of C

√
u in inequality (3.158). Bernstein’s

inequality usually gives best results when it is used in the Gaussian range. This is also
true for this inequality: it produces best results when the dominating term among the four
summands of the tail range, 2(1 + ε)3/2C√u, is largest, in which case inequality (3.158)
prescribes a Gaussian tail probability for Un. Note also that this inequality is not useful for
u ≤ 1.

Exercises

3.4.1 Let Xi be independent and with respective probability laws Pi, let k > 1 and consider the
space H = {( f 1(X1), . . . , f n(Xn)) : f i ∈ Lk(Pi)}. Show that the duality of Lp spaces and the

independence of the variables Xi imply that the pseudo-norm
(∑n

i=1 E| f i(Xi)|k
)1/k

satisfies(
n∑

i=1

E| f i(Xi)|k
)1/k

= sup∑N
i=1 E|ξi(Xi)|k/(k−1)=1

m∑
i=1

E( f i(Xi)ξi(Xi)),

where the sup runs over ξi ∈ Lk/(k−1)(Pi). Note that if F(i,ω)= f i(Xi(ω)), this pseudo-norm is
just the Lk(μ×Pr) norm of F, where μ is counting measure on {1, . . . ,m}.
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184 Empirical Processes

3.4.2 Prove versions of Theorems 3.4.3 and 3.4.5 for non-i.i.d. random variables.
3.4.3 Show that

∑∞
j=1 e−sqαj ≤ 1

qα−1
1
s e−s. Hint: The left-hand side can be written as

qα

qα − 1

∞∑
j=1

q−αje−sqαj
(qαj − qα(j−1)),

and
∑∞

j=1 e−sqαj
(qαj − qα(j−1)) is a Riemann sum.

3.4.4 Sometimes it is handier to have the exponential inequality in Theorem 3.4.8 inverted, that is,
for Pr{Un ≥ t}. Show that inequality (3.158) implies that, for all t ≥ 0,

Pr{Un ≥ t}

≤ exp

[
1−

((
t

8(1+ ε)3/2C
)2

∧ t

18
√

2D
∧
(

t

(126e+ 18
√

2)B

)2/3

∧
(

t

126eA

)1/2
)]

.

3.5 Metric Entropy Bounds for Suprema of Empirical Processes

Clearly, to make effective use of the exponential inequalities in Section 3.3, we should have
available good estimates for the mean of the supremum of an empirical process E‖Pn−P‖F .
This section and the next are devoted to this important subject.

3.5.1 Random Entropy Bounds via Randomisation

By Theorem 3.1.21, we can randomise the empirical process by Rademacher multipliers.
The resulting process is sub-Gaussian conditionally on the data Xi, and therefore, the
metric entropy bounds in Section 2.3, in particular, Theorem 2.3.7, apply to it. This simple
procedure produces a bound that will turn out to be very useful because there are many
important classes of functions that have very good L2(Q) metric entropy bounds, actually,
uniform in Q, as we will see in the next section. Here we just record the result, and we will
wait until the next section for its application to meaningful examples.

For any n ∈ N, let Pn denote the empirical measure corresponding to n i.i.d. S-valued
random variables Xi of law P. Then, for any measurable real functions f , g on S, we let
en,2( f ,g) denote their L2(Pn) (pseudo)distance, that is,

e2
n,2( f ,g)= 1

n

n∑
i=1

( f − g)2(Xi).

Note that this is a random (pseudo)distance. These random distances give rise to random
or empirical metric entropies: given a class of measurable functions F on S, the empirical
metric entropies of F are defined as logN(F ,en,2,τ) for any τ > 0 (recall the definition of
the covering numbers N(T,d,τ) from Section 2.3). Often we will write N(F ,L2(Pn),τ) for
N(F ,en,2,τ). Recall also the packing numbers D(T,d,τ) and their relationship with covering
numbers: for all τ > 0

N(T,d,τ)≤ D(T,d,τ)≤ N(T,d,τ/2). (3.164)
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3.5 Metric Entropy Bounds for Suprema of Empirical Processes 185

There is a formal advantage to using the packing numbers D(F ,L2(Pn),τ) instead of the
covering numbers N(F ,L2(Pn),τ): by definition, for all m,

D(F ,L2(Pn),τ)≥ m ⇔ sup
f1,..., fm∈F

min
1≤i
=j≤m

P2
n( fi, fj)

2 > ε2;

hence, it follows that if F is countable, then D(F ,L2(Pn),τ) is a random variable.

Theorem 3.5.1 In the preceding notation, assuming F countable and 0 ∈F ,

E
[√

n‖Pn −P‖F
]≤ 8

√
2E

[∫ √
‖Pn f 2‖F

0

√
log2D(F ,L2(Pn),τ) dτ

]
(3.165)

and, for all δ > 0,

E

[
√

n sup
f ,g∈F :Pn| f −g|2≤δ2

|(Pn −P)( f − g)|
]

≤ 2(16
√

2+ 2)E

[∫ δ

0

√
log2D(F ,L2(Pn),τ) dτ

]
. (3.166)

Proof The integrals in the preceding inequalities are Riemann integrals because D is
monotone. Hence, since D(F ,L2(Pn),τ) is a random variable for each τ , these integrals
are also measurable. By Theorem 3.1.21 and Fubini, dropping as usual the subindex F from
the supremum norms, we have

E
√

n‖Pn −P‖ ≤ 2E

∥∥∥∥∥ 1√
n

n∑
i=1

εi f (Xi)

∥∥∥∥∥= 2EXEε

∥∥∥∥∥ 1√
n

n∑
i=1

εi f (Xi)

∥∥∥∥∥ .

Since the process
∑n

i=1 aiεi, (a1, . . . ,an) ∈ Rn, is separable for the Euclidean distance (see
Definition 2.1.2) and is sub-Gaussian for this distance (Definition 2.3.5 and the paragraph
following it), Theorem 2.3.7 applies to the process (1/

√
n)
∑n

i=1 εi f (Xi) conditionally on
the variables Xi. Thus, noting that

1

n
Eε

[
n∑

i=1

εi( f (Xi)− g(Xi))

]2

= 1

n

n∑
i=1

( f − g)2(Xi)= ‖ f − g‖2
L2(Pn)

and recalling (3.164), the entropy bound (2.41) gives

Eε

∥∥∥∥∥ 1√
n

n∑
i=1

εi f (Xi)

∥∥∥∥∥≤ 4
√

2
∫ √

‖Pn f 2‖

0

√
log2D(F ,L2(Pn),τ) dτ ,

which, combined with the preceding randomisation inequality implies the first bound in the
theorem. The second bound follows in the same way using (2.42).

Remark 3.5.2 Note that except for measurability, the random packing numbers in
the bounds (3.165) and (3.166) can be replaced by the random covering numbers
N(F ,L2(Pn),τ). In fact, if N∗(F ,L2(Pn),τ)≥N(F ,L2(Pn),τ), is a random variable for each
τ > 0 and is nondecreasing in τ , then the bound (3.165) can be replaced by

E
[√

n‖Pn −P‖F
]≤ 8

√
2E

[∫ √
‖Pn f 2‖F

0

√
log2N∗(F ,L2(Pn),τ) dτ

]
, (3.167)

and likewise for (3.166).
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The bound in Theorem 3.5.1 is mostly useful when the random entropies
logN(F ,L2(Pn),τ) admit good bounds that are uniform in Pn and satisfy some regularity
such as, for example, being regularly varying at zero. As we see in the next section, there are
many classes of functions F , denoted by Vapnik-Červonenkis classes of functions, whose
covering numbers admit the bound

N(F ,L2(Q),τ‖F‖L2(Q))≤
(

A

τ

)v

, 0< τ ≤ 1, (3.168)

for some A, v positive and finite and for all probability measures Q on (S,S), where F is a
measurable function such that | f | ≤F, for all f ∈F . If a measurable function F satisfies this
property, we say that F is a measurable envelope (or just envelope) of the class of functions
F . The next theorem will cover in particular the Vapnik-Červonenkis case.

For ease of notation, we set, for all 0< δ <∞,

J(F ,F,δ) :=
∫ δ

0
sup

Q

√
log2N(F ,L2(Q),τ‖F‖L2(Q))dτ , (3.169)

where the supremum is taken over all discrete probabilities with a finite number of atoms
and rational weights (in particular, over all possible empirical measures), and we assume
that our class of functions F satisfies J(F ,F,δ) <∞ for some δ > 0 (hence for all). The
integrand of J is denoted as the Koltchinskii-Pollard entropy of F . Before establishing a
bound for E‖Pn − P‖F , it is convenient to single out several concavity properties of the
function J.

Lemma 3.5.3 Let G(x) = ∫ x
0 g(t)dt, 0 < x < ∞, where g : (0,∞) �→ [0,∞) is locally

integrable, nonnegative and nonincreasing. Then

(a) G is concave, nondecreasing, and G(cx)≤ cG(x), for all c ≥ 1 and all x> 0,
(b) The function x �→ xG(1/x) is nondecreasing and
(c) The function of two variables (x, t) �→ √

tG
(√

x/t
)
, (x, t) ∈ (0,∞) × (0,∞), is

concave.

Proof Part (a) is obvious because G′ is nonincreasing and nonnegative. For part (b), note
that G(y)/y = 1

y

∫ y
0 g(t)dt is the average over (0,y) of a nonincreasing function, so it is

nonincreasing in y and hence nondecreasing in x = 1/y. Part (c) is better proved in two
parts. First, we claim that the function of two variables H(x, t) = tG(x/t) is concave on
(0,∞)× (0,∞): if 0< λ< 1 and 0< xi <∞, 0< ti <∞, i = 1,2,

H(λ(x1, t1)+ (1−λ)(x2, t2))= (λt1 + (1−λ)t2)G
(
λx1 + (1−λ)x2

λt1 + (1−λ)t2
)

= (λt1 + (1−λ)t2)G
(

λt1
λt1 + (1−λ)t2

x1

t1
+ (1−λ)t2
λt1 + (1−λ)t2

x2

t2

)
≥ λt1G(x1/t1)+ (1−λ)t2G(x2/t2).

Thus, H(x, t) is concave as a function of two variables and is also nondecreasing in each
coordinate separately (by (a) and (b)). Using these two properties, one sees that H(

√
x,
√

t)
is also concave: by the monotonicity in each coordinate and the concavity of (·)1/2, we have

H(
√
λx1 + (1−λ)t1,

√
λx2 + (1−λ)t2)≥ H(λ

√
x1 + (1−λ)√t1,λ

√
x2 + (1−λ)√t2),

and now part (c) follows form the concavity of H.
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3.5 Metric Entropy Bounds for Suprema of Empirical Processes 187

This lemma obviously applies to the function J, and we are now ready to obtain a bound
on the expected value of the empirical process in terms of J.

Theorem 3.5.4 Let F be a countable class of measurable functions with 0 ∈ F , and let F
be a strictly positive envelope for F . Assume that

J(F ,F,δ) <∞, for some (for all) δ > 0, (3.170)

where J is defined in (3.169). Given X1, . . . ,Xn independent identically distributed S-valued
random variables with common law P such that PF2 <∞, let Pn be the corresponding
empirical measure and νn( f )=√

n(Pn −P)( f ), f ∈ F , the normalised empirical process
indexed by F . Set U = max1≤i≤n F(Xi), σ 2 = sup f ∈F P f 2 and δ = σ/‖F‖L2(P). Then, for all
n ∈N,

E‖νn‖F ≤ max

[
A1‖F‖L2(P)J(F ,F,δ),

A2‖U‖L2(P)J
2(F ,F,δ)√

nδ2

]
, (3.171)

where we can take

A1 = 8
√

6 and A2 = 21535/2. (3.172)

Proof Let us write J(t) for J(F ,F, t). Set σ 2
n = ‖Pn f 2‖F , and note that the diameter of F

for the L2(Pn) random pseudo-norm is dominated by 2σn. We randomise by Rademacher
variables and recall that, as in Theorem 3.5.1, by the metric entropy bound for sub-Gaussian
processes (2.41) in Theorem 2.3.7, we have

Eε‖νn,rad‖F := Eε

∥∥∥∥∥ 1√
n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
F

≤ 4
√

2
∫ σn

0

√
log2N(F ,en,2,τ) dτ

= 4
√

2‖F‖L2(Pn)

∫ σn/‖F‖L2(Pn)

0

√
log2N(F ,en,2,τ‖F‖L2(Pn)) dτ

≤ 4
√

2‖F‖L2(Pn)J(σn/‖F‖L2(Pn)). (3.173)

Then, by Fubini’s theorem and the concavity of
√

tJ(
√

x/t) (Lemma 3.5.3, part (c)), we have

E‖νn,rad‖F ≤ 4
√

2‖F‖L2(P)J(‖σn‖L2(P)/‖F‖L2(P)). (3.174)

Now we estimate ‖σn‖L2(P) by means of Corollary 3.2.2 (a consequence of the comparison
theorem for Rademacher processes), followed by the Cauchy-Schwarz inequality and
by Hoffmann-Jørgensen’s inequality (3.42) on comparison between the first and second
moments of a sum of independent random vectors, to obtain

n‖σn‖2
L2(P) = E

∥∥∥∥∥
n∑

i=1

f 2(Xi)

∥∥∥∥∥
F

≤ nσ 2 + 8E

[
U

∥∥∥∥∥
n∑

i=1

εi f (Xi)

∥∥∥∥∥
F

]
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≤ nσ 2 + 8‖U‖L2(P)

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

εi f (Xi)

∥∥∥∥∥
F

∥∥∥∥∥
L2(P)

≤ nσ 2 + 25 · 33/2‖U‖L2(P)

(
24E

∥∥∥∥∥
n∑

i=1

εi f (Xi)

∥∥∥∥∥
F

+‖U‖L2(P)

)
. (3.175)

Setting Z = E‖νn,rad‖F , we may then write

‖σn‖2
L2(P) ≤ max

[
3σ 2,29 · 35/2n−1/2‖U‖L2(P)Z,25 · 35/2n−1‖U‖2

L2(P)

]
. (3.176)

If the largest of the three terms on the right-hand side of (3.176) is the first, then plugging
this estimate into (3.174) and using Lemma 3.5.3(a), we obtain

Z ≤ 4
√

2‖F‖L2(P)J(
√

3δ)≤ 4
√

6‖F‖L2(P)J(δ).

If the largest term on the right-hand side of (3.176) is the second, then we have in particular
that

√
3δ ≤ (29 · 35/2n−1/2‖U‖L2(P)Z)

1/2/‖F‖L2(P), and denoting this last quantity by L, the
inequalities (3.176) and (3.174) give, using Lemma 3.5.3(a) and (b), that

Z ≤ 4
√

2‖F‖L2(P)LJ(L)/L ≤ 4
√

2‖F‖L2(P)LJ(δ)/δ = 27 · 35/4n−1/4‖U‖1/2
L2(P)

√
ZJ(δ)/δ;

that is,

Z ≤ 21435/2n−1/2‖U‖L2(P)J
2(δ)/δ2.

Finally, if it is the third term that dominates the right-hand side of (3.176), then, since in
particular

√
3δ = √

3σ/‖F‖L2(P) ≤ 25/2 · 35/4n−1/2‖U‖L2(P)/‖F‖L2(P), if we denote this last
quantity by 31/2M, and since J(δ)/δ ≥√

log2,

Z ≤ 4
√

2
√

3MJ(M)/M ≤ 4
√

2
√

3MJ(δ)/δ ≤ 25 · 35/4(log2)−1/2n−1/2‖U‖L2(P)J
2(δ)/δ2.

Now the theorem follows by taking the maximum of these three estimates of Z, given that
by the basic Rademacher randomisation inequality E‖νn‖F ≤ 2E‖νn,rad‖F = 2Z.

Remark 3.5.5 It is convenient to single out the following simple consequence of the metric
entropy bound (3.173): since by Hölder’s inequality E‖F‖L2(Pn) ≤ ‖F‖L2(P), and since J
is nondecreasing, it follows from (3.173) and the randomisation inequality that under the
assumptions of the preceding theorem,

E‖νn‖F ≤ 8
√

2J(1)‖F‖L2(P). (3.177)

This bound is only interesting when ‖F‖L2(P) is similar in magnitude to σ .

When the Koltchinskii-Pollard entropy admits as upper bound a regularly varying
function, then the integral over (0,δ] defining J is dominated by a constant times the value
of this function at δ (just as with the integral of a power of x). Since in this case the resulting
bound for the expected value of the empirical process becomes particularly simple and
applies in many situations including the Vapnik-Cěrvonenkis case – see (3.168) – we make
it explicit in the next theorem.
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Theorem 3.5.6 Let F be a countable class of functions with 0∈F , let F be an envelope for
F and let H : [0,∞) �→ [0,∞) be a function equal to log2 for 0< x ≤ 1 and such that

(a) H(x) is nondecreasing for x> 0, and so is xH1/2(1/x) for 0< x ≤ 1, and
(b) there exists CH finite such that

∫ c
0

√
H(1/x) dx ≤ CHcH1/2(1/c) for all 0< c ≤ 1.

Assume that

sup
Q

log[2N(F ,L2(Q),τ‖F‖L2(Q))] ≤ H

(
1

τ

)
, for all τ > 0, (3.178)

where the supremum is taken over all discrete probability measures Q with a finite number
of atoms and with rational weights. Then

E‖νn‖F ≤ max
[
A1CHσ

√
H(‖F‖L2(P)/σ ),A2C

2
H‖U‖L2(P)H(‖F‖L2(P)/σ )/

√
n
]

, (3.179)

where A1 and A2 are the constants in (3.172).

Proof By definition and by property (b) of H,

J(F ,F,δ)≤
∫ δ

0

√
H(1/τ)dτ ≤ CHδ

√
H(1/δ)= CH

σ

‖F‖L2(P)

√
H(‖F‖L2(P)/σ ),

and the theorem follows by applying this bound for J(δ) in inequality (3.171).

Similarly, if we set DH = ∫ 1
0

√
H(1/τ)dτ , inequality (3.177) becomes

E‖νn‖F ≤ 8
√

2DH‖F‖L2(P). (3.180)

See Exercise 3.6.17 for an example of some simple VC-subgraph classes of functions
which are not uniformly bounded and for which Theorem 3.5.6 yields sharp results
(up to constants). The uniformly bounded case in the preceding two theorems admits a
more elementary proof based only on randomisation and the entropy bound (i.e., neither
Hoffmann-Jørgensen’s inequality nor comparison of Rademacher processes is required)
which yields better constants. This is illustrated here for the second theorem.

Corollary 3.5.7 Assume that the hypotheses of Theorem 3.5.6 are satisfied and that,
moreover, the functions in F are bounded in absolute value by a constant u. Then

E‖νn‖F ≤ 8
√

2CHσ
√

H(‖F‖L2(P)/σ )+ 27C2
HuH(‖F‖L2(P)/σ )/

√
n. (3.181)

Proof It suffices to prove the bound for u = 1/2. Using J(c) ≤ CHcH1/2(1/c), that H is
monotone nondecreasing, and that

σ 2 = ‖P f 2‖ = ‖PPn f 2‖ ≤ P‖Pn f 2‖ = ‖σn‖2
L2(P),

inequality (3.174) gives

Z = E‖νn,rad‖F ≤ 4
√

2CH‖σn‖L2(P)H
1/2(‖F‖L2(P)/‖σn‖L2(P))

≤ 4
√

2CH‖σn‖L2(P)H
1/2(‖F‖L2(P)/σ )=: B. (3.182)
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Now we will obtain a bound on B by estimating ‖σn‖L2(P) in terms of B and solving the
resulting inequation. First, we observe that, by Rademacher randomisation,

‖σn‖2
L2(P) = E‖Pn f 2‖F ≤ ‖P f 2‖F +E‖(Pn −P) f 2‖F

≤ σ 2 + 2E

∥∥∥∥∥1

n

n∑
i=1

εi f 2(Xi)

∥∥∥∥∥
F

, (3.183)

where the second term is the expected value of an empirical process to which we will apply
the very same inequality (3.182). Since | f | ≤ 1/2 for all f ∈F , it follows that for f ,g ∈F ,
Pn( f 2 −g2)2 ≤ Pn( f −g)2 = e2

n,2( f ,g), and therefore, if we set F 2 = { f 2 : f ∈F}, we have
that N(F 2,en,2,τ)≤N(F ,en,2,τ). Then, proceeding as in the derivation of inequality (3.174)
followed by (3.182), we obtain

E

∥∥∥∥∥ 1√
n

n∑
i=1

εi f 2(Xi)

∥∥∥∥∥
F

≤ 2
√

2CH‖σn‖L2(P)H
1/2(‖F‖L2(P)/σ )≤ B/2.

Combined with (3.183), we have

‖σn‖2
L2(P) ≤ σ 2 +B/

√
n,

which, by the definition of B in (3.182), gives the following inequation for B:

B2 ≤ 25C2
HH(‖F‖L2(P)/σ )

(
σ 2 +B/

√
n
)
.

Hence, B is bounded by the largest solution of the corresponding second-degree equation,
that is,

B ≤ 25C2
HH(‖F‖L2(P)/σ )/

√
n+ 25/2CHσH1/2(‖F‖L2(P)/σ ).

Inequality (3.181) now follows by the basic randomisation and (3.182), which together give
E‖νn‖F ≤ 2Z ≤ 2B, and by the bound on B.

Corollary 3.5.8 Suppose that supQ N(F ,L2(Q),ε‖F‖L2(Q)) ≤ (A/ε)v, for 0 < ε < A, for
some v ≥ 1 and A ≥ 2, the supremum extending over all Borel probability measures Q, and
let u = ‖F‖∞. Then

E‖νn‖F ≤ 8
√

2CAσ

√
2v log

A‖F‖L2(Q)

σ
+ 28CA

1√
n

uv log
A‖F‖L2(Q)

σ
, (3.184)

where CA = 2logA/(2logA− 1).

Proof The proof follows from the preceding corollary, taking H(x) = 2v log(Ax) for
x ≥ 1 (and H(x) = log2 for 0 < x < 1). To compute CH, note that, by differentiation,∫ c

0 (log(A/x)))1/2(1− 2−1(log(A/x))−1 = c(log(A/c))1/2, from which it follows that, for all
0< c ≤ 1, ∫ c

0
(log(A/x))1/2dx ≤ 2logA

2logA− 1
c(log(A/c))1/2,

so CH = CA = (2logA)/(2logA− 1).
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Perhaps the main observation regarding Theorem 3.5.6 is that if

nσ 2/‖U‖2
L2(P)

>∼ H(‖F‖L2(P)/σ ),

then the bound (3.179) becomes, disregarding constants,

E

∥∥∥∥∥
n∑

i=1

( f (Xi)−P f )

∥∥∥∥∥
F

<∼
√

nσ 2H

(
2‖F‖L2(P)

σ

)
,

which means that if nσ 2 is not too small, then the ‘price’ one pays for considering the
expectation of the supremum of infinitely many sums instead of just one is the factor
(H(‖F‖L2(P)/σ ))

1/2. Since, as we see next, this bound is best possible, we single out this
observation in the following corollary:

Corollary 3.5.9 Under the hypotheses of Theorem 3.5.6 and with the same notation, if,
moreover, for some λ≥ 1,

nσ 2

‖U‖2
L2(P)

≥
(

A2CH

λA1

)2

H(‖F‖L2(P)/σ ), (3.185)

then

E

∥∥∥∥∥
n∑

i=1

( f (Xi)−P f )

∥∥∥∥∥
F

≤ λA1CH

√
nσ 2H

(
2‖F‖2

σ

)
≤ λ

2A2
1

A2

nσ 2

‖U‖L2(P)

, (3.186)

where A1 and A2 are defined in (3.172). In the uniformly bounded case, if

nσ 2

u
≥ 27C2

H

(λ− 1)2
H(‖F‖L2(P)/σ ),

then

E

∥∥∥∥∥
n∑

i=1

( f (Xi)−P f )

∥∥∥∥∥
F

≤ 8
√

2λCH

√
nσ 2H

(
2‖F‖2

σ

)
≤ λ2 nσ 2

u
.

Note that the bound in this corollary resembles the bound (2.61) for Gaussian processes
when the metric entropy is tightly majorised by a function of regular variation. We show now
that as in the case of Gaussian processes, when condition (3.185) is satisfied, the expectation
bound (3.186) is two sided. The proof is based on the Sudakov-type bound for Rademacher
processes given in Theorem 3.2.9. We need a definition just to describe how the function H
must also be, up to constants, a lower bound for the metric entropy of F .

Definition 3.5.10 A class of functions F that satisfies the hypotheses of Theorem 3.5.6 and
such that | f | ≤ 1 for all f ∈F is full for H and P if, moreover, there exists c> 0 such that

logN(F ,L2(P),σ/2)≥ cH

(‖F‖L2(P)

σ

)
, (3.187)

for a measurable envelope F of F .
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192 Empirical Processes

Usually the function F in this definition will be the ‘smallest possible’ measurable
envelope of F, that is, one that satisfies that if F is another measurable cover, then F ≤ F P
a.s. Such an envelope will be called the P-measurable cover of F . The P-measurable cover
is unique P a.s., and it exists as soon as sup f ∈F | f |<∞ P a.s. (see Section 3.7.1)

Theorem 3.5.11 Let F , H and F be as in Theorem 3.5.6 but further assume that the
functions in F take values in [−1,1], let Pn, n ∈N, be the empirical measure corresponding
to samples from a probability measure P on (S,S) and suppose as well that P f = 0 for all
f ∈F . Assume that

nσ 2 ≥ (215 ∨ (222K2C2
H))H(6‖F‖2/σ) and n2σ 2 ≥ 32

√
2DH/(3e1/2), (3.188)

where K ≥ 1 is as in Theorem 3.2.9. Then

E

∥∥∥∥∥
n∑

i=1

f (Xi)

∥∥∥∥∥
F

≥
√

n σ

32K

√
logN(F ,L2(P),σ/2). (3.189)

If, moreover, the class F is full for H, P and F with constant c, then

c

32K

√
nσ 2H

(‖F‖L2(P)

σ

)
≤ E

∥∥∥∥∥
n∑

i=1

f (Xi)

∥∥∥∥∥
F

≤ 8
√

22

√
nσ 2H

(
2‖F‖L2(P)

σ

)
(3.190)

(fullness is only required for the left-hand side inequality).

Proof Application of Theorem 3.2.9 for T= {( f (X1(ω)), . . . , f (Xn(ω))) : f ∈F} (keeping
with regular usage, we will not show the variable ω) gives that for a universal constant
K ≥ 1, if

Eε

∥∥∥∥∥ 1√
n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
F

≤
√

nσ 2

64K
, (3.191)

then

Eε

∥∥∥∥∥ 1√
n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
F

≥ σ

8K

√
logN(F ,L2(Pn),σ/8). (3.192)

The proof of the theorem will consists in finding an upper bound for the left-hand side
of (3.191) and a lower bound for the right-hand side of (3.192), both holding with large
probability. We start with the latter. Let D := D(F ,L2(P),σ/2), and let f1, . . . , fD be
σ/2-separated in L2(P). By the law of large numbers, we have that almost surely

Pn( fi − fj)
2 → P( fi − fj)

2, 1 ≤ i, j ≤ D, ‖F‖2,n →‖F‖2;

hence, given ε > 0, there exist n and ω such that (1− ε)‖ fi − fj‖L2(Pn(ω)) ≥ ‖ fi − fj‖2, for
i, j ≤ D and ‖F‖L2(Pn(ω)) ≤ (1+ ε)‖F‖2. Thus, using (3.164),

D(F ,L2(P),σ/2)≤ N(F ,L2(Pn(ω)), (1− ε)σ/4),
and therefore, taking ε= 1/5, we obtain, by the hypothesis (3.178) on the random entropies,

D(F ,L2(P),σ/2)≤ eH(6‖F‖2/σ). (3.193)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.004
http:/www.cambridge.org/core
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Now, since P( fi − fj)
4 ≤ 4P( fi − fj)

2 ≤ 16maxP f 2
i ≤ 16σ 2, Bernstein’s inequality in the

form given by (3.24) gives

Pr

{
max

1≤i
=j≤D

[
n(P( fi − fj)

2 −
n∑

k=1

( fi − fj)
2(Xk)

]
≥ x

3
+√

32nσ 2x

}
≤ D2e−x.

Hence, taking x = δnσ 2 (for some δ > 0), since P( fi − fj)
2 ≥ σ 2/4, we have by (3.193) that

Pr

{
σ 2

4
− min

1≤i
=j≤D
Pn( fi − fj)

2 ≥ δσ
2

3
+√

32δσ 4

}
≤ e−δnσ

2+2H(6‖F‖2/σ)

or, taking δ = 1/(32 · 44),

Pr

{
min

1≤i
=j≤D
Pn( fi − fj)

2 ≤ σ
2

16

}
≤ e−nσ 2/(32·44)+2H(6‖F‖2/σ).

We have thus proved that the event A1 defined by

N(F ,L2(Pn),σ/8)≥ D(F ,L2(Pn),σ/4)

≥ D = D(F ,L2(P),σ/2)

≥ N(F ,L2(P),σ/2), (3.194)

has probability
Pr(A1)≥ 1− e−nσ 2/(32·44)+2H(6‖F‖2/σ). (3.195)

We now turn to estimation of the left-hand side of (3.191). The starting point is the metric
entropy bound for sub-Gaussian processes (Theorem 2.3.7) applied to the Rademacher
empirical process, namely (using (3.178)),

Eε

∥∥∥∥∥ 1√
n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
F

≤ 4
√

2
∫ σn

0

√
H(‖F‖2,n/τ)dτ , (3.196)

and we must show that with large probability σn can be replaced by σ and ‖F‖2,n by ‖F‖2

up to multiplicative constants. If

A2 = {‖F‖2,n ≤ 2‖F‖2},
then Bernstein’s inequality (3.23) gives

Pr(Ac
2)= Pr

{
n∑

i=1

(F2(Xi)−PF2)≥ 3nPF2

}
≤ e−9n‖F‖2

2/4. (3.197)

Now we will apply Talagrand’s inequality to

|σ 2
n −σ 2| ≤ 1

n

∥∥∥∥∥
n∑

i=1

( f 2(Xi)−P f 2)

∥∥∥∥∥
F

,

and this requires some preparation. A key observation is that since for any probability
measure Q,

Q( f 2 − g2)= Q
[
( f − g)2( f + g)2

]≤ 4Q( f − g)2,
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194 Empirical Processes

it follows that, for Q = Pn and setting F 2 = { f 2 : f ∈F},
logN(F 2,en,2,ε)≤ logN(F ,en,2,ε/2)≤ H(2‖F‖2,n/ε). (3.198)

Note also that sup f ∈F P f 4 ≤ σ 2. Hence, we can apply Corollary 3.5.9 to F 2 with envelope
2F instead of F to obtain

E

∥∥∥∥∥
n∑

i=1

( f 2(Xi)−P f 2)

∥∥∥∥∥
F

≤ 2nσ 2. (3.199)

Therefore, Bousquet’s version of Talagrand’s inequality, concretely inequality (3.101), gives

Pr

{∥∥∥∥∥
n∑

i=1

( f 2(Xi)−P f 2)

∥∥∥∥∥
F

≥ 2nσ 2 +√
6nσ 2t+ t/3

}
≤ e−t,

which, with t = 6nσ 2, becomes

Pr

{∥∥∥∥∥
n∑

i=1

( f 2(Xi)−P f 2)

∥∥∥∥∥
F

≥ 10nσ 2

}
≤ e−6nσ 2

.

Thus, the event

A3 =
{∥∥∥∥∥

n∑
i=1

f 2(Xi)

∥∥∥∥∥
F

< 11nσ 2

}
has probability

Pr(A3)≥ 1− e−6nσ 2
. (3.200)

Then, combining the bounds (3.197) and (3.200) with inequality (3.196) and using the
properties of H, we obtain that, on the event A2 ∩A3,

Eε

∥∥∥∥∥ 1√
n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
F

≤ 4
√

2
∫ √

11σ

0

√
H(4‖F‖2/τ)dτ

≤ 4
√

22CHσH1/2(4‖F‖2/
√

11σ) <
√

nσ 2/64K. (3.201)

Hence, by Theorem 3.2.9, inequality (3.192) holds on the event A2 ∩ A3. Thus, on the
intersection of this event with A1, we can replace the random entropy in this inequality
by the L2(P) entropy. Integrating with respect to the X variables, we then obtain

E

∥∥∥∥∥
n∑

i=1

εi f (Xi)

∥∥∥∥∥
F

≥
√

nσ

8K

√
logN(F ,L2(P),σ/2)Pr(A1 ∩A2 ∩A3).

By (3.195), (3.197) and (3.200),

Pr(A1 ∩A2 ∩A3)≥ 1− e−nσ 2/(32·44)+2H(6‖F‖2/σ)− e−9n‖F‖2
2/4 − e−6nσ 2 ≥ 1/2,

as is easily seen using (3.188) and that H(u) ≥ log2 for u ≥ 1. Inequality (3.189) follows
now by desymmetrisation (Theorem 3.1.21).

The right-hand-side inequality in (3.190) follows by integrating in (3.201), and it does
not require F to be full. The left-side inequality in (3.190) is a consequence of (3.189) and
the fullness of F .

For simple examples of computation of random entropies, see the exercises at the end of
this section, and more importantly, see Sections 3.6 and 3.7.
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3.5.2 Bracketing I: An Expectation Bound

When a class of functions admits regularly varying tight metric entropy bounds that are
uniform in P, the preceding subsection provides expectation bounds for the empirical
process that are good up to constants, and the next section will display a wealth of such
classes. In this subsection we consider classes that are not necessarily small in L2(P)
uniformly in P but that may be small only for one probability measure P, albeit in a stronger
sense than metric entropy.

For any ε > 0, the Lp(P)-bracketing number N[](F ,Lp(P),ε) of a class of functions F ⊂
Lp(P) is defined, if it exists, as the smallest cardinality of any partition B1, . . . ,BN of F such
that, for each i = 1, . . . ,N,

P�p
i := P

[(
sup
f ,g∈Bi

| f − g|
)∗]p

≤ εp.

Here, for a nonnegative, not necessarily measurable function g, g∗ denotes its measurable
cover, that is, a measurable function g∗ such that a) g∗ ≥ g P a.s. and b) g∗ ≤ h P a.s for any
measurable function h such that h ≥ g P a.s. See Proposition 3.7.1 for the existence of g∗.
If F is countable or separable, then sup f ,g∈Bi

| f − g| is measurable, and the asterisk is not
required in the definition of �i.

An alternate definition of the bracketing covering numbers is as follows: N =
N[](F ,Lp(R),ε) if there exist N pairs of functions f

i
≤ f i such that (a) P( f i − f

i
)p ≤ εp, (b)

for every f ∈ F there is i ≤ N such that f
i
≤ f ≤ f i and (c) N is the smallest number of

pairs of functions satisfying properties (a) and (b). The sets [ f
i
, f i] = { f : f

i
≤ f ≤ f i} are

called Lp(P) brackets of size ε. See Exercise 3.5.4 for the equivalence (but not identity) of
the two definitions. Unless otherwise stated, we will use the first definition.

The main result in this subsection is a bound on the expected value of the supremum of
the empirical process based on an independent sample of probability law P and indexed by
F , given in terms of the L2(P)-bracketing integral∫ 1

0

√
logN[](F ,L2(P),ε) dε.

We will estimate in subsequent sections the bracketing numbers of classes of functions
defined by their smoothness properties and of classes of sets with smooth boundaries. As a
first example as usual, consider F = {I(−∞,t] : t ∈R}: it is easy to see that N[](F ,Lp(R),ε)≤
2/εp. We now proceed to prove the bracketing bounds for empirical processes and will
conclude the section by estimating the bracketing numbers for the class of all monotone
nondecreasing functions on R with uniformly bounded absolute values.

The proof of the bracketing theorem is based on chaining using the interplay between an
exponential inequality and the entropy numbers, as in other chaining arguments. However,
randomisation does not seem to offer any advantages in this setting, which means that
the Gaussian exponential inequality is not available, and we must use Bernstein’s instead.
Hence, we must truncate at each step of the chain, somewhat complicating the chaining
argument. We start by stating the maximal inequality associated to Bernstein’s inequality, a
combination of Theorem 3.1.10(b) and Theorem 3.1.5.
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196 Empirical Processes

Lemma 3.5.12 Let X,Xi, i = 1, . . . ,n, be independent S-valued random variables with
common probability law P, and let f1, . . . , fN be measurable real functions on S such that
maxr ‖ fr −P fr‖∞ ≤ c<∞ and σ 2 = maxr Var( fr(X)). Then

Emax
r≤N

∣∣∣∣∣
n∑

i=1

( fr(Xi)−P fr)

∣∣∣∣∣≤√
2nσ 2 log(2N)+ c

3
log(2N). (3.202)

Proof For g = fr −P fr or g =− fr +P fr, we have, by Theorem 3.1.5,

Eeλ
∑n

i=1 g(Xi)/c ≤ exp

(
nσ 2

c2
(eλ− 1−λ)

)
.

Then Theorem 3.1.10(b) applied to the 2N functions fr−P fr, − fr+P fr, r= 1, . . . ,N, gives

Emax
r≤N

1

c

∣∣∣∣∣
n∑

i=1

( fr(Xi)−P fr)

∣∣∣∣∣≤
√

2nσ 2

c2
log(2N)+ 1

3
log(2N),

which is (3.202).

In the proof of the bracketing theorem, the truncation levels at each step of the chaining
will be precisely those that balance the two summands at the right of inequality (3.202),
that is, the largest for which the ‘Gaussian’ part of the bound (which is the first summand)
dominates.

Theorem 3.5.13 Let P be a probability measure on (S,S) and for any n ∈ N, and
let X1, . . . ,Xn be an independent sample of size n from P. Let F be a class of
measurable functions on S that admits a P-square integrable envelope F and satisfies the
L2(P)-bracketing condition∫ 2

0

√
log(N[](F ,L2(P),‖F‖2τ)) dτ <∞,

where we write ‖F‖2 for ‖F‖L2(P). Set σ 2 := sup f ∈F P f 2 and

a(δ)= δ√
32log(2N[](F ,L2(P),δ/2))

.

Then, for any δ > 0,

E

∥∥∥∥∥
n∑

i=1

( f (Xi)−P f )

∥∥∥∥∥
∗

F

≤ 56
√

n
∫ 2δ

0

√
log(2N[](F ,L2(P),τ) dτ (3.203)

+4nP[FI(F>
√

na(δ))]+
√

nσ 2 log(2N[](F ,L2(P),δ)).

Proof Assume that F satisfies the bracketing integral condition, and fix n, j ∈N. For k≥ j,
set Nk := N[](F ,L2(P),2−k), let {Tk,i}Nk

i=1 be a partition of F such that

E

((
sup

f ,g∈Tk,i

| f − g|
)∗)2

≤ 2−2k, for all 1 ≤ i ≤ Nk, k ∈N,
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and note that the bracketing condition implies that

∞∑
k=j

2−k
√

logNk ≤ 2
∫ 2−j

0

√
logN[](F ,L2(P),τ) dτ <∞.

We would like the partitions to be nested and still satisfy these two conditions. This can be
achieved as follows: for each s= (sj, . . . ,sk), s� ∈ {1, . . . ,N�}, �= j, . . . ,k, take Ak,s =∩k

�=jT�,s� .
Then, for each k, the collection of sets {Ak,s : s = (sj, . . . ,sk),1 ≤ s� ≤ N�,� = j, . . . ,k} is
obviously a partition (which may contain some empty sets). For each k, the number of Ak,s

is dominated by the product Nj · · ·Nk, and

∞∑
k=j

2−k
√

log(Nj · · ·Nk)≤
∞∑
k=j

2−k
k∑

i=j

(logNi)
1/2 =

∞∑
i=j

(logNi)
1/2
∑
k≥i

2−k

= 2
∞∑
i=j

2−i(logNi)
1/2 ≤ 4

∫ 2−j

0

√
logN[](F ,L2(P),τ) dτ <∞.

To ease notation, let us enumerate the indices = (sj, . . . ,sk) corresponding to nonempty sets
Ak,s and denote these sets by Ak,i, 1≤ i≤ Ñk, where Ñk ≤Nj · · ·Nk. Thus, we have a collection
of partitions of F , {Ak,i : 1 ≤ i ≤ Ñk}, k ≥ j, such that

(a)
∑∞

k=j 2
−k
√

log Ñk ≤ 4
∫ 2−j

0

√
logN[](F ,L2(P),τ) dτ <∞,

(b) E
((

sup f ,g∈Ak,i
| f − g|

)∗)2

≤ 2−2k, for all 1 ≤ i ≤ Ñk, k ≥ j, and

(c) the partitions {Ak,i : 1 ≤ i ≤ Ñk} are nested; that is, if j ≤ � < k, for each Ak,i, there is a
unique r such that Ak,i ⊆ A�,r.

For each f ∈F , let ik( f ) be the index i such that f ∈ Ak,i. Then we have, by nestedness,

Ak,ik( f ) ⊆ Ak−1,ik−1( f ) ⊆ ·· · ⊆ Aj,ij( f ), (3.204)

and in particular, Ak,ik( f ) determines A�,i�( f ), � ≤ k; hence, the number of chains (3.204) is
just Ñk.

Pick up fk,i ∈ Ak,i, and set, for i = 1, . . . , Ñk, k ≥ j,

πk f = fk,i and �k( f )=
(

sup
h,g∈Ak,i

|g− h|
)∗

, if f ∈ Ak,i.

The varying truncation levels will be

αn,k :=√
n ak :=

√
n

2k+1

√
log(2Ñk+1)

. (3.205)

Define

τ f := τj,n( f ,x)= min{k ≥ j :�k f (x) > αn,k}
with the convention min∅ =∞, and notice that

{τ f = j} = {�j f > αn,j}
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and that, for k> j,

{τ f = k} = {�j f ≤ αn,j, . . . ,�k−1 f ≤ αn,k−1,�k f > αn,k} ⊂ {�k f > αn,k,�k−1 f ≤ αn,k−1},
×{τ f ≥ k} = {�j f ≤ αn,j, . . . ,�k−1 f ≤ αn,k−1} ⊆ {�k f ≤�k−1 f ≤ αn,k−1}.

Note that from the point of view of controlling �k f , the sets {τ f = k} and {τ f ≥ k} are
‘good’, whereas the sets {τ f < k} are ‘bad’. Next, we will see how, starting in a natural way
with the chain decomposition

f −πj f = f −πr f +
r∑

k=j+1

(πk f −πk−1 f )

and then decomposing the kth link according to τ f < k or τ f ≥ k, we arrive at a
decomposition of f −πj f that contains no bad sets. We have

f −πj f = f −πr f +
r∑

k=j+1

(πk f −πk−1 f )Iτ f<k +
r∑

k=j+1

(πk f −πk−1 f )Iτ f ≥k.

Now the ‘bad’ sets telescope, that is,
r∑

k=j+1

(πk f −πk−1 f )Iτ f<k =
r∑

k=j+1

πk f Iτ f<k −
r∑

k=j+1

πk−1 f Iτ f =k−1 −
r∑

k=j+1

πk−1 f Iτ f<k−1

= πr f Iτ f<r −πj f Iτ f<j −
r∑

k=j+1

πk−1 f Iτ f =k−1

= πr f Iτ f<r −
r∑

k=j+1

πk−1 f Iτ f =k−1.

We can further use −πr f +πr f Iτ f<r =−πr f Iτ f ≥r to finally obtain

f −πj f = f −πr f Iτ f ≥r −
r∑

k=j+1

πk−1 f Iτ f =k−1 +
r∑

k=j+1

(πk f −πk−1 f )Iτ f ≥k

= ( f −πj f )Iτ f =j + ( f −πr f )Iτ f ≥r +
r−1∑

k=j+1

( f −πk f )Iτ f =k

+
r∑

k=j+1

(πk f −πk−1 f )Iτ f ≥k. (3.206)

We now proceed to estimate the expected value of the empirical process over each of the
four terms in the decomposition (3.206). The simple observation that

| f | ≤ g implies |(Pn −P) f | ≤ Png+Pg ≤ (Pn −P)g+ 2Pg

will be used repeatedly and without further mention.

First term: We have

| f −πj f |Iτ f =j = | f −πj f |I(�j f >
√

naj)≤ 2FI(2F>
√

naj),
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so
E‖√n(Pn −P)(( f −πj f )Iτ f =j)‖∗F ≤ 4

√
nP
[
FI(2F>

√
naj)

]
. (3.207)

Second term: We show that

lim
r→∞E‖√n(Pn −P)(( f −πr f )Iτ f ≥r)‖F = 0, (3.208)

so we will be able to ignore the second term as long as we let the sums in the third and fourth
terms run up to infinity (instead of only up to r). By definition of τ f ,

| f −πr f |Iτ f ≥r ≤ (�r f )I(�r f < αn,r−1),

and therefore,

‖√n(Pn −P)(( f −πr f )Iτ f ≥r)‖F ≤ ‖√n(Pn −P)((�r f )I(�r f < αn,r−1))‖F
+2

√
n‖P((�r f )I(�r f < αn,r−1))‖F

:= (I)+ (II).
We use inequality (3.202) on the first term: in this term the empirical process is applied
to Ñr functions whose variances are dominated by 2−2r (by b)) and whose sup norms are

dominated by αn,r−1 =√
n/

(
2r
√

log Ñr

)
, so

E(I)∗ ≤ 2−r
√

log(2Ñr)+
√

n

3 · 2r

√
log(2Ñr)

1√
n

log(2Ñr)= 4

3
2−r

√
log(2Ñr)→ 0,

if r →∞, by (a). The second term is obviously bounded by

(II)≤ 2
√

n‖P(�r f )2‖1/2
F ≤ 2

√
n2−r → 0 as r →∞,

so (3.208) follows.

Third term: Since | f −πk f |Iτ f =k ≤ (�k f )Iτ f =k, we have

E

∥∥∥∥∥∥
∞∑

k=j+1

√
n(Pn −P)( f −πk f )Iτ f =k

∥∥∥∥∥∥
∗

F

≤
∞∑

k=j+1

(
E
∥∥√n(Pn −P)

(
(�k f )Iτ f =k

)∥∥
F

+2
√

n
∥∥P

(
(�k f )Iτ f =k

)∥∥
F
)
. (3.209)

In order to estimate this expectation using the maximal inequality (3.202), we note that (1)
there are Ñk different functions (�k f )Iτ f =k, f ∈F (the number of chains (3.204) is Ñk), (2)

on {τ f = k} we have �k f ≤�k−1 f ≤ αn,k−1 =√
n/

(
2k
√

log(2Ñk)

)
, (3)

Var(�k f Iτ f =k)≤ P(�k f )2I(�k f ≤ αn,k−1,�k f > αn,k)

≤ αn,k−1P(�k f )I(�k f > αn,k)≤ αn,k−1

αn,k
E(�k f )2

≤ 2
√

log(2Ñk+1)√
log(2Ñk)

2−2k ≤ 2log(2Ñk+1)

log(2Ñk)
2−2k,
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200 Empirical Processes

since Ñk+1 ≥ Ñk, and (4)

P
(
(�k f )Iτ f =k

)≤ P(�k f )I(�k f > αn,k)≤ E(�k f )2

αn,k
≤ 2−k+1

√
log(2Ñk+1)√

n
.

Using (1)–(4) and (3.202) in (3.209), we obtain

E

∥∥∥∥∥∥
∞∑
j=1

√
n(Pn −P)( f −πk f )Iτ f =k

∥∥∥∥∥∥
∗

F

≤
∞∑

k=j+1

⎡⎣√2−2k+1 log(2Ñk+1)

log(2Ñk)

√
log(2Ñk)+

√
n

3 · 2k

√
log(2Ñk)

1√
n

log(2Ñk)

⎤⎦
+

∞∑
k=j+1

2−k+2
√

log(2Ñk+1).

Bounding the sums by integrals as earlier in the proof, we obtain

E

∥∥∥∥∥∥
∞∑
j=1

√
n(Pn −P)( f −πk f )Iτ f =k

∥∥∥∥∥∥
∗

F

≤ 4(2
√

2+ 3−1 + 8)
∫ 2−j

0

√
log(2N[](F ,L2(P),τ) dτ . (3.210)

Fourth term: Again, the number of functions (πk f − πk−1 f )Iτ f ≥k, f ∈ F , is just Ñk (all
the functions f in Ak,i have the same πk f , πk−1 f , �j f , . . . ,�k f ). The variance of (πk f −
πk−1 f )Iτ f ≥k is dominated by

P|πk f −πk−1 f |2 ≤ P(�k−1 f )2 ≤ 2−2(k−1)

and its sup norm by

|(πk f −πk−1 f )Iτ f ≥k| ≤ 2(�k−1 f )I(�k−1 ≤ αn,k−1)≤ 2
√

n

2k

√
log(2Ñk)

.

Hence, applying inequality (3.202) as before, we obtain

E

∥∥∥∥∥∥
∞∑

k=j+1

√
n(Pn −P)((πk f −πk−1 f )Iτ f ≥k)

∥∥∥∥∥∥
∗

F

≤
∞∑

k=j+1

⎛⎝2−(k−1)
√

log(2Ñk)+ 2
√

n

3 · 2k

√
log(2Ñk)

1√
n

log(2Ñk)

⎞⎠
≤ 4(2+ 2/3)

∫ 2−j−1

0

√
log(2N[](F ,L2(P),τ) dτ . (3.211)
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3.5 Metric Entropy Bounds for Suprema of Empirical Processes 201

Combining the bounds (3.207), (3.208), (3.210) and (3.211) with the decomposition
(3.206) of f −πj f , we obtain

E
∥∥√n(Pn −P)( f −πj f )

∥∥∗
F

≤ 55.314
∫ 2−j

0

√
log(2N[](F ,L2(P),τ) dτ + 4

√
nP[FI(2F>

√
naj)]. (3.212)

This inequality will turn out to be useful to prove a central limit theorem in a subsequent
section, but now, to obtain a bound for E‖√n(Pn − P)‖∗F , we need to combine this bound
with a bound for E‖√n(Pn −P)(πj f )‖∗F . This is the expected value of the maximum of 2Nj

random variables. To apply Lemma 3.5.12, we must truncate, that is,

E‖√n(Pn −P)(πj f )‖F ≤ E‖√n(Pn −P)(πj f I(F ≤√
naj))‖F + 2

√
nP(FI(F>

√
naj).

Then, by (3.202), the preceding expectation admits the bound

σ
√

2log(2Nj)+ aj

3
log(2Nj)≤ σ

√
2log(2Nj)+ 2

3

∫ 2−j−1

0

√
log(2N[](F ,L2(P),τ) dτ ,

where σ 2 = sup f ∈F P f 2. Hence,

E

∥∥∥∥∥
n∑

i=1

( f (Xi)−P f )

∥∥∥∥∥
∗

F

≤ 56
√

n
∫ 2−j

0

√
log(2N[](F ,L2(P),τ) dτ + 4nP[FI(2F>

√
naj)]+

√
2nσ 2 log(2Nj).

Now the theorem follows for any fixed δ > 0 by taking j= j(δ) such that 2−j−1 ≤ δ‖F‖2 ≤ 2−j

and using that N[] is nonincreasing.

Remark 3.5.14 If in addition to the hypotheses in Theorem 3.5.13 we also have σ ≤ δ, then
the third summand in the bound (3.203) can be assimilated into the first to obtain

E

∥∥∥∥∥
n∑

i=1

( f (Xi)−P f )

∥∥∥∥∥
∗

F

≤ 58
√

n
∫ 2δ

0

√
log(2N[](F ,L2(P),ε) dε+ 4nP[FI(F>

√
na(δ))]. (3.213)

If we take δ = 4‖F‖2 (we always have σ ≤ ‖F‖2), we have a(4‖F‖2)= ‖F‖2/
√

2log2, and
the first summand dominates the second because

4nP[FI(F ≥√
na(4‖F‖2))] ≤ 4nP[F2I(F ≥√

na(4‖F‖2))]/(√na(4‖F‖2))

≤ 4
√

2log2
√

n‖F‖2.

This shows that for any class of functions satisfying the L2(P)-bracketing integral condition,
we have

E

∥∥∥∥∥
n∑

i=1

( f (Xi)−P f )

∥∥∥∥∥
∗

F

≤ 59
√

n
∫ 8‖F‖2

0

√
log(2N[](F ,L2(P),ε) dε. (3.214)
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202 Empirical Processes

If the class F is uniformly bounded, then the bound (3.213) can be improved as follows:

Proposition 3.5.15 Assume that ‖F‖∞ <∞ and P f 2 ≤ δ for all f ∈ F for some δ > 0.
Then

E

∥∥∥∥∥
n∑

i=1

( f (Xi)−P f )

∥∥∥∥∥
∗

F

≤
(

58
√

n+ ‖F‖∞
3δ2

∫ 2δ

0

√
log(2N[](F ,L2(P),ε) dε

)

×
∫ 2δ

0

√
log(2N[](F ,L2(P),ε) dε. (3.215)

Proof Assume that δ = 2−j for some j ∈ N (otherwise take j as indicated at the end of the
proof of Theorem 3.5.13). Inspection of the proof of this theorem shows that the term we
wish to cancel,

√
nP(FI(F >

√
na(δ)), comes only from the evaluation of the first term in

the decomposition (3.206) and of E‖√n(Pn − P)(πj f )‖F . Each of these two terms can be
estimated in a more precise way than in the preceding proof when the class of functions is
uniformly bounded by invoking Lemma 3.5.12, Bernstein’s maximal inequality. For the last
term, this inequality gives

E‖√n(Pn −P)(πj f )‖F ≤√
2δ2 log(2N)+ 2‖F‖∞

3
√

n
log(2N),

where N :=N[](F ,L2(P),δ). As for the first term, again by the same maximal inequality, we
have

E‖√n(Pn −P)( f −πj f )I(�j f >
√

naj)‖F ≤ E‖√n(Pn −P)(( f −πj f )(�j f )‖F
+√

n‖P(�j f )I(�j f >
√

naj)‖F
≤√

2δ2 log(2N)+ 2‖F‖∞
3
√

n
log(2N)+ P(�j f )2

aj
,

where, by definition of aj and monotonicity of N(ε),

P(�j f )2/aj ≤ 2δ
√

log(2N)≤
∫ 2δ

0

√
log(2N[](F ,L2(P),ε)) dε.

Likewise, log(2N) is dominated by the square of the entropy integral divided by 4δ2, and the
result follows from this and the preceding bounds together with (3.208), (3.210) and (3.211)
in the preceding proof.

See Exercise 3.5.5 for a similar bound without assuming that F is uniformly bounded.

Remark 3.5.16 The expectation bounds in the preceding two subsections can be combined
with the moment inequalities in Exercise 3.3.4 or in Theorem 3.4.3, or even with
Hoffmann-Jørgensen’s inequality, to obtain estimates of higher moments of the empirical
process.

We conclude this section with estimation of the bracketing numbers of classes of
monotone functions, both as an example and because of its usefulness. See also Section 3.7
for some extensions.
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3.5 Metric Entropy Bounds for Suprema of Empirical Processes 203

Proposition 3.5.17 The class F of monotone functions on R satisfying a ≤ f (x) ≤ b, for
all x ∈R and some −∞< a< b<∞, admits the following bound for its L2(P)-bracketing
numbers, uniform on all the Borel probability measures P on R:

logN[](F ,L2(P),ε)≤ K/ε, 0< ε ≤ b− a,

where K<∞ is a numerical constant that depends only on a and b.

Proof The proof consists of several steps. We use the second definition of bracket [ f , f ]
in the proof.

Step 1: Reductions. Since the minimal number of brackets covering the union of two classes
of functions is dominated by their sum, and since reflection about x = 0 is a one-to-one
correspondence between monotone nondecreasing and monotone nonincreasing functions
that sends L2(P) brackets into L2(P̃) brackets of the same size, where P̃ is the reflection
of P, it suffices to consider the class of monotone nondecreasing functions. Also, a and b
can be replaced, respectively, by 0 and 1 just by considering the class {( f − a)/(b − a) :
f nondecreasing, a ≤ f ≤ b}. Thus, the proposition needs only be proved for the class H
of monotone nondecreasing functions taking values in [0,1]. Define now, given a function
h, the left bracket of L2(P)-size δ as LB(h,δ) = { f ∈H : f ≥ h, ‖ f − h‖L2(P) ≤ δ}. Right
brackets RB(h,δ) are defined analogously, with reversal of the inequality. Then, since if f ∈
LB(h1,δ)∪RB(h2,δ), f belongs to the L2(P) bracket [h1,h2] with size ‖h2 − h1‖L2(P) ≤ 2δ,
it suffices to consider one-sided brackets.

Let

G = {g : R �→ [0,1],g monotone nondecresing}.
We now reduce proving the proposition to showing that for some fixed K<∞,

logNLB(G,L2(μ),δ)≤ K/δ, 0< δ ≤ 1,

where μ is Lebesgue measure, and NLB(G,L2(μ),δ) is the smallest number of left brackets
of L2(μ)-size δ needed to cover G. To see this, given a probability measure P on R, let F
be its cumulative distribution function and F−1(u) = inf{t : F(t) ≥ u} its quantile function,
which are monotone nondecreasing. The class H ◦ F−1 = { f ◦ F−1 : f ∈ F} is contained
in G, and we recall that F−1 ◦ F(t) ≤ t and u ≤ F ◦ F−1(u) for all u, t ∈ R. Let h define a
left bracket for f ◦F−1 of L2(μ)-size δ so that h ≤ f ◦F−1 and ‖ f ◦F1 − h‖L2(μ) ≤ δ. Also
note that we can assume h to be nondecreasing because it can be replaced by inf{g ◦ F−1 :
‖g ◦F−1 − h‖L2(μ) ≤ δ,g ◦F−1 ≥ h,g ∈H}, which is monotone nondecreasing. Then, since
f and h are nondecreasing, we have h ◦F ≤ f ◦F−1 ◦F ≤ f , so also h ◦F ◦F−1 ≤ f ◦F−1,
as well as h ◦F ◦F−1 ≥ h. Hence, also,

‖ f − h ◦F‖L2(P) = ‖ f ◦ f −1 − h ◦F ◦F−1‖L2(μ) ≤ ‖ f ◦F−1 − h‖L2(μ) ≤ δ.
That is, h ◦ F defines a left bracket of L2(P)-size δ for f . This shows that for all Borel
probability measures on R, NLB(F ,L2(P),δ)≤ NLB(G,L2(μ),δ).

Step 2: Construction of the brackets. Let 0 < δ < 1 and g ∈ G. We now construct a left
bracket for g by means of a step function h, and in subsequent steps we will count the
number and estimate the size of the brackets. We start by building the interval partition of
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204 Empirical Processes

[0,1] to define of h. The partition is reached as the last of a nested sequence of partitions
as follows. π0 = π0(g)= {[0,1]}, and then we construct partitions πi(g) recursively. Given
πi = {�j}ni

i=1, where

�j = [xj−1,xj), 1 ≤ j< ni, �ni = [xni−1,xni], x0 = 0, xni = 1,

we set

|�j| = xj − xj−1, J(�j)= g(xi)− g(xi−1), δ
2
i = max

1≤j≤ni
|�j|J2(�j);

then we obtain πi+1 by subdividing into two subintervals of equal length those intervals �i

such that
|�j|J2(�j)≥ δ2

i /2 (3.216)

and keeping those �j for which (3.216) does not hold. It is convenient to denote by si the
number of intervals �j ∈ πi satisfying (3.216), so ni+1 = ni + si. Observe also that si 
= 0 for
all i. Next, we define

δ̃
2

i = min
0≤j≤i

{2−(i−j)n−3
j } (3.217)

and continue the process of subdivision, π0 ⊂ π1 ⊂ ·· · ⊂ πk, up to the smallest positive

integer k = k(g) such that δ̃
2

k ≤ δ3. (Note that the process terminates because δ̃
2

i ≤ δ̃
2

i−1/2.)
To construct the function defining the left bracket for g, we start with g0 = 0 and define
recursively a function gi constant on the intervals �j of πi as follows: given gi−1, define gi

on �j ∈ πi by

gi(x)= gi−1(xj−1)+ �i
j

δ̃i

|�j|1/2 , x ∈�j, (3.218)

where �i
j ≥ 0 is the largest integer such that gi ≤ g, that is, such that gi(xj−1)≤ g(xj−). Then

the left bracket for g is defined by the function gk(g), with size ‖g− gk‖L2(P), to be estimated
next.

Step 3: Bracket size. First, we relate δi, δ̃i and ni. If�j ∈πi satisfies (3.216), for j= 1, . . . ,si,
we have, by Cauchy-Schwarz,

si(δ
2
i /2)

1/3 ≤
si∑

j=1

|�j|1/3J2/3(�j)≤
⎛⎝ si∑

j=1

|�j|
⎞⎠1/3⎛⎝ si∑

j=1

J(�j)

⎞⎠2/3

≤ 1,

so δ2
i ≤ 2/s3

i . Since δ2
i ≤ δ2

i−1/2, we also have, for i ≥ j, δ2
i ≤ 2−(i−j)δ2

j ≤ 2−(i−j−1)s−3
j . Hence,

ni = 1+
i−1∑
j=0

sj ≤ 1+
i−1∑
j=0

2−(i−j−1)/3δ
−2/3
i

< 1+ 5δ−2/3
i < 6δ−2/3

i .

Thus, n−3
i ≥ 6−3δ2

j ≥ 6−32i−jδ2
i , for i ≥ j, which implies, by the definition (3.217) of δ̃i, that

δ2
i ≤ 63δ̃

2

i . This and (3.217) give

ni ≤ δ̃−2/3

i , ni ≤ 6δ−2/3
i , δ2

i ≤ 63δ̃
2

i . (3.219)
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Now, by (3.218) and the definition of �i
j in (3.218), we have

(g(xj−)− gi(xi−1))|�j|1/2 ≤ δ̃i,

but, by the definition of δi and (3.219),

(g(x)− gi(xj−1)|�j|1/2 ≤ δi + δ̃i ≤ (63/2 + 1)δ̃i, x ∈�j,

so, by (3.219),

‖g− gi‖2
L2(μ)

≤ n1(6
3/2 + 1)2δ̃

2

i ≤ 241δ̃
2−2/3

i .

Since for i = k(g) we have δ2
k(g) ≤ δ3, it follows that

‖g− gk(g)‖2
L2(μ)

≤ 241δ2; (3.220)

that is, the brackets are of the right size: their size is bounded by a fixed multiple of δ.

Step 4: Number of brackets. Every bracket function is built from a sequence of partitions
π0(g)⊂ ·· · ⊂ πk(g)(g), which determines the quantities δ̃i and the partition points, and from
k vectors of �i

j, (�
1
1, . . . ,�

1
n1
), . . . ,(�k

1, . . . ,�
k
nk
) (see (3.218) for i = k). By definition, we have

nk ≤ 2nk−1 ≤ 2δ̃
−2/3

k−1 < 2/δ. The number of possible choices for the sequences {ni}k
i=1 is just

the number of ways we can write nk−1 into a sum of k−1 positive integers si,
(nk−2

k−2

)
< 2nk−2.

Give one such sequence {ni}, for each i ≤ k, the number of partitions πi+1 we can construct
given that a partition πi is bounded by the number of ways we can choose si = ni+1 − ni

among ni intervals,
(ni

si

)
< 2ni . Hence, the number of partitions corresponding to a sequence

{ni} is dominated by 2
∑k−1

i=0 ni . But by (3.217), ni ≤ 2−(k−1−i)/3δ̃
−2/3

k−1 , for i ≤ k− 1, and, by

definition of k(g), δ−2/3
k−1 ≤ δ−1, which gives

k−1∑
i=0

ni ≤ 1

δ

∞∑
i=0

2−1/3 ≤ 5

δ
. (3.221)

We conclude that the number of possible partitions N in the definition of the brackets is
dominated by

N ≤ 22/δ−225/δ = 1

4
27/δ .

To determine the number of vectors of numbers �i
j, we note that, by definition, gi−1(xj−1)+

�i
jδ̃i/|�j|1/2 ≤ g(x), for all x ∈�j, hence, ≤ g(xi−1), and recall from step 3 that if �̃j is the

interval from πi−1 that contains�i from πi, then g(xj−1)−gi−1(xj−1)≤ (63/2+1)δ̃i−1|�̃j|−1/2.
Therefore, we must have

�i
j ≤
(63/2 + 1)δ̃i−1|�̃j|−1/2

δ̃i|�j|−1/2
+ 1.

Now |�j| ≤ |�̃j| and δ̃i−1/δ̃i ≤
√

8: the first assertion is obvious, and the second follows

because δ̃
2

i = (δ2
i−1/2)∧ n−3

i ≥ (δ2
i−1/2)∧ (2ni−1)

−3 and δ̃
2

i−1 ≤ n−3
i−1. This yields �i

j ≤ (63/2 +
1)
√

8+ 1 < 50. Hence, for each sequence of partitions, we have at most 50
∑k

i=1 ni possible
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brackets. Thus, by (3.221) and the estimate for N, the number of possible brackets does not
exceed

N · 505/δ ≤ 1

4
27/δ505/δ < 1007/δ.

Summarising, we obtain

logNLB(G,L2(μ),
√

241δ) <
7log100

δ
,

which, by step 1, proves the proposition.

See Chapter 4 for estimates on the bracketing numbers (via L∞-metric entropy bounds)
for classes of smooth functions.

3.5.3 Bracketing II: An Exponential Bound for Empirical Processes
over Not Necessarily Bounded Classes of Functions

Bernstein’s inequality (Proposition 3.1.8) provides exponential bounds for sums of
independent random variables with exponential tail probabilities, and a slight modification
of the preceding proof should do the same for empirical processes, as we see in this
subsection. This is interesting because, although the expectation bounds in the preceding
subsection will suffice for the central limit theorem, they only combine with Talagrand’s
exponential bound in the case of uniformly bounded processes. As it always seems to be the
case with chaining, the constants in these bounds are far from optimal, so in this subsection
we will not even bother with explicit constants and will be concerned only with the order of
the bounds.

We begin by modifying the way the size of a bracket is measured: instead of the
L2(P)-norm, we will use a quantity ρk( f ) (or ρK(g− f )) that is neither a norm nor a distance
but that is adequate for Bernstein’s inequality. Given a probability measure P on (S,S) and
a positive constant K, we set

ρ2
K( f )= 2K2E(e| f (X)|/K − 1−| f (X)|/K)= 2K2

∞∑
k=2

E| f (X)|k
Kkk!

where X has probability law P, and define the Bernstein size of f as the nonnegative square
root of ρ2

K( f ). Note that ρK( f ) <∞ if and only if Ee| f (X)|/K <∞ and that if this holds for
some K, then limK→∞ρK( f ) = E f 2(X). Here are some properties of this function that can
be easily checked:

Lemma 3.5.18

(a) ρK( f ) is nonincreasing in K and ρK(λ f )= |λ|ρK/|λ|( f ).
(b) ρ2

K( f + g)≤ 2ρ2
K/2( f )+ 2ρ2

K/2(g).
(c) If ρK( f )≤ R, then E| f (X)|k ≤ k!Kk−2R2/2, for all k ≥ 2.
(d) If E| f (X)|k ≤ k!Kk−2R2/2, for all k ≥ 2, then ρ2

2K( f )≤ 2R2.
(e) If ‖ f ‖∞ ≤ K and E f (X)2 ≤ R2, then ρ2

2K ≤ 2R2.
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The version of Bernstein’s inequality in Proposition 3.1.8 together with part (c) of the
preceding lemma gives the following corollary, which provides the motivation for the
definition of ρK:

Corollary 3.5.19 Let Xi be independent identically distributed random variables with law
P, and let Pn be the corresponding empirical measure. Assume that E f (X) = 0 and
ρK( f )≤ R. Then, given C> 0,

Pr
{√

n|(Pn −P)( f )| ≥ t
}≤ 2exp

(
− t2

2(C+ 1)R2

)
, for all t ≤ C

√
nR2/K. (3.222)

This inequality could be stated for the whole range of t ≥ 0, but it is only stated for t in
the ‘Gaussian range’ because we will only use Bernstein’s inequality for this range of t (just
as in the proof in the preceding subsection).

Definition 3.5.20 Let F be a class of measurable functions f : S �→R such that Ee| f (X)|/K<
∞. For each ε > 0, the B(K,P)-bracketing number NBK(F ,P,ε) is defined as the smallest
N for which there exists a partition of the class F into N subsets B1, . . . ,BN such that,
letting �i := (

sup f ,g∈Bi
| f − g|)∗, we have ρK(�i) ≤ ε, for 1 ≤ i ≤ N. For each ε > 0, the

B(K,P)-bracketing entropy of F is defined as HBK(F ,P,ε)= logNBK(F ,P,ε).

Here is the main result of this subsection. Its proof has the same structure as the proof of
Theorem 3.5.13 based on chaining combined with a different truncation at each step of the
chain (see the decomposition (3.206), which will also be used in the next proof).

Theorem 3.5.21 Let P be a probability measure on (S,S), and for each n, let Pn be the
empirical measure corresponding to n independent identically distributed random variables
with law P. Let F be a class of measurable functions such that ρK( f ) ≤ R, for all f ∈ F .
Given C1 <∞, for all C sufficiently large and C0 satisfying

C2
0 ≥ C2(C1 + 1), (3.223)

and for n ∈N and t> 0 satisfying

C0

(
R∨

∫ R

t/(26√n)

√
HB,K(F ,P,ε)dε

)
≤ t ≤√

n((8R)∧ (C1R
2/K)), (3.224)

we have

Pr
{√

n‖Pn −P‖F ≥ t
}≤ Cexp

(
− t2

C2(C1 + 1)R2

)
. (3.225)

Proof In the proof of Theorem 3.5.13 redefine Nk as Nk = NBK(F ,P,2−kR)), for k =
0,1, . . . , and {Tk,i}Nk

i=1 by a partition of F such that

ρK

((
sup

f ,g∈Tk,i

| f − g|
)∗)

≤ 2−k, for 1 ≤ i ≤ Nk, 0 ≤ k<∞.

Given t satisfying condition (3.224), define

L = min

{
k ≥ 0 : 2−k ≤ t

24
√

nR

}
.
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Then t ≤ 8
√

nR implies L ≥ 1, and we also have, by the definition of L, R > 2−(L+1)R >
t/(26√n), so

1

2

L∑
k=0

2−kRH1/2
k =

L+1∑
k=1

2−kRH1/2
k−1 ≤

L+1∑
k=1

∫ 2−k+1R

2−kR
H1/2

BK (u)du

=
∫ R

2−(L+1)R
H1/2

BK (u)du ≤
∫ R

t/26√n
H1/2

BK (u)du ≤ t/C0.

Also, as in the preceding proof,

L∑
k=0

2−k(logN0 · · ·Nk)
1/2 ≤ 2

L∑
i=0

2−i(logNi)
1/2.

Thus, we can assume that we have a collection of partitions {Ak,i : 1≤ i≤ Ñi}, Ñk =N0 · · ·Nk,
k ≥ 0, such that

(a)
L∑

k=0

2−kR
√

log Ñk ≤ 4
∫ R

t/26√n

√
HB,K(F ,P,ε)dε ≤ 4t/C0

(b) ρK

((
sup

f ,g∈Ak,i

| f − g|
)∗)

≤ 2−kR, for 1 ≤ i ≤ Nk, 0 ≤ k ≤ L.

(c) The partitions {Ak,i : 1 ≤ i ≤ Ñk} are nested; that is, if j ≤ � < k, for each Ak,i there is one
and only one r such that Ak,i ⊆ A�,r.

As in the preceding bracketing proof, for each f and k = 0, . . . ,L, we have a nested
sequence of partition sets A�,i�( f ), � = k, . . . ,L, each containing f , and the number of such
chains is just Ñk.

For each pair k, i such that 0 ≤ k ≤ L and i = 1, . . . , Ñk, we pick up a function fk,i ∈ Ak,i

and set

πk f = fk,i and �k( f )=
(

sup
h,g∈Ak,i

|g− h|
)∗

, if f ∈ Ak,i.

The varying truncation levels are also similar to those in the preceding proof, but with
different constants. Setting log Ñk = H̃k, define

ηk = max
(
2−(k+3)H̃

1/2

k C0R/t,2
−(k+3)

√
k
)

so that
∑L

k=0 ηk ≤ 1,

αk =√
nak = 24√nR2

22kηk+1t
, k = 0, . . . ,L− 1,

and τ f := τ( f ,x)= min{0 ≤ k ≤ L− 1 :�k f (x) > αk} if this set is not empty, and τ f = L
otherwise. In analogy with the preceding proof, we also have the following properties of τ f :

{τ f = k} ⊂ {�k f > αk}, for 0 ≤ k ≤ L− 1, {τ f = k} ⊂ {�k−1 f ≤ αk−1}, for 1 ≤ k ≤ L,

×{τ f ≥ k} ⊆ {�k f ≤�k−1 f ≤ αk−1}, 1 ≤ k ≤ L.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.004
http:/www.cambridge.org/core


3.5 Metric Entropy Bounds for Suprema of Empirical Processes 209

Finally, since {τ f = L} = {τ f ≥ L}, the decomposition (3.206) becomes for all f ∈F

f = π0 f +
L∑

k=0

( f −πk f )Iτ f =k +
L∑

k=1

(πk f −πk−1 f )Iτ f ≥k. (3.226)

Now we can proceed with application of Bernstein’s inequality combined with the entropy
bound to obtain upper bounds for the tail probabilities of the empirical process applied to
each of these three summands.

For the first term, we note that ρK(π0 f )≤ R because π0 f ∈F and that by (3.224)

C1

√
nR2/K ≥ t ≥ C0H

1/2
0 (R− t/26√n)≥ C0H

1/2
0 R/2,

so Bernstein’s inequality in the form of Corollary 3.5.19 does apply and gives

Pr

{
sup
f ∈F

|√n(Pn −P)(π0 f )| ≥ t

4

}
≤ 2eH0 exp

(
− t2/24

2(C1/4+ 1)R2

)

≤ 2exp

(
4t2

C2
0R

2
− t2

25(C1 + 1)R2

)
≤ 2exp

(
− t2

26(C1 + 1)R2

)
, (3.227)

if we take C2
0 ≥ 28(C1 + 1).

For the third term of (3.226), which corresponds to the fourth term in (3.206), we first
note that the number of functions (πk f − πk−1 f )Iτ f ≥k, f ∈ F , is just Ñk. Next, we note
that the variance under P of each (πk f −πk−1 f )Iτ f ≥k is dominated by the second moment
of �k−1( f )(Xi), which, by Lemma 3.5.18(c) is, in turn, dominated by ρ2

K(�k−1( f )) ≤
2−2(k−1)R2, and that its supremum norm is dominated by αk−1 (by the properties of τ f ).
Thus, we may apply to these variables either Bernstein’s inequality for bounded variables in
Theorem 3.1.7 or Corollary 3.5.19 combined with Lemma 3.5.18(e). We apply the former,
which for i.i.d. variables bounded by c in absolute value and variance σ 2 is given by
Pr{|Sn|/√n ≥ t} ≤ 2exp(−t2/(2(1+λ)σ 2), if t ≤ 3λ

√
nσ 2/c. Then, since by the definitions

of αk and ηk we have

ηkt

4
= 4

3

3
√

n2−2(k−1)R2

αk−1

and

H̃k =
L∑

k=0

Hk ≤ η2
k22(k+3)t2/C2

0R
2,
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we conclude, assuming C2
0 ≥ 3 · 212, that

Pr

{
sup
f ∈F

∣∣∣∣∣√n(Pn −P)

(
L∑

k=1

(πk f −πk−1 f )Iτ f ≥k

)∣∣∣∣∣≥ t

4

}

≤
L∑

k=1

Pr

{
sup
f ∈F

∣∣√n(Pn −P)
(
(πk f −πk−1 f )Iτ f ≥k

)) | ≥ ηkt

4

}

≤ 2
L∑

k=1

exp

(
L∑

k=1

Hk − t2η2
k/2

4

6 · 2−2(k−1)R2

)
≤ 2

L∑
k=1

e−22kη2
k t2/29R2

.

Now, since ηk ≥ 2−k−3
√

k and t ≥ C0R, we have, for C2
0 ≥ 216,

L∑
k=1

e−22kη2
k t2/29R2 ≤

L∑
k=1

e−t2k/215R2
<

1

1− e−C2
0/2

15
e−t2/215R2 ≤ 2e−t2/215R2

;

hence,

Pr

{
sup
f ∈F

∣∣∣∣∣√n(Pn −P)

(
L∑

k=1

(πk f −πk−1 f )Iτ f ≥k

)∣∣∣∣∣≥ t

4

}
≤ 4e−t2/215R2

. (3.228)

Finally, we consider the middle term in the decomposition (3.226), similar to the third
term in decomposition (3.206). First, we note that given that |( f −πk f )Iτ f =k| ≤�k( f )Iτ f =k,
we have ∣∣(Pn −P)(( f −πk f )Iτ f =k)

∣∣≤ (Pn −P)(�k( f )Iτ f =k)+ 2P(�k( f )Iτ f =k).

Now, since �k( f ) > αk if τ f = k for k ≤ L− 1, and since ρK(�k( f ))≤ 2−kR, we have, for
k ≤ L− 1,

P(�k( f )Iτ f =k)≤ P(�k( f ))2

αk
≤ ρ

2
K(�k( f ))

αk
≤ 2−2kR2

αk
≤ ηk+1t

24
√

n

and, by the definition of L,

P(�L( f )Iτ f =L)≤ (P(�2
L( f )))1/2 ≤ 2−LR ≤ t

24
√

n
.

Then, collecting the last three inequalities (recall that
∑
ηk ≤ 1), we get∣∣∣∣∣(Pn −P)

(
L∑

k=0

( f −πk f )Iτ f =k

)∣∣∣∣∣≤ (Pn −P)

(
L∑

k=0

�k( f )Iτ f =k

)
+ t

4
√

n
.

Hence,

Pr

{∣∣∣∣∣√n(Pn −P)

(
L∑

k=0

( f −πk f )Iτ f =k

)∣∣∣∣∣≥ t

2

}
≤ Pr

{
√

n(Pn −P)

(
L∑

k=0

�k( f )Iτ f =k

)
>

t

4

}

≤ Pr

{
√

n(Pn −P)

(
L∑

k=1

�k( f )Iτ f =k

)
>

t

8

}

+Pr

{√
n(Pn −P)

(
�0( f )Iτ f =0

)
>

t

8

}
.
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For the last summand, we can apply Corollary 3.5.19 as we do in (3.227) with the preceding
first term, which, since ρK(�0)≤ R, t ≤ C1

√
nR2/K and H0 ≤ 16t2/C2

0R
2, gives

Pr

{√
n(Pn −P)

(
�0( f )Iτ f =0

)
>

t

8

}
≤ 2exp

(
− t2

28(C1 + 1)R2

)
if we take C2

0 ≥ 212(C1 + 1). The preceding summand can be bounded using Bernstein’s
inequality for bounded variables just as is done in (3.228) with the second term of the
decomposition (3.226) because

E�2
k( f )≤ 2−2kR2 and �k( f )Iτ f =k ≤�k( f )Iτ f =k ≤ αk−1.

Thus, we obtain

Pr

{
√

n(Pn −P)

(
L∑

k=1

�k( f )Iτ f =k

)
>

t

8

}
≤ 4e−t2/217R2

,

assuming C2
0 ≥ 218. Now the theorem follows by collecting the last two estimates, (3.227)

and (3.228)

Exercises

3.5.1 Let F ={I(−∞,t] : t∈R}. Show that for every Borel probability measure P onR, N(F ,L2(P),τ)≤
τ−2+1≤ 2τ−2, for 0<τ < 1. Hence, since also the measurable cover of F is F= 1, we can take
H in Theorem 3.5.6 to be H(x) = log(4x2) for x ≥ 1. Then, by differentiating xH1/2(1/x) and
by noting that the derivative of this function, H1/2(1/x)(1− 1/H(1/x)), is larger than or equal
to H1/2(1/x)(1− 1/ log4) for x< 1, it follows that H satisfies condition (ii) in the theorem for
CH = log4/(log4− 1). Deduce that for all Borel probability measures P on R, if F and Fn are,
respectively, the cumulative distribution function (cdf) of P and the empirical cdf corresponding
to an independent sample from P, then E‖Fn −F‖∞ ≤ C/

√
n. This bound is of the right order

but for the constant much larger than 4. Recall from Exercise 3.1.7 that E‖Fn −F‖∞ ≤ 4/
√

n.
3.5.2 (a) Repeat Exercise 3.5.1 for F = { ft : fs ≤ ft for s≤ t∈R, f−∞+ ≥ 0, f+∞− ≤ 1}. In particular,

this applies to the classes of sets in Rd, Fi = {Ixi≤t : t ∈ R}, 1 ≤ i ≤ d. (b) Observe that if
| fi|, |gi| ≤ 1, then for any probability measure P, P(

∏d
i=1 fi−∏d

i=1 gi)
2 ≤ d

∑d
i=1 P( fi−gi)

2, and
use this and part (a) to give an estimate for the L2(P)-covering numbers of G = {Ix1≤t1,...,xd≤td :
(t1, . . . , td) ∈ Rd}. (c) Conclude that for every d ∈ N there exists Cd <∞ such that if for any
Borel probability measure P on Rd, F is its cdf and Fn the empirical cdf corresponding to an
independent sample from P, then we have ‖Fn −F‖∞ ≤ Cd/

√
n.

3.5.3 The classes of functions considered in the preceding two exercises are linearly ordered by
the usual relation of order between functions (or of inclusion between sets). Show that, as
a consequence, the estimates of the covering numbers of the classes of indicators in these
exercises also hold true for their bracketing covering numbers (any P) and hence that in
these cases the bracketing expectation bounds produce the same results (up to constants, none
optimal).

3.5.4 Let N1
[](F ,Lp(P),ε) and N2

[](F ,Lp(P),ε) denote the bracketing numbers of F according to the
first and second definitions of brackets given at the beginning of Section 3.5.2. Show that

N2
[](F ,Lp(P),2ε)≤ N1

[](F ,Lp(P),ε)≤ N2
[](F ,Lp(P),ε).

Hint: If, for B ⊂ F , �B = (sup f ,g∈B | f − g|)∗ and f ∈ B, then B is contained in the bracket

[ f −�, f +�] of Lp size 2‖�B‖Lp . In the other direction, if B = [ f , f ], then �B = f − f .
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3.5.5 Prove that there exists a constant K <∞ such that if F is such that ρ1( f ) ≤ δ, for all f ∈ F ,
where ρ1 is the Bernstein size, then

E

∥∥∥∥∥
n∑

i=1

( f (Xi)−P f )

∥∥∥∥∥
∗

F
≤ K

(
1+ 1

δ2

∫ δ

0

√
HB,1(F ,P,ε) dε

)∫ δ

0

√
HB,1(F ,P,ε) dε.

Hint: Improve on some of the estimates in the proof of Theorem 3.5.21 along the lines of the
proof of Proposition 3.5.15.

3.5.6 Modify the proof of Proposition 3.5.17 to show that if F is a collection of uniformly bounded
monotone functions on R, then uniformly in P, for all p ≥ 1, logN[](F ,Lp(P),δ)≤ K/δ.

3.6 Vapnik-Červonenkis Classes of Sets and Functions

Many classes of sets and functions used in statistical applications of empirical processes
have the remarkable property of admitting bounds for their L2(P) covering numbers
N(F ,L2(P),ε) of the order of ε−s, for some s <∞, uniformly in P ∈ P(S), where P(S)
is the set of all probability measures on (S,S). Consider as a first example linearly ordered
uniformly bounded classes of functions, as in the exercises from the preceding section. Any
empirical process indexed by these classes admits excellent bounds for the expectation of its
supremum, and these, combined with Talagrand’s inequality, produce exponential bounds
that are of Gaussian type in large portions of their range, that is, best possible at least up to
constants. It will be seen in later sections that the usual limit theorems do hold uniformly
in P for these classes. These classes of sets were discovered by Vapnik and Červonenkis
and their entropy properties by Dudley who called them VC classes. The entropy properties
of VC classes of sets are inherited by related classes of functions that go by the name of
VC subgraph classes of functions. Other related classes of functions such as VC-major and
VC-hull classes admit larger but still manageable uniform bounds. In this section, VC classes
of sets and the related class functions are defined and their L2(P) metric entropy properties
established.

3.6.1 Vapnik-Červonenkis Classes of Sets

Let C be a class of subsets of a set S. Let A ⊆ S be a finite set. The trace of C on A is the
collection of all the subsets of A obtained by intersection of A with sets C from C. Denote
by �C(A) the cardinality of the trace of the class C on A. Then �C(A)≤ 2Card(A), and we say
that C shatters A if�C(A)= 2Card(A), that is, if every subset of A is the intersection of A with
some set C ∈ C. Let

mC(k)= sup
A⊆S

Card(A)=k

�C(A).

Definition 3.6.1 A collection of sets C is a Vapnik-Červonenkis class (C is VC) if the
quantity

v(C) :=
{

min{k : mC(k) < 2k} if mC(k) < 2k for some k<∞
∞ otherwise

is finite, that is, if there exists k <∞ such that C does not shatter any subsets of S of
cardinality k. The VC index of the class C is defined as v(C).
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3.6 Vapnik-Červonenkis Classes of Sets and Functions 213

For instance, the collection of half-lines C = {(−∞, t] : t ∈ R} is VC and v(C) = 2; if
x1 < x2, then �C(x1,x2)= 3< 22 because C cannot pick out {x2}.

It is easy to see that v(C) = 0 if and only if C is empty and v(C) = 1 if and only if C
consists of only one set (Exercise 3.6.1). In the first case, mC(n) = 0 for all n, and in the
second, mC(n)= 1 for all n ≥ 1.

The following remarkable combinatorial theorem asserts that either mC(k)= 2k for all k
or mC(k) grows only polynomially in k. The main results on VC classes of sets and functions
are based on this theorem.

Theorem 3.6.2 Let C be a non-empty VC class, and let v = v(C). Then, for any finite set
A ⊆ S,

�C(A)≤ Card{B ⊆ A : Card(B) < v} =
v−1∑
j=0

(
Card(A)

j

)
,

and therefore,

mC(n)≤
v−1∑
j=0

(
n

j

)
,

a polynomial in n of degree v− 1. In particular, there is a constant B(v) <∞ depending
only on v such that mC(n)≤ B(v)nv−1, for all n ≥ v− 1.

The result follows from the following proposition by letting U = {C∩A : C ∈ C}:
Proposition 3.6.3 Let A be a finite set, and let U be a class of subsets of A. Then

Card(U)≤ Card{B ⊆ A : B is shattered by U}.
Proof Say that a class of subsets of A, U ′, is hereditary if when a set B is in U ′ then all the
subsets of B are also in U ′. By definition, if U ′ is hereditary, then U ′ shatters all the sets it
contains, and therefore,

Card(U ′)≤ Card{B ⊆ A : B is shattered by U ′}.
Hence, the proposition will be proved if we construct a collection U ′ from U such that

(i) U ′ is hereditary,
(ii) Card(U)= Card(U ′), and
(iii) U shatters at least as many sets as U ′ shatters.

We will obtain U ′ by repeated application of a simple transformation Tx that with each
application renders the class of sets a step closer to being hereditary. Given x ∈ A and a
collection V of subsets of A, let TV

x (V) := Tx(V) := {Tx(V) : V ∈ V}, where, for V ∈ V ,

Tx(V)=
{

V \ {x} if x ∈ V and V \ {x} /∈ V
Tx(V)= V otherwise.

Thus, all the sets in Tx(V) satisfy that if V ∈ Tx(V) and x ∈ V then V \ {x} ∈ Tx(V), which
is clearly a step towards transforming V into a hereditary set, as mentioned earlier. Another
property of Tx(V) to be used later that follows directly from the definition is that if V∈Tx(V)
and x ∈ V, then V ∈ V , V \ {x} ∈ V and Tx(V)= V.
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Define, on classes V of subsets of A, the functional w(V) :=∑
V∈V Card(V). Then, since

Card(TV
x (V)) is either Card(V) or Card(V)− 1, it follows that w ◦ Tx ≤ w. This implies that

the minimum of w among all the collections U ′ obtained from U by finitely many repeated
applications of the maps Tx, x ∈ A, is attained. Let U ′ be one of the possibly more than one
such collections on which w is minimal. Then w(U ′) = w(TU ′

x (U ′)), for all x ∈ A. But this
implies that U ′ is hereditary if U ′ were not hereditary, then there would exist a set B ∈ U ′

and a point x ∈ A such that B \ {x} 
∈ U ′, implying that Card(Tx(B)) < Card(B) and hence
also that w(U ′) < w(Tx(U ′), a contradiction. (Repeated applications of the maps Tx means,
for example, that T

TyU
x (TU

y (B).)
Since U ′ is obtained from U by a finite number of operations Tx, to prove that U ′ satisfies

preceding properties (ii) and (iii), it suffices to see that they are satisfied by Tx(U). Thus, we
must show that Card(Tx(U)) = Card(U) and that U shatters at least as many sets as Tx(U)
does. To prove the first property, we observe that Tx is one to one: the operation Tx keeps
unchanged those sets U∈U which contain x and are such that U\{x} is in U as well as those
sets U ∈U which do not contain x, and Tx replaces U by U\ {x} if U contains x but U\ {x} is
not in U . This is obviously a one-to-one replacement. To see the second property, we must
show that if Tx(U) shatters B, then U also shatters B. Suppose that Tx(U) shatters B. If x /∈B,
then U shatters B because U ∈ U differs from Tx(U) ∈ Tx(U) at most by x. If x ∈ B, then for
every B′ ⊆ B\{x} there exists V ∈ Tx(U) such that V∩B= B′ ∪ {x} because Tx(U) shatters B.
This implies that x ∈ V and therefore that V is also in U , thus showing that U∩B = B′ ∪ {x}
for some U ∈ U ; moreover, V \ {x} ∈ U and (V \ {x})∩B = B′. Hence, U shatters B.

The following proposition will simplify the bound for mC(n) in the preceding theorem.

Proposition 3.6.4 Let k and n be nonnegative integers such that n ≥ k+ 2. Then

k∑
j=0

(
n

j

)
≤ 1.5nk

k! . (3.229)

Proof We recall the nonasymptotic Stirling’s formula (see Feller, vol. I, 1968, p. 52)

(n/e)n
√

2πn ≤ n! ≤ e1/12n(n/e)n
√

2πn, n ∈N, (3.230)

to be used at a crucial step in this proof. We also recall the ‘Pascal triangle’ property of the
quantities Cn,≤k :=∑k

j=0

(n
j

)
, simply inherited from the same property of the combinatorial

numbers
(n

k

)
Cn,≤k = Cn−1,≤k +Cn−1,≤k−1, k,n ∈N, k< n. (3.231)

Another inequality we need is the following simple one: for n,k ≥ 1,

nk

k! ≥
(n− 1)k

k! + (n− 1)k−1

(k− 1)! , (3.232)

which follows because, by the binomial theorem, nk ≥ (n− 1)k + k(n− 1)k−1. Suppose that
the proposition is true for Cn,≤n−2 for all n and that, given K, the proposition is also true for
Cn,≤k, for all (n,k) with 0 ≤ k ≤ K− 1 and n ≥ k+ 2. Then, using (3.231) and (3.232),

CK+3,≤K = CK+2,≤K +CK+2,≤K−1 ≤ 1.5(K+ 2)K

K! + 1.5(K+ 2)K−1

(K− 1)! ≤ 1.5(K+ 3)K

K! .
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Consequently,

CK+4,≤K = CK+3,≤K +CK+3,≤K−1 ≤ 1.5(K+ 4)K

K!
and, in general, Cn,≤K ≤ 1.5nK/K!, for all n ≥ K+ 2. Hence, the proposition will follow by
induction on k if we show that it holds for the pairs (n,k) such that k = 0 and n ≥ 2, k = 1
and n ≥ 3 and (n,n− 2) for all n ≥ 3. For k = 0, it follows because Cn,≤0 = 1, and for k = 1
and n ≥ 3, it follows because 1+ n ≤ 1.5n. For k = n− 2, we must show that

2n − 1− n ≤ 1.5nn−2

(n− 2)! =
1.5(n− 1)nn−1

n! .

This can be checked directly for n = 3, . . . ,6. For n ≥ 7, we will prove the slightly stronger
inequality 2nn! ≤ 1.5(n− 1)nn−1. By Stirling’s formula, it suffices to show that

2n(n/e)n(2πn)1/2e
1

12n ≤ 1.5(n− 1)nn−1.

Taking logarithms and then derivatives, it is easy to see that (e/2)n ≥ 2n1/2 for all n ≥ 7 (in
fact, n ≥ 5). But then the preceding inequality follows from

√
2πe

1
12n ≤ 3(1− 1/n),

which does hold for all n ≥ 7 (
√

2π ≤ 2.51, 18/7 ≥ 2.57 and the exponential is very close
to 1).

The preceding proposition and theorem give the following:

Corollary 3.6.5 If C is a non-empty VC class of sets and v = v(C) is its VC index, then

mC(n)≤ 1.5nv−1

(v− 1)! , f or n ≥ v+ 1.

For n = v, mC(n)≤ 2v − 1, and for n< v, mC(n)≤ 2n < 2v − 1. In particular,

mC(n)≤ 2nv−1, for all n ≥ 1.

Whereas the inequalities in this corollary are not sharp, the inequality in Theorem 3.6.2
is (see Exercise 3.6.2). The preceding inequality follows easily for v(C)≥ 2, and it follows
from Exercise 3.6.1 for v = 0 and v = 1 (in these cases, mC(n) is, respectively, 0 and 1).

It is not always easy to prove that a class of sets is VC. The following two propositions
can be very helpful:

Proposition 3.6.6 If G is a finite-dimensional vector space of real functions on S, then the
class of sets C := [{g ≥ 0} : g ∈ G] is VC with v(C) = dimG + 1. The same is true for
[{g> 0} : g ∈ G].
Proof Let v− 1 = dimG, and let {s1, . . . ,sv} be v distinct points of S. (The result clearly
holds if S contains fewer than v points.) Let L : G �→Rv be given by L(g)= (g(s1), . . . ,g(sv)).
Then dimL(G)≤ v− 1. Let w = (w1, . . . ,wv) be a nonzero vector orthogonal to L(G). Then∑

wiI(wi ≥ 0)g(si)=−
∑

wiI(wi < 0)g(si),
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and we can assume that the set of i with wi < 0 is not empty (otherwise, we can replace
w by −w). If there existed g for which {g ≥ 0} ∩ {s1, . . . ,sv} = {si : wi ≥ 0}, then the left
side of the preceding equation for this g would be larger than or equal to zero, whereas the
right side would be negative, which is impossible. Thus, there is a subset of {s1, . . . ,sv} that
is not the intersection of {s1, . . . ,sv} with any set {g ≥ 0}. Hence, the class C is VC, and
v(C)≤ dimG+ 1.

Now let m = v− 1 = dim(G). Consider the vector space G′
S = {∑aiδxi : ai ∈ R, xi ∈ S},

where δx is unit mass at x, and note that the natural inclusion G ⊂ (G′
S)

′ is injective (if
two functions are different, they are also different as linear functionals on G′

S). Hence, the
dimension of G′

S, which equals that of its dual, is at least m. Since {δx : x ∈ S} generates
G′

S, it follows that there exist m points xi ∈ S such that δx1 , . . . ,δxm are linearly independent
as elements of G′

S. Therefore, {(g(x1), . . . ,g(xm)) : g ∈ G} = Rm, which implies that every
subset of the set {x1, . . . ,xm} is the intersection of this set with {g≥ 0} for some g ∈G. Thus,
v(C)≥ m+ 1 = v. The second assertion follows in a similar way.

For example, this proposition immediately gives that the class of all closed half-spaces
of Rd is VC and so is the class of all the open half-spaces. The same is true for the class of
all the closed balls (or all open balls) of Rd.

Exercise 3.6.4 and the following proposition are examples of permanence properties of
VC classes.

Proposition 3.6.7

(i) If C is VC, then Cc := {Cc : C ∈ C} is VC.
(ii) If C and D are VC, then C∪D and C∩D are VC. Here C∪D= {C∪D : C∈ C,D∈D}

and C ∩D = {C∩D : C ∈ C,D ∈D}.
(iii) If C is a collection of subsets of S and D is a collections of subsets of T and both are

VC, then C×D is also VC, where C×D = {C×D : C ∈ C,D ∈D}.
(iv) If C ⊂D and D are VC, then C is VC.

Proof Obviously, C shatters A if and only if Cc does, and we also have v(C)= v(Cc). The
trace of C on a set of n points consists of a number of sets not exceeding 1.5nv(C)−1, and the
trace of D on each of these subsets does not exceed 1.5nv(D)−1; hence, the trace of C ∩D
does not exceed 2.25nv(C)+v(D)−2, smaller than 2n for n large enough. This also proves C∪D
is VC by taking complements and applying the first property. If A⊂ S×T has n points, then
clearly�C×T(A)=�C(π1(A)), where π1(s, t)= s, and likewise for S×D, showing that these
two classes are VC; hence, so is their intersection C×D.

The preceding two propositions show, for example, that the class of all polygons of R2 of
less than k sides, any fixed k, is VC, and likewise in Rd for piecewise polynomial regions of
a fixed finite number of pieces and degrees not exceeding a fixed number k.

We conclude this subsection by showing in the most naive way possible how
Theorem 3.6.2 can be used to evaluate empirical processes indexed by VC classes of sets.
The reader will find it meaningful because we already have a relatively large collection of
examples of VC classes. Let C be a countable, not empty VC class of subsets of S of index v,
and consider the empirical processes indexed by C and based on an i.i.d. sample {Xi} from
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P. Let

P̃n(C)= 1

n

n∑
i=1

εiδXi(C)=
1

n

n∑
i=1

εiIXi∈C, C ∈ C,

be the empirical process randomised by an independent Rademacher sequence {εi}
independent of the variables Xj. Observe that if {X1, . . . ,Xn} ∩ C = {X1, . . . ,Xn} ∩ D, then
P̃n(C)= P̃n(D). This implies by Corollary 3.6.5 that supC∈C |P̃n(C)| is in fact the maximum
over at most mC(n) ≤ 1.5nv−1/(v − 1)! random variables of the form n−1

∑n
i=1 εiai, with

ai = 0 or ai = 1. But these random variables are sub-Gaussian with σ 2 ≤ 1/n. Hence, the
simple maximal inequality for finite collections of sub-Gaussian variables in Lemma 2.3.4
together with randomisation yields, for n ≥ 2,

E‖Pn −P‖C ≤ 2E‖P̃n‖C = 2EXEε‖P̃n‖C ≤ 2

√
2log

1.5nv−1

(v− 1)!/
√

n → 0,

a uniform Glivenko-Cantelli theorem for these classes. The first identity here requires
measurability, and this is why we are assuming C to be countable, an assumption that can be
relaxed but not altogether ignored. This is the celebrated Vapnik-Červonenkis law of large
numbers, which does go far beyond the multivariate Glivenko-Cantelli theorem. Strictly
speaking, the Glivenko-Cantelli theorem states a.s. convergence, but here, once convergence
to zero in probability is established, one simply uses the reverse submartingale convergence
theorem to show convergence a.s. (Exercise 3.6.8).

For more sophisticated applications, a bound on the L2(P)-covering numbers of VC
classes of sets is needed. This is given in the next subsection, directly for VC subgraph
classes of functions, which include in particular VC classes of sets.

3.6.2 VC Subgraph Classes of Functions

In this subsection we consider classes of functions on S that are related in different ways to
VC classes of sets. The most interesting are probably the VC subgraph classes. The main
result is Theorem 3.6.9, which shows that the Lp(P)-covering numbers of these classes of
functions admit small bounds, of the order of ε−(v−1)p, uniformly in P.

Definition 3.6.8 The subgraph of a real function f on S is the set

G f = {(s, t) : s ∈ S, t ∈R, t ≤ f (s)}.
A class of functions F is VC subgraph if the class of sets C = {G f : f ∈F} is VC.

The family of indicator functions of the sets in a VC class is a VC subgraph class of
functions. More generally, if f is a function on S and C is a VC class of sets, then the
class of functions F = { f IC : C ∈ C} is VC subgraph. To see this, we just note that for a
subset {(s1, t1), . . . ,(sn, tn)} of S×R to be shattered by the subgraphs of functions in F , it
is necessary that the S coordinates s1, . . . ,sn be all different and that the set {s1, . . . ,sn} be
shattered by C.

Hence, the following key proposition for VC subgraph classes of functions applies to VC
classes of sets and beyond. First, here is some notation. Let F be a class of functions in
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Lp(S,S ,P), 0< p<∞. Then, letting ep,P = ep denote the Lp(P) pseudo-distance ep( f ,g)=
‖ f − g‖p =

∫ | f − g|pdP for 0< p< 1, ep( f ,g)= ‖ f − g‖p =
[∫ | f − g|pdP

]1/p
for p ≥ 1,

we write, as usual,

D(F ,Lp(P),ε) := D(F ,ep,ε)

and likewise for Np. We recall that given a class of functions F , a measurable envelope or
an envelope F of F is any everywhere finite, measurable function F such that

sup
f ∈F

| f (s)| ≤ F(s), s ∈ S.

Of course, a class F may not admit any measurable envelopes. Finally, we should emphasise
that although F is always a subset of measurable functions on a probability space, we do
not identify functions which are a.s. equal.

Theorem 3.6.9 (Dudley-Pollard) Let F be a non-empty VC subgraph class of functions
admitting an envelope F∈ Lp(S,S ,P) for some 0< p<∞ which is assumed, without loss of
generality, bounded away from zero. Suppose that the class C of subgraphs of the functions
in F has index v. Set mv,w = max{m ∈N : logm ≥ m1/(v−1)−1/w} for w> v− 1. Then we have

D(F ,Lp(P),ε‖F‖p)≤ mv,w ∨
[
2w/(v−1)

(
2p+1

εp

)w]
, for all w> v− 1 i f p ≥ 1, (3.233)

and

D(F ,Lp(P),ε‖F‖p)≤ mv,w ∨
[
2w/(v−1)

(
2

ε1/p

)w]
, for all w> v− 1 i f p< 1. (3.234)

Hence, the same bounds apply to N(F ,Lp(P),ε‖F‖p).

Proof The theorem is proved if D(F ,Lp(P),ε‖F‖p) ≤ 1, so we may assume the packing
numbers of the class C of subgraphs to be larger than 1 and, in particular, v ≥ 2. First, we
consider the case p ≥ 1. Let f1, . . . , fm be a maximal collection of functions in F for which

P| fi − fj|p > εpPFp, i 
= j,

so that m = D(F ,Lp(P),ε‖F‖p). For k, to be specified later, let (si, ti), 1 ≤ i ≤ k, be
independent identically distributed (S×R) random vectors with law

Pr {(s, t) ∈ A×[a,b]} =
∫

Aλ[(−F(s))∨ a,F(s)∧ b]Fp−1(s)dP(s)

2PFp
,

for A ∈ S and real numbers a < b, where λ is Lebesgue measure. (That is, independently
for each i, si is chosen according to the law PF(A)= P(IAFp)/PFp, A ∈ S , and given si, ti is
chosen uniformly on [−F(si),F(si)].) Let Ci denote the subgraph of fi. The probability that
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at least two graphs have the same intersection with the sample {(si, ti), i ≤ k} is at most(
m

2

)
max

i
=j
Pr{Ci and Cj have the same intersection with the sample}

=
(

m

2

)
max

i
=j

k∏
r=1

Pr{(sr, tr) /∈ Ci�Cj}

=
(

m

2

)
max

i
=j

k∏
r=1

[
1−Pr{(sr, tr) ∈ Ci�Cj}

]

=
(

m

2

)
max

i
=j

k∏
r=1

[
1−Pr

{
(sr, tr) : tr is between fi(sr), fj(sr)

}]
=
(

m

2

)
max

i
=j

[
1− 1

‖F‖p
p

∫ | fi − fj|
2F

FpdP

]k

≤
(

m

2

)
max

i
=j

[
1− 1

‖F‖p
p

∫ | fi − fj|p
2p

dP

]k

≤
(

m

2

)[
1− ε

p

2p

]k

≤
(

m

2

)
exp

(
−ε

pk

2p

)
.

Let k be such that this probability is strictly less than 1. Then there exists a set of k elements
of S such that graphs Ci ∈ C, 1 ≤ i ≤ m, intersect different subsets of this set, which implies
that mC(k)≥ m. Since 2p(log2)/εp > 1 for p ≥ 1 and 0< ε ≤ 1, the smallest integer k such

that
(m

2

)
exp

(
− εpk

2p

)
< 1 satisfies 1 ≤ k ≤ (2p+1/εp) logm. Therefore, by Corollary 3.6.5, we

have

m ≤ mG(k)≤ 2kv−1 ≤ 2

(
2p+1

εp
logm

)v−1

.

Then, given w > v − 1 and setting τ = 1/(v − 1) − 1/w, either m ≤ mv,w or m ≤
2((2p/εp)mτ )v−1, proving (3.233).

The proof for p< 1 is similar, with the following changes: the functions fi satisfy P| fi −
fj|p ≥ εPFp, and one uses the following estimate of Pr{(sr, tr) ∈ Ci�Cj} in the preceding
string of inequalities:

Pr{(sr, tr) ∈ Ci�Cj} = PF

( | fi(sr)− fj(sr)|
2F(sr)

)
≥
[
PF

( | fi(sr)− fj(sr)|
2F(sr)

)p
]1/p

=
(P| fi − fj|p

2pPFp

)1/p ≥ ε
1/p

2
.
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It follows from the preceding theorem that if F is VC subgraph, then, for any probability
measure P on (S,S) and τ ≤ ‖F‖L2(P),

log2N(F ,L2(P),τ)≤ log(2mv,w)∨ log

(
23+1/(v−1)+1/w‖F‖2

L2(P)

τ 2

)w

≤ 2w log

(
A‖F‖L2(P)

τ

)
,

(3.235)

where w> v and A = Av,w = max
(
2(3+1/(v−1)+1/w)/2,(2mv,w)

1/2w
)
.

As this observation shows, Theorem 3.6.9 is precisely what makes VC subgraph classes
of functions useful in empirical process theory and practice. One can combine VC subgraph
classes of functions by, for example, addition to obtain classes that are no longer VC
subgraph but whose covering numbers still enjoy uniform bounds of the same type, and
they are equally useful. For example, if G and G are VC subgraph, then so are F + G =
{ f + g : f ∈F ,g ∈ G} and F −G (if fi and gj are the centres of balls of radius ε covering,
respectively, F and G, then the balls with centres fi + gj and radius 2ε cover F +G). This
justifies the following definition:

Definition 3.6.10 A class of measurable functions is of VC type with respect to a
measurable envelope F of F if there exist finite constants A, v such that for all probability
measures Q on (S,S)

N(F ,L2(Q),ε‖F‖L2(Q))≤ (A/ε)v.
Next, we consider an example of VC subgraph classes of functions that is particularly

relevant in density estimation. To motivate it, let us anticipate that a class of functions that
naturally arises in the analysis of density estimators based on convolution kernels is

K= {K((t−·)/h) : t ∈R,h> 0} ,

where K is a function of bounded variation, and that, in the case of wavelet density
estimators, the corresponding class of functions (projection kernels) is

Fφ =
{∑

k∈Z
φ(2jy− k)φ(2j(·)− k) : y ∈R, j ∈N∪{0}

}
,

where φ is an α-Hölder continuous function with bounded support for some α ∈ (0,1] (φ
is the scaling function of a Daubechies wavelet). Many properties of convolution kernel or
of wavelet projection density estimators require good estimates on the size of the empirical
process indexed by each of these classes, and these estimates follow as a direct consequence
of the fact that these classes of functions are of VC type. We now prove that this is indeed
the case. It is convenient to recall the following classical definition: given 1 ≤ p <∞, a
function f : R �→R is of bounded p-variation if the quantity

vp( f ) := sup

{
n∑

i=1

| f (xi)− f (xi−1)|p : −∞< x0 < · · ·< xn <∞,n ∈N

}
is finite. In this case, the total p-variation of f is defined as vp( f ), and the p-variation
function of f is defined as vp, f (x) = vp( f I(−∞,x]), x ∈ R. The functions of bounded
1-variation are precisely the functions of bounded variation. Note also that if f is α-Hölder
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continuous with compact support, then f is of bounded 1/α-variation. These functions are
relevant in density estimation because most convolution kernels are of bounded variation,
and the scaling functions of Daubechies wavelets, being α-Hölder for some α ∈ (0,1], are
functions of bounded (1/α)-variation (see Chapter 4).

Functions of bounded p-variation admit the following decomposition:

Lemma 3.6.11 Let f be a function of bounded p-variation. Then f = g ◦ h, where h
is nondecreasing and 0 ≤ h(x) ≤ vp( f ), and g is 1/p-Hölder continuous on the interval
[0,vp( f )] and ‖g‖∞ = ‖ f ‖∞.

Proof Set h = vp, f , and let Rh ⊆ [0,vp( f )] denote its range. By definition, for any x < y,
| f (y)− f (x)|p ≤ h(y)− h(x), showing that f is constant on the level sets h−1{u} of h for
any u ∈ Rh. For u ∈ Rh, define g(u) as the value of f on any of the points of h−1{u}. Then,
for u,v ∈ Rh and x, y such that h(x) = u and h(y) = v, |g(u)− g(v)| = | f (x)− f (y)| ≤
|h(x)−h(y)|1/p =|u−v|1/p. Thus, g is 1/p-Hölder continuous on Rh ⊆[0,vp( f )], and ‖g‖∞=
‖ f ‖∞. Then, by the Kirszbraun-McShane extension theorem (see Exercise 3.6.13), g admits
an extension to [0,vp( f )] with the same modulus of continuity and uniform bound. By
construction, f = g ◦ h.

It is easy to see that the set of dilations and translations of a nondecreasing function is
a VC-type class of functions, and as a consequence of the preceding decomposition, this
property is also shared by functions of bounded p-variation. This is the content of the next
proposition.

Proposition 3.6.12 Let f be a function of bounded p-variation, p ≥ 1. Then the collection
F of translations and dilations of f

F = {x �→ f (tx− s) : t> 0,s ∈R}
is of VC type; concretely, for all 0< ε ≤ v1/p

p ( f ) and w> 6, there exists Aw,p <∞ such that

N
(
F ,L2(Q),εv1/p

p ( f )
)≤ (

Aw,p

ε

)(p∨2)w

, 0< ε ≤ 1.

If, moreover, f is right (or left) continuous, then F is of VC type, and the L2(Q) ε-covering
numbers of F admit the uniform bound (Aw,p/ε)

(p∨2)w for any w> 3.

Proof Assume that f is right continuous, and set Mp = vp( f ). By Lemma 3.6.11, f = g◦h,
where g is 1/p-Hölder continuous on [0,Mp] and h is nondecreasing, right continuous (see
Exercise 3.6.16) and 0 ≤ h(x)≤ Mp for all −∞< x<∞. Then, by Exercise 3.6.15, letting
h−1− denote the left-continuous generalised inverse of h, we have that for every s ∈ R and
t> 0,

{(x,u) ∈R×[0,Mp] : u ≤ h(tx− s)} = {(x,u) ∈R×[0,Mp] : h−1−(u)≤ tx− s}
= {(x,u) ∈R×[0,Mp] : h−1−(u)− tx+ s ≤ 0} ⊆ G,

where G is the negativity set of the vector space of real functions on R×[0,Mp] spanned by
the three functions (x,u) �→ h−1−(u), (x,u) �→ x and 1. In particular, G is a VC class of index
4 by Proposition 3.6.6. Then the class C0 = {{(x,u) : 0 ≤ u ≤ h(tx− s)} : t> 0,s ∈R} is also
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VC of index at most 4, and consequently, the same is true, as is easy to check, of the class
C0 = {{(x,u) : −∞< u ≤ h(tx− s)} : t> 0,s ∈R}. Therefore, the class of functions

M := {x �→ h(tx− s) : t> 0,s ∈R}
is VC subgraph of index at most 4.

Let 1 ≤ p ≤ 2. Then 2/p ≥ 1, and the first inequality in Theorem 3.6.9 gives that there
exists Aw,p such that for every Borel probability measure Q on R,

N(M,L2/p(Q),εMp)≤
(

Aw,p

ε2/p

)w

, 0< ε ≤ 1,

for all w > 3 (in fact, for w = 3, see the notes at the end of the chapter). Now, since g is
1/p-Hölder continuous, we have that if m1,m2 ∈M and ‖m1 −m2‖L2/p(Q) ≤ τ , then[∫

(g(m1)− g(m2))
2dQ

]1/2

≤
[∫

|m1 −m2|2/pdQ

]1/2

≤ τ 1/p,

showing that any τ -covering of M for the L2/p(Q) distance induces a τ 1/p covering of F in
L2(Q). Combining this observation with the preceding estimate on the covering numbers of
M, we obtain

N
(
F ,L2(Q),εM

)≤ (
Aw,p

ε2

)w

.

The case p≥ 2 follows in an analogous way, the only difference being that now one uses the
second inequality in Theorem 3.6.9, valid for L2/p(Q)-covering numbers with 2/p< 1. This
proves the proposition for f right continuous and, by analogy, for f left continuous (just
use right-continuous inverses).

Without continuity assumptions, using part (b) of Exercise 3.6.15, one obtains

{(x,u) ∈R×[0,Mp] : u ≤ h(tx− s)} = {(x,u) ∈R×[0,Mp] : h−1−(u)≤ tx− s,u ∈ R1}
×∪ {(x,u) ∈R×[0,Mp] : h−1−(u) < tx− s,u ∈ R2}

for a convenient partition {R1,R2} of [0,Mp], and the arguments in the first part of the proof
then show that M is VC subgraph, but now the collection of its subgraphs is the union of
two VC classes each of index bounded by 4, that is, by the proof of Proposition 3.6.7, for a
VC class V such that mV(n)≤ cn6 for some c<∞ and all n∈N. Then Theorem 3.6.9 gives,
for example, in the case 2/p ≥ 1, N(M,L2/p(Q),εMp)≤ Aw,p/ε

2w, for any w> 6.

3.6.3 VC Hull and VC Major Classes of Functions

Other types of classes of functions related to the VC property, but with sensibly larger yet
still manageable uniform bounds for their L2(Q)-metric entropies, are the VC hull and the
VC major classes. The result developed in this section shows that if a class of functions
admits a bound on its L2(Q) covering numbers of the order εw uniformly in Q, then the
covering numbers of its convex hull admit a uniform bound of the order eε

−2w/(2+w)
.
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3.6 Vapnik-Červonenkis Classes of Sets and Functions 223

Definition 3.6.13 Given a class of functions F , co(F) is defined as the convex hull of F ,
that is,

co(F)=
⎧⎨⎩∑

f ∈F
λ f f : f ∈F ,

∑
f

λ f = 1,λ f ≥ 0,λ f 
= 0 only for finitely many f

⎫⎬⎭ ,

and co(F) is defined as the pointwise sequential closure of co(F), that is, f ∈ co(F) if
there exist fn ∈ co(F) such that fn(x)→ f (x) for all x ∈ S as n →∞. If the class F is VC
subgraph, then we say that co(F) is a VC hull class of functions.

Example 3.6.14 Let F be the class of monotone nondecreasing functions f : R �→ [0,1].
Then F ⊆ co(G), where G = {

I(x,∞), I[x,∞) : x ∈R
}
. To see this, just note that if

fn = 1

n

n−1∑
i=1

I{ f>i/n} =
n−1∑
j=0

j

n
I{j/n< f ≤(j+1)/n},

then supx∈R | fn(x)− f (x)| ≤ 1/n and that the sets { f > i/n} are half-lines, so I{ f>i/n} ∈ G.

The VC major classes constitute a generalisation of this example: F is a VC major class
if the collection of sets { f ≥ t} for t ∈ R and f ∈ F is a VC class of sets. Proceeding as in
the preceding example, we see that if F is VC major and the functions in F take values in
[0,1], then F is VC hull. If F is just uniformly bounded, then it is a multiple of a VC hull
class. We will not consider these classes any further.

Now we prove the main result on VC hull classes. We begin with a fundamental lemma
that estimates the covering numbers of convex hulls of finite classes in terms of their
cardinality and their diameter.

Lemma 3.6.15 Let Q be a probability measure on (S,S), and let F = { f1, . . . , fn} be a
collection of n functions in L2(Q). Then, for all ε > 0,

N(co(F),L2(Q),ε(diam F))≤ (e+ enε2)2/ε
2
.

Proof Given f ∈ co(F), let λ1, . . . ,λn be nonnegative numbers adding up to one such that
f =∑n

j=1λj fj, and let λ be the discrete probability measure on F that assigns mass λj to
fj, j = 1, . . . ,n. Let Y1, . . . ,Yk be independent F -valued random variables with common law
λ, that is, such that Pr{Yi = fj} = λj, j = 1, . . . ,n. Then, letting E denote expectation with
respect to Pr, we have f = EY1, and moreover, if we set Ȳ= (1/k)∑k

i=1 Yi, we obtain, using
Fubini’s theorem and independence,

E‖Ȳ− f ‖2
L2(Q) =

∫
E

(
1

k

k∑
i=1

(Yi −EYi)

)2

dQ = 1

k2

∫ k∑
i=1

E(Yi −EYi)
2dQ

= 1

k
E‖Y1 −EY1‖2

L2(Q) ≤
1

k
(diam(F))2.

Hence, at least one realization of Ȳ must be at L2(Q)-distance not exceeding (diam(F))/
√

k
from f . Now, independently of λ and hence of f ∈ co(F), every such realisation has the
form

∑k
i=1 gi/k, gi ∈F . These sums only depend on the number xj of gi = fj, for j= 1, . . . ,n;
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224 Empirical Processes

that is, the number of different such averages does not exceed the number of nonnegative
integer solutions of the equation x1 +·· ·+ xn = k, namely,

(k+n−1
k

)
. Therefore,

N
(
co(F),L2(Q),diam(F)/

√
k
)
≤
(

k+ n− 1

k

)
.

Estimating
(n+k

k

)
by means of Stirling’s formula (3.230) and using that (1+k/n)n< ek for all

n ∈N, it follows that
(k+n−1

k

)≤ ek(1+ n/k)k. This proves the lemma for ε ≤ 1 just by taking
k to be the smallest integer such that k−1 ≤ ε2 in the last inequality. For ε > 1, the covering
number is 1, and the lemma holds as well.

The next lemma gives the first step of an induction procedure that will yield the result.
The proof of this lemma is itself by induction, and Lemma 3.6.15 plays a basic role in it.

Lemma 3.6.16 Let Q be a probability measure on (S,S), and let F be a collection of
measurable functions with envelope F ∈ L2(Q) such that

N(F ,L2(Q),ε‖F‖L2(Q))≤ Cε−w, 0< ε ≤ 1.

Set u = 1/2 + 1/w and L = C1/w‖F‖L2(Q). For each n ∈ N, let Fn be a maximal
Ln−1/w-separated subset of F for the L2(Q)-norm. Then there exists C1 <∞ depending
only on C and w such that

logN(co(Fn),L
2(Q),C1Ln−u)≤ n, n ∈N. (3.236)

Proof The proof is by induction on n. Given n0 fixed, the entropy in the statement is zero
for all n ≤ n0 as soon as C1 satisfies C1C1/wn−u

0 ≥ 2. n0 and C1 satisfying this condition will
be specified later. Let now, with these choices, n> n0 and m = n/d, for d> 1 large enough,
also to be conveniently chosen later (d will slightly depend on n, just enough to ensure
that m is an integer). For each f ∈ Fn we choose one and only one function πm f ∈ Fm

at L2(Q)-distance at most Lm−1/w from f : πm f exists by the definition of Fm. Then the
decomposition f = πm f + ( f − πm f ) induces a decomposition of any g =∑

f ∈Fn
λ f f ∈

co(Fn), where
∑
λ f = 1 and λ f > 0, as

g =
∑
f ∈Fm

μ f f +
∑
f ∈Fn

λ f ( f −πm f ), (3.237)

where μ f ≥ 0 and
∑
μ f = 1.

By definition of L and the hypothesis, the cardinality of Fn does not exceed n. Hence,
the set of functions Gn = { f − πm f : f ∈ Fn} has cardinality at most n. Moreover, since
‖ f −πm f ‖L2(Q) ≤ Lm−1/w, the diameter of Gn is dominated by 2Lm−1/w. Then, if we apply
Lemma 3.6.15 to Gn with ε such that 2m−1/wε = (1/2)C1n−u, it follows that we can cover
co(Gn) by a collection of balls of radius at most 2−1C1Ln−u whose cardinality does not

exceed
(
e+ eC2

1/16d2/w
)32d2/wC−2

1 n
. Let K1 be the collection of these centres.

The induction hypothesis on Fm implies that there exists a covering of co(Fm) consisting
of (at most) em balls of radius at most C1Lm−u. Since Fm has m elements, its linear span is a
subspace Hm of L2(Q) of dimension at most m; hence, each of the em balls of the covering
of co(Fm) is in fact a ball of radius at most C1Lm−u in an m-dimensional Hilbert space. By,
for example, Exercise 3.6.5, each such ball admits a covering by balls of radius C1Ln−u/2
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3.6 Vapnik-Červonenkis Classes of Sets and Functions 225

of cardinality at most
(
(3C1Lm−u)/(C1Ln−u/2)

)m = (6du)n/d. Let K2 be the union of the
centres of the balls of these 2m coverings.

Then, by (3.237), the collection of balls with centres at the functions in the set K :=
{ f + g : f ∈K1,g ∈K2} and radius C1Ln−u cover co(Fn), and by the considerations in the
preceding two paragraphs, the cardinality of this cover is at most

en/d(6du)n/d
(

e+ eC2
1

16d2/w

)32d2/wC−2
1 n

= exp

[
n

(
1+ u log(6d)

d
+ 32d2/w

C2
1

(
1+ log

C2
1

16d2/w

))]
.

Now we take d0 large enough so that (1+ u log(12d0))/d0 ≤ 1/2, n0 ≥ 2d0, and C1 large

enough so that both C1C1/wn−u
0 ≥ 2 and (64d2/w

0 /C2
1)
(
1+ log(C2

1/16d2/w
0 )

)
≤ 1/2 (for this

last choice, note that x−1 log(1 + x)→ 0 as x → ∞, decreasing for x ≥ 2). With these
choices, for each n ≥ n0, we take d ∈ [d0,2d0] such that n/d ∈N (which is possible because
n/d0 − n/2d0 ≥ n0/d0 − n0/2d0 ≥ 1). For these d = dn, C1 and n ≥ n0, the cardinality of
the cover of co(Fn) just constructed is at most en, which completes the induction argument
(note that the choice of C1 and n0 ensure the validity of (3.236) for n ≤ n0).

We are now ready to prove the following.

Theorem 3.6.17 Let Q be a probability measure on (S,S), and let F be a collection of
measurable functions with envelope F ∈ L2(Q) such that

N(F ,L2(Q),ε‖F‖L2(Q))≤ Cε−w, 0< ε ≤ 1. (3.238)

Then there exists a constant K depending only on C and w such that

logN(co(F),L2(Q),ε‖F‖L2(Q))≤ Kε−2w/(w+2), 0< ε ≤ 1. (3.239)

Proof Suppose that the theorem holds for finite collections of functions satisfying (3.238),
and let F satisfy (3.238). Then, given 0< ε < 1, there exists a ε‖F‖L2(Q)-dense subset G of
F that is finite. G obviously satisfies (3.238) and therefore also (3.239). But by convexity
of the L2(Q)-norm, any covering of co(G) by balls of radius ε‖F‖L2(Q) (or less) induces a
covering of co(F) by balls of radius 2ε‖F‖L2(Q) (and the same centres) so that, for this ε,

logN(co(F),L2(Q),ε‖F‖L2(Q))≤ N(co(G),L2(Q),ε‖F‖L2(Q))≤ K2w/(w+2)ε−2w/(w+2).

Thus, we may assume that F is finite.
Set u = (w+ 2)/2w = 1/2+ 1/w and L = C1/w‖F‖L2(Q). By assumption for (C/n)1/w < 1

and trivially for (C/n)1/w ≥ 1, F can be covered by n or fewer balls of radius at most Ln−1/w,
and we let Fn denote the collection of the centres of such a covering, n ∈ N. In particular,
for each n, Fn consists of at most n functions. The theorem will be proved if we show that
there exist constants Ck, Dk such that supk∈N max(Ck,Dk) <∞, and q> 1, satisfying

logN(co(Fnkq),L2(Q),CkLn−u)≤ Dkn, n,k ≥ 1. (3.240)

(Note that given n, there exists k<∞ such that Fnkq =F .)
Lemma 3.6.16 proves (3.240) for k = 1 and all n with C1 <∞ and D1 = 1. To proceed

by induction, we assume that (3.240) holds for k−1 and all n and for q≥ 3w. Proceeding as
in the proof of Lemma 3.6.16, we have

co(Fnkq)⊆ co(Fn(k−1)q)+ co(Gn,k),
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where Gn,k is a collection of at most nkq functions of L2(Q)-norm at most L(n(k− 1)q)−1/w.
Thus, Lemma 3.6.15 applied to Gn,k for ε=Lk−2n−u/(2L(n(k−1)q)−1/w) shows the existence
a covering of Gn,k of cardinality at most (e+ek2q/w+q−4/4)2

3+2q/wk4−2q/wn by balls of radius not
larger than Lk−2n−u. The induction hypothesis applied to Fn(k−1)q yields the existence of a
covering of co(Fn(k−1)q) of cardinality at most Ck−1Ln−u by balls of radius no larger than
eDk−1n. Then the sums f +g of centres f from the balls covering Gn,k and centres g from the
balls covering co(Fn(k−1)q) are the centres of at most

exp

[
n

(
Dk−1 + 23+2q/w log(1+ k2q/w+q−4/4

k2q/w−4

)]
balls of radius at most Ck−1Ln−u + Lk−2n−u covering coFnkq . Thus, inequality (3.240) is
proved for k and for all n with Ck and Dk given by

Ck = Ck−1 + 1

k2
and Dk = Dk−1 + 23+2q/w log(1+ k2q/w+q−4/4

k2q/w−4
,

which satisfy supk∈N max(Ck,Dk) <∞ given that q ≥ 3w.

Exercises

3.6.1 Prove that: v(C)= 0 if and only if C=∅. v(C)= 1 if and only if C consists of only one set. Hint:
C shatters the empty set if and only if C contains at least one set. If C contains two different
sets A and B, then it shatters any set {x} for x ∈ A�B 
= ∅.

3.6.2 Prove that: If S is an infinite set and C is the collection of all subsets of S of cardinality k,
then all sets of cardinality not exceeding k are shattered by C, but no set of cardinality k+ 1 is
shattered. This implies that the bound for mC(n) in Theorem 3.6.2 is attained.

3.6.3 Prove that: If C is ordered by inclusion, then v(C)= 2: C cannot shatter any set consisting of
two distinct points. The same is true if C consists of disjoint sets.

3.6.4 Let S and T be sets, and let F : S �→ T be a function. Let C be a collection of subsets of T, and
let F−1(C)= {F−1(C) : C ∈ C}. Prove that v(F−1(C))≤ v(C).

3.6.5 Let B(a,r)= {x ∈Rd : |x−a| ≤ r} be a ball of radius R and centre a in Rd. Prove the following
bound for the packing number of B(a,r) with respect to Euclidean distance d(x,y) = |x− y|,
that is,

D(B(a,r),d,ε)≤
(

3r

ε

)d

, 0< ε ≤ r.

Hint: If x1, . . . ,xD in B(a,r) are separated by more than ε, then the closed balls of radius ε/2 are
disjoint, and their union is contained in a ball of radius ε/2+ r. Hence, comparing volumes,
D(ε/2)d ≤ (r+ ε/2)d ≤ (3r/2)d.

3.6.6 Let F be a class of (measurable) functions ordered by the relation f ≤ g iff f (x) ≤ g(x),
for all x ∈ S, and assume that 0 ≤ f ≤ 1 for all f ∈ F . Show that N(F ,L2(Q),ε) ≤ 2ε−2

for all 0 < ε ≤ 1 and probability measures Q on (S,S). Hint: Each set in the partition of F
Ak = {(k− 1)ε2 ≤ f < kε2 : f ∈ F}, 1 ≤ k ≤ ε−2 + 1, is contained in a L2(Q)-ball of radius at
most ε (for g ≤ f both in Ak, Q( f − g)2 ≤ Q( f − g)≤ ε2). Note: Theorem 3.6.9 falls short of
implying this simple result (it gives a bound for the covering numbers of the order of ε−w for
any w> 2; see the notes at the end of the chapter).

3.6.7 Use Exercise 3.6.6, Example 3.6.14 and Theorem 3.6.17 to show that if F is the class of
monotonically nondecreasing functions f : R �→ [0,1], then there exist K<∞ such that

logN(F ,L2(Q),ε)≤ K/ε, 0< ε < 1.
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Show that the same is true for the class of monotonically nondecreasing functions and for the
class of functions of bounded variation on R taking values on [0,1]. Hint: Recall that functions
of bounded variation are differences of monotone functions.

3.6.8 If F is countable and PF <∞, where F = sup f ∈F | f |, then ‖Pn − P‖F converges almost
surely and in L1. Hint: Assume that the variables Xi that make the empirical process are
the coordinate functions on an infinite product probability space (SN,SN,PN). Let Sn be the
smallest σ -algebra that contains the sets of PN-measure zero and the sets in

{A ∈ SN : IA(x)= IA(σnx) for any permutation σn of the first n coordinates}.
Then, if A ∈ Sn and i, j ≤ n,

∫
A f (Xi)dPr = ∫

A f (Xj)dPr = ∫
A Pn( f )dPr, and therefore, since,

moreover, ‖ · ‖F is convex,

E (‖Pn−1 −P‖F |Sn)≥ ‖E((Pn−1 −P)( f )|Sn)‖F = ‖Pn −P‖F .

This fact requires no measurability other than that the Xi being the coordinates of a product
probability space (see Proposition 3.7.8). Thus, ‖Pn −P‖F is a reverse submartingale if EF<
∞. Now apply reverse submartingale convergence.

3.6.9 (Vapnik-Červonenkis Glivenko-Cantelli theorem.) Use the preceding exercise, the bound for
the packing numbers of VC subgraph classes in this section and Theorem 3.5.6 to show that if
F is a countable VC subgraph class of functions such that if PF <∞, then ‖Pn − P‖F → 0
a.s. Deduce that the same is true if F is VC hull or VC major (assuming that PF<∞).

3.6.10 Produce versions of Theorem 3.6.17 in the following cases: a) coF , where F = {∑k
i=1 gi : gi ∈

Fi}, where Fi are VC subgraph classes and k<∞; (b) F just as in (a), but the convex hull of F
is replaced by its symmetric convex hull scoF – same definition except that

∑
f |λ f | ≤ 1 – and

(c) for McoF or MscoF for any M finite.
3.6.11 Prove that: Any finite dimensional space of functions is VC subgraph.
3.6.12 Show that if F is VC subgraph, then so are F +g, F ·g, F ◦g, for any function g, and g◦F if

g is monotone.
3.6.13 Let K : Rd �→ R be a finite linear combination of measurable functions k whose subgraphs

{(s,u) : k(s) ≥ u} can be represented as a finite number of Boolean operations of sets of the
form {(s,u) : p(s,u)≥φ(u)}, where p is a polynomial and φ is an arbitrary measurable function.
Prove that the collection of functions{

K

(
t−·

h

)
: t ∈Rd,h> 0

}
is VC type. Examples: K(x)= L(‖x‖), where L is of bounded variation, and K = I[−1,1]d .

3.6.14 (Kirszbraun-McShane extension theorem.) Let (T,d) be a metric space and S ⊂ T. Let f :
S �→ R be bounded by M in absolute value and admit a modulus of continuity ϕ, that is,
| f (s)| ≤M for all s∈ S and | f (t)− f (s)| ≤ ϕ(d(s, t)) for all s, t∈ S, where ϕ : [0,∞) �→ (0,∞)
satisfies ϕ(0)= 0 and 0≤ ϕ(x)≤ ϕ(x+y)≤ ϕ(x)+ϕ(y) for x,y≥ 0. Prove that there exists an
extension g of f defined on all of T that admits on T the bound M (for its absolute value) and
the modulus of continuity ϕ. Hint: Prove that if h(t) := infs∈S[ f (s)+ϕ(d(s, t)], t ∈ T, then the
function g(t) = max[min(h(t),M),−M] satisfies the prescribed properties. (See, e.g., Dudley
(2002).)

3.6.15 (Quantile functions.) Let f be a monotone nondecreasing function on R, with −∞ < a =
f (−∞+) < f (+∞−) = b, and let f −1− denote its left-continuous generalised inverse
f −1−(t)= inf{x : f (x)≥ t}. (a) Prove that if f is right continuous, then, for x∈R and t∈ (a,b),
f (x) ≥ t if and only if x ≥ f −1−(t). (b) Prove that (a) does not hold without the continuity
assumption. (c) Show that for any given t ∈ (a,b), either {x : f (x)≥ t} = {x : x ≥ f −1−(t)} or
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{x : f (x)≥ t} = {x : x> f −1−(t)}. (When f is a cumulative distribution function, the function
f −1− is the quantile function.)

3.6.16 If f of bounded p-variation is right continuous, then so is its p-variation function v f ,p. Hint:
Check, if needed, lemma 3.28 in Folland (1999, p. 104).

3.6.17 Let BL1([a,b]) be the collection of functions f : [a,b] �→ [−1,1] with Lipschitz constant 1,
that is, such that | f (x)− f (y)| ≤ |x− y|, x,y ∈ [a,b]. Show that there exists c<∞ such that
N(BL1([a,b]),‖·‖∞,ε)≤ ec|b−a|/ε, 0<ε< 1. Hint: This is done in Corollary 4.3.38, but here is
a hint for a different proof. Assume for simplicity that ε= 1/k and b= a+� for some k,�∈N,
and make a grid on the rectangle [a,b] × [−1,1] with the lines x = a+ iε, i = 1, . . . ,�/ε, and
y= jε, −k/ε≤ j≤ k/ε. Show that the collection of continuous functions starting at (a, jε) with
constant slope 1 or -1 for a+ iε < x < a+ (i+ 1)ε, i = 0, . . . ,�− 1, is ε-dense in supremum
norm on BL1([a,b]).

3.7 Limit Theorems for Empirical Processes

Whereas the first sections of this chapter dealt with finite sample inequalities, here we
consider the asymptotic properties of empirical processes, precisely the law of large numbers
and the central limit theorem. These two subjects (as well as the law of the iterated
logarithm) have a long history: let us just mention the Glivenko-Cantelli theorem regarding
the law of large numbers (Glivenko (1933), Cantelli (1933)) and the Kolmogorov (1933a),
Doob (1949), Donsker (1952) and Dudley (1966) theorems on the central limit theorem,
both for the empirical distribution function. These theorems, respectively, state that if F is
the cumulative distribution function of a probability measure P on the line and Fn is the
cumulative empirical distribution function corresponding to an independent sample from
P, then ‖Fn − F‖∞ → 0 a.s., and the processes

√
n(Fn(t) − F(t)), t ∈ R, converge in

law in �∞(R) to a centred Gaussian process GP with the same covariance. The notion of
convergence in law took some time to reach its final form (see later), and this convergence
implies, then, by the continuous mapping theorem, that the sequence of random variables√

n‖Fn−F‖∞ converges in distribution to ‖GP‖∞. The same is true for any other continuous
functional on �∞(R), and this makes this notion of convergence in law very powerful.
Here, letting Xi to be independent identically distributed S-valued random variables with
law P, Fn(t) = Pn(−∞, t] = ∑n

i=1 IXi≤t/n, t ∈ R, is replaced by Pn( f ) = ∑n
i=1 f (Xi)/n,

f ∈ F , where F is an infinite collections of measurable functions on (S,S), a general
measurable space. These analogues of the Givenko-Cantelli law of large numbers and the
Kolmogorov-Doob-Donsker-Dudley central limit theorem were the first results obtained
within the modern general framework of empirical processes indexed by general classes
of functions, and they constitute an invaluable tool in asymptotic statistics.

The first section deals with some unavoidable measurability questions, and we have
tried hard to be brief on this subject. We continue with a section devoted to the law of
large numbers. Then we set up the framework for the central limit theorem (CLT) for the
empirical process indexed by a classF of functions by carefully defining convergence in law
of processes with bounded paths, that is, random elements defined on the space �∞(F) of
all bounded functions H :F �→R, equipped with the supremum norm, measurable only with
respect to the σ -algebra generated by the cylinder sets. �∞(F) is a nonseparable metric space
(unless F is finite), and in order to recover the usual and crucial uniform tightness property
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associated to convergence in law, the definition asks for the limiting process to have a tight
Borel probability law in this space. Besides uniform tightness (asymptotic equicontinuity), a
generalisation to this framework of the Skorokhod representation is also discussed. The next
three subsections deal with the central limit theorem for empirical processes: permanence
properties and extension by convexity; the two main general criteria, namely, VC type
classes and random entropies, and bracketing; classes of functions that satisfy the central
limit theorem uniformly in the law P of the data; and an introduction to a general approach
obtained by relating the CLT property of the empirical process indexed by F to the existence
of the limiting Gaussian process GP.

3.7.1 Some Measurability

We have been able to avoid measurability considerations in preceding sections by restricting
attention to countable classes of sets and functions, although some results, for example, from
Section 3.5, do extend to uncountable classes. It turns out, however, that the definition of
convergence in law in the nonseparable space �∞(F), needed for the central limit theorem
uniform in f ∈ F , does require the notion of outer expectation as soon as F is infinite,
whether countable or not. In this subsection we collect the few facts about the calculus of
nonmeasurable functions that are needed in the rest of this section and in some subsequent
ones.

Let (�,
,P) be a probability space, and let A ⊂ � be a not necessarily measurable set.
The outer probability P∗(A) of A ⊆� is defined as

P∗(A)= inf{P(C) : A ⊆ C,C ∈
}, (3.241)

which coincides with P(A) if A is measurable. Likewise, with the notation Eg := ∫
gdP

for g measurable, if f : � �→ [−∞,∞] is not measurable, we may also define its outer
expectation or integral as∫ ∗

f dP = E∗ f = inf {Eg : g ≥ f , g measurable, [−∞,∞]−valued} , (3.242)

except that E∗ f is undefined if there exist a measurable function g ≥ f such that Eg+ =
Eg− =∞ and no measurable function g≥ f such that Eg=−∞. Here we say that Eg exists
if at most one of Eg+ and Eg− is infinite, and then Eg is defined as their difference, that is,
Eg = Eg+ −Eg− (recall that g+= max(g,0) and g− = (−g)+). Set

CA = {C : A ⊆ C,C ∈
}, G f = {g ≥ f : g measurable and [−∞,∞]−valued},
and note that � ∈ CA and ∞∈ G f , so outer probabilities always exist and outer expectations
exist or are undefined. The following proposition shows that the infimum in (3.241) and
(3.242) are, respectively, attained at a P a.s. unique set in CA and a P a.s. unique function
in G f :

Proposition 3.7.1 (a) For every set A ⊂ �, the infimum in the definition (3.241) of P∗(A)
is attained at a measurable set A∗ ∈ CA which is P a.s. uniquely determined. In particular,
P∗(A) = P(A∗). (b) For every function f : � �→ R, there exists a P a.s. unique function
f ∗ ∈ G f such that f ∗ ≤ g P a.s. for every g ∈ G f . Then, if either of E∗ f or E f ∗ is defined,
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both are equal, as is the case, for example, if f is bounded above or below. (c) For any set
A ⊂�, (IA)

∗ = IA∗ a.s. and hence P∗(A)= E∗(IA).

Proof (a) Note that CA is closed by intersections. Hence, there exists a decreasing sequence
Cn of sets in CA such that P(Cn) ≤ P∗(A)+ 1/n. Thus, setting A∗ = ∩nCn ∈ CA, we have
P(A∗) = P∗(A). If this infimum is attained at another set C ∈ CA, then A∗ ∩ C ∈ CA and
P(A∗ ∩C)= P(A∗)= P(C), which implies that P(A∗�C)= 0.

(b) The collection of functions G f is obviously closed by pointwise minima; that is,
g,h ∈ G f implies that g∧ h ∈ G f , where (g∧ h)(x) := min(g(x),h(x)) for all x ∈ �. Then
−π/2≤ α := inf{E(tan−1 g) : g ∈ G f } is attained: if hn ↓, hn ∈ G f and E(tan−1 hn)≤ α+1/n,
it follows that f ∗ := limhn ∈ G f and, by dominated convergence, E(tan−1 f ∗)= α. Now, if
g ∈ G f , since g∧ f ∗ ∈ G f , we have α ≤ E(tan−1(g∧ f ∗))≤ E(tan−1 f ∗)= α, which implies
that g∧ f ∗ = f ∗ a.s., and therefore, f ∗ ≥ g a.s. for all g ∈ G f . If either E( f ∗) or E∗ f exists,
then the definition and the fact that f ∗ ≥ g a.s. for all g ∈ G f imply that E∗ f = E f ∗.

(c) If we identify CA with the collection of its indicator functions, then CA ⊂ GIA , so
P∗A ≥ E∗(IA). However, if g ∈ GIA , then Ig≥1 ∈ GIA , Eg ≥ EIg≥1 and {g ≥ 1} ∈ CA, which
readily implies that P∗A = E∗(IA).

The set A∗ and the function f ∗ are called the P-measurable covers, respectively, of the
set A and function f . It will also be convenient to call a function F a P-measurable envelope
of f if F ≥ f ∗ P a.s. and likewise for sets. Note that if P and Q are mutually absolutely
continuous, the P- and Q-measurable covers of f coincide and likewise for measurable
envelopes. Here are a few simple but useful facts on measurable covers:

Proposition 3.7.2 (a) For any two functions f ,g :� �→ (−∞,∞], we have

( f + g)∗ ≤ f ∗ + g∗ a.s. and ( f − g)∗ ≥ f ∗ − g∗,

where the second inequality requires that both sides be defined. (b) For f : � �→ R, t ∈ R
and ε > 0,

P∗{ f > t} = P{ f ∗ > t} and P∗{ f ≥ t} ≤ P{ f ∗ ≥ t} ≤ P∗{ f ≥ t− ε}.
(c) If B is a vector space with a pseudo-norm ‖ · ‖, then for any functions f ,g :� �→ B,

‖ f + g‖∗ ≤ ‖ f ‖∗ +‖g‖∗ a.s. and ‖c f ‖∗ = |c|‖ f ‖∗ a.s.

Proof The first inequality in (a) is obvious because f ∗ + g∗, which is measurable,
dominates f + g. The second inequality in (a) obviously holds at all points x where
f ∗(x) − g∗(x) = −∞; for other x, g∗(x) is finite, and so is |g(x)|, and we can write
f (x) = ( f (x) − g(x)) + g(x) and hence f ∗Ig∗<∞ ≤ ( f − g)∗Ig∗<∞ + g∗Ig∗<∞ a.s. (see
Exercise 6.4.1(c)).

For any t, { f > t} ⊆ { f ∗ > t} and { f ≥ t} ⊆ { f ∗ ≥ t}, so P{ f > t}∗ ≤ P{ f ∗ > t}, and the
same is true replacing > by ≥. If { f > t} ⊂ C ∈ 
 (e.g., C = { f > t}∗), then f ≤ t on Cc

and hence also f ∗ ≤ t a.s. on Cc (otherwise, we could replace f ∗ by f ∗IC + ( f ∗ ∧ t)ICc and
contradict the definition of f ∗); hence, P{ f ∗> t}≤PC, implying that P{ f ∗> t}≤P∗{ f > t},
and the first part of (b) and the first inequality in the second part of (b) follow. For the
remaining inequality in (b), note that by the first inequality in (b), if 0 ≤ τ < ε, then

Pr{ f ∗ > t− τ } = P∗{ f > t− τ } ≤ P∗{ f > t− ε},
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which completes the proof of (b) by taking limits as τ→ 0.
The first inequality in (c) follows by the triangle inequality and (a) and the second from

‖c f ‖ = |c|‖ f ‖ and G|c|‖ f ‖ = |c|G‖ f ‖.

The following one-sided Fubini-Tonelli theorem is an important tool in the calculus of
nonmeasurable functions and it will be used often:

Proposition 3.7.3 Let (X×Y,A⊗B,P×Q) be a product probability space. Let f : X×Y �→
[0,∞), and let f ∗ be its measurable cover with respect to P×Q. Let E∗

P and E∗
Q denote,

respectively, the outer expectations with respect to P and Q. Then

E∗
PE∗

Q f ≤ E( f ∗), E∗
QE∗

P f ≤ E( f ∗).

If, moreover, Q is discrete and B is the collection of all the subsets of Y, then

E∗
PEQ f ≤ E( f ∗)= EQE∗

P f .

Proof We may apply the usual Fubini-Tonelli theorem to f ∗ to the effect that E f ∗ =
EPEQ f ∗ and that EQ f ∗(x, ·) is A-measurable for each x. To estimate this last integral,
we just observe that if f ∗x is the measurable cover of f (x, ·) with respect to Q for each
fixed x ∈ X, then f ∗x (y) ≤ f ∗(x,y) a.s. because this last function is B-measurable for
each x. The first inequality, in this proposition will follow from this observation and the
fact that, by Proposition 3.7.1, E∗

Q fx = EQ f ∗x : these two inequalities give that for each x,
EQ f ∗(x, ·)≥ EQ f ∗x = E∗

Q fx. For the second inequality, interchange P and Q in the first.
Next, if Q is discrete, then E∗

Q = EQ because all the functions are Q-measurable, so
E∗

PEQ f ≤ E( f ∗) follows from the first part of the proof. The equality follows from the
Fubini-Tonelli theorem because f ∗y (x) = f ∗(x,y) a.s., where f ∗y is the measurable cover
with respect to P of the function f (·,y). To prove this assertion, just note that f ∗(x,y) =∑

i f ∗(x,yi)Iy=yi a.s. if Q =∑
i∈I δyi , where I ⊆N, and that, as seen earlier, f ∗y (x)≤ f ∗(x,y)

P a.s. for each y and hence f ∗(x,y) ≥∑
i f ∗y (x)Iy=yi =

∑
i f ∗yi
(x)Iy=yi ≥ f (x,y) a.s., but the

middle term is a A⊗B measurable function and equals f ∗y (x); hence, f ∗y (x)= f ∗(x,y) a.s.
It then follows that EP( f ∗(·,y))= EP( f ∗y )= E∗

P f Q a.s. and E f ∗ = EQEP f ∗ = EQE∗
P f .

Example 3.7.4 A first application of the calculus for nonmeasurable functions consists
in extending the Lévy and Hofmann-Jørgensen’s inequalities in Section 3.1.3 and the
symmetrisation and randomisation inequalities in Section 3.1.4, which are proved for sample
bounded processes with countable index set, to general, not necessarily countable index
set at the expense of replacing expectations and probabilities by outer expectations and
probabilities. In the case of these two subsections, the proofs of the extended results follow
from the proofs that assume measurability with not much more work than just adding stars
to E and P (note that, by Lemma 3.7.2, the functional ‖ · ‖∗ is convex), being careful to
use only the valid directions of the Fubini-Tonelli theorem. To illustrate this point, here is a
proof of the randomisation inequalities in Theorem 3.1.21, namely, that if Yi are independent
centred sample bounded processes indexed by a not necessarily countable set T, and if {εi}
is a Rademacher sequence independent of {Yi} in the strong sense that {Y1, . . . ,Y2n,ε1, . . . ,εn}
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are the coordinate functions of a product probability space, then

2−pE∗
∥∥∥∥∥

n∑
i=1

εiYi

∥∥∥∥∥
p

≤ E∗
∥∥∥∥∥

n∑
i=1

Yi

∥∥∥∥∥
p

≤ 2pE∗
∥∥∥∥∥

n∑
i=1

εi(Yi − ci)

∥∥∥∥∥
p

for any functions ci = ci(t), where we recall the notation ‖z‖ := supt∈T |z(t)| for any
function z(t).

By Theorem 3.7.1, convexity of (‖ · ‖p)∗ (Lemma 3.7.2 plus the easy-to-prove fact that
(‖ · ‖∗)p = (‖ · ‖p)∗) and Proposition 3.7.3, if A and B are disjoint sets of indices, then

E∗
∥∥∥∥∥∑

i∈A

Yi

∥∥∥∥∥
p

= E∗
A

∥∥∥∥∥∑
i∈A

Yi +E
∑
i∈B

Yi

∥∥∥∥∥
p

≤ E∗
AE∗

B

∥∥∥∥∥∑
i∈A∪B

Yi

∥∥∥∥∥
p

≤ E∗
∥∥∥∥∥∑

i∈A∪B

Yi

∥∥∥∥∥
p

,

where EA denotes integration with respect to Yi, i ∈ A, and likewise for EB. Hence,

E∗
∥∥∥∑εiYi

∥∥∥p = EεE
∗
Y

∥∥∥∥∥∑
i:εi=1

Yi −
∑

i:εi=−1

Yi

∥∥∥∥∥
p

≤ 2pEεE
∗
Y

∥∥∥∑Yi

∥∥∥p = 2pE∗
∥∥∥∑Yi

∥∥∥p
,

where Eε and EX denote integration with respect to the Rademachaer and the Y variables,
respectively. In the other direction,

E∗
∥∥∥∥∥

n∑
i=1

Yi

∥∥∥∥∥
p

= E∗
∥∥∥∥∥

n∑
i=1

(Yi −EYn+i)

∥∥∥∥∥
p

≤ E∗
∥∥∥∥∥

n∑
i=1

(Yi + ci)−
n∑

i=1

(Yn+i + ci)

∥∥∥∥∥
p

= EεE
∗
Y

∥∥∥∥∥
n∑

i=1

εi(Yi + ci −Yn+i − ci)

∥∥∥∥∥
p

≤ 2pE∗
∥∥∥∥∥

n∑
i=1

εi(Yi + ci)

∥∥∥∥∥
p

,

where the last equality follows because P1 × ·· · × Pn × P1 × ·· · × Pn is invariant by
permutations of the coordinates i and i + n for each i ≤ n, and the remaining inequalities
follow by previous arguments.

Finally, we introduce a concept that will be useful when extending to the nonmeasurable
setting Skorokhod’s theorem about almost sure convergent representations of sequences of
random variables that converge in distribution. Let φ : (X̃,Ã) �→ (X,A) be measurable, let P̃
be a probability measure on Ã and let P̃◦φ−1 be the probability law of φ. Then, if f : X �→R
is arbitrary, we have f ∗ ◦ φ ≥ f ◦ φ, where f ∗ is the P̃ ◦ φ−1-measurable cover of f and
hence f ∗ ◦φ is P̃-measurable and therefore f ∗ ◦φ ≥ ( f ◦φ)∗ P̃ a.s.

Definition 3.7.5 A measurable map φ : X̃ �→ X is P̃-perfect if f ∗ ◦ φ = ( f ◦ φ)∗ P̃ a.s. for
every bounded function f : X �→ R, where ( f ◦φ)∗ is the P̃-measurable cover of f ◦φ and
f ∗ is the P ◦φ−1-measurable cover of f .

Then, if φ is perfect and f is bounded,

E∗
P̃
( f ◦φ)=

∫
( f ◦φ)∗dP̃ =

∫
f ∗ ◦φ dP̃ =

∫
f ∗d(P̃ ◦φ−1)

=
∫ ∗

f d(P̃ ◦φ−1)= E∗
P̃◦φ−1 f , (3.243)

or, for indicators, P̃
∗{φ ∈ A} = (P̃◦φ−1)∗(A) for any A⊂ X. It is this property that will make

perfectness useful.
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Example 3.7.6 Coordinate projections in product probability spaces are perfect. Let π1 :
(X×Y,A⊗B,P×Q) �→ (X,A,P) be the projection onto X, π1(x,y)= x, and let f : X �→R
be a bounded function. It suffices to prove that ( f ◦ π1)

∗ ≥ f ∗ ◦ π1. Let h : X× Y �→ R be
a measurable function such that h(x,y)≥ f (x) P×Q a.s. Then, by Fubini’s theorem, Q a.s.
we have h(x,y) ≥ f (x) P a.s. But then, since the sections h(·,y) are P-measurable, we also
have that Q a.s., h(x,y)≥ f ∗(x) P a.s., and applying Fubini’s theorem once more, we obtain
that h(x,y)≥ f ∗(x) P×Q a.s.

Example 3.7.7 Here is a related example that will be useful later. Let (�,A,Q) be a
measurable space, let�k ∈Awith Q(�k)> 0, Ak =A∩�k and Qk(·)=Q(·|�k), k= 1, . . . ,r,
and let (�0,A0,Q0) be another probability space. Consider the product probability space
(�0 × ·· · ×�r,A0 ⊗ ·· · ⊗Ar,Q0 × ·· · ×Qr) and on it the function φ =∑k

i=1(IA0,i ◦π0)πi,
where πi are the coordinate projections and A0,i ∈ A0 are disjoint sets. Then φ is perfect.
To see this, note that for f : � �→ R, f ◦ φ(ω0, . . . ,ωr) =∑r

i=1 IA0,i(ω0) f (ωi). Then, since
for each fixed ω0,ω2, . . . ,ωk, ( f ◦ φ)∗ is measurable in ω1, we have ( f ◦ φ)∗(ω0, . . . ,ωr) ≥
IA0,1(ω0)( f|�1 ◦ π1)

∗(ω1) + ∑r
i=2 IA0,i(ω0) f (ωi), and recursively and by perfectness of

projections, with ω= (ω0, . . . ,ωr),

( f ◦φ)∗(ω)≥
r∑

i=1

IA0,i(ω0)( f|�i ◦πi)
∗(ω)

≥
n∑

i=1

IA0,i(ω0)( f|�i)
∗ ◦πi(ω)

=
n∑

i=1

IA0,i(ω0) f ∗ ◦πi(ω)

= f ∗ ◦φ(ω),
where the first identity follows from the fact that Q|Ai and Q(·|�i) are mutually absolutely
continuous. The reversed inequality, ( f ◦φ)∗(ω)≤∑r

i=1 IA0,i(ω0)( f|�i ◦πi)
∗(ω), is obvious

because the second of these two functions is measurable in the product space.

3.7.2 Uniform Laws of Large Numbers (Glivenko-Cantelli Theorems)

Given as usual the coordinates Xi, i∈N, on (�,
,Pr) := (S,S ,P)N, the product of countably
many copies of (S,S ,P) and a collection of real-valued measurable functions F on S, we are
now interested in obtaining conditions on F and P ensuring that the law of large numbers
holds uniformly in f ∈F , that is, so that

lim
n→∞‖Pn −P‖∗F = 0 a.s.,

where, as usual, Pn =∑n
i=1 δXi/n is the empirical measure based on Xi, 1 ≤ i ≤ n, n ∈ N.

Let F be the P-measurable cover of the function x �→ sup f ∈F | f (x)|. With some abuse of
notation, we call this function the measurable cover of F . Here is a first useful observation:

Proposition 3.7.8 If PF <∞, then the sequence {‖Pn −P‖∗F }∞n=1 converges a.s. and in L1

to a finite limit.
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Proof We just verify that the usual reversed submartingale proof of the law of large
numbers extends to this setting. Define for each n the σ -algebra
n as the smallest σ -algebra
that contains the sets of PN measure zero in 
 as well as

{A ∈
 : IA(x)= IA(σnx), for any permutations σn of the first n coordinates}.
We show that the collection {‖Pn−P‖∗,
n) : n∈N} is a reversed submartingale. First, ‖Pn−
P‖∗ ≤ PnF+PF, so E‖Pn −P‖∗ ≤ 2PF<∞, for all n. Also, since neither Pn −P nor PN is
changed by permutations σn of the first n coordinates, it follows that for each n, ‖Pn−P‖∗ is

n-measurable. Set Pn,i =∑

j
=i,j≤n+1 δXj/n. Now Pn,i −P becomes Pn −P by a permutation
of the first n+1 coordinates, and any such permutation transforms the infinite product space
into itself. Then, if ‖Pn,n+1−P‖∗ =‖Pn−P‖∗ =H(X1, . . . ,Xn) for a measurable function H of
n variables (see Exercise 3.7.2), we have that ‖Pn,i − P‖∗ = H(X1, . . . ,Xi−1,Xi+1, . . . ,Xn+1),
and the invariance of the σ -algebra 
n+1 with respect to permutations of the first n + 1
coordinates then gives that the conditional expectations E(‖Pn,i−P‖∗|
n+1), i= 1, . . . ,n+1,
are all a.s. equal and hence equal to E(‖Pn −P‖∗|
n+1). Therefore, since

‖Pn+1 −P‖∗ = 1

n+ 1

∥∥∥∥∥
n+1∑
i=1

(Pn,i −P)

∥∥∥∥∥
∗

≤ 1

n+ 1

n+1∑
i=1

‖Pn,i −P‖∗ a.s.

and ‖Pn+1 −P‖∗ is 
n+1-measurable, it follows that

‖Pn+1 −P‖∗ = E(‖Pn+1 −P‖∗|
n+1)≤ E(‖Pn −P‖∗|
n+1) a.s.,

proving that {‖Pn −P‖∗} is a reversed submaringale with respect to the σ -algebras 
n. Now
the lemma follows by the convergence theorem for reversed submartingales.

The limit in the preceding proposition may not be zero: if, for example, P gives mass
zero to all finite sets of R and F is the collection of indicators of all finite sets in R, then
‖Pn − P‖F = ∥∥(1/n)∑n

I=1 δXi({X1, . . . ,Xn})
∥∥
F = 1. However, it has the following useful

corollary:

Corollary 3.7.9 If PF < ∞ and {‖Pn − P‖∗F } converges in probability to zero, then it
converges a.s. to zero.

In other words, under integrability of the measurable cover of the class F , the weak
law of large numbers uniform in f ∈ F implies the uniform strong law. The following
definition is given by analogy with the classical Glivenko-Cantelli theorem for the empirical
distribution function in R, which is just the law of large numbers for the empirical process
over F = {I(−∞,x] : x ∈R}.
Definition 3.7.10 A class of functions F is a P-Glivenko-Cantelli class if ‖Pn −P‖∗F → 0
a.s., where Pn is the empirical process based on the coordinate projections Xi, i = 1, . . . ,n,
n ∈N, of the product probability space (S,S ,P)N.

The theorem we are about to prove requires that the empirical process indexed by the class
F satisfy a measurability condition. The problem is that although without measurability
assumptions we may still compare ‖Pn − P‖F with

∥∥n−1
∑n

i=1 εi f (Xi)
∥∥
F as shown in

Example 3.7.4, without measurability of these suprema, Fubini’s theorem only works in
one direction (see Proposition 3.7.3), and we cannot take full advantage of the fact that,
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conditionally on the variables Xi, the randomised sum is sub-Gaussian. We state and give a
name to the property we need.

Definition 3.7.11 A class of functions F is P-measurable, or P-empirically measurable, or
just measurable, if for each {ai,b} ⊂ R and n ∈ N, the quantity

∥∥∑n
i=1 ai f (Xi)+ bP f

∥∥
F is

measurable for the completion of Pn.

For example, if F is countable, then it is P-measurable for every P. If F0 ⊂ F is
P-measurable and for each {ai,b} ⊂R and n ∈N,

Pr∗

⎧⎨⎩
∥∥∥∥∥

n∑
i=1

ai f (Xi)+ bP f

∥∥∥∥∥
F


=
∥∥∥∥∥

n∑
i=1

ai f (Xi)+ bP f

∥∥∥∥∥
F0

⎫⎬⎭= 0, (3.244)

then F is P-measurable; for instance, if for every f ∈ F there exist fn ∈ F0 such that
fn(x)→ f (x) for all x ∈ S and P fn → P f , then F is P-measurable. If the processes f �→∑n

i=1 ai f (Xi)+ bP f , f ∈F , are separable for the supremum norm (Definition 2.1.2), then
F is P-measurable.

Example 3.7.12 Examples of measurable classes are F = {Iui≤xi,1≤i≤d(u) : x ∈Rd} and F =
{K((x− ·)/h) : x ∈ R,h > 0} if K is right (or left) continuous. For the first, F0 consists of
the functions in the class corresponding to x ∈ Qd, and for the second, F0 is the subclass
corresponding to x and h rational.

Example 3.7.13 A more complicated example of P-measurable class for every P is the
set BVp,M1,M2(R) of the bounded functions of bounded p-variation on R with p ≥ 1 with
supremum norm bounded by M1 and total p-variation norm bounded by M2, for some p ≥ 1
(see immediately before Lemma 3.6.11 for definitions). We may assume without loss of
generality that M1 =M2 = 1. By Lemma 3.6.11, if f ∈BVp,1,1(R), then f = g◦h, where h, the
p-variation function of f , is nondecreasing and takes values on [0,1], and g is 1/p-Hölder
on [0,vp( f )] with supremum norm and Hölder constants both bounded by 1. We may extend
g to [0,1] by making g(x)= g(vp( f )) on (vp( f ),1]. By the Arzelà-Ascoli theorem, this set
of Hölder functions is compact for the supremum norm, and in particular, it has a countable
dense subset, say, Dp. Also, as seen in Example 3.6.14, h is uniformly approximated by
hn(x)= n−1

∑n−1
i=1 Ih>i/n(x), where {h> i/n} is an open or closed half-line (x,∞) of [x,∞).

Hence, by right or left continuity of these indicators, the functions hn are limits of finite
linear combinations of indicators of half-lines with rational points, concretely, of functions
in the countable set

H=
{

n−1
n−1∑
i=1

(I(ri,∞)+ τiI{ri}) : n ∈N,ri ∈Q,τi ∈ {0,1},1 ≤ i< n

}
.

Then any function in BVp,1,1(R) is the pointwise limit of a sequence of functions gn ◦hn, with
gn ∈ Dp and hn ∈H as |g ◦ h(x)− gn ◦ hn(x)| ≤ ‖g− gn‖∞ + |h(x)− hn(x)|1/p. Thus, in this
case, F0 = {g ◦ h : g ∈ Dp,h ∈H}.

In the measurable case, the Glivenko-Cantelli property for F can be characterised by a
condition on the metric entropies of F with respect to the Lp(Pn) pseudo-metrics, for any
0< p ≤∞. These metric entropies are random, so the result does not constitute a complete
solution to the problem, but it does simplify it, as we will see in a couple of corollaries later.
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Recall from Section 3.5 the definition of the empirical Lp pseudo-distances en,p( f ,g) =
‖ f − g‖Lp(Pn), that is, in the case p = ∞, en,∞( f ,g) = max1≤i≤n | f (Xi)− g(Xi)|, and for

0 < p <∞, en,p( f ,g) = [∑n
i=1 | f (Xi)− g(Xi)|p

]1/(p∨1)
. Recall the notation N(T,d,ε) and

D(T,d,ε) for the covering numbers and packing numbers of (T,d). The following notation
is also convenient: given a class of functions F and a positive number M, we set

FM = { f IF≤M : f ∈F},
where F is the P-measurable cover of F (determined only P a.s.).

Theorem 3.7.14 Let F be class of functions with an everywhere finite measurable cover F
and such that FM is P-measurable for all M ≤∞. Assume also that F is L1(P)-bounded,
that is, sup f ∈F P| f |<∞. Then the following are equivalent:

(a) F is a P-Glivenko-Cantelli class of functions.
(b) PF<∞ and ‖Pn −P‖F → 0 in probability.
(c) PF <∞, and for all M <∞, ε > 0 and p ∈ (0,∞], (logN∗(FM,en,p,ε))/n → 0 in

probability (in Lr for any 0< r<∞).
(d) PF < ∞, and for all M < ∞ and ε > 0 and for some p ∈ (0,∞],

(logN∗(FM,en,p,ε))/n → 0 in probability (in Lr for any 0< r<∞).
(e) PF<∞, and for all M<∞ and ε > 0,

E

(
1∧ (1/√n)

∫ 2M

0

√
logN∗(FM,en,2,τ)dτ

)
→ 0.

Proof (b) implies (a) by Corollary 3.7.9. (d) for any p > 0 implies (d) for p = 1 because
en,p ≥ en,1 for all p ∈ [1,∞] and because for any 0 < p < 1 and f ,g ∈ FM, en,1( f ,g) ≤
(2M)1−pen,p( f ,g). Thus, to prove that (d) implies (b), it suffices to prove that (d) for p = 1
and with convergence in probability implies (b). First, we see that since EF <∞, if εi are
i.i.d. Rademacher variables independent of the variables Xi (we take all these variables as
coordinates in an infinite product probability space), we have

E

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
F

≤ E

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi)I(F(Xi)≤ M)

∥∥∥∥∥
F

+E

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi)I(F(Xi) >M)

∥∥∥∥∥
F

.

The last summand is dominated by

1

n
E

(
n∑

i=1

F(Xi)I(F(Xi) >M)

)
= E(FI(F>M))→ 0, as M →∞.

Hence, this and the Rademacher randomisation Lemma 3.1.21 imply that the statement in
(b) will be proved if we show that

E

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
FM

→ 0,

for all M<∞. To prove that this last statement follows from the metric entropy condition,
we will use the fact that conditionally on the variables Xi, these Rademacher averages are
sub-Gaussian variables for each f . Fix the variables Xi. Given that ε > 0, let f1, . . . , fN be
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the centres of N = N(FM,en,1,ε) en,1-balls of radius less than or equal to ε covering FM.
Then, for each f in FM, there is k( f )≤ N such that en,1( fk( f ), f )≤ ε, and we have, letting
Eε denote expectation with respect to the Rademacher variables only and using the maximal
inequality (2.35) for sub-Gaussian variables,

Eε

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
FM

≤ Eε

∥∥∥∥∥1

n

n∑
i=1

εi( f − fk( f ))(Xi)

∥∥∥∥∥
FM

+Eε max
1≤k≤N

∣∣∣∣∣1n
n∑

i=1

εi fk(Xi)

∣∣∣∣∣
≤ sup

f ∈FM

en,1( f , fk( f ))+
√

2log2N× max
1≤k≤N

(∑n
i=1 f 2

k (Xi)

n2

)1/2

≤ ε+M

√
2log2+ 2logN

n
.

Hence, by Fubini,

E

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
FM

≤ ε+M

√
2log2

n
+√

2ME∗
√

logN(FM,en,1,ε)

n
. (3.245)

(Note that in the absence of measurability, this would not follow from the nonmeasurable
form of the Fubini-Tonelli theorem, Proposition 3.7.3.) Now, since for each f ∈ FM,
( f (X1), . . . , f (Xn)) ∈ [−M,M]n and [−M,M]n can be covered by fewer than (1 + M/ε)n

hypercubes of the form {x : maxi≤n |xi − x0
i | ≤ ε}, x0 ∈ [−M,M]n, it follows that for ε ≤ M,

N(FM,en,1,ε)≤ N(FM,en,∞,ε)≤
(

2M

ε

)n

.

Hence, n−1 logN(FM,en,1,ε) ≤ log(2M/ε), so if n−1 logN∗(FM,en,1,ε)→ 0 in probability,
then, by bounded convergence,

E
[
n−1 logN∗(FM,en,1,ε)

]r → 0,

for all r> 0. Therefore, condition (d) in probability and for p = 1 gives, by (3.245), that

limsup
n

E

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
FM

≤ ε, for all ε > 0,

so this limit is zero, proving condition (b). The preceding argument also shows that for
all p ≤∞, convergence in probability to zero of n−1 logN∗(FM,en,p,ε) is equivalent to its
convergence to zero in Lr for all r <∞. So far we have proved that (d) in probability for
p= 1 implies (b), which implies (a), and it also implies (c) for any 0< p<∞ in probability
and in Lr for any r <∞. Next we prove that condition (a) implies condition (d) in Lr (for
any r<∞) for p<∞ as well as condition (d).

Supose that (a) holds. Then

1

n
‖ f (Xn)−P f ‖F =

∥∥∥∥∥1

n

n∑
i=1

( f (Xi)−P f )− 1

n

n−1∑
i=1

( f (Xi)−P f )

∥∥∥∥∥
≤ n− 1

n
‖Pn−1 −P‖F +‖Pn −P‖F → 0 a.s.
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Hence, by the Borel-Cantelli lemma,
∑∞

n=1 Pr{‖ f (Xn)− P f ‖F > n} <∞, and therefore,
E‖ f (X1) − P f ‖F < ∞, which by the L1(P) boundedness of F implies that PF =
E‖ f (X1)‖F < ∞, proving that the first part of condition (d) holds. The main step in
proving the rest of (c) and (d) consists in showing that the metric entropy condition holds for
p = 2, and this will be achieved by randomising the empirical process with standard normal
multipliers and then applying Sudakov’s minorisation conditionally on the variables and Xi.
Let gi be i.i.d. standard normal variables and εi i.i.d. Rademacher variables, all independent
from the sequence {Xi}. The randomisation inequality in Proposition 3.1.26 gives that, for
0< n0 < n,

E

∥∥∥∥∥1

n

n∑
i=1

gi f (Xi)

∥∥∥∥∥
F

≤ n0
PF

n
E max

1≤i≤n
|gi|+ 1√

n
 2,1(g1) max

n0<k≤n

×E

∥∥∥∥∥∥ 1√
k

k∑
i=n0+1

εi f (Xi)

∥∥∥∥∥∥
F

. (3.246)

Now (a) Emaxi≤n |gi| is dominated by a constant times
√

logn (see (2.35)), (b)  2,1(g1) =∫∞
0

√
Pr{|g|> t}dt< 3 and (c) since PF<∞ and (a) holds, it follows from Corollary 3.7.9

that E‖Pn −P‖F → 0 and, by the Rademacher randomisation inequality (3.46), that

lim
n→∞E

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
F

= 0

(note that E
∥∥∑n

i=1 εiP f/n
∥∥
F = ‖P f ‖FE

∣∣∑n
i=1 εi

∣∣/n = ‖P f ‖F/√n → 0.). Therefore,
(3.246) implies that

lim
n→∞E

∥∥∥∥∥1

n

n∑
i=1

gi f (Xi)

∥∥∥∥∥
F

= 0.

This, in turn, implies by Sudakov’s inequality (Theorem 2.4.12) that

lim
n→∞n−1/2E∗

[
sup
ε>0
ε
√

logN(F ,en,2,ε)

]
= 0. (3.247)

Since, for all M < ∞, N(FM,en,2,ε) ≤ N(F ,en,2,ε) and the first of these two covering
numbers is bounded by (2M/ε)n, it then follows from (3.247) that for r ≥ 1/2,

E∗
[

1

n
logN(FM,en,2,ε)

]r

≤ (log(2M/ε))r−1/2E∗
[

1

n
logN(FM,en,2,ε)

]1/2

→ 0,

proving condition (d) in Lr, r < ∞ for p = 2, and hence also for 0 < p < ∞ (and
all r). For condition (e), note that, as observed earlier in this proof (en,2 ≤ en,∞),
E
√

n−1 logN∗(FM,en,2,ε) ≤
√

log(2M/ε) <∞ and that E
√

n−1 logN∗(FM,en,2,ε)→ 0 by
(3.247) both for all ε > 0, and hence condition (e) follows by the dominated convergence
theorem.

Now we complete the proof of statement (d) by proving the case p =∞. Let us assume
that the variables Xi are fixed. Fix 0<ε<M, and let 0<α<ε. Let π :FM �→FM satisfy (a)
en,1( f ,π f )≤αε/2 and (b) Card{π f : f ∈FM}=N(FM,en,1,αε/2). Such a function π exists:

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.004
http:/www.cambridge.org/core


3.7 Limit Theorems for Empirical Processes 239

just disjointify an optimal covering of FM by en,1-balls of radius αε/2 to obtain a partition
of FM into N(FM,en,1,αε/2) sets Qi each contained in an en,1-ball of radius αε/2 and centre
fi, and set π f = fi for f ∈Qi. Set G = { f −π f : f ∈FM}. Since for f ,g∈Qi, en,∞( f ,g)=
en,∞( f −π f ,g−πg), it follow that for each ε and Qi, N(Qi,en,∞,ε)≤N(G,en,∞,ε), and we
have

N(FM,en,∞,ε)≤ N(FM,en,1,αε/2)N(G,en,∞,ε). (3.248)

We need to estimate the last covering number. By definition of π f , if g ∈ G, then∑n
j=1 |g(Xj)| ≤ αnε/2, and this implies that there are at most [αn] subindices j such that

|g(Xj)|>ε/2. Now let H be the family of functions f : {X1, . . . ,Xn} �→R such that f (Xi)= 0
for n− [αn] subindices and takes values kε/2, k ∈ Z, |k| ≤ 4M/ε, for the remaining [αn].
Then every function in G is at most at en,∞-distance ε/2 from a function in H, and therefore,

N(G,en,∞,ε)≤ Card(H)≤
(

n

[αn]
)
(1+ 8M/ε)[αn].

For each α ∈ (0,1), by Stirling’s formula, the logarithm of this bound divided by n is
asymptotically as n →∞ of the order of

1

n
logCard(H)≤ 1

n
log

((
n

[αn]
)
(1+ 8M/ε)[αn]

)
:= h(n,α)

* (1−α)| log(1−α)|+α| logα|+α log(1+ 8M/ε)− log(2πnα(1−α))
2n

,

so limα→0 limn→∞ h(n,α)= 0. This and (3.248) imply that if n−1 logN∗(FM,en,1,αε/2)→ 0
in probability or in Lr for any r<∞, then we also have n−1 logN∗(FM,en,∞,ε)→ 0, proving
that statement (d) for p =∞ follows from statement (d) for p = 1 (which holds if statement
(a) does by the preceding paragraph).

Finally, to prove that condition (e) implies condition (b), we just apply Rademacher
randomisation in probability (Corollary 3.1.25 with Yi − ai = { f (Xi)/n : f ∈ FM} and
σ 2 ≤ M2/n2) and the metric entropy bound for sub-Gaussian processes (Theorem 2.3.7)
to obtain that for all ε > 0 and n ≥ 2M2/ε2,

Pr
{‖Pn −P‖FM > 4ε

}≤ 4Pr

⎧⎨⎩1

n

∥∥∥∥∥
n∑

i=1

εi f (Xi)

∥∥∥∥∥
FM

> ε

⎫⎬⎭
≤ 4EX

⎛⎝1∧ 1

ε
Eε

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
FM

⎞⎠
≤ 4M√

nε
+ 4E

(
1∧ 4

√
2√

nε

∫ M

0

√
logN∗(FM,en,2,τ)dτ

)
.

The following is a corollary to the preceding proof:

Corollary 3.7.15 Let F be an L1(P)-bounded, P-measurable class of functions, and let F
be its P-measurable cover. Then F is P-Glivenko-Cantelli if and only if

(a) PF<∞, and
(b) (1/n) logN∗(F ,en,2,ε)→ 0 in probability (or in L1/2).
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For classes of sets C, recall the definition of �C(A) for finite sets A in Section 3.6.1,
�C(A) = Card{A ∩ C : C ∈ C}, and note that for A(ω) = {X1(ω), . . . ,Xn(ω)}, if C ∩
{X1, . . . ,Xn} = D∩ {X1, . . . ,Xn}, then en,p(C,D) = 0 for all 0 < p ≤∞ and that en,p(C,D) ≥
n−1/(p∨1) otherwise. Hence, N(C,en,p,ε) ≤ �C(X1, . . . ,Xn) for all ε > 0, with equality for
0< ε ≤ n−1/(p∨1). This observation and Theorem 3.7.14 for p =∞ give the following result
for classes of sets:

Corollary 3.7.16 Let C be a P-measurable class of sets. Then ‖Pn − P‖∗C → 0 a.s. if and
only if

lim
n→∞

1

n
log(�C(X1, . . . ,Xn))

∗ = 0 in probability

(or in Lr for any r<∞).

Next, combining Corollary 3.7.15 with Theorem 3.6.9 about the empirical metric entropy
properties of VC type classes of functions, we obtain the following uniform law of large
numbers (see also exercise 3.6.9):

Corollary 3.7.17 Let P be any probability measure on (S,S), and let F be a P-measurable
class of functions whose measurable cover F is P-integrable. Assume that

(a) F is VC subgraph or, more generally, of VC type, or
(b) F is VC hull.

Then F is P-Glivenko-Cantelli.

Proof The result for VC type classes of functions follows directly from Corollary 3.7.15
and the definition of VC type (Definition 3.6.10). That VC subgraph classes of functions are
VC type follows from Theorem 3.6.9, and that the uniform law of large numbers also holds
for VC hull classes follows immediately from the fact that ‖Pn −P‖F =‖Pn −P‖coF , which
is obvious (so the entropy estimate for VC hull classes, Theorem 3.6.17, is not needed here,
although, of course, it also gives the result).

Remark 3.7.18 Since, as mentioned in the preceding proof, ‖Pn − P‖F = ‖Pn − P‖coF ,
it follows that the Glivenko-Cantelli property is preserved by taking pointwise closures of
convex hulls; that is, F is P-Glivenko-Cantelli if and only if coF is.

Example 3.7.19 The preceding corollary includes the Glivenko-Cantelli theorem for
distribution functions on Rd, ‖Fn −F‖∞ → 0 a.s. To see this, just note that Fn(x)−F(x)=
(Pn−P)(−∞,x], x∈Rd, where (−∞,x] := {y∈Rd : yi ≤ xi : i= 1, . . .d}, and x= (x1, . . . ,xd)

and likewise for y. We show that C = {(−∞,x] : x ∈Rd} is a VC class of sets as follows: for
each i = 1, . . . ,d, the class of half-spaces Ci = {{y ∈ Rd : yi ≤ a} : a ∈ R} is VC because
it is ordered by inclusion (see Exercise 3.6.3), but C ⊂ {C1 ∩ ·· · ∩ Cd : Ci ∈ Ci}, and
Proposition 3.6.7 shows that C is a VC class. Also, ‖Fn −F‖∞ = supx∈Qd |(Pn −P)(−∞,x]|,
so the class C is P-measurable for any Borel probability measure P on Rd. Hence, by
Corollary 3.7.17, we have

‖Fn −F‖∞ → 0 a.s.

See also Exercise 3.6.9.
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If a class of functions is uniformly bounded and is of VC type, then it is
P-Glivenko-Cantelli for all probablity measures P on (S,S). For larger classes, one may
use the random entropies in Corollary 3.7.15 and Theorem 3.7.14; however, the following
criterion for the Glivenko-Cantelli property based on L1(P) bracketing is more user friendly
when it applies:

Theorem 3.7.20 If F ⊂ L1(S,S ,P) and N[](F ,L1(P),ε) <∞ for all ε > 0, then

‖Pn −P‖∗F → 0 a.s.

Proof Let, for given ε, [ f
i
, f i] be N = N[](F ,L1(P),ε) L1(P)-brackets of size ε (or less)

covering F . Recall that [ f
i
, f i] = {h ∈ L1(P) : f

i
≤ h ≤ f i} and that P( f i − f

i
) ≤ ε. We

have, for f ∈ [ f
i
, f i],

|(Pn −P)( f )| = |(Pn −P) f
i
+ (Pn −P)( f − f

i
)| ≤ |(Pn −P) f

i
|

+Pn( f i − f
i
)+P( f i − f

i
).

Hence,

‖Pn −P‖∗F ≤ max
1≤i≤N

|(Pn −P) f
i
|+ max

1≤i≤N
Pn( f i − f

i
)+ max

1≤i≤N
P( f i − f

i
).

By definition of the brackets, the last summand is dominated by ε, and by the law of large
numbers in R, both the first summand tends to zero a.s. and the limsup of the second is
dominated by ε a.s. Take ε = 1/m, and let m →∞ to immediately obtain the result.

It is easy to see that this theorem implies the classical Glivenko-Cantelli theorem. It also
implies the law of large numbers in separable Banach spaces. For a random variable X in a
Banach space B, the expectation EX is defined in the Bochner sense.

Corollary 3.7.21 (Mourier law of large numbers) Let B be a separable Banach space,
and let X, Xi be i.i.d. B-valued random vectors such that E‖X‖<∞. Then

1

n

n∑
i=1

Xi → EX a.s.

Proof Let B∗ denote the topological dual of B. It suffices to show that F := { f ∈ B∗ :
‖ f ‖ ≤ 1} is a P-Glivenko-Cantelli class of functions over B, where P =L(X), because∥∥∥∥∥1

n

n∑
i=1

Xi −EX

∥∥∥∥∥= sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

( f (Xi)−E f (X))

∣∣∣∣∣ .
Since

∫ ‖x‖dP = E‖X‖ < ∞, it follows that the set function A �→ ∫
A ‖x‖dP(x), defined

on the Borel sets of B, is a finite Borel measure. By tightness of finite Borel measures
on complete separable metric spaces, given ε > 0, there exists a compact subset K of
B such that

∫
B\K ‖x‖dP(x) < ε/4. Also, K is bounded, say, K ⊂ {x : ‖x‖ ≤ C}. Now, if

f ∈ F , then | f (x)| ≤ ‖ f ‖‖x‖ ≤ C for all x ∈ K, and moreover, | f (x)− f (y)| ≤ ‖x− y‖.
Hence, F is a uniformly bounded and equi-continuous set of functions on C(K), the Banach
space of continuous functions on the metric space K ⊂ B, and hence precompact by the
Arzelà-Ascoli theorem and thus hence totally bounded. Thus, there exist m<∞ functions
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from F , f1, . . . , fm, such that for all f ∈ F , supx∈K | f (x)− fi(x)| < ε/4 for some i ≤ m.
Define, for i = 1, . . . ,m,

f
i
(x)=

{
fi(x)− ε/4 for x ∈ K
−‖x‖ for x 
∈ K,

f i(x)=
{

fi(x)+ ε/4 for x ∈ K
‖x‖ for x 
∈ K.

Then

0 ≤ P( f i − f
i
)= (ε/2)P(K)+ 2

∫
B\K

‖x‖dP(x) < ε,

that is, N[](F ,L1(P),ε)≤ m<∞, and the result follows from the preceding theorem.

The Mourier law of large numbers also follows from Theorem 3.7.14 (see Exercise 3.7.6).

3.7.3 Convergence in Law of Bounded Processes

If f �→ f (x)−P f is a bounded functional on F , for example, if sup f ∈F | f (x)|<∞ for all x
and sup f ∈F |P f |<∞, the empirical process (Pn−P)( f ), f ∈F , is a process with bounded
sample paths, that is, a random element taking values in the space �∞(F), the space of
bounded real functions on the set F . Since we are interested in particular in limit theorems
for ‖Pn −P‖F , we need to consider the supremum norm ‖H‖F = sup f ∈F |H( f )| in �∞(F).
Unless F is finite, this Banach space is not separable, and the law of the empirical process
f �→ (Pn − P)( f ), f ∈ F , which is a probability measure on the cylindrical σ -algebra of
�∞(F), does not extend to a tight Borel probability measure (see Exercise 3.7.7). Thus,
the classical theory of convergence in law on complete separable metric spaces needs to be
extended to include empirical processes. It turns out that this theory extends nicely if the
limit laws are assumed to be tight Borel probability measures on �∞(F). If this is the case,
then, as shown later, (a) convergence in law of a sequence of sample bounded processes
is equivalent to weak convergence of the finite-dimensional probability laws together with
asymptotic equi-continuity, a condition that is expressed in terms of probability inequalities,
and (b) the Skorokhod almost-sure representation of sequences that converge in law extends
very nicely in this context. As a consequence of the latter, one can show that if the empirical
process indexed by F satisfies the central limit theorem, then so does the empirical process
indexed by the class of convex combinations of functions in F . This section is devoted
to these two basic results. A sort of metrisability of convergence in law is also briefly
considered.

The extension of convergence in law just mentioned may be better described in the
general context of bounded processes or processes with bounded sample paths. A bounded
process (or a process with bounded sample paths) X of index set T defined on a measure
space (�,A,Pr) is a measurable map (�,A) �→ (�∞(T),
), where 
 is the cylindrical
σ -algebra of �∞(T). Hence, in general, even if H : �∞(T) �→ R is continuous, the random
element H(X) needs not be measurable. However, if the finite-dimensional probability
distributions of a sample bounded process X are those of a tight Borel probability measure
on �∞(T), then there is a version of X that defines a Borel measurable map � �→ �∞(T)
with σ -compact range (hence separable for the supremum norm), and in particular, H(X) is
measurable for any continuous function H.
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Definition 3.7.22 Let X(t), t ∈ T, be a bounded process whose finite-dimensional laws
correspond to the finite-dimensional projections of a tight Borel probability measure on
�∞(T), and denote by X̃ a measurable version of X with separable range. Let Xn(t), t ∈ T,
be bounded processes. Then we say that Xn converge in law to X in �∞(T), or uniformly in
t ∈ T, or that

Xn →L X, in �∞(T)

if

E∗H(Xn)→ EH(X̃),

for all functions H : �∞(T) �→ R bounded and continuous, where E∗ denotes outer
expectation.

In general, we will still denote by X (and not by X̃) its measurable version with separable
range unless confusion may arise. As with regular convergence in law, if H is a continuous
function on �∞(T) with values in another metric space, and if H(Xn) is measurable, then
convergence in law of Xn to X implies that H(Xn)→L H(X) in the usual way, and this makes
the concept of convergence in law in �∞(T) quite useful.

Recall from Proposition 2.1.7 that if the probability law of X is a tight Borel measure
on �∞(T), then X is sample continuous with respect to a metric d on T that makes T totally
bounded. The main result in this subsection is the following theorem. It reduces convergence
in law in �∞(T) to maximal inequalities, which are tractable with the techniques presented
in the preceding sections. This theorem will be referred to as the asymptotic equi-continuity
criterion for convergence in law in �∞(T).

Theorem 3.7.23 Let Xn(t), t ∈ T, n ∈ N, be a sequence of bounded processes. Then the
following statements are equivalent:

(a) The finite-dimensional distributions of the processes Xn converge in law, and there exists
a pseudo-metric d on T such that (T,d) is totally bounded, and

lim
δ→0

limsup
n→∞

Pr∗
{

sup
d(s,t)≤δ

∣∣Xn(t)−Xn(s)
∣∣> ε}= 0, (3.249)

for all ε > 0.
(b) There exists a process X whose law is a tight Borel probability measure on �∞(T) and

such that

Xn →L X, in �∞(T).

Moreover, if (a) holds, then the process X in (b) has a version with bounded uniformly
continuous paths for d, and if (b) holds and X has a version with almost all of its trajectories
in Cu(T,ρ) for a pseudo-distance ρ such that (T,ρ) is totally bounded, then the distance d
in (a) can be taken to be ρ.

Proof Let us assume that (a) holds. Clearly, the limit laws of the finite-dimensional
distributions of the processes Xn are consistent and thus define a stochastic process X on
T. Let T0 be a countable d-dense subset of (T,d), and let Tk, k ∈ N, be finite sets increasing
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to T0. Then, by one of the conditions equivalent to convergence in law in Rd (or, in general,
in complete, separable metric spaces, Portmanteau theorem), for all k ∈N and δ > 0,

Pr

{
max

d(s,t)≤δ, s,t∈Tk

|X(t)−X(s)|> ε
}
≤ liminf

n→∞ Pr

{
max

d(s,t)≤δ, s,t∈Tk

|Xn(t)−Xn(s)|> ε
}

≤ liminf
n→∞ Pr

{
max

d(s,t)≤δ, s,t∈T0

|Xn(t)−Xn(s)|> ε
}

.

Hence, taking limits as k → ∞ and using condition (3.249), it follows that there exists a
sequence δr ↘ 0, δr > 0, such that

Pr

{
sup

d(s,t)≤δr, s,t∈T0

|X(t)−X(s)|> 2−r

}
≤ 2−r,

and by the Borel–Cantelli lemma, there exists r(ω) <∞ a.s. such that

sup
d(s,t)≤δr, s,t∈T0

|X(t,ω)−X(s,ω)| ≤ 2−r,

for all r > r(ω). Hence, X(t,ω) is a d-uniformly continuous function of t for almost every
ω. Also, since T is totally bounded, X(t,ω) is also bounded for those ω for which it is
d-uniformly continuous. The extension to T by uniform continuity of the restriction of X(ω)
to T0 for all these ω produces a version of X with all its sample paths in Cu(T,d), and this
shows, by Proposition 2.1.7, that the law of X admits a tight extension to the Borel σ–algebra
of �∞(T).

Fix τ > 0. Let t1, . . . , tN(τ ), N(τ ) <∞ be a τ -dense subset of (T,d) (such a set exists
for each τ because (T,d) is totally bounded), and let πτ : T �→ {t1, . . . , tN(τ )} be a mapping
satisfying that d(πτ (t), t) < τ . We then define processes Xn,τ , n ∈N, and Xτ as

Xn,τ (t)= Xn(πτ (t)) and Xτ (t)= X(πτ (t)), t ∈ T.

For each τ , these approximations of Xn and X are in fact RN(τ )-valued random variables,
and convergence of the finite-dimensional distributions of Xn to those of X implies their
convergence in law in finite dimensional space and hence also that

Xn,τ →L Xτ , in �∞(T), (3.250)

as can be seen from Definition 3.7.22 (formally, if H : �∞(T) �→ R is bounded and
continuous, then so is H ◦ I : RN(τ ) �→ R, where I is the isometric imbeding RN(τ ) �→
�∞(T) that assigns to each point (a1, . . . ,aN(τ )) the function t �→ ∑N(τ )

i=1 aiIπτ (t)=ti , and
E(H ◦ I(Xn(t1), . . . ,Xn(tN(τ ))))= EH(Xn,τ ) and likewise for Xτ , so convergence in law of the
vectors (Xn(t1), . . . ,Xn(tN(τ ))) implies convergence in law of the processes Xn,τ ). Moreover,
by uniform continuity of the sample paths of X,

lim
τ→0

‖X−Xτ‖T = 0 a.s., (3.251)

where we uses the notation ‖x‖T = supt∈T |x(t)| for x ∈ �∞(T). Now let H : �∞(T) �→R be a
bounded continuous function. We may write

|E∗H(Xn)−EH(X)| ≤ ∣∣E∗H(Xn)−EH(Xn,τ )
∣∣

+ ∣∣EH(Xn,τ )−EH(Xτ )
∣∣+|EH(Xτ )−EH(X)| (3.252)

:= In,τ + IIn,τ + IIIτ .
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By the definition of convergence in law, it follows from (3.250) that

lim
τ→0

limsup
n→∞

IIn,τ = 0,

and by sample continuity of X, precisely (3.251), and the dominated convergence theorem,
we also have

lim
τ→0

IIIτ = 0.

Hence, proving that the double limit of In,τ is zero will complete the proof of (b). Given
ε > 0, let K⊂ �∞(T) be a compact set such that Pr{X∈Kc}< ε/(12‖H‖∞). Given such a set
K, let δ > 0 be such that

‖u− v‖T < δ, u ∈ K, v ∈ �∞(T) ,⇒ |H(u)−H(v)|< ε/6,

which exists by Exercise 3.7.8. Given such a δ > 0, let τ1 > 0 be such that
Pr {‖Xτ −X‖T ≥ δ/2} < ε/(12‖H‖∞) for all τ < τ1, which exists by (3.251). Let
Kδ/2 = {v ∈ �∞(T) : infu∈K ‖v − u‖T < δ/2} denote the open neighbourhood of the set K
of ‘radius’ δ/2 for the sup norm, and note that these choices of K, δ and τ imply (a) if
Xn,τ ∈ Kδ/2 and ‖Xn −Xn,τ‖T < δ/2, then there exists u ∈ K such that ‖u−Xn,τ‖T < δ/2 and
hence ‖u−Xn‖T < δ, and (b) if u ∈ K and ‖u− v‖T < δ, then |H(u)−H(v)|< ε/6. We thus
have∣∣E∗ f (Xn)−E f (Xn,τ )

∣∣≤ 2‖ f ‖∞
[
Pr∗

{
‖Xn −Xn,τ‖T ≥ δ

2

}
+Pr

{
Xn,τ ∈

(
Kδ/2

)c}]
+2sup {| f (u)− f (v)| : u ∈ K,‖u− v‖T < δ} (3.253)

≤ 2‖ f ‖∞
[
Pr∗

{
‖Xn −Xn,τ‖T ≥ δ

2

}
+Pr

{
Xn,τ ∈

(
Kδ/2

)c}]+ 2ε

6
.

Now, by (3.250), we have for τ < τ1 that

limsup
n→∞

Pr
{
Xn,τ ∈

(
Kδ/2

)c
}
≤ Pr

{
Xτ ∈

(
Kδ/2

)c
}
≤ Pr{X ∈ Kc}+Pr{‖Xτ −X‖T ≥ δ/2}

≤ ε

6‖H‖∞ ,

and by the asymptotic equi-continuity hypothesis (3.249), there exists τ2 > 0 such that

limsup
n→∞

Pr∗
{
‖Xn,τ −Xn‖T ≥ δ

2

}
<

ε

6‖H‖∞ ,

for all τ < τ2. Combining these two inequalities with (3.253) gives that for all τ < τ1 ∧ τ2,

limsup
n→∞

∣∣E∗H(Xn)−EH(Xn,τ )
∣∣< ε.

This proves that limτ→0 limsupn→∞ In,τ = 0, thus completing the proof that (a) implies (b).
Suppose now that (b) holds. Then, by Proposition 2.1.7, there exists a pseudo-distance d

on T for which (T,d) is totally bounded and such that X has a version (that we still denote by
X) with all its sample paths in Cu(T,d). Set, for ε,δ > 0, Fδ,ε =

{
u∈ �∞(T) : supd(s,t)≤δ |u(s)−

u(t)| ≥ ε}, which is a closed set in �∞(T). Then convergence in law of Xn to X implies, by
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Exercise 3.7.7, that limsupn→∞ Pr∗{Xn ∈ Fδ,ε} ≤ Pr{X ∈ Fδ,ε} for all ε,δ > 0, and this and the
fact that X ∈ Cu(T,d) yield

lim
δ→0

limsup
n→∞

Pr∗
{

sup
d(s,t)≤δ

∣∣Xn(t)−Xn(s)
∣∣≥ ε}≤ lim

δ→0
Pr
{

sup
d(s,t)≤δ

∣∣X(t)−X(s)
∣∣≥ ε}= 0,

for all ε > 0, proving (a) for d (convergence of the finite-dimensional distributions of Xn to
those of X follows from the definition of convergence in law in �∞(T)).

The useful fact that weak convergence of Borel probability measures in complete
separable metric spaces (B,d) is metrisable by a norm extends to convergence in law of
bounded processes. For instance, the (dual) bounded-Lipschitz distance βB,d(μ,ν) between
Borel probability measures μ, ν on B, defined as the supremum of

∣∣∫ f d(μ− ν)∣∣ over all
the functions f : B �→ R such that ‖ f ‖∞ ≤ 1 and supx
=y | f (x)− f (y)|/d(x,y)≤ 1 metrises
weak convergence of Borel probability measures, already encountered in Chapter 1. We now
develop an extension of this fact in the nonseparable context.

Let BL1

(
�∞(T)

)
denote the set of real functionals H on �∞(T) such that

sup
x∈�∞(T)

|H(x)|+ sup
x
=y,x,y∈�∞(T)

|H(y)−H(x)|/‖y− x‖T ≤ 1.

(BL1 or BL(1) stands for the unit ball of the space of bounded Lipschitz functions as in
Section 1.1.) If Y is a process on T with almost all its trajectories bounded, X is a process
whose law is a tight Borel measure on �∞(T), and we also denote by X one of its versions
almost all of whose sample paths are in Cu(T,d) for some distance d for which (T,d) is
separable, we define

dBL(Y,X) := dBL(T)(Y,X) := sup {|E∗H(Y)−EH(X)| : H ∈ BL1(�∞(T))} , (3.254)

the (dual) bounded Lipschitz distance between X and Y. (We write dBL instead of dBL(T) if no
confusion may arise.)

Proposition 3.7.24 If X is a Cu(T,d)-valued random variable, where (T,d) is a separable
metric or pseudo-metric space, and if Xn(t), t∈ T, are processes with bounded sample paths,
then Xn →L X in �∞(T) if and only if dBL(T)(Xn,X)→ 0.

Proof We keep the notation from the proof of Theorem 3.7.23. Let us assume convergence
in law of Xn to X, and let us consider the decomposition from the preceding proof, that is,

|E∗H(Xn)−E f (X)| ≤ In,τ (H)+ IIn,τ (H)+ IIIτ (H),

for H bounded Lipschitz, specifically, H ∈ BL1(�∞(T)). (In particular, |H(x) − H(y)| ≤
min(‖x − y‖T,2).) Since, for τ fixed, Xn,τ →L Xτ as random vectors in RN(τ ), and since
dBL metrises this convergence, it follows that

lim
n→∞ sup

H∈BL1(�∞(T))
|IIn,τ (H)| = 0,

for all τ > 0 (since if H is Lipschitz on �∞(T) and I is as after (3.250), then H◦ I is Lipschitz
on RN(τ )). Since ‖Xτ −X‖T → 0 a.s.,

lim
τ→0

sup
H∈BL1(�∞(T))

|IIIτ (H)| ≤ lim
τ→0

E(‖Xτ −X‖T ∧ 2)= 0

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.004
http:/www.cambridge.org/core


3.7 Limit Theorems for Empirical Processes 247

by the dominated convergence theorem. Finally,

lim
τ→0

limsup
n→∞

sup
H∈BL1(�∞(T))

|In,τ (H)| ≤ lim
τ→0

limsup
n→∞

E∗
[

sup
d(s,t)≤τ

(|Xn(t)−Xn(s)| ∧ 2)

]

≤ 2 lim
τ→0

limsup
n→∞

Pr∗
{

sup
d(s,t)≤τ

|Xn(t)−Xn(s)|> ε
}
+ 2ε

= 2ε,

for all ε > 0, by Theorem 3.7.23 (3.249). Thus, dBL(Xn,X)→ 0.
For the converse, assume that dBL(Xn,X)→ 0, and set, for δ > 0 fixed and all ε > 0,

Aε(δ)= Aε =
{

x ∈ �∞(T) : sup
d(s,t)≤δ

|x(t)− x(s)| ≥ ε
}

.

Then, if x ∈ Aε and y ∈ Ac
ε/2, we have ‖x− y‖T ≥ ε/5: there exist s and t with d(s, t)≤ δ such

that |x(t)− x(s)|> 9ε/10; hence, if, for example, |x(t)− y(t)|< ε/5, then

9ε/10< |x(t)− x(s)| ≤ |x(t)− y(t)|+ |y(t)− y(s)|
+ |y(s)− x(s)|< ε/5+ ε/2+|y(s)− x(s)|,

that is, |x(s)− y(s)| > ε/5. Therefore, the restriction to the set Aε ∩ Ac
ε/2 of the indicator

function IAε is Lipschitz with constant bounded by 5/ε. Hence, by the Kirzbraun–McShane
extension theorem (Exercise 3.6.14), there exists a bounded Lipschitz function H defined
on all of �∞(T) which is 0 on Ac

ε/2 and 1 on Aε, nonnegative and bounded by 1 and whose
Lipschitz constant is bounded by 5/ε. For such a function H, we have IAε ≤ H ≤ IAε/2 and
|E∗H(Xn)−EH(X)| ≤ (5/ε)dBL(Xn,X). Hence, the hypothesis implies that

limsup
n→∞

Pr∗{Xn ∈ Aε} ≤ limsup
n→∞

E∗H(Xn)= EH(X)

≤ Pr{X ∈ Aε/2} = Pr

{
sup

d(s,t)≤δ
|X(t)−X(s)| ≥ ε

2

}
.

But since X ∈ Cu(T,d) a.s., we have

lim
δ→0

Pr

{
sup

d(s,t)≤δ
|X(t)−X(s)| ≥ ε

2

}
= 0,

which, combined with the preceding inequality, yields

lim
δ→0

limsup
n→∞

Pr∗{Xn ∈ Aε(δ)} = 0,

that is, the asymptotic equicontinuity condition (3.249). Then, by Theorem 3.7.23, Xn →L
X in �∞(T).

Another quite useful general property of convergence in law in the present general setting
is the analogue of Skorokhod’s representation theorem:
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Theorem 3.7.25 Let (�n,An,Qn) �→ �∞(T), n ∈ N ∪ {∞}, be probability spaces, and let
Xn :�n �→ �∞(T) be bounded processes such that X∞ is Borel measurable and has separable
range in �∞(T). Then Xn →L X∞ in �∞(T) if and only if there exists a probability space
(�̃,Ã, Q̃) and perfect maps φn : �̃ �→�n such that Qn = Q̃◦φ−1

n , n≤∞, and limn→∞‖X̃n −
X̃∞‖∗T = 0 Q̃ a.s. as n →∞, where X̃n := Xn ◦φn.

Proof For necessity of the condition note that by Exercise 3.7.9, if ‖Xn◦φn−X∞◦φ∞‖∗T →
0 a.s., then Xn ◦ φn →L X∞ ◦ φ∞ in �∞(T) and that by perfectness of φn, E∗

Q̃
H(X̃n) =

E∗
Qn

H(Xn), n ≤ ∞, for every H : �∞(T) �→ R bounded and continuous (see the end of
Section 3.7.1) and thus that Xn →L X∞ in �∞(T).

The proof of sufficiency is much more elaborate. Let C⊂ �∞(T) be the range of X∞, and
let {xi}∞i=1 be a dense subset of C. Since, for each x ∈ �∞(T), all but at most a countable
number of open balls B(x,r) of centre x and radius r (for the supremum norm over T) are
continuity sets for the law of X∞ (meaning that Q∞{X∞ ∈ ∂B(x,r)} = 0), for every ε > 0,
there exists a collection B(xi,ri)⊂ �∞(T) of open balls with radii ε/3< ri < ε/2, i ∈N, that
are continuity sets for the law of X∞. These balls cover C and, by subtracting from each
such ball the union of the previous ones (set B(ε)1 = B(x1,r1), B(ε)2 = B(x1,r1) \B(x2,r2), and

so on), we obtain a countable collection
{
B(ε)i

}∞
i=1

of disjoint continuity sets for X∞ such

that Q∞
{
X∞ ∈ ∪∞

i=1B
(ε)
i

}
= 1 (note that the boundary of a finite union of sets is contained in

the union of their boundaries). Let kε <∞ be such that
∑

i>kε
Q∞

{
X∞ ∈ B(ε)i

}
< ε, and set

B(ε)0 = �∞(T) \∪kε
i=1B

(ε)
i . We have thus constructed a partition of �∞(T) into a finite number

of X∞-continuity sets {B(ε)i }kε
i=0 such that

Q∞
{
X∞ ∈ B(ε)0

}
< ε, diam(B(ε)i ) < ε, for i = 1, . . . ,kε.

We may also assume that Q∞
{
X∞ ∈ B(ε)i

}
> 0 for all i = 1, . . . ,kε by discarding sets B(ε)i ,

i ≥ 1, incorporating them into B(ε)0 , if necessary, and renumbering the rest.
Since Xn →L X∞ in �∞(T), by the Portmanteau theorem (Exercise 3.7.7), for each ε > 0

and i = 0,1, . . . ,kε, we have that limn→∞(Qn)∗
{
Xn ∈ B(ε)i

}
= Q∞

{
X∞ ∈ B(ε)i

}
. Hence, given

εm = 1/(m+ 1)2, there exist nm ↗∞ such that

(Qn)∗
{
Xn ∈ B(εm)i

}
≥ (1− εm)Q∞

{
X∞ ∈ B(εm)i

}
, i = 0,1, . . . ,kεm , and n ≥ nm.

Take ηn = εm for nm ≤ n < nm+1, m ∈ N, and by discarding the first n1 − 1, Xn and
renumbering, set n1 = 1. Note that ηn ↘ 0 and that the range of the sequence {ηn} is contained
in {1/(m+ 1)2 : m ∈N}. The preceding inequality then becomes

(Qn)∗
{
Xn ∈ B(ηn)

i

}
≥ (1−ηn)Q∞

{
X∞ ∈ B(ηn)

i

}
, i = 0,1, . . . ,kηn , and n ∈N. (3.255)

Let now An
i ∈ An be such that An

i ⊆ {Xn ∈ B(ηn)
i } and Qn(An

i ) = (Qn)∗{Xn ∈ B(ηn
i },

i = 1, . . . ,kηn , which exist by the definition of inner probability (see Exercise 3.7.4 and

Proposition 3.7.1), and set An
0 =�n \∪kηn

i=1A
n
i . Let N1 = {n ∈N : Q∞{X∞ ∈ B(ηn)

0 } = 0}, and let
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Nn
2 =N \N1. Define

�̃=�∞×
∏
n∈N1

⎡⎣�n ×
kηn∏
i=1

An
i

⎤⎦×
∏
n∈N2

⎡⎣�n ×
kηn∏
i=0

An
i

⎤⎦×[0,1],

Ã=A∞⊗
∏
n∈N1

⎡⎣An ⊗
kηn∏
i=1

(An ∩An
i )

⎤⎦⊗
∏
n∈N2

⎡⎣An ⊗
kηn∏
i=0

(An ∩An
i )

⎤⎦⊗B,

Q̃ = Q∞×
∏
n∈N1

⎡⎣μn ×
kηn∏
i=1

Qn(·|An
i )

⎤⎦×
∏
n∈N2

⎡⎣μn ×
kηn∏
i=0

Qn(·|An
i )

⎤⎦×λ,

where Qn(·|An
i ) denotes conditional Qn probability given An

i , λ is Lebesgue measure, B is
the Borel σ -algebra of [0,1] and μn is the probability measure on An given by

μn(A)= 1

ηn
Qn(A∩An

0)+
1

ηn

kηn∑
i=1

Qn(A|An
i )
[
Qn(A

n
i )− (1−ηn)Q∞{X∞ ∈ B(ηn)

i }
]

,

for n ∈ N1, and

μn(A)= 1

ηn

kηn∑
i=0

Qn(A|An
i )
[
Qn(A

n
i )− (1−ηn)Q∞{X∞ ∈ B(ηn)

i }
]

,

for n ∈ N2. Note that μn is a probability measure for each n because of the inequalities
(3.255). With the notation

ω̃= (ω∞, . . . ,ωn,ωn,1, . . . ,ωn,kηn , . . . ,ωn′ ,ωn′,0, . . . ,ωn′,kη′n
, . . . ,ξ)

for n ∈ N1 and n′ ∈ N2, we define φn, 1 ≤ n ≤∞, by

φ∞(ω̃)= ω∞

φn(ω̃)=
{
ω̃n if ξ > 1−ηn

ω̃n,i if ξ ≤ 1−ηn and X∞(ω∞) ∈ B(ηn)
i ,

where i starts at 1 if n ∈ N1 and otherwise at 0. Finally, define X̃n = Xn ◦φn, 1 ≤ n ≤∞.
We now prove that this construction gives the sufficiency part of the theorem. Suppose

that X̃∞ 
∈ B(ηn)
0 and ξ ≤ 1− ηn. Then X̃∞ is in some B(ηn)

i , 1 ≤ i ≤ kηn , and the definitions of
φn and An

i then give that X̃n is in the same B(ηn)
i and therefore that ‖X̃n − X̃∞‖T ≤ ηn. We thus

have, for any m ∈N,

Q̃
∗
{

sup
n≥nm

‖X̃n − X̃∞‖T > ηn

}
≤ Q̃

(
∪n:ηn≤εm[{X̃∞ ∈ B(ηn)

0 }∪ {ξ > 1−ηn}]
)

= Q̃
(
∪�≥m{X̃∞ ∈ B(ε�)0 }∪ {ξ > 1− εm}

)
≤
∑
�≥m

1

(�+ 1)2
+ 1

(m+ 1)2
→ 0 as m →∞.
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250 Empirical Processes

Since ηn → 0, we have proved that ‖X̃n − X̃∞‖∗T → 0 a.s. (note Exercise 3.7.1 and
Proposition 3.7.2). Next, we see that Qn = Q̃ ◦φ−1

n , 1 ≤ n ≤∞. This is obvious for n =∞.
For n<∞ and A ∈An, we have

Q̃n{φn ∈ A} = (1−ηn)

kηn∑
i=0

Q̃
{
ωn,i ∈ A,X∞(ω∞) ∈ B(ηn)

i

}
+ηnμn(A),

and note that, for any n<∞,

(1−ηn)

kηn∑
i=0

Q̃
{
ωn,i ∈ A,X∞(ω∞) ∈ B(ηn)

i

}
= (1−ηn)

kηn∑
i=0

Qn(A|An
i )Q∞(X∞(ω∞) ∈ B(ηn)

i }

= −ηnμn(A)+Qn(A),

proving that Qn = Q̃◦φ−1
n . Finally, we show that the random variables φn are perfect. φ∞ =

π∞ is a projection in a product probability space; hence it is perfect by Example 3.7.6. Here
we denote πξ , πn and πn,i, respectively, the projections of �̃n onto [0,1], �n and An

i . With
this notation, we have

φn = Iπξ≤1−ηn

kηn∑
i=0

I
X∞(ω∞)∈B(ηn)i

πn,i + Iπξ>1−ηnπn,

for n ∈ N2, and the same expression with the sum starting at i = 1 for n ∈ N1, and the
perfectness of φn follows from Example 3.7.7.

3.7.4 Central Limit Theorems for Empirical Processes I: Definition and Some
Properties of Donsker Classes of Functions

As usual, we let Xi : SN �→ S, i ∈ N, be the coordinate functions on the infinite product
probability space (�,
,Pr) := (SN,SN,PN) (in particular, then, the functions Xi are
independent identically distributed S-valued random variables with probability law P) andF
a class of measurable functions f : S �→R. We also denote as X an S-valued random variable
with law P. In this section we assume that F consists of P-square integrable functions and
that

sup
f ∈F

| f (x)−P f |<∞, ∀x ∈ S. (3.256)

With this condition, the centred empirical process based on {Xi} and indexed by F ,

f �→ (Pn(ω)−P)( f )= 1

n

n∑
i=1

( f (Xi(ω))−P f ),

is a bounded map F �→ R; that is, the centred empirical process Pn − P has all its sample
paths bounded, and the results from the preceding section apply to it. We may impose,
instead of condition (3.256), the more restrictive conditions

sup
f ∈F

| f (x)|<∞, ∀x ∈ S, and sup
f ∈F

|P f |<∞ (3.257)

so that the uncentred empirical process {Pn( f ), f ∈F} is also bounded. In this subsection we
introduce the central limit theorem for empirical processes. The framework and the results
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constitute a far-reaching generalisation of the classical work of Kolmogorov, Doob, Donsker
and others on the central limit theorem for the empirical distribution function (the invariance
principle), of great value in asymptotic statistics.

If F is in L2(P), by the central limit theorem in finite dimensions, the finite-dimensional
distributions of the process

νn( f ) :=√
n(Pn −P)( f ), f ∈F ,

converge in law to the corresponding finite-dimensional distributions (GP( f1), . . . ,GP( fk))

of a centred Gaussian process {GP( f ) : f ∈F} with covariance that of f (X)−P f , f ∈F ;
that is,

L
(

1√
n

n∑
I=1

( f1(Xi)−P f1, . . . , fk(Xi)−P fk)

)
→w L(GP( f1), . . . ,GP( fk)), fi ∈F , k ∈N,

where GP( f ), f ∈F , is a centred Gaussian process with the same covariance as the process
{ f (X) : f ∈F},

E(GP( f )GP(g))= E[( f (X)−P f )(g(X)−Pg)] = P[( f −P f )(g−Pg)], (3.258)

and where →w denotes weak convergence of probability measures (in this case in Rn). When
P is Lebesgue measure on [0,1] and F = {I[0,x] : x ∈ [0,1]), then

E(G(x)G(y)) := E(G(I[0,x])G(I[0,y]))= x(1− y),

for 0 ≤ x ≤ y ≤ 1; that is, G is a Brownian bridge. We may refer to GP as the P-bridge
process indexed by F .

Definition 3.7.26 We say that the class of functions F is P-pre-Gaussian if the P-bridge
process GP( f ), f ∈F , admits a version whose sample paths are all bounded and uniformly
continuous for its intrinsic L2-distance d2

P( f ,g)= P( f − g)2 − (P( f − g))2, f ,g ∈F .

Remark 3.7.27 By Proposition 2.1.5 and Sudakov’s theorem (Corollary 2.4.13), if F is
P-pre-Gaussian, then the pseudo-metric space (F ,dP) is totally bounded, and the law of
GP is a tight Borel probability measure on the Banach space Cu(F ,dP) (and, in particular,
on �∞(F)). Thus, we will be able to apply Definition 3.7.22 to the convergence in law in
�∞(F) of the empirical process νn =√

n(Pn −P) to GP.

Before considering the central limit theorem for the empirical process indexed by the
class F , it is convenient to examine the linearity of GP. Since its covariance structure is that
of f (X), GP inherits some of the linearity of the map f �→ f (X). By computing covariances,
it is clear that

∑r
i=1λiGP( fi) = 0 a.s. whenever r <∞, λi ∈ R and fi ∈ F are such that∑r

i=1λi fi = 0 pointwise, but in principle, the set of probability 1 where this happens may
depend on the functions fi and the constants λi. We may thus ask whether GP has a version
whose sample paths satisfy this linearity property besides being bounded and uniformly
continuous.

Formally, if F is a subset of a vector space and g : F �→ R satisfies
∑r

i=1λig( fi) = 0
whenever

∑r
i=1λi fi = 0 pointwise, for r<∞, λi ∈R and fi ∈F , we say that g is prelinear

(on F ). If g is prelinear, then it extends uniquely to a linear function on the linear span of
F , and such an extension exists only if g is prelinear (Exercise 3.7.10). The answer to the
question in the preceding paragraph is given by the following theorem:
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252 Empirical Processes

Theorem 3.7.28 Let F be a P-pre-Gaussian class of functions, and let GP be a version of
the P-bridge that is also a Borel measurable Cu(F ,dP)-valued random variable. Then, for
almost allω, the function f �→GP(ω)( f ), f ∈F , is prelinear and therefore extends uniquely
to a linear functional on the linear span ofF and is bounded and uniformly dP-continuous on
the symmetric convex hull sco(F) of F . Hence, it extends as a prelinear bounded uniformly
continuous function on the dP-closure sco(F) of sco(F).

Proof From Remark 3.7.27, the metric space (F ,dX) is totally bounded, and therefore,
Cu(F ,dX), which is isomorphic to C(F ,dX), where F is the completion for dX of F , which
is compact, is a separable Banach space (see the discussion before Proposition 2.1.5). Thus,
the Karhunen-Loève expansion, Theorem 2.6.10, applies to give a sequence of independent
standard normal random variables ki, with ki and GP( f ), j ∈ N, f ∈ F , jointly normal,
such that

GP =
∞∑
i=1

[E(kiGP)]ki a.s.,

where the series converges in the norm of Cu(F ,dX). That is, GP( f )=∑∞
i=1[E(kiGP( f ))]ki

uniformly in f almost surely. If, for λj ∈ R and fj ∈ F , 1 ≤ j ≤ r <∞,
∑
λj fj = 0, then

E
(∑
λjGP( fj)

)2 = P
(∑
λj fj

)2 − (
P
(∑
λj fj

))2 = 0, and therefore,
∑

jλjE(kiG( fj))= 0 for
each i; that is, for almost all ω, the function F �→ R, f �→ GP( f )(ω) is prelinear, and
hence it has a unique linear extension to the linear span of F given by GP

(∑
λi fi

)
(ω) :=∑

λiG( fi)(ω).
Let us continue denoting as GP the just-constructed linear extension of the original

process to the span of F . Consider now the symmetric convex hull of F ,

sco(F) :=
⎧⎨⎩

r∑
j=1

λj fj : fj ∈F ,
r∑

j=1

|λj| ≤ 1,r ∈N

⎫⎬⎭ ,

and note that if f ,g ∈ sco(F), we still have E(GP( f )− GP(g))2 = P( f − g)2 − (P( f −
g))2 = d2

P( f ,g) so that for each ki, |E(kiGP( f ))ki(ω)− E(kiGP(g))ki(ω)| ≤ |ki(ω)|dP( f ,g)
by Hölder’s inequality. Hence, the terms of the series

∑∞
i=1[E(kiGP)]ki are a.s. in

Cu(sco(F),dP). Moreover,

sup
f ∈sco(F)

∣∣∣∣∣
m∑

i=n

E(kiGP( f ))ki(ω)

∣∣∣∣∣= sup
f ∈F

∣∣∣∣∣
m∑

i=n

E(kiGP( f ))ki(ω)

∣∣∣∣∣ .
We thus conclude that

GP( f )=
∞∑
i=1

[E(kiGP( f ))]ki ∈ Cu(sco(F),dP) a.s.

Finally, GP( f ) extends by uniform continuity to a uniformly continuous function on the
closure sco(F) of sco(F) with linearity preserved.

If F is P-pre-Gaussian, any versions of the P-bridge whose sample paths are bounded,
uniformly dP-continuous and prelinear will be called suitable.
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We now come to the definition of the central limit theorem uniform in F . The
finite-dimensional distributions of the (centred normalised) empirical process νn =√

n(Pn−
P) converge in law to those of the P-Brownian bridge GP by the central limit theorem in
Rn as long as F ⊂ L2(S,S ,P). Moreover, if F is P-pre-Gaussian, then the law of GP is
a tight Borel measure in �∞(F) (and in Cu(F ,dP)), and hence, it is a possible limit in
the definition of convergence in law for bounded processes, Definition 3.7.22. Hence, the
following definition is natural:

Definition 3.7.29 We say that the class of functions F ⊂ L2(S,S ,P) satisfying the
boundedness condition (3.256) is a P-Donsker class or that F satisfies the central limit
theorem for P, F ∈ CLT(P) for short, if F is P-pre-Gaussian and the P-empirical processes
indexed by F , νn( f )=√

n(Pn −P)( f ), f ∈F , converge in law in �∞(F) to the Gaussian
process GP as n →∞.

Note that the envelope condition (3.256) is natural because νn is not stochasti-
cally bounded in �∞(F) if sup f ∈F | f (X) − P f | = ∞ with positive P-probability (see
Exercise 3.7.23).

Remark 3.7.30 (Central limit theorem for Banach space–valued random variables) Let
B be a separable Banach space, let P be a weakly centred Borel probability measure on B,
meaning that

∫
f (x)dP(x)= 0 for all f ∈ B∗, the topological dual of B, and let Xi be i.i.d.(P)

B-valued random variables. If

L
(

1√
n

n∑
i=1

Xi

)
→w L(Z), (3.259)

where Z is a centred Gaussian B-valued random variable, we say that the central limit
theorem (CLT) holds for P on B. If the CLT holds for P on B, then the class of functions
F = B∗

1, the unit ball of B∗, is a P-Donsker class, and conversely, if B∗
1 is P-Donsker

for a Borel probability measure P on B, then the CLT for P holds on B. To prove
this, first observe that the map i : B �→ �∞(B∗

1) sending x ∈ B to evaluation at x of
f ∈ B∗

1 is a linear isometric imbedding, i(B) is closed in �∞(B∗
1) and i

(∑n
i=1 Xi/

√
n
) =√

nPn. Recall also that the dual bounded Lipschitz norm metrises weak convergence of
probability measures on complete separable metric spaces. If H : �∞(B∗

1) �→ R is bounded
Lipschitz, then so is H ◦ i : B �→ R and with the same supremum and Lipschitz norms.
If the CLT holds for P on B, this observation immediately yields dBL(

√
nPn, i(Z)) ≤

β(B,‖·‖)
(
L
(∑n

i=1 Xi/
√

n
)
,L(Z)

)→ 0, and therefore, B∗
1 is P-Donsker by Proposition 3.7.24.

For the converse, we need two additional observations: the first is that if H : B �→ R is
bounded Lipschitz, then i−1H is bounded Lipschitz (with the same norms) on i(B), and
it extends by the Kirszbraun-McShane extension theorem (Exercise 3.6.13) to a bounded
Lipschitz function H̃ with the same supremum and Lipschitz norms over all of �∞(B∗

1), and
the second is that if B∗

1 is P-Donsker, then since
√

nPn ∈ i(B) and i(B) is closed, GP ∈ i(B)
by the Portmanteau theorem (Exercise 3.7.7); that is, GP = i(Z) for some B-valued centred
Gaussian random variable Z. These two observations imply that if B∗

1 is P-Donsker, then
β(B,‖·‖)

(
L
(∑n

i=1 Xi/
√

n
)
,L(Z)

)= dBL(
√

nPn,GP)→ 0 by Proposition 3.7.24, and therefore,
the CLT holds for P on B.
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254 Empirical Processes

Theorem 3.7.23 together with the central limit theorem in finite dimensions immediately
yields the following asymptotic equi-continuity criterion for F to be a P-Donsker class.
Recall that by Remark 3.7.27, if F is P-Donsker, then the pseudo-metric space (F ,dP) is
totally bounded.

Theorem 3.7.31 Assume that F ⊂ L2(S,S ,P) and satisfies condition (3.256). Then the
following conditions are equivalent:

(a) F is a P-Donsker class.
(b) The pseudo-metric space (F ,dP) is totally bounded, and

lim
δ→0

limsup
n→∞

Pr∗

⎧⎨⎩ sup
f ,g∈F

dP( f ,g)≤δ

|√n(Pn −P)( f − g)|> ε
⎫⎬⎭= 0, (3.260)

for all ε > 0.
(c) There exists a pseudo-distance e on F such that (F ,e) is totally bounded, and

lim
δ→0

limsup
n→∞

Pr∗

⎧⎨⎩ sup
f ,g∈F

e( f ,g)≤δ

|√n(Pn −P)( f − g)|> ε
⎫⎬⎭= 0, (3.261)

for all ε > 0.

A typical distance e in condition (c) is e( f ,g)= eP( f ,g)= ‖ f − g‖L2(P), but it is not the
only one that we will use.

With this theorem, proving the central limit theorem for the empirical process essentially
reduces to proving a maximal inequality, which is the subject of several of the preceding
sections. Here is an application of Theorem 3.7.31 to an important necessary integrability
condition for F to be P-Donsker: if F is P-Donsker, the measurable cover of F is in
weak-L2(P), in particular, PFα <∞, for all 0< α < 2.

Proposition 3.7.32 Let F ⊂ L2(P) be a P-Donsker class satisfying the conditions (3.257),
and let F be its measurable cover. Then

lim
t→∞ t2 Pr {F> t} = 0.

If the P-Donsker class F only satisfies condition (3.256), and F is the measurable cover of
the centred class { f −P f : f ∈F}, then

lim
t→∞ t2 Pr

{
F> t

}= 0.

Proof Since in the first case sup f ∈F | f (x)− P f | + sup f ∈F |P f | ≥ F(x) and the second
summand is a finite number, it suffices to prove the second part of the proposition. Given
τ > 0, let f1, . . . , fN(τ ) be a subset of F τ -dense for the pseudo-metric dP, which exists by
Theorem 3.7.31, and define the functionals Yi( f )= f (Xi)−P f , Yi,τ ( f )= Yi(πτ f )), where
πτ : F �→ { f1, . . . , fN(τ )} is a mapping satisfying dP( f ,πτ ( f ))≤ τ . Then

nPr∗
{
F(X1) > 2n1/2

}≤ nPr∗
{‖Y1 −Y1,τ‖F > n1/2

}+ nPr
{‖Y1,τ‖F > n1/2

}
.

Since E‖Y1,τ‖2
F = Emaxi≤N(τ ) | fi(X1)−P fi|2 ≤ N(τ )maxi≤N(τ )P f 2

i <∞, it follows that

lim
n→∞nPr

{‖Y1,τ‖F > n1/2
}= 0, for all τ > 0,
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and we only need to prove that the first summand tends to zero as we let first n→∞ and then
τ to zero. To this end, note that for x ≥ 0, x/(1+ x)= 1− 1/(1+ x)≤ 1− e−x. Then, using
Lévy’s inequality (3.34) (together with the calculus of nonmeasurable functions, concretely
Exercises 3.7.1 and 3.7.3 and Proposition 3.7.2), we obtain

nPr∗
{‖Y1 −Y1,τ‖F > n1/2

}
1+ nPr∗

{‖Y1 −Y1,τ‖F > n1/2
} ≤ 1− exp

(−nPr
{‖Y1 −Y1,τ‖∗F > n1/2

})
≤ 1−

n∏
i=1

[
1−Pr

{‖Yi −Yi,τ‖∗F > n1/2
}]

≤ Pr∗
{

max
i≤n

‖Yi −Yi,τ‖F > n1/2

}

≤ 2Pr∗
{∥∥∥∥∥

n∑
i=1

εi(Yi −Yi,τ )

∥∥∥∥∥
F

> n1/2

}

≤ 2Pr∗

⎧⎨⎩ sup
f ,g∈F

dP( f ,g)≤τ

∣∣∣∣∣
n∑

i=1

εi(( f − g)(Xi)−P( f − g))

∣∣∣∣∣> n1/2

⎫⎬⎭ := (In), (3.262)

where εi and Xj are all independent, in fact, coordinates in a product probability space, and
Pr{εi = 1} = Pr{εi = −1} = 1/2 (Rademacher variables). Now, by Proposition 3.1.23 (and
Exercise 3.7.3),

(In)≤ 6 max
1≤j≤n

Pr∗

⎧⎨⎩ sup
f ,g∈F

dP( f ,g)≤τ

|νj( f − g)|> n1/2

9j1/2

⎫⎬⎭ .

It is easy to see that in Theorem 3.7.31, condition (b), limsup over n can in fact be replaced
by supremum over n; hence, Theorem 3.7.31 shows that limτ→0 supn(In) = 0. Since also
x/(1+ x) < η iff x< η/(1−η) for x,η > 0, this last limit and inequality (3.262) yield

lim
τ→0

limsup
n

nPr∗
{‖Y1 −Y1,τ‖F > n1/2

}= 0.

Next, we consider two of the most important permanence properties of Donsker classes.

Proposition 3.7.33 If F1 and F2 are P-Donsker classes of functions, then so is F1 ∪F2.

Proof Recall the notation νn =√
n(Pn −P). Since

sup
f ,g∈F1∪F2
dP( f ,g)≤δ

|νn( f − g)| ≤
2∑

i=1

sup
f ,g∈Fi

dP( f ,g)≤δ

|νn( f − g)|+ sup
f ∈F1,g∈F2
dP( f ,g)≤δ

|νn( f − g)|,

by Theorem 3.7.31 applied to F1 and F2 and to their union, it suffices to prove that

lim
δ→0

limsup
n→∞

Pr∗

⎧⎨⎩ sup
f ∈F1,g∈F2
dP( f ,g)≤δ

|νn( f − g)|> ε
⎫⎬⎭= 0, (3.263)
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256 Empirical Processes

for all ε > 0. Note also that since the classes Fi are P-pre-Gaussian, Sudakov’s minorisation
for sample continuous Gaussian processes (Corollary 2.4.14) implies that

lim
δ→0
δ
√

logN(Fi,dP,δ)= 0, i = 1,2. (3.264)

Fix ε > 0. Then, given τ > 0, there exists δ0 > 0 such that both

limsup
n→∞

Pr∗

⎧⎨⎩ sup
f ,g∈Fi

dP( f ,g)≤δ0

|νn( f − g)|> ε/3
⎫⎬⎭< τ/3, i = 1,2, (3.265)

and
9

ε
δ0
√

2log[2(N(F1,dP,δ0)+N(F2,dP,δ0))2]< τ/3. (3.266)

Let Gi ⊂Fi be δ0-dense in Fi and with cardinality N(Fi,dP,δ0), i= 1,2. For each f ∈Fi, let
πi f ∈ Gi be such that dP( f ,πi f ) ≤ δ0. Let G = G1 ∪G2. Then, for f ∈ F1 and g ∈ F2, the
decomposition

f − g = ( f −π1 f )+ (π1 f −π2g)+ (π2g− g)

together with the inequalities (3.265) give, for 0< δ ≤ δ0,

limsup
n→∞

Pr∗

⎧⎨⎩ sup
f ∈F1,g∈F2
dP( f ,g)≤δ

|νn( f − g)|> ε
⎫⎬⎭< 2τ/3

+ limsup
n→∞

Pr∗

⎧⎨⎩ sup
f ,g∈G

dP( f ,g)≤3δ0

|νn( f − g)|> ε/3
⎫⎬⎭ . (3.267)

Let d = Card(G) ≤ N(F1,dP,δ0)+N(F2,dP,δ0), and denote by x = (x f : f ∈ G) the points
in Rd. By the central limit theorem in Rd, we have that the Rd-valued random vectors
νn|G = (νn( f ) : f ∈ G) converge in law to the normal variable GP|G = (GP( f ) : f ∈ G).
In particular, for any closed set F of Rd, we have by the Portmanteau theorem in finite
dimensions (see also Exercise 3.7.7) that limsupn Pr{νn|G ∈ F} ≤ Pr{GP|G ∈ F}. Let Fδ0 =
{x : maxdP( f ,g)≤3δ0 |x f − xg| ≥ ε/3} ⊂ Rd, and note that the set Fδ0 is closed and that, by, for
example, Lemma 2.3.4,

Pr{GP|G ∈ Fδ0} ≤
9δ0
ε

√
2log(2d2),

which is smaller than τ/3 by inequality (3.266) and the definition of d. Therefore,

limsup
n→∞

Pr∗

⎧⎨⎩ sup
f ,g∈G

dP( f ,g)≤3δ0

|νn( f − g)| ≥ ε/3
⎫⎬⎭≤ Pr

⎧⎨⎩ sup
f ,g∈G

dP( f ,g)≤3δ0

|GP( f )−GP(g)| ≥ ε/3
⎫⎬⎭< τ/3.

The limit (3.263) now follows from this inequality and (3.267).

For the next property, we need a definition. Recall that the symmetric convex hull of F ,
sco(F), is defined as the set of functions g of the form g =∑k

i=1λi fi, where k ∈ N, fi ∈F
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3.7 Limit Theorems for Empirical Processes 257

and λi ∈R with
∑n

k=1 |λi| ≤ 1. We denote as H(F ,P) the sequential closure, both pointwise
and in L2(P), of the symmetric convex hull of F , that is,

H(F ,P)=
{
g : S �→R : g(x)= lim

n
gn(x) ∀x ∈ S and lim

n
P(gn − g)2 = 0, gn ∈ sco(F)

}
.

The result holds as well with the term sequential removed (see Exercise 3.7.14).

Proposition 3.7.34 If F is P-Donsker, so is H(F ,P).

Proof To prove (a), we apply Theorem 3.7.25 on almost-sure representations for
convergence in law for (�n,An,Qn) = (Sn,Sn,Pn), n < ∞, and for (�∞,A∞,Q∞) a
probability space where a suitable version of GP is defined over sco(F), for Xn = νn, n<∞,
and X∞ = GP (a suitable version), and for T = F and, in a second instance, T = H(F ,P).
Note that the range of GP, Cu(scoF), is separable. By Theorem 3.7.25, there exist a
probability space (�̃,Ã, P̃) and perfect maps φn : �̃n �→�n, n ≤∞, such that Pn = Q̃ ◦φ−1

n

for n<∞, Q∞ = Q̃ ◦φ−1
∞ and the processes

ν̃n( f ,ω) := νn ◦φn( f ,ω)= 1

n

n∑
i=1

( f (φn(ω)i)−P f ), G̃P( f ,ω) := GP( f ,φ∞(ω))

satisfy sup f ∈F |ν̃n( f )− G̃P( f )|∗ → 0 a.s., where φn(ω)i is the ith coordinate of φn(ω) ∈ Sn.

Note that ν̃n and G̃P are versions of νn and GP. But, by linearity and continuity,

sup
f ∈F

|ν̃n( f )− G̃P( f )| = sup
f ∈H(F ,P)

|ν̃n( f )− G̃P( f )|,

so sup f ∈H(F ,P) |ν̃n( f )−G̃P( f )|∗ → 0 a.s. Hence, another application of Theorem 3.7.25 then
gives νn →w GP in �∞(H(F ,P)).

It is clear that if F is P-Donsker, so is λF = {λ f : f ∈ F}, for all λ ∈ R. Thus, as a
corollary to the preceding two permanence properties of the Donsker property, we have the
following one:

Corollary 3.7.35 If Fi, 1 ≤ k<∞, are P-Donsker, so is F =
{∑k

i=1 fi : fi ∈Fi

}
.

3.7.5 Central Limit Theorems for Empirical Processes II: Metric and Bracketing
Entropy Sufficient Conditions for the Donsker Property

The expectation bounds based on random entropies (hence, in particular, for VC type
classes) or on bracketing entropy given in Section 3.5 immediately provide what are
probably the most useful central limit theorems for empirical processes. In the case of
random entropies, we need some measurability, so we will assume our classes of functions
to be P-measurable (see Definition 3.7.11). Recall the notation ep

n,p( f ,g) = Pn| f − g|p for
p ≥ 1 and e( f ,g)= eP( f ,g)= ‖ f − g‖L2(P).

Theorem 3.7.36 Let F be a class of measurable functions satisfying condition (3.257)
and with a measurable envelope F in L2(P). Assume that the classes of functions
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F , G := {( f − g)2 : f ,g ∈ F} and F ′
δ := {

f − g : f ,g ∈F ,‖ f − g‖L2(P) ≤ δ
}

for all δ > 0
are all P-measurable. Then, if

lim
δ→0

limsup
n→∞

E

[
1∧

∫ δ

0

√
logN∗(F ,en,2,ε) dε

]
= 0, (3.268)

the class F is P-Donsker.

Note that we take the finiteness of the double limit (3.268) to mean in particular that the
expected values involved are finite for all n ∈N and δ > 0.

Proof We will apply the random entropy bound (3.166) for the expected value of the
empirical process (with the packing number D replaced by the measurable cover N∗ of N)
in combination with the asymptotic equi-continuity criterion, Theorem 3.7.23. We begin by
showing that G is P-Glivenko-Cantelli. First, G = supg∈G |g| ≤ 4F2 ∈ L1(P). Next, note that
for each M<∞,

|( f1 − g1)
2 − ( f2 − g2)

2|IG≤M = | f1 − g1 + f2 − g2|| f1 − g1 − f2 + g2|IG≤M

≤ 2M1/2(| f1 − f2|+ |g2 − g1|),
which implies that

N(GM,en,2,ε)≤ N2(F ,en,2,ε/4M1/2),

where GM := {gIG≤M : g ∈ G}. Then

n−1/2

∫ M

δ

√
logN∗(GM,en,2,ε) dε ≤ Mn−1/2

√
2logN∗(F ,en,2,δ/4M1/2)

≤ 4M3/2

n1/2δ

∫ δ/4M1/2

0

√
2logN∗(F ,en,2,τ) dτ ,

which is dominated, for all n≥ 16M3/δ2, by just the last integral. Hence, for these values of
n and δ, we have

n−1/2

∫ M

0

√
logN∗(GM,en,2,ε) dε ≤ 2

∫ δ/4M1/2

0

√
2logN∗(F ,en,2,τ) dτ .

Now, condition (e) in Theorem 3.7.14 for G follows from condition (3.268) for F , proving
that G is a Glivenko-Cantelli class. Next, we show that (F ,eP) is totally bounded, where
eP( f ,g)=‖ f −g‖L2(P). On the one hand, the hypothesis of the theorem implies that for each
n and ε there is a set of Pr measure 1 where N(F ,en,2,ε1/2) <∞. On the other hand, since G
is P-GC, there is n such that the event {supg∈G |Pn(g)−P(g)| ≤ ε} has positive probability.
Thus, for ω in the intersection of the two events, if fi ∈ F are the centres of a covering
of F by N(F ,en,2(ω),ε1/2) balls for the en,2(ω) pseudo-metric, they are also the centres of
a covering of F by balls of radius (2ε)1/2 in the L2(P) pseudo-metric: Pn(ω)( f − fi)

2 ≤ ε
implies, for these ω, that P( f − fi)

2 ≤ ε+Pn(ω)( f − fi)
2 ≤ 2ε.
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Finally, we prove (3.261) for the metric τ = eP, which will conclude the proof of the
theorem by the asymptotic equi-continuity criterion for Donsker classes. We have

Pr
{
‖νn( f − g)‖F ′

δ
|> ε

}
≤ Pr

⎧⎪⎨⎪⎩ sup
f ,g∈F

eP,n( f ,g)≤√2δ

|νn( f − g)|> ε

⎫⎪⎬⎪⎭
+Pr

{
sup
f ,g∈F

|e2
P,n( f ,g)− e2

P( f ,g)| ≥ δ2

}

≤ EX

⎡⎢⎣1∧ 2

ε
Eε

⎛⎜⎝ sup
f ,g∈F

eP,n( f ,g)≤√2δ

∣∣∣∣∣ 1√
n

n∑
i=1

εi( f − g)(Xi)

∣∣∣∣∣
⎞⎟⎠
⎤⎥⎦

+Pr

{
sup
g∈G

|Pn(g)−P(g)|> δ2

}
.

The second probability tends to zero as n → ∞ for all δ > 0 because G is
P-Glivenko-Cantelli, whereas the first is dominated, by Chebyshev’s inequality and (2.42)
Theorem 2.3.7, by

2(16
√

2+ 2)

ε
E

[
1∧

∫ √
2δ

0

√
logN∗(F ,en,2,τ) dτ

]
,

which, by (3.268), tends to zero when we take first limsupn→∞ and then limδ→0. This proves
the asymptotic equi-continuity of the empirical process indexed by F for the metric eP, for
which F is totally bounded. Hence, F is P-Donsker by Theorem 3.7.23.

Here is the main application of this theorem (see Exercise 3.7.13 for another application):

Theorem 3.7.37 Let F satisfy the P measurability conditions in Theorem 3.7.36, and
assume that (a) the P-measurable cover F of F is in L2(P) and (b) for some a > 0 there
exists a function λ : [0,a) �→R integrable on [0,a) for Lebesgue measure such that

sup
Q

√
logN(F ,L2(Q),ε‖F‖L2(Q))≤ λ(ε), 0 ≤ ε ≤ a, (3.269)

where the supremum is over all discrete probability measures Q on S with a finite number
of atoms and rational weights on them. Then F is P-Donsker. In particular, if F is VC
subgraph, VC type, VC hull, or a finite union or sum (in the sense of Corollary 3.7.35) of
such classes, and if F ∈ L2(P), then F is P-Donsker.

Proof Assume that F satisfies condition (3.269) and, without loss of generality,
that the measurable cover F ∈ L2(P) satisfies F(s) ≥ 1 for all s ∈ S. Since√

logN∗(F ,en,2(ω),ε‖F‖L2(Pn))≤ λ(ε) for all n and ω and 0< ε ≤ a, we have, for δ ≤ a,∫ δ

0

√
logN∗(F ,en,2,ε) dε ≤ (PnF

2)1/2
∫ δ

0
λ(τ)dτ = (PnF

2)1/2O(δ). (3.270)

Then the law of large numbers for F proves condition (3.268), and F is P-Donsker
by Theorem 3.7.36. The consequence for VC type classes follows from the uniform
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metric entropy bounds they satisfy (Theorems 3.6.9 and 3.6.17 and Definition 3.6.10) and
Proposition 3.7.33 and Corollary 3.7.35.

Next, we present the bracketing CLT, based on (the proof of) Theorem 3.5.13.

Theorem 3.7.38 Let F be a class of measurable functions on S with measurable cover F in
L2(P) and satisfying the L2(P)-bracketing condition∫ 2‖F‖2

0

√
log(N[](F ,L2(P),τ) dτ <∞,

where we write ‖F‖2 for ‖F‖L2(P). Then F is P-Donsker.

Proof In the context of the proof of Theorem 3.5.13, consider the collection of nested
partitions {Ak,i : 1 ≤ i ≤ Ñk}, k ≥ 1, where Ñk = N1, . . . ,Nk, Nk = N(F ,L2(P),2−k). Define
a pseudo-distance on F by ρ( f ,g) = 1/2k if k is the largest integer such that both f and
g are in the same set Ak,i from the kth partition, and ρ( f ,g) = 0 if no such k exists (in
which case f = g a.s.). Then (F ,ρ) is totally bounded: just note that each partition set Ak,i

is contained in a closed ρ-ball of radius 1/2k and that there are just Ñk of them, a finite
number by the bracketing condition. Recall the projections πk f from the same proof (πk f
is a predetermined function fk,i ∈ Ak,i if f ∈ Ak,i). Then

sup
ρ( f ,g)≤2−j

f ,g∈F

|νn( f − g)| ≤ 2‖νn( f −πj f )‖F

because, if ρ( f ,g) ≤ 2−j, then πj f = πjg and |νn( f − g) ≤ |νn( f − πj f )| + |νn(g− πjg)|.
We then obtain, by inequality (3.212),

E sup
ρ( f ,g)≤2−j

f ,g∈F

|νn( f − g)| ≤ 111
∫ 2−j

0

√
log(N[](F ,L2(P),τ) dτ + 8

√
nP(FI2F>

√
naj),

where a−1
j =2j+1

√
log Ñj+1. The first summand does not depend on n and tends to zero as j→

∞ by the bracketing entropy hypothesis, whereas the second is dominated, for each j fixed,
by 16a−1

j P[F2I2F>
√

naj]→ 0 as n →∞ because PF2 <∞. In conclusion, the pseudo-metric
space (F ,ρ) is totally bounded, and

lim
j→∞ limsup

n
E sup
ρ( f ,g)≤2−j

f ,g∈F

|νn( f − g)| = 0,

so F ∈ CLT(P) by the asymptotic equi-continuity criterion, Theorem 3.7.31 (F satisfies
(3.7.31) for ρ).

Either of the preceding theorems implies the classical Donsker-Kolmogorov-Dudley
theorem for the empirical distribution function of an i.i.d. sample in Rd. For instance, using
Example 3.7.19, we obtain the following:

Corollary 3.7.39 Let X1, . . . ,Xn be i.i.d. Rd-valued random variables from a law P with
distribution function F(t)= P((−∞, t]), and let Fn = Pn((−∞, t]). Then, as n →∞,

√
n(Fn −F)→w GP in �∞(Rd). (3.271)
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In fact, the convergence in this corollary is uniform in P. We investigate such uniformity
results in the next section.

3.7.6 Central Limit Theorems for Empirical Processes III: Limit
Theorems Uniform in P and Limit Theorems for P-Pre-Gaussian Classes

We consider now two additional questions on the CLT for empirical processes, related only
in that both require deep use of Gaussian process theory. The first is, on what classes of
functions F does the empirical process hold uniformly in P? The answer to this question
is relevant in statistics because in inference problems one does not usually know the
distribution of the data. We could ask the same question for the law of large numbers, but
this subject will not be treated here (see the notes at the end of this chapter). The second
question is more theoretical: if F is P-Donsker, then it is P-pre-Gaussian (since a necessary
condition for the limit theorem to hold is that the limit exists), and determining whether a
class of functions is P pre-Gaussian is simpler than showing that it is P-Donsker. This then
begs the following question: what additional conditions (if any) should a P-pre-Gaussian
class of functions satisfy in order for it to be P-Donsker?

Randomisation by Rademacher or by normal multipliers is very convenient when dealing
with these (and other) questions, so we examine randomisation briefly before considering
the two main subjects of this section. To efficiently apply randomisation, we must
impose two mild conditions on the class F , namely, that it be measurable and that it be
L1(P)-bounded. Thus, we assume the boundedness conditions (3.257) instead of the slightly
weaker (3.256). Consider the Rademacher randomisation of the empirical process,

νn,rad( f )= 1√
n

n∑
i=1

εi f (Xi), f ∈F , (3.272)

where the random variables εi, Xj are all coordinates in a infinite product probability space,
and Pr(εi = 1} = Pr{εi =−1} = 1/2, and the Gaussian randomisation

νn,g( f )= 1√
n

n∑
i=1

gi f (Xi), f ∈F , (3.273)

where the random variables gi, Xj are also all coordinates in a infinite product probability
space, but the variables gi are standard normal. Both processes have covariance
E( f (X)g(X)) or, what is the same,

E(νn,rad( f )− νn,rad(h))
2 = P( f − h)2 = eP( f ,h),

and the same is true for νn,g. We will denote by ZP( f ), f ∈F , the centred Gaussian process
with this covariance, E(ZP( f )ZP(h)) = P( f h), and hence with intrinsic metric e2

P( f ,h) =
E(ZP( f )−ZP(h))2 = P( f −h)2. It is related to GP, the P-bridge, by the fact that the process
GP( f )+gP( f ), where g is standard normal independent of GP, is a version of ZP, as can be
seen by computing covariances, so we will call it the P-Brownian motion or just P-motion.
We express this relationship by the equation

ZP( f )= GP( f )+ gP( f ), f ∈F , (3.274)
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which, in fact, makes sense for all f ∈ L2(P). Let us also recall the notation F ′
δ = { f − g :

f ,g ∈F ,eP( f ,g)≤ δ}.
Theorem 3.7.40 Assume that F and F ′

δ are measurable classes of functions for every δ > 0
and that F satisfies the boundedness conditions (3.257). Then the following conditions are
equivalent:

(a) F is P-Donsker.
(b) The process ZP( f ), f ∈ F , admits a version with bounded and eP-equi-continuous

sample paths, and νn,rad →L ZP in �∞(F).
If (a) or (b) hold, ZP admits a suitable version.

Proof If (F ,eP) is totally bounded, then so is (F ,dP) because dP ≤ eP, and if F is
L1-bounded and (F ,dP) is totally bounded, then so is (F ,eP). To see the last assertion,
if the L1(P) bound of F is M, we divide F into [4M/ε] + 1 subsets Hi such that if f and
g belong to one of these subsets; then |P f −Pg| ≤ ε/2. Next, for each i ≤ [4M/ε] + 1, we
find a ε/2-dense subset of Hi in the sense of dP: the union of these sets, which is finite, is
ε-dense in F for eP because e( f ,g)≤ d( f ,g)+|P f −Pg| .

Suppose that F is P-Donsker. Then, by Theorem 3.7.31, (F ,dP) is totally bounded,
and the asymptotic equi-continuity condition (3.260) with respect to dP holds for νn. Also,
replacing dP by eP in this condition results in a weaker statement, so we have

lim
δ→0

sup
n≥1

Pr∗
{
‖νn‖F ′

δ
> ε

}
= 0,

for all ε > 0 (the limsup over n in (b) and (c), Theorem 3.7.31, can be replaced by supremum
over n). Now, by Proposition 3.1.23 and Exercise 3.7.3,

Pr∗
{
‖νn,rad‖F ′

δ
> ε

}
≤ 3max

j≤n
Pr

{
‖νj‖F ′

δ
>

√
nε

9
√

j

}
,

for all n and ε > 0. Hence,

lim
δ→0

sup
n≥1

Pr∗
{
‖νn,rad‖F ′

δ
> ε

}
= 0. (3.275)

This, together with the fact that (F ,eP) is totally bounded by the observation at the beginning
of the proof, implies by Theorem 3.7.31 that ZP admits versions with bounded eP-uniformly
continuous sample paths and that νn,rad →L ZP in �∞(F).

Assume now that (b) holds. Then (F ,eP) is totally bounded by Sudakov’s lower bound
(Corollary 2.4.13), and hence, Theorem 3.7.31 implies the asymptotic equi-continuity
(3.275). But then, by Corollary 3.1.25,

Pr
{
‖νn‖F ′

δ
> ε

}
≤ 4Pr∗

{
‖νn,rad‖F ′

δ
> (ε−√

2δ)/2
}

,

which gives the asymptotic equi-continuity of νn with respect to eP. Theorem 3.7.31 now
implies that F is P-Donsker.

If (a) or (b) hold, then, F being P-Donsker, GP admits a suitable version, call it GP,
but continuity with respect to dP implies continuity with respect to eP, and f �→ gP f is
also linear, bounded on F , and eP uniformly continuous; therefore, the process ZP( f ) =
GP( f )+gP f , f ∈F , has prelinear, bounded and eP-uniformly continuous sample paths.
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See Exercises 3.7.15 and 3.7.16 for additional necessary and sufficient conditions for F
to be a P-Donsker class also based on randomisation.

Uniform Donsker and Uniformly Pre-Gaussian Classes of Functions

We begin with the definitions of uniformly pre-Gaussian and uniform Donsker classes of
functions, with some discussion. Let P(S) be the set of all probability measures on (S,S),
and let P f (S) be the set of probability measures on S that are discrete and have a finite
number of atoms. For P =∑m

i=1αiδxi ∈ P f (S), the P-bridge GP and the P-motion ZP admit
the explicit versions

GP =
m∑

i=1

α
1/2
i gi(δxi −P) and ZP =

m∑
i=1

α
1/2
i giδxi , (3.276)

where gi are independent standard normal random variables, and we continue denoting by
GP and ZP. IfF is uniformly bounded, then both (F ,dP) and (F ,eP) are totally bounded, and
these versions of GP and ZP have all their sample paths bounded and, respectively, dP- and
eP-uniformly continuous (e.g., for ZP: the set {( f (x1), . . . , f (xm)) : f ∈F} is a bounded set of
Rm and e2

P( f ,h)=∑m
i=1αi( f (xi)− h(xi))

2 ≤ max1≤i≤m | f (xi)− h(xi)|2, so (F ,eP) is totally

bounded, and by Cauchy-Schwarz’s inequality, |ZP( f )−ZP(h)| ≤
(∑m

i=1 g2
i

)1/2
eP( f ,h)). ZP

is somewhat simpler than GP, and if F is L1-bounded, then the sizes of F for the ZP and
GP pseudo-distances are comparable (see the proof of Theorem 3.7.40). Thus, we use ZP

in the following definition instead of the perhaps more natural GP. In this section, when
P ∈P f (S), we take GP and ZP to mean precisely their versions in (3.276).

Definition 3.7.41 A class F of measurable functions on (S,S) is finitely uniformly
pre-Gaussian, F ∈ UPG f for short, if both

sup
P∈P f (S)

E‖ZP‖F <∞ and lim
δ→0

sup
P∈P f (S)

E‖ZP‖F ′
δ,P

= 0, (3.277)

where F ′
δ,P = { f − g : f ,g ∈ F ,eP( f ,g) ≤ δ}.We say that F is uniformly pre-Gaussian,

F ∈ UPG, if the probability law of ZP is a tight Borel measure on �∞(F) for all P ∈P f (S)
and F satisfies the conditions (3.277) uniformly in P(S), that is, with P f (S) replaced by
P(S).

Note that if F ∈ UPG f , then F is a uniformly bounded class: for Px = δx, x ∈ S,
ZPx( f )= f (x)g, g standard normal, so E‖ZPx‖∞ =√

2/π | f (x)|, and the supremum of these
expectations is bounded by definition of the UPG f property.

Example 3.7.42 If F is a uniformly bounded VC subgraph, VC type or VC hull class, then
the uniform bounds on the metric entropy of these classes (Theorems 3.6.9 and 3.6.17)
together with the metric entropy bound for Gaussian processes in Theorem 2.3.7 imply that
F is UPG, so, in particular, UPG f . In more generality and for the same reasons, if F is
uniformly bounded and satisfies the entropy condition of Theorem 3.7.37 in terms of the
Koltchinski-Pollard entropy ∫ ∞

0
sup

Q

√
logN(F ,eQ,ε)dε <∞ (3.278)
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264 Empirical Processes

with the supremum extended over all the discrete probability measures Q with a finite
number of atoms and rational weights on them, then F is UPG f . Thus, many classes of
functions are UPG f (see Proposition 3.7.49 for a concrete important example).

Example 3.7.43 Let F = { fk}∞k=2 with ‖ fk‖∞ = o(1/(logk)1/2). We show that F ∈ UPG f .
We have βk := √

logk‖ fk‖∞ → 0 and βN := supk≥Nβk → 0. If gk are N(0,1) random
variables, not necessarily independent, then Exercise 2.3.8 shows that

Esup
k≥N

|βkgk|/
√

logk ≤ cβN.

Then, if P =∑m
i=1αiδxi we have

ZP( fk)=
m∑

i=1

α
1/2
i fk(xi)gi =

(
m∑

i=1

αi f 2
k (xi)

)1/2

gP
k = (P f 2

k )
1/2gP

k ,

where gP
k are N(0,1) random variables. Hence,

E‖ZP‖F = Esup
k
(P f 2

k )
1/2|gP

k | ≤ Esup
k
βk|gP

k |/
√

logk ≤ cβ2

independently of P. Given δ > 0 and 2 ≤ N <∞, if for k ≤ N the set Ak,N,δ = {� > N :
eP( fk, f�) ≤ δ} is not empty, choose �k ∈ Ak,N,δ, and observe that sup�∈Ak,N,δ

|ZP( fk − f�)| ≤
|ZP( fk − f�k)|+ sup�,r>N |ZP( f�− fr)|. Hence,

‖ZP‖F ′
δ,P
= max

⎡⎣ max
k,�≤N,eP( fk, f�)≤δ

|ZP( fk − f�)|, max
k≤N

Ak,N,δ 
=∅

(
|ZP( fk − f�k)|+ sup

�,r>N
|ZP( f�− fr)|

)
,

sup
�,r>N

|ZP( f�− fr)|
]

≤ max
k,�≤N,eP( fk, f�)≤δ

|ZP( fk − f�)|+ max
k≤N

Ak,N,δ 
=∅
|ZP( fk − f�k)|+ sup

�,r>N
|ZP( f�− fr)|.

Therefore,

E‖ZP‖F ′
δ,P

≤ δN2 + δN+ 2cβN

independently of P. Hence, limsupδ→0 supP∈P f (S)
E‖ZP‖F ′

δ,P
≤ 2cβN for all N, and letting

N →∞, limδ→0 supP∈P f (S)
E‖ZP‖F ′

δ,P
= 0.

The two main reasons behind Definition 3.7.41 are that (1) as we will immediately see,
empirical processes indexed by UPG f classes satisfy very strong uniformity in P-limiting
properties, and (2) Gaussian processes are sufficiently well understood so as to make it
feasible, in general, to decide whether a given class satisfies the UPG f property, and in fact,
as the preceding examples show, there are many classes that satisfy this property.

Recall that Xi are the coordinate functions SN �→ S and that νn = √
n(Pn − P), where

Pn = n−1
∑n

i=1 δXi . Since we simultaneously consider all the Borel probability measures P,
it is convenient to write νP

n for νn, and we will do so in this subsection: for any probability
Q on S, νQ

n =∑n
i=1(δXi − Q)/

√
n is defined on (SN,SN,QN): the same product space for

all Q, but the probability measure on it depends on Q so as to make the coordinates Xi of
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SN independent and with law Q. Let us also recall the definition of the bounded Lipschitz
distance, which depends on P:

dBL(ν
P
n ,GP)= dBL(F)(ν

P
n ,GP)

= sup

{∣∣∣∣∫ ∗
H(νP

n )dPN−
∫

H(GP)dPr

∣∣∣∣ : H : �∞(F) �→R with ‖H‖∞ ≤ 1,‖H‖Lip ≤ 1

}
.

Note that the superindex P on νP
n determines the probability measure in the first integral.

Recall that dBL metrises convergence in law in �∞(F) (see Proposition 3.7.24).

Definition 3.7.44 A class of functionsF is uniform Donsker ifF is uniformly pre-Gaussian
and limn→∞ supP∈P(S) dBL(F)(ν

P
n ,GP)= 0.

In particular, this definition of uniform Donsker class implies uniform boundedness of
the class by the comment following the definition of the UPG f property. Before stating and
proving the main theorem, we look first at the uniform CLT in finite dimensions:

Lemma 3.7.45 Let Pd
M be the collection of Borel probability measures on Rd with support

in the unit ball of radius M<∞. For P∈Pd
M, let ξP

i be i.i.d.(P), and let�P =Cov(P). Then

lim
n→∞ sup

P∈Pd
M

dBL

[
L
(

n∑
i=1

(ξP
i −EξP

i )/
√

n

)
,N(0,�P)

]
= 0,

where N(0,�P) denotes the centred normal law of Rd with covariance �P.

Proof This follows from standard results on speed of convergence in the multidimensional
CLT, but an elementary proof obtains along the following lines: for notational convenience,
we give the proof only in dimension 1 (as the proof in higher dimensions is only
formally different). Let ξi = ξP

i − EξP
i , and let ζi be standard normal variables with

variance σ2 = Eξ 2
i , all independent. Let f be a bounded function with the first three

derivatives bounded, with ‖ f (3)‖∞ ≤ m3. Now, following the classical Lindeberg proof
of the CLT, we estimate

∣∣E f
(∑n

i=1 ξi/
√

n
)−E f

(∑n
i=1 ζi/

√
n
)∣∣ by subtracting and adding

E f (
∑n−1

i=1 ξi/
√

n + ζn/√n),. . . , E f
(
ξ1/

√
n+∑n

i=2 ζi/
√

n
)

(each term in this sequence is
obtained from the preceding one by replacing an ξi variable by a ζi variable, one at a
time). Then it follows by the triangle inequality that the preceding difference is bounded
by the sum of n terms of the form

∣∣E f (Ui + ξi/√n)−E f (Ui + ζi/√n)
∣∣, where Ui, ξi and

ζi are independent. Deleting the subindex i, using independence and that Eξ = Eζ = 0,
Eξ 2 =Eζ 2 =σ 2, E|ξ |3 ≤M3 and E|ζ |3 =√

8/πσ 3 ≤√
8/πM3, a limited Taylor development

about U gives∣∣E f (U+ ξ/√n)−E f (U+ ζ/√n)
∣∣≤ 1

3!
(
1+√

8/π
)

m3M
3/n3/2.

That is, ∣∣∣∣∣E f

(
n∑

i=1

ξi/
√

n

)
−E f

(
n∑

i=1

ζi/
√

n

)∣∣∣∣∣≤ 1

3!
(
1+√

8/π
)

m3M
3/n1/2 → 0

as n →∞ uniformly in f bounded and with bounded derivatives such that ‖ f (3)‖∞ ≤ m3.
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For f such that ‖ f ‖∞ ≤ 1 and ‖ f ‖Lip ≤ 1, and for ε > 0, define

fε(x)= 1

(2π)1/2

∫
f (x− εy)e−y2/2dy = 1

(2πε2)1/2

∫
f (v)e−(v−x)2/2ε2dv,

and note that

‖ f − fε‖∞ ≤ 1

(2π)1/2

∫
(2∧ ε|y|)e−y2/2dy ≤ cε,

where c1 is an absolute constant, whereas ‖ f (k)ε ‖∞ ≤ ε−k
∫ |ϕ(k)(x)|dx =: ck/ε

k, where ϕ is
the density of the standard normal law. Then, if ζ is N(0,σ 2),∣∣∣∣∣E f

(
n∑

i=1

ξi/
√

n

)
−E f (ζ )

∣∣∣∣∣≤ 2cε+
∣∣∣∣∣E fε

(
n∑

i=1

ξi/
√

n

)
−E fε(ζ )

∣∣∣∣∣≤ 2c1ε+ (1+
√

8/π)c3

3!ε3n1/2
.

Choosing ε = n−1/8 proves the lemma.

The same idea can be used to prove the following:

Lemma 3.7.46 Let � and � be two covariance operators on Rd × Rd, and let N(0,�)
and N(0,�) denote the centred normal laws with these covariances. Set ‖�− �‖∞ :=
max1≤i,j≤d |�(ei,ej)−�(ei,ej)|, where ei is the canonical basis of Rd. Then

dBL[N(0,�),N(0,�)] ≤ c(d)‖�−�‖1/3
∞ ,

where c(d) depends only on d.

Proof Let Xi, Yi, i = 1, . . . ,n, be independent normal variables with laws N(0,�) for
the Xi and N(0,�) for the Yi respectively. Then the variables X(n) =∑n

i=1 Xi/
√

n, Y(n) =∑n
i=1 Yi/

√
n have, respectively, laws N(0,�) and N(0,�) for all n. Let f : Rd �→ R be a

uniformly bounded function with uniformly bounded partial derivatives of order at least
3. Let Mi, i = 0, . . . ,3, be uniform bounds for f (M0) and for all the derivatives of order
i, i ≤ 3 . We use Lindeberg’s procedure of estimating

∣∣E f (X(n))−E f (Y(n))
∣∣ step by step,

replacing Xi by Yi one at a time and doing a Taylor expansion up to the third term just as
in the preceding proof. The linear term at each of the n steps is zero, the quadratic term
at each step is dominated by d2M2‖� − �‖∞/(2n) and the third term is dominated by
a constant times d3M3/n3/2. Multiplying these bounds by n and taking limits as n → ∞,
noting that

∣∣E f (X(n))−E f (Y(n))
∣∣ does not depend on n, we obtain

∣∣E f (X(n))−E f (Y(n))
∣∣≤

d2M2‖�− �‖∞/2, for all n. If H is bounded Lipschitz with BL norm equal to 1, then
we may convolve with a Gaussian approximate identity (again, just as in the preceding
proof) and obtain the result: as earlier, the convolution Hε of H with N(0,ε2I) satisfies
‖H − Hε‖∞ ≤ cε, and Hε has uniformly bounded partial derivatives of all orders, and in
particular, ‖(Hε)′′i,j‖∞ ≤ c2/ε

2 for a universal constant c3<∞. This, together with the bound
for differentiable functions, gives∣∣EH(X(n))−EH(Y(n))

∣∣≤ cε+ d2c2|‖�−�‖∞/(2ε2),

and the result follows by taking ε to be a constant times ‖�−�‖1/3
∞ .
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No claim for optimality is made on the exponent of ‖�−�‖∞ in the preceding lemma
(any power would do in the proof of the next theorem). The theorem that follows requires
measurability of the uniformly bounded class F for every P ∈ P(S). A general condition
is that there exists a countable class F0 ⊂ F such that every f in F is a pointwise limit of
functions in F0. If F satisfies this property, we say that F satisfies the pointwise countable
approximation property. Note that if F is uniformly bounded and satisfies the pointwise
countable approximation property, then, in particular, it is measurable in the sense of
Definition 3.7.11. Another useful general condition is that F be image admissible Suslin
(see Dudley (2014)). We will assume the first condition, although the second would work as
well. Some notation: FF = { f 2, f : f ∈ F}, and R(�∞(F)) denotes the set of tight Borel
probability measures on �∞(F).

Theorem 3.7.47 Let F be a uniformly bounded class of measurable functions on S
satisfying the pointwise countable approximation property. Then the following conditions
are equivalent:

(a) F ∈ UPG f .
(b) (F ,eP) is uniformly totally bounded, and limδ→0 limsupn supP∈P(S)PN{‖νP

n ‖F ′
δ,P
> ε} =

0, for all ε > 0.
(c) F ∈ UPG, and the same uniformity extends to GP; that is, for each P, GP

admits a suitable version, and for these versions, supP∈P(S)E‖GP‖F < ∞ and
limδ→0 supP∈P(S)E‖GP‖F ′

δ,P
= 0.

(d) F is uniform Donsker.

Moreover, if either of these conditions holds, then the map G : (P(S),‖ · ‖FF ) �→
(R(�∞(F)),dBL) given by G(P)=L(GP) is uniformly continuous.

Proof We can assume that F is uniformly bounded by 1.

Claim 1. Set G = { f , f 2, f − g,( f − g)2 : f ,g ∈ F}. Assume that the class F is UPG f

and satisfies the required measurability. Let εi be independent Rademacher variables and gi

independent N(0,1) variables such that εi,gj,Xk are all coordinates in a product probability
space and hence independent. Then

sup
P∈P(S)

EP‖Pn −P‖G = O(n−1/2), sup
P∈P(S)

EP,ε

∥∥∥∥∥1

n

n∑
i=1

εih(Xi)

∥∥∥∥∥
G

= O(n−1/2),

sup
P∈P(S)

EP,g

∥∥∥∥∥1

n

n∑
i=1

gih(Xi)

∥∥∥∥∥
G

= O(n−1/2), (3.279)

where EP,ε and EP,g indicate, respectively, expected value with respect to PN × ((δ1 +
δ−1)/2)N and PN×N(0,1)N

Proof. It suffices to prove the claim for H={( f −g)2 : f ,g∈F} because the proof for G is
essentially a subset of the proof forH, and we will avoid repetition. The usual randomisation
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for expectations (Theorem 3.1.21 and the easy part of Proposition 3.1.26) gives

EP‖Pn −P‖H ≤ 2EP,ε

∥∥∥∥∥1

n

n∑
i=1

εih(Xi)

∥∥∥∥∥
H

≤
√

2π

n
EP,g

∥∥∥∥∥ 1√
n

n∑
i=1

gih(Xi)

∥∥∥∥∥
H

.

Thus, it suffices to prove the claim for the Gaussian randomisation of the empirical process.
Next, we see that we can dominate the preceding expectation by the same one with H
replaced by F ′ = { f − g : f ,g ∈ F} using the Slepian-Fernique comparison theorem for
Gaussian processes, Corollary 2.4.10. For Xi fixed, consider the two Gaussian processes on
F ′ given by

Z1( f )= 1√
n

n∑
i=1

gi f 2(Xi), Z2( f )= 1√
n

n∑
i=1

gi f (Xi), f ∈F ′.

Then (i) Eg(Z1( f1)− Z1( f2))
2 = Pn( f 2

1 − f 2
2 )

2 ≤ 4Pn( f1 − f2)
2 = 4Eg((Z2( f1)− Z2( f2))

2.
(ii) Both processes have bounded and uniformly continuous sample paths with respect to
their corresponding L2-distances. (iii) Both attain the value zero at some f ∈ F ′ (trivially
because 0 ∈F ′). Therefore, we can apply Corollary 2.4.10 to both {Z1,Z2} and {−Z1,−Z2},
use that by (iii) Eg‖Z1‖F ′ ≤ Eg sup f ∈F ′ Z1( f )+Eg sup f ∈F ′(−Z1( f )) and likewise for Z2 and
obtain

Eg‖Z1‖F ′ ≤ 16Eg‖Z2‖F ′ .

Integrating with respect to the variables Xi we further obtain√
1

n
EP,g

∥∥∥∥∥ 1√
n

n∑
i=1

gih(Xi)

∥∥∥∥∥
H

≤ 16

√
1

n
EP,g

∥∥∥∥∥ 1√
n

n∑
i=1

gih(Xi)

∥∥∥∥∥
F ′

≤ 32

√
1

n
EP,g

∥∥∥∥∥ 1√
n

n∑
i=1

gih(Xi)

∥∥∥∥∥
F

= 32

√
1

n
EPEg‖ZPn‖F ≤ 32

√
1

n
sup

Q∈P f (S)
E‖ZQ‖F <∞.

This proves claim (a). Note how Gaussian randomisation reduces properties of the empirical
process to properties of the simple Gaussian processes ZQ: this is the idea of proof of the
whole theorem.

Claim 2. (a) implies (b).

Proof Since F is UPG f , we have in particular

sup
{
E‖ZPn(ω)‖F : P ∈P(S), ω ∈ SN, n ∈N

}
<∞,

and therefore, Sudakov’s lower bound (Theorem 2.4.12) gives that there is c<∞ such that
for all ε > 0,

sup
P,n,ω

logN(F ,ePn(ω),ε) <
c

ε2
.
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Now, by claim 1,

sup
f ,g∈F

|e2
Pn(ω)

( f ,g)− e2
P( f ,g)|→ 0

in PN probability. Then we have convergence along a subsequence for at least one ω for each
fixed P, which together with the Sudakov estimate of the ePn(ω) covering numbers implies
that

sup
P∈P(S)

logN(F ,eP,ε) <
2c

ε2
, for all ε > 0, (3.280)

proving that the pseudo-metric spaces (F ,eP) are totally bounded uniformly in P ∈ P(S).
To prove the uniform asymptotic equi-continuity, we first note that the symmetrisation
inequality in Theorem 3.1.25 implies, for δ ≤ 2τ , that

PN
{∥∥νP

n

∥∥
F ′
δ,P
> 4τ

}
≤ 4PrP,ε

{∥∥νP
n,rad

∥∥
F ′
δ,P
> τ

}

≤ 4PrP,ε

⎧⎪⎨⎪⎩ sup
f ,g∈F

ePn ( f ,g)≤21/2δ

∣∣νP
n,rad

∣∣> τ
⎫⎪⎬⎪⎭

+4PN

{
sup
f ,g∈F

|e2
Pn(ω)

( f ,g)− e2
P( f ,g)|> δ2

}
:= IP,n + IIP,n,

where PrP,ε is PN× ((δ1 + δ−1)/2)N. Now claim 1 directly gives

lim
n→∞ sup

P∈P(S)
IIP,n = 0.

Set, for each ω fixed, that we leave implicit Hδ,n = {h ∈H : Pnh ≤ δ2}, where we recall that
H={( f −h)2 : f ,h∈F}, and note that by comparison of Gaussian processes as in the proof
of claim 1 and with the same notation, Eg‖Z1‖F ′

δ,Pn
≤ 16Eg‖Z2‖F ′

δ,Pn
. This gives

Eg

∥∥∥∥∥ 1√
n

n∑
i=1

gih(Xi)

∥∥∥∥∥
Hδ,n

≤ 16Eg

∥∥∥∥∥ 1√
n

n∑
i=1

gih(Xi)

∥∥∥∥∥
F ′
δ,Pn

= 16Eg‖ZPn‖F ′
δ,Pn

≤ 16 sup
Q∈P(S)

E‖ZQ‖F ′
δ,Q

,

which tends to zero as δ→ 0 by definition of the UPG f property. Taking expectation with
respect to the Xi variables, we thus obtain

lim
δ→0

limsup
n

IP,n = 0

because, as observed in the proof of claim 1, Eε‖νn,rad‖Hδ,n ≤
√
π/2Eg‖νn,g‖Hδ,n . Claim 2 is

proved.

Claim 3. (b) implies (c) and hence (a).
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Proof Since the process GP + gP, where g is N(0,1) independent of GP, is a version of ZP

for all P, and ‖P‖F ≤ 1 and ‖P‖F ′
δ,P

≤ δ, it suffices to prove the claim for GP. By claim 2, F
is P-Donsker for all P. Hence, the Portmanteau theorem (Exercise 3.7.7) and claim 2 give

limsup
δ→0

sup
P∈P(S)

Pr
{
‖GP‖F ′

δ,P
> ε

}
≤ limsup

δ→0
sup

P∈P(S)
liminf

n→∞ PN
{
‖νP

n ‖F ′
δ,P
> ε

}
= 0,

for all ε > 0. The integrability of Gaussian processes and the Paley-Zygmund argument
(Exercises 2.1.2 and 2.1.4) give that there is a universal constant K such that for all
0 < λ < 1 and any measurable pseudo-norm ‖ · ‖ satisfying Pr{‖GP‖ <∞} > 0, we have
Pr {‖GP‖> λE‖GP‖} ≥ K(1− λ)1/2. Hence, by the preceding limits, for every ε > 0, there
is τ > 0 such that for all 0< δ < τ and P ∈P(S), E‖GP‖F ′

δ,P
/2< ε; that is,

lim
δ→0

sup
P∈P(S)

E‖GP‖F ′
δ,P

= 0.

Now

sup
P∈P(S)

E‖GP‖F <∞

follows from the preceding limit and the fact that (F ,eP) is totally bounded uniformly in
P ∈P(S) (Claim 2). The claim is proved.

Claim 4. (b) implies (d) (which implies a)).

Proof By claim 3, F is UPG, so it suffices to prove that

lim
n→∞ sup

P∈P
dBL(F)

(
νP

n ,GP

)= 0.

In the decomposition of |E∗
PH(νP

n ) − EH(GP)| into In,τ + IIn,τ + IIIτ from the proof of
Proposition 3.7.24 for H Lipschitz in �∞(F), the three terms can be estimated uniformly
in P, the first, by condition (b); the second, by Lemma 3.7.45, and the third by condition (c)
(which holds by claim 3). We omit the details to avoid repetition.

Claims 2 to 4 yield the equivalence of the four conditions (a)–(d).

Claim 5. If the equivalent conditions (a)–(d) hold, then the map G defined in the statement
of the theorem is uniformly continuous.

Proof Let P,Q∈P(S) and τ > 0. The uniform entropy bound (3.280) shows that there is a
universal constant a<∞ and N(τ ,P,Q)≤ ea/τ2

disjoint subsets Ai of F whose union covers
F and that for each of them there is fi ∈ F such that Ai ⊆ { f : eP( f , fi)∨ eQ( f , fi) ≤ τ }.
Let H : �∞(F)→ R be bounded Lipschitz with supremum and Lipschitz norms bounded
by 1. As in several other proofs, define the Gaussian processes ZP,τ ( f )= ZP( fi) if f ∈ Ai,
and likewise, define ZQ,τ . These processes are in fact centred normal random vectors in

R[exp(a/τ2)]+1. If �P,τ and �Q,τ are their covariances, we have

E
∣∣H(ZP)−H(ZQ)

∣∣≤ E
∣∣H(ZP)−H(ZP,τ )

∣∣+E
∣∣H(ZQ)−H(ZQ,τ )

∣∣+E
∣∣H(ZP,τ )−H(ZQ,τ )

∣∣
≤ E‖ZP‖F ′

τ ,P
+E‖ZP‖F ′

τ ,P
+ c

(
ea/τ2

)∥∥�P,τ −�Q,τ

∥∥1/3

∞ ,

where the last inequality follows from Lemma 3.7.46. Since∥∥�P,τ −�Q,τ

∥∥
∞ = max

i,j≤N(τ ,P,Q)

∣∣�P,τ ( fi, fj)−�Q,τ ( fi, fj)
∣∣≤ ‖P−Q‖FF
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independently of τ , uniform continuity of the map G follows from the fact that F is UPG.
Claim 5 is proved, and so is the theorem.

The uniform continuity of the map G in the preceding theorem is particularly appropriate
for the bootstrap: it shows that the central limit theorem for empirical processes over UPG f

classes can be bootstrapped in many different ways. Although the bootstrap is not studied in
this book, it is nevertheless worthwhile to point out how to use this property.

Corollary 3.7.48 Let F be a UPG f class of functions satisfying the pointwise countable
approximation property, and let Qn be random probability measures on (S,S) such that, for
some P∈P(S),

lim
n→∞‖Qn −P‖FF = 0 a.s. (in pr.),

where we assume ‖Qn −P‖FF to be measurable. Then

lim
n→∞dBL(F)

(
νQn

n ,GP

)∗ = 0 a.s. (in outer pr.).

In resampling (as in different kinds of bootstraps), Qn depends on the observations; that is,
Qn is defined on the probability space (�1,
1,Pr1)= (SN,SN,PN) as a (P(S),FF)-valued
random variable and depends only on the first n coordinates. Then, for each ω1 ∈ �1,
νQn(ω1)

n ( f )=∑n
i=1( f (X∗

i )−Qn(ω1)( f ))/
√

n, that is, the variables X∗
i are sampled according

to the law Qn(ω1), or conditionally on ω1, the X∗
i are i.i.d. with law Qn(ω1): they constitute

the bootstrap sample. This corollary asserts that if Qn tends to P uniformly over the class
FF a.s. or in pr., then the empirical process based on Qn, conditionally on the ‘original
sample ω1 = (X1, . . . ,Xn)’, has almost surely (or in probability) the same limit law as Pn, GP.

Typically, Qn = Pn (Efron’s bootstrap), or Qn = Pn ∗ λn, where λn is an approximate
identity (smoothed bootstrap), or Qn = Pθn , where θn = θn(X1, . . . ,Xn) is an estimator of a
parameter θ , and (Pθ : θ ∈	) is a parametric model (parametric bootstrap) for the data, etc.

Proof The proof is basically a triangle inequality. We prove only the a.s. version because
the version for convergence in probability follows from it by taking subsequences. Assume
that the first limit holds. Just note that

dBL

(
νQn

n ,GP

)∗ ≤ dBL

(
νQn

n ,GQn

)∗ + dBL

(
GQn ,GP

)∗
.

Since F is uniform Donsker (conclusion (d)) in Theorem 3.7.47), there exist cn → 0 such
that dBL

(
νQn(ω1)

n ,GQn(ω1)

)∗ ≤ cn, independently of ω1. By the continuity of the map G in
Theorem 3.7.47, given ε > 0, there is δ > 0 such that, for all n,

dBL

(
GQn ,GP

)≤ εI‖Qn−P‖FF<δ+ 2I‖Qn−P‖FF≥δ

(recall that dBL is bounded by 2). For each n, the right side is a measurable random variable,
and the limsup of these random variables as n →∞ is dominated by ε by the hypothesis of
the corollary. Hence, dBL

(
νQn

n ,GP

)∗ → 0 a.s.

We end this subsection with an important example.

Corollary 3.7.49 For 1 ≤ p < 2, the collection of functions of bounded p-variation on R
with supremum norm and total p-variation norm bounded by M<∞, BVp,M(R), is uniform
Donsker.
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Proof We may assume that M = 1. BVp,1(R) satisfies the measurability condition in
Theorem 3.7.47, as shown in Example 3.7.13. We will show that BVp,1(R) also satisfies
the uniform metric entropy bound (3.278), so the result will then follow by Theorems 2.3.7
and 3.7.47. By Lemma 3.6.11, if f ∈ BVp,1(R), then f = g◦h, where h ∈H1, the collection
of nondecreasing functions taking values in [0,1], and g ∈ G1, the collection of p−1-Holder
continuous functions on [0,1] with supremum norm and Hölder constant both bounded by 1
(the Holder constant of g is supx
=y |g(x)− g(y)|1/p/|x− y|). Now, by Corollary 4.3.38, there
exists C1 <∞ such that for all 0 < ε < 1, N(G1,‖ · ‖∞,ε) ≤ eC1/ε

p
, and by Exercise 3.6.7,

there exists C2 such that for all P ∈ P(R), N(H1,eP,ε) ≤ eC2/ε, for all 0 < ε < 1. Let Gε
be ε-dense in G1 for the supremum norm and of cardinality N(G1,‖ · ‖∞,ε), and let Hε be
εp-dense in H1 for the L2(P) pseudo-distance and of cardinality N(H1,eP,εp). Then the set
Vε={g◦h : g∈Gε,h∈Hε} has cardinality bounded by e(C1+C2)/ε

p
and is 2ε-dense in BVp,1(R)

in eP. The first assertion is obvious, and to see the second, note that if ‖g− ḡ‖∞ ≤ ε (with
g, ḡ ∈ G1) and ‖h− h̄‖L2(P) ≤ εp, then

‖g ◦ h− ḡ ◦ h̄‖L2(P) = ‖g ◦ h− ḡ ◦ h+ ḡ ◦ h− ḡ ◦ h̄‖L2(P)

≤ ‖g− ḡ‖∞+‖|h− h̄|1/p‖L2(P) ≤ ε+
(∫

|h− h̄|2/pdP

)1/2

≤ ε+
(∫

|h− h̄|2dP

)1/2p

≤ 2ε.

Hence,
∫∞

0 supP∈P f (R)

√
logN(BVp,1(R),eP,ε)dε ≤ 2

√
C1 +C2

∫∞
0 dε/εp/2 <∞ for p < 2;

that is, (3.278) holds for BVp,1(R).

We record for further use the entropy bound obtained in the preceding proof.

Corollary 3.7.50 For p≥1, there exists Cp<∞ such that for all Borel probability measures
P on R and 0< ε ≤ 1,

N(BVp,1(R),L
2(P),ε)≤ eCp/ε

p
.

Actually, Proposition 3.5.17 on the L2(P)-bracketing numbers for the class of monotone
functions provides, by the same argument as in the proof of the preceding two
corollaries, a bound for the L2(P)-bracketing numbers of BVp,M(R), which in fact contains
Corollary 3.7.50.

Corollary 3.7.51 For p≥1, there exists Cp<∞ such that for all Borel probability measures
P on R and 0< ε ≤ 1,

N[](BVp,1(R),L
2(P),ε)≤ eCp/ε

p
.

Proof Just note that balls for the supremum norm are in fact brackets for any Lp(P)-norms,
p ≤ ∞, and that if Gε,∞ is a supremum norm bracket of G1 of size ε and Hε,P is an
L2(P)-bracket of H1 of size εp (where G1 and H1 are as in the proof of Corollary 3.7.49),
then ∥∥∥∥∥∥∥ sup

g,g∈Gε,∞
h,h∈Hε,P

|g ◦ h− g ◦ h|

∥∥∥∥∥∥∥
L2(P)

≤
∥∥∥∥∥ sup

g,g∈Gε,∞
|g− g‖∞+ sup

h,h∈Hε,P

|h− h|1/p
∥∥∥∥∥

L2(P)

≤ 2ε.
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Now the result follows from Corollary 4.3.38 and Proposition 3.5.17.

Central Limit Theorem for Pre-Gaussian Classes of Functions

If a uniformly bounded class of functions F is known to be P-pre-Gaussian, then checking
that it is P-Donsker is somewhat easier than otherwise; concretely, if F is P-pre-Gaussian,
then automatically the oscillations of the randomised process

∑n
i=1 εi f (Xi) in the range

n−1/4 ≤ eP( f ,g)≤ δ are already small. We prove this fact and a consequence for the central
limit theorem for classes of sets.

Some notation: given a class of functions F , define

F ′
ε,n =F ′

ε1/2n−1/4 =
{

f − g : f ,g ∈F : P( f − g)2 ≤ εn−1/2
}

.

Theorem 3.7.52 Let P be a probability measure on (S,S), and letF be a uniformly bounded
class of measurable functions on S satisfying the countable pointwise approximation
property. Then the following conditions are equivalent:

(a) F is P-Donsker.
(b) F is P-pre-Gaussian, and

lim
ε→0

limsup
n

Pr

⎧⎨⎩
∥∥∥∥∥

n∑
i=1

εi f (Xi)/n
1/2

∥∥∥∥∥
F ′
ε,n

≥ γ
⎫⎬⎭= 0, (3.281)

for all γ > 0.

Proof We may assume that ‖ f ‖∞ ≤ 1 for all f ∈ F . Condition (a) implies condition (b)
by the definition of P-Donsker class, Proposition 3.1.23 (see also Exercises 3.1.5 and 3.1.6)
and Theorem 3.7.31. For the reverse implication, we first note that, as in the proof of claim
2 in Theorem 3.7.47, by Sudakov’s inequality and boundedness of F , the fact that F is
P-pre-Gaussian implies that (F ,eP) is totally bounded. Hence, by Theorem 3.7.40 and the
asymptotic equi-continuity condition for processes that converge in law, Theorem 3.7.23, it
suffices to prove that

lim
δ→0

limsup
n

Pr
{∥∥νn,rad

∥∥
F ′
δ
≥ γ

}
= 0, (3.282)

for all γ > 0 (recall the definition (3.272) of νn,rad). Let H=H(ε,n) be a maximal collection
of function h1, . . . ,hm ∈F such that e2

P(hi,hj)= P(hi − hj)
2 > ε/n1/2 for all i 
= j, and notice

that then

sup
f ∈F

min
hi∈H

e2
P( f ,hi)≤ ε/n1/2.

If eP( f ,g) ≤ δ, e2
P( f ,hi) ≤ ε/n1/2 and e2

P(g,hj) ≤ ε/n1/2, then eP(hi,hj) ≤ 2δ, for all n ≥
24ε2/δ4. Hence, for n sufficiently large,

Pr
{∥∥νn,rad

∥∥
F ′
δ
≥ 3γ

}
≤ 2Pr

{∥∥νn,rad

∥∥
F ′
ε,n
≥ γ

}
+Pr

{∥∥νn,rad

∥∥
H′

2δ
≥ γ

}
.

Thus, by the limit in condition (b), it suffices to show that for all γ > 0,

lim
δ→0

limsup
n

Pr
{∥∥νn,rad

∥∥
H′

2δ
≥ γ

}
= 0. (3.283)
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Define

K(ε,n)= {hi − hj : hi,hj ∈H(ε,n), i 
= j}, A(ε,n)=
{

sup
f ∈H(ε,n)

∑n
i=1 f 2(Xi)

nP f 2
≤ 4

}
,

and decompose the preceding probability as follows:

Pr
{∥∥νn,rad

∥∥
H′

2δ
≥ γ

}
≤ Pr(Ac)+ γ −1EXEε

(∥∥νn,rad

∥∥
H′

2δ
IA

)
:= (I)+ (II). (3.284)

Since F is P-pre-Gaussian, uniformly bounded and satisfies enough measurability, it
follows by Theorem 3.7.40 that the P-motion ZP has a suitable version (i.e., with prelinear,
bounded and uniformly eP-continuous sample paths). Hence, the refinement of Sudakov’s
bound for sample continuous processes, Corollary 2.4.14, gives

lim
λ→0
λ2 logN(F ,eP,λ)= 0. (3.285)

Since by construction H(ε,n) has cardinality D(F ,eP,ε1/2/n1/4) ≤ N(F ,eP,ε1/2/2n1/4), it
follows that the cardinality of H(ε,n) is dominated by exp(cnn1/2/ε), where cn = cn(ε)→ 0.
Combined with Bernstein’s inequality (Theorem 3.1.7), this gives

limsup
n

Pr(A(ε,n)c)≤ limsup
n
(Card(H))2 sup

f ∈K(ε,n)
Pr

{
n∑

i=1

f 2(Xi)≥ 4nP f 2

}

≤ limsup
n

exp(2cnn
1/2/ε) sup

f ∈K(ε,n)
exp

(
− 9n2(P f 2)2

2nP f 4 + 2nP f 2

)
≤ limsup

n
exp

(
2cnn

1/2/ε− 9n1/2ε/4
)= 0,

where in the last inequality we use that P(hi − hj)
2 > ε/n1/2. Thus, we have limsupn(I)= 0,

and we now consider (II) in (3.284). By the first inequality in (3.50), we can replace the
Rademacher variables εi by standard normal gi in (II). Then the process in the resulting
expression is Gaussian when conditioned on the variables Xi. Thus, for each n ∈ N and
ω ∈ A(ε,n), we consider the Gaussian process

Zω,n(h)=
n∑

i=1

gih(Xi(ω))/n
1/2, h ∈H(ε,n),

and note that since ω ∈ A(ε,n),

Eg(Zω,n(h)−Zω,n(h
′))2 = Pn(ω)(h− h′)2 ≤ 4P(h− h′)2 = E(2ZP(h)− 2ZP(h

′))2.

Then, by the result on comparison of moduli of continuity in Exercise 2.4.12, there exists
K<∞ such that for all ω ∈ A(ε,n), ε > 0 and n ∈N,

Eg

∥∥νn,rad

∥∥
H′

2δ
≤ K

[
sup
f ∈F

E sup
h∈F :eP( f ,h)≤2δ

|ZP( f )−ZP(h)|+ δ
√

logN(F ,eP,δ)

]
.

Since ‖ZP‖F ′
δ
→ 0 a.s. by uniform continuity with respect to eP, and since E‖ZP‖∞<∞ (by,

e.g., Theorem 2.1.20), the first term at the right-hand side of this inequality tends to zero as
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δ→ 0. The second term also tends to zero as δ→ 0 by (3.285) (Sudakov’s inequality). These
two terms are independent of ω ∈ A(ε,n) and n ∈N, thus showing that limδ→0 limsupn(II)=
0. Plugging the limits of (I) and (II) into (3.284) proves the asymptotic equi-continuity
condition (3.283) and hence the theorem.

Note that in this proof Bernstein’s inequality is used at the limit of its Gaussian range and
that the cutoff ε/n1/2 for P( f − g)2 in the asymptotic equi-continuity condition is obtained
by balancing this limit with the size of H as estimated by Sudakov’s bound.

Next, we apply this theorem to obtain conditions for classes of sets to be P-Donsker not
covered by results presented earlier in this chapter. The proof requires a second ingredient,
namely, a probability estimate of the supremum norm of the empirical process over a class of
bounded positive functions that combines an exponential inequality with the random entropy
of the process over the ‘square root’ class by means of an elaborate use of randomisation.
Note that for a single function f , setting r = ‖ f ‖∞ and σ 2 = P f 2, since P f 4 ≤ r2σ 2,
Bernstein’s inequality gives, for all u ≥ 2nσ 2,

Pr

{
n∑

i=1

f 2(Xi)≥ u

}
≤ 2exp

(
− u2/4

2nr2σ 2 + r2u/3

)
≤ 2exp

(
− 3u

16r2

)
.

Here is what can be obtained for the supremum of these sums over a class of functions. For
the next lemma, recall the notation e2

n,2( f ,g)= Pn( f − g)2.

Lemma 3.7.53 (Square root trick) Let F be a class of functions satisfying the pointwise
countable approximation hypothesis. Let σ 2 = sup f ∈F P f 2 and r = sup f ∈F ‖ f ‖∞. For u>
4nσ 2 and 0< 25/2ρ < u1/2 − 2n1/2σ , set

λ= 1

2
(u1/2 − 2n1/2σ − 25/2ρ)2.

Then, for all n,m ∈N and u> 4nσ 2,

Pr

{∥∥∥∥∥
n∑

i=1

f 2(Xi)

∥∥∥∥∥
F

> u

}
≤ 4Pr∗

{
N(F ,en,2,ρ/n

1/2) >m
}+ 16me−λ/2r2

. (3.286)

Proof We begin with some notation. Given a Rademacher sequence εi, i ≤ n, independent
from the sequence {Xi} (as usual, all the variables defined as coordinates in a product
probability space), set, for f ∈F ,

N+( f )=
∑

i≤n:εi=1

f 2(Xi), N−( f )=
∑

i≤n:εi=−1

f 2(Xi).

Then N+ and N− are equi-distributed, they are conditionally independent given {εi} and

N+( f )−N−( f )=
n∑

i=1

εi f 2(Xi), N+( f )+N−( f )=
n∑

i=1

f 2(Xi)

and E(N1/2
− ( f ))2 ≤ nP f 2 ≤ nσ 2. We can use these properties together with the symmetri-

sation inequality in Proposition 3.1.24 part (b), applied conditionally on the Rademacher
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variables to Y = N1/2
+ and Y′ = N1/2

− , and obtain, using Fubini’s theorem,

Pr

{∥∥∥∥∥
n∑

i=1

f 2(Xi)

∥∥∥∥∥
F

> u

}
≤ 2Pr

∥∥∥N1/2
+ ‖F ≥ 2−1/2u1/2

}
≤ 4EεPrX

{∥∥∥N1/2
+ −N1/2

−
∥∥∥
F
> 2−1/2u1/2 − (2nσ 2)1/2

}
≤ 4Pr∗

{
N(F ,en,2,ρ/n

1/2) >m
}

+4EXPrε
{∥∥∥N1/2

+ −N1/2
−
∥∥∥
F
> 2−1/2u1/2 − (2nσ 2)1/2,N(F ,en,2,ρ/n

1/2)≤ m
}

.

Now we notice that by the triangle inequality for the Euclidean norm, |N1/2
+ ( f )−N1/2

+ (g)| ≤[∑
i:εi=1( f (Xi)− g(Xi))

2
]1/2

, and likewise for N−, so

|(N1/2
+ ( f )−N1/2

− ( f ))− (N1/2
+ (g)−N1/2

− (g))| ≤ 2

[
n∑

i=1

( f (Xi)− g(Xi))
2

]1/2

= 2n1/2en,2( f ,g).

Thus, if for X1, . . . ,Xn fixed D is a ρ/n1/2-dense subset of F for the en,2 pseudo-distance of
minimal cardinality, we have

Prε
{∥∥∥N1/2

+ −N1/2
−
∥∥∥
F
> 2−1/2u1/2 − (2nσ 2)1/2,N(F ,en,2,ρ/n

1/2)≤ m
}

≤ mmax
f ∈D

Prε
{
|N1/2

+ ( f )−N1/2
− ( f )|> 2−1/2u1/2 − (2nσ 2)1/2 − 2ρ

}
.

If 0 ∈D, we replace the function 0 by a function in D ∩ { f ∈ F : Pn f 2 ≤ ρ/n1/2}, and the
resulting set, which we still call D, is at least 2ρ/n1/2-dense in F , so if we use it in the
preceding probability, we must subtract 4ρ instead of 2ρ to obtain instead the bound

mmax
f ∈D

Prε
{
|N1/2

+ ( f )−N1/2
− ( f )|> λ1/2

}
.

Next, we note that

|N+( f )−N−( f )| = |N1/2
+ ( f )−N1/2

− ( f )|(N1/2
+ ( f )+N1/2

− ( f ))

≥ |N1/2
+ ( f )−N1/2

− ( f )|
(

n∑
i=1

f 2(Xi)

)1/2

≥ |N1/2
+ ( f )−N1/2

− ( f )|
(

n∑
i=1

f 4(Xi)

)1/2

/r.

Hence, Hoeffding’s inequality ((3.9) in Theorem 3.1.2) gives

max
f ∈D

Prε
{
|N1/2

+ ( f )−N1/2
− ( f )|> λ1/2

}
≤ Pr

{ ∣∣∑n
i=1 εi f 2(Xi)

∣∣(∑n
i=1 f 4(Xi)

)1/2 >
λ1/2

r

}
≤ 2e−λ/2r2

.

The lemma follows by collecting the preceding probability bounds.
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Here is how the preceding lemma can be used to estimate the small oscillations of the
empirical process in Theorem 3.7.52 by means of random entropies. The resulting condition
is necessary for classes of sets F to be P-Donsker

Theorem 3.7.54 Let F be a uniformly bounded class of functions satisfying the pointwise
countable approximation hypothesis. If F is P-pre-Gaussian and, for some c > 0 and all
τ > 0,

lim
ε→0

limsup
n

Pr∗
{

logN(F ′
ε,n,L

1(Pn),τ/n1/2)

n1/2
> cτ

}
= 0, (3.287)

thenF is P-Donsker. Conversely, ifF is a collection of indicator functions and is P-Donsker,
then F is P-pre-Gaussian and satisfies condition (3.287).

Proof We prove the direct part first. We can assume without loss of generality that ‖ f ‖∞ ≤
1/2, for all f ∈F ′

ε,n. By Theorem 3.7.52, we only need to prove that the limit (3.281) holds
for all γ > 0. Somewhat as earlier, we write, for α,β > 0 to be chosen later,

Pr
{∥∥νn,rad

∥∥
F ′
ε,n
> γ

}
≤ Pr∗

{
N(F ′

ε,n,en,1,β/n
1/2) >m

}+Pr

⎧⎨⎩
∥∥∥∥∥

n∑
i=1

f 2(Xi)

∥∥∥∥∥
F ′
ε,n

> αn1/2

⎫⎬⎭
+E∗

XPrε

⎧⎨⎩∥∥νn,rad

∥∥
F ′
ε,n
> γ ,N(Fε,n,en,1,β/n

1/2)≤ m,

∥∥∥∥∥
n∑

i=1

f 2(Xi)

∥∥∥∥∥
F ′
ε,n

≤ αn1/2

⎫⎬⎭ .

(3.288)

For X1, . . . ,Xn fixed, let D be a β/n1/2-dense subset of F ′
ε,n for the en,1 distance, and note

that
∣∣∑n

i=1 εi( f (Xi)− g(Xi)
∣∣≤ en,1( f ,g). Thus, if we take

α = (γ −β)/2> 0

(hence β < γ ), the Prε probability in the third summand is dominated by

m sup
f ∈D

Prε

{∣∣νn,rad

∣∣> (γ −β), n∑
i=1

f 2(Xi)≤ (γ −β)n1/2/2

}
≤ 2me−(γ−β)n

1/2

by Hoeffding’s inequality (Theorem 3.1.2).
Next, we apply Lemma 3.7.53 to the second summand in the decomposition (3.288). We

have σ 2 = supP f 2 ≤ ε/n1/2, r = 1, u = αn1/2 = (γ − β)n1/2/2, and the lemma requires
(γ − β)/2> 4ε, and then ρ must satisfy 0< ρ < 2−5/2

[
2−1/2(γ −β)1/2 − 2ε1/2

]
n1/4. Also

observe that since the functions in F ′
ε,n are bounded by 1, we have on this class that en,2 ≤

21/2e1/2
n,1 , so N(F ′

ε,n,en,2,ρ/n1/2) ≤ N(F ′
ε,n,en,1,ρ2/2n). Thus, assuming that the conditions

imposed on γ ,β,ε,ρ are met, Lemma 3.7.53 implies that

Pr

⎧⎨⎩
∥∥∥∥∥

n∑
i=1

f 2(Xi)

∥∥∥∥∥
F ′
ε,n

> αn1/2

⎫⎬⎭≤ 4Pr∗
{
N(F ′

ε,n,en,1,ρ
2/2n) >m

}+ 16mexp(−λ/2),

where λ is defined as in the lemma, λ1/2 = 2−1/2
([

2−1/2(γ −β)1/2 − 2ε1/2
]
n1/4 − 25/2ρ

)
(in

fact, the inequality holds for any λ not exceeding this value).
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278 Empirical Processes

Now consider only ε < γ/26, and take β = γ /2, α = γ /4, ρ = γ 1/2n1/4/211/2 and λ =
γ n1/2/27 to obtain from the preceding estimates that

Pr
{∥∥νn,rad

∥∥
F ′
ε,n
> γ

}
≤ 5Pr∗

{
N(F ′

ε,n,en,1,γ /(2
13n1/2)) >m

}+ 18me−γ n1/2/28
. (3.289)

Thus, taking m = eγ n1/2/213
in this bound, we see that the limit as n tends to infinity is zero

for all ε < γ/26, proving (3.287) for c = 1 and all γ > 0 (a little more has been proved,
namely, that the limsupn of these probabilities is zero for all 0< ε ≤ v0(γ )).

For the converse for classes of sets, we assume that F is P-Donsker and must prove
that (3.287) holds. If tn,ε = inf

[
t : Pr

{‖νn,rad‖F ′
ε,n > 1/8

}]
, Hoffmann-Jørgensen’s inequality

(3.39) shows that

E‖νn,rad‖F ′
ε,n ≤ C(n−1/2 + tn,ε).

But the fact that F is P-Donsker implies that limε→0 limsupn tn,ε = 0 by Theorem 3.7.52 and
hence that

lim
ε→0

limsup
n

E‖νn,rad‖F ′
ε,n = 0.

Now, since by Proposition 3.1.26 (and convexity) and Lemma 2.3.4, for 0≤ n0< n and all n,

E‖νn,g‖F ′
ε,n ≤ C

(
n0(logn)1/2

n1/2
+ max

n0<k≤n
E‖νk,rad‖F ′

ε,n

)
,

it follows that

lim
ε→0

limsup
n

E‖νn,g‖F ′
ε,n = 0

by taking, for example, n0 =√
n/ logn. (This also follows from Exercises 3.7.15 and 3.7.16,

and the preceding arguments are only given for completeness.) Then Sudakov’s inequality
(Theorem 2.4.12) gives

lim
ε→0

limsup
n

E∗
[
sup
λ>0
λ
(
logN(F ′

ε,n,en,2,λ)
)1/2

]
= 0.

But F being a class of indicators, any f ∈ F ′
ε,n takes on only the values 1, 0 and −1, and

therefore, en,1( f ,g)≤ e2
n,2( f ,g), for all f ,g ∈F ′

ε,n, so N(F ′
ε,n,en,1,λ1/2)≤N(F ′

ε,n,en,2,λ) and
hence,

lim
ε→0

limsup
n

E∗
[
sup
λ>0

(
λ logN(F ′

ε,n,en,2,λ)
)1/2

]
= 0.

This implies (3.287).

Now, since if { fi : 1 ≤ i ≤ N} is ε/2-dense in F in L1(Pn), then { fi − fj : 1 ≤ i, j ≤ N} is
ε-dense in F ′

ε,n, and we can find a subset of F ′
ε,n of cardinality at most N2 that is ε-dense in

F ′
ε,n. It follows that N(F ′

ε,n,en,1,ε)≤ (N(F ,en,1,ε/2))2. In the case of indicators of sets, it is
convenient to note that all the possible values of Pn(|IA − IB|) are {k/n : 0 ≤ k ≤ n} and that
Pn(ω)(|IA − IB|) = 0 if and only if A∩ {X1(ω), . . . ,Xn(ω)} = B∩ {X1(ω), . . . ,Xn(ω)}. Thus,
if F = {IC : C ∈ C}, then N(F ,en,1,ε)≤�C(X1, . . . ,Xn), with equality for 0 ≤ ε ≤ 1/n. (See
Section 3.6.1 for the definition of �C .) This and the preceding theorem yield the following:
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Theorem 3.7.55 (P-Donsker class of sets: necessary and sufficient conditions) Let
C be a class of sets satisfying the pointwise countable approximation property. If C is
P-pre-Gaussian and

log�C(X1, . . . ,Xn)

n1/2
→ 0 in outer probability, (3.290)

then C is a P-Donsker class.

The last two theorems may be thought of as the analogues for the central limit theorem
of Theorem 3.7.14 for the law of large numbers for classes of sets. In fact, the converse of
Theorem 3.7.55 does hold, and for general classes of functions F , there are necessary and
sufficient conditions for F to be a P-Donsker class that combines pre-Gaussianness and en,1

conditions. This subject will not be pursued. See the notes at the end of this chapter.
Here are two interesting examples. Parts of the proofs will be relegated to the exercises.

Example 3.7.56 We will show that the collection C of all the subsets of N is P-Donsker
for P = ∑∞

k=1 pkδk if and only if
∑∞

k=1 p1/2
k < ∞, in particular, by Exercise 3.7.21, if

and only if C is P-pre-Gaussian. First, C satisfies the pointwise countable approximation
property because indicators of countable sets can be pointwise approximated by indicators
of finite sets. As seen in Exercise 3.7.21, the condition is necessary and sufficient for
C to be P-pre-Gaussian; hence, it is necessary for C to be P-Donsker, and in order to
prove that it is sufficient, it suffices to show that if it holds, then condition (3.290) holds.
Assume that {pk} is nonincreasing so that, in particular, pk < 1/k2 for all k large enough and∑∞

k=r pk = p1/2
r

∑∞
k=r p1/2

k = o(1/r) as r →∞. Then

Pr∗
{

log�C(X1, . . . ,Xn)

n1/2
> ε log2

}
= Pr∗

{
�C(X1, . . . ,Xn) > 2εn

1/2
}

≤ Pr
{
the number of distint X1, . . . ,Xn exceeds εn1/2

}
≤ Pr

{
at least [εn1/2/2] X′

i out of X1, . . . ,Xn exceed εn1/2/2
}

.

By Exercise 3.1.8, this probability is bounded by(
enPr{X> εn1/2/2}

[εn1/2/2]
)[εn1/2/2]

=
(

o(en/[εn1/2/2])
[εn1/2/2]

)[εn1/2/2]
→ 0

as n →∞ for all ε > 0, and the result follows from Theorem 3.7.55.

Example 3.7.57 We will show that BL1(R), the collection of bounded Lipschitz functions
on R with supremum norm and Lipschitz constants not exceeding 1 is P-Donsker if and
only if

∞∑
j=1

(P{j− 1< |x| ≤ j})1/2 <∞, (3.291)

which happens if and only if BL1(R) is P-pre-Gaussian. To prove that condition (3.291) is
necessary for BL1(R) to be P-pre-Gaussian, consider the functions f3j(x)= 1, for x∈ [3j,3j+
1], and f3j(x) = 0, for x ∈ [3j− 1,3j+ 2]c, and linear in between. Then for the subclass of
bounded Lipschitz functions {∑∞

j=−∞ τj f3j : τj = ±1} to be P-pre-Gaussian, it is necessary
that the series

∑∞
j=−∞ |g3j| converge a.s., where g3j are independent centred normal variables
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with variance equal to the second moment of f3j(X), where X is a random variable with law
P (to see this, just argue as in Exercise 3.7.21). But P f 2

3j(X) ≥ P(3j,3j+ 1], and the series∑∞
j=−∞ |g3j| converges if and only if

∑∞
j=−∞(P(3j,3j+1])1/2<∞. Convergence of the other

two-thirds of the series
∑∞

j=1(P(j− 1, j])1/2 follows by applying the same reasoning to the
translation by one unit to the right and one to the left of the same set of functions. To prove
that condition (3.291) is sufficient for BL1(R) to be P-Donsker, let us first note that BL1(R)
is separable for the usual metric of uniform convergence on compact sets (e.g., because
BL([a,b]) is compact in C([a,b]) −∞ < a < b <∞) and that this implies that BL1(R)
satisfies the pointwise countable approximation property. Next, we show that BL1(R) is
P-pre-Gaussian if P satisfies condition (3.291). For j ∈ Z, let Z̃j( f ), f ∈ BL1(R), be a
centred Gaussian process with covariance E(Z̃j( f )Z̃j(g)) = E( f (X)g(X)I(j − 1 < X ≤ j)).
Then

e2
j ( f ,g) := E(Z̃j( f )− Z̃j(g))

2 ≤ ‖ f − g‖2
∞P(j− 1, j],

and it follows from the metric entropy estimate in Exercise 3.6.17 that

N(BL1(R)),ej,ε)≤ N(BL1([j− 1, j]),‖ · ‖∞,ε/(P(j− 1, j])1/2)≤ ec(P(j−1,j])1/2)/ε,

for all 0<ε < (P(j−1, j]))1/2. Then, by Theorem 2.3.7, Z̃j admits a version Zj with bounded
and uniformly continuous sample paths in (BL1(R),L2(P)) such that

E‖Zj( f )‖BL1(R) ≤ 4
√

2(P(j− 1, j])1/2
∫ 1

0

√
1+ c/ε dε =: K(P(j− 1, j])1/2,

for K <∞ independent of j. Take the processes Zj , j ∈ Z, to be independent. Then, by
Lévy’s inequality,

lim
n→∞Pr

⎧⎨⎩sup
k≥n

∥∥∥∥∥∥
∑

n≤|j|≤k

Zj

∥∥∥∥∥∥
BL1(R)

> ε

⎫⎬⎭= lim
n→∞ lim

m→∞Pr

⎧⎨⎩ sup
n≤k≤m

∥∥∥∥∥∥
∑

n≤|j|≤k

Zj

∥∥∥∥∥∥
BL1(R)

> ε

⎫⎬⎭
≤ 2 lim

n→∞ lim
m→∞Pr

⎧⎨⎩
∥∥∥∥∥∥
∑

n≤|j|≤m

Zj

∥∥∥∥∥∥
BL1(R)

> ε

⎫⎬⎭
≤ 2Kε−1 lim

n

∑
j≥n

(P(j− 1, j])1/2 = 0;

that is, the series Z( f ) =∑∞
j=−∞ Zj( f ) converges uniformly a.s. in BL1(R), and therefore,

Z has bounded and uniformly continuous paths in (BL1(R),L2(P)). Since E(Z( f )Z(g)) =
E( f (X)g(X)), we have proved that BL1(R) is P-pre-Gaussian. By Theorem 3.7.52, to prove
that BL1(R) is P-Donsker, it suffices to show that condition (3.281) holds for this class.
Since by Exercise 3.7.17, as mentioned earlier, for all r < ∞ and for any probability
measure Q,

N(BL1([−r,r]),L2(Q),ε)≤ N(BL1([−r,r]),Q1/2[−r,r]‖ · ‖∞,ε)≤ exp
(
2crQ1/2[−r,r]/ε) ,

it follows from Theorem 3.7.37 that BL1([−r,r]) is Q-Donsker for every probability measure
Q (in fact, uniform Donsker). Hence, by Theorem 3.7.52, we have that for all P, r> 0 and
γ > 0,
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lim
ε→0

limsup
n

Pr

⎧⎪⎨⎪⎩ sup
f ,g∈BL1(R)

P( f −g)2≤ε/n1/2

|νn,rad(( f − g)I[−r,r])| ≥ γ

⎫⎪⎬⎪⎭= 0. (3.292)

By the proof of Theorem 3.7.54, in fact, inequality (3.289), for all γ > 0 and ε < γ/26, gives

Pr

⎧⎪⎨⎪⎩ sup
f ,g∈BL1(R)

P( f −g)2≤ε/n1/2

|νn,rad(( f − g)I[−r,r]c)| ≥ γ

⎫⎪⎬⎪⎭
≤ 5Pr∗

{
logN(BL1([−r,r]c),L1(Pn),γ /(τn1/2))≥ γ n1/2/τ

}+ o(1), (3.293)

where τ = 214 and o(1)→ 0 as n →∞ and depends only on γ . To compute this random
entropy, set Cr,n =∑∞

j=r+1 P1/2
n (j− 1, j] and Ij = (j− 1, j]. Then, for f ,g ∈ BL1([−r,r]c),

Pn| f − g| =
∞∑

j=r+1

Pn(| f − g|IIj)≤
∞∑

j=r+1

‖( f − g)IIj‖∞Pn(Ij)

=
∞∑

j=r+1

P1/2
n (Ij)

Cr,n
(‖( f − g)IIj‖∞P1/2

n (Ij)Cr,n),

so if ‖( f −g)IIj‖∞P1/2
n (Ij)Cr,n ≤ η for each j> r, then Pn| f −g| ≤ η. Therefore, for all η> 0,

N(BL1([−r,r]c,L1(Pn),η)≤
∞∏

j=r+1

N(BL(Ij),‖ · ‖∞P1/2
n (Ij)Cr,n,τ)

≤ exp

⎛⎝cη−1

⎛⎝ ∞∑
j=r+1

P1/2
n (Ij)

⎞⎠2⎞⎠ .

This gives

Pr∗
{
logN(BL1([−r,r]c,L1(Pn),γ /(τn1/2)) > γ n1/2/τ

}≤ Pr

⎧⎨⎩
∞∑

j=r+1

P1/2
n (Ij)≥ γ

τc1/2

⎫⎬⎭
≤ τc1/2

γ

∞∑
j=r+1

E(P1/2
n (Ij))

≤ τc1/2

γ

∞∑
j=r+1

P1/2(j− 1, j],

which tends to zero as r → ∞ independently of n. Plugging this into (3.293), we see
that limr limsupn(3.293) = 0, which together with (3.292) shows that condition (3.281) is
satisfied and therefore that BL1(R) is P-Donsker by Theorem 3.7.52.
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Exercises

3.7.1 Prove that: (a) (max( f ,g))∗ =max( f ∗,g∗) a.s.; in fact, the same is true for a countable number
of functions. (b) For f ≥ 0 and p> 0, ( f p)∗ = ( f ∗)p a.s. (c) If g≥ 0 is a measurable function,
then ( f g)∗ = f ∗g a.s.

3.7.2 Let (X×Y,A⊗B,P×Q) be a product probability space, and let g(x,y)= f (x) be a function
of only the first coordinate. Prove that g∗P×Q = f ∗P P × Q-a.s. Hint: g(x1,x2) ≤ f ∗P (x1) and,
however, f (x1)≤ g∗P×Q(x,y), and this last function is P-measurable for every y.

3.7.3 State and prove versions of Lévy’s, Ottaviani’s and Hoffmann-Jørgensen’s inequalities
(Theorems 3.1.11, 3.1.15 and 3.1.16 and Proposition 3.1.12) in terms of outer probabilities
and expectations for sample bounded processes indexed by not necessarily countable sets
T. Do the same for the randomisation and symmetrisation inequalities in probability from
Propositions 3.1.23, 3.1.24 and 3.1.26 and Corollary 3.1.25.

3.7.4 Define E∗ f = sup{Eg : g measurable, g ≤ f }, the inner integral of f . As for outer integrals,
show that if f∗ is the essential supremum of the set of measurable g ≤ f , then E∗ f = E f∗
whenever either is defined. Show also that f∗ = −((− f )∗) and E∗ f =−E∗(− f ).

3.7.5 Prove that the Glivenko-Cantelli theorem in Rd follows from Theorem 3.7.20.
3.7.6 Let B be a separable Banach space, let F := { f ∈ B∗ : ‖ f ‖≤ 1}, where B∗ is the dual of B, and

let X,Xi, be i.i.d. B-valued random variables with E‖X‖ <∞. Prove that there exists L <∞
such that limn→∞ Pr∗{N(F ,en,1,ε) > L} = 0 for all ε > 0. Hint: Proceed in a way similar to
the proof of Corollary 3.7.21. This shows that the Mourier law of large numbers is also a
consequence of Theorem 3.7.14.

3.7.7 (Portmanteau theorem.) Prove that for bounded processes Xn and a bounded process X with
tight Borel probability law, convergence in law in �∞(T) of Xn to X is equivalent to each of
the following three conditions: (a) for every closed set F ⊂ �∞(T), limsupn→∞ Pr∗{Xn ∈ F} ≤
Pr{X ∈ F}; (b) for every open set G ⊂ �∞(T), liminfn→∞ Pr∗{Xn ∈ G} ≥ Pr{X ∈ G}; and (c) if
A ⊂ �∞(T) is a continuity set for the law of X (meaning that the probability that X is in the
boundary of A is zero), then liminfn→∞ Pr∗{Xn ∈ A} = limsupn→∞ Pr∗{Xn ∈ A} = Pr{X ∈ A}.
Hint for (a): Apply the definition to bounded continuous functions H approximating IF (0 ≤
H(x)≤ 1, g(x)= 1, for x∈F, and g(x)= 0, for x outside of a neighborhood of F). Hint for (c) to
imply convergence in law: For any bounded continuous function H, all but a countable number
of sets of the form {H< t} are continuity sets for X, so H can be uniformly approximated with
any accuracy by simple functions based on continuity sets for X, to which (c) applies.

3.7.8 (A simple extension of uniform continuity on compact sets, used in the proof of Theo-
rem 3.7.23.) Let (S,d) be a metric space, let K ⊂ S be a compact set and let f : S �→ R be
a continuous bounded function. Then, for every ε > 0, there exists δ > 0 such that

d(u,v) < δ, u ∈ K, v ∈ S ,⇒ | f (u)− f (v)|< ε.
3.7.9 Let fn and f∞ be (sample) bounded processes indexed by a set T, and assume the probability

law of f∞ to be a tight Borel measure. Prove that ‖ fn − f∞‖∗T → 0 a.s. ,⇒ ‖ fn − f∞‖∗T → 0
in probability ,⇒ fn →L f∞ in �∞(T). Hint: The first assertion is clear. For the second, let
d be a distance on T such that (T,d) is totally bounded and f∞ ∈ Cu(T,d) (Proposition 2.1.7),
and observe that(

sup
d(s,t)≤δ

| fn(t)− fn(s)|
)∗

≤ 2 (‖ fn − f∞‖T)
∗ + sup

d(s,t)≤δ
| f∞(t)− f∞(s)|.

Now the asymptotic equi-continuity condition (3.249) for { fn} follows from convergence in
outer probability of fn to f∞ and uniform continuity of f∞.
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3.7.10 Let C ⊂ V, where V is a vector space. Let G : C �→ R be a prelinear map; that is, whenever
λi ∈R and ci ∈C satisfy

∑
λici = 0, one has

∑
λiG(ci)= 0 (finite sums). Prove that G extends

as a linear map on the linear span of C by the formula g
(∑
λici

)=∑
λig(ci). Conversely, if

G : C �→R admits a linear extension to the linear span of C, then G is prelinear.
3.7.11 In the proof of Theorem 3.7.28 we use the Karhunen-Loève expansion for the reason that it was

proved in Chapter 2; however, any expansion with respect to a complete ortho-normal system
of the range of GP will do. Concretely, if F is P-pre-Gaussian and GP is a Cu(F ,dX)-valued
version of the P-bridge, then G = {GP( f ) : f ∈ F} is a precompact subset of L2 (because
(F ,dP) is totally bounded), so we can take a countable dense subset of G and ortho-normalize
it by Gram-Schmidt to obtain an i.i.d. sequence gi, i ∈ N, of standard normal random
variables which constitute an ortho-normal basis of the linear span of G. Prove that a.s.
GP =∑∞

i=1[E(giGP)]gi uniformly in f ∈ F . Hint: For all f ∈ G, GP( f )=∑[E(giGP( f ))]gi

with convergence in L2 and hence, by Lévy’s theorem on equivalence of forms of convergence
for series of independent random variables, also with a.s. convergence. Because of this,
because Sn =∑n

i=1 E(giGP)gi ∈ Cu(F ,dx) a.s. and because the law of GP is determined by
GP( f ), f ∈ F , to prove the claim, it suffices to prove that a.s., the sequence of partial sums
Sn(ω) forms a relatively compact subset of Cu(F ,dX), just as in the proof of Theorem 2.6.10.
Now proceed as in that proof, where one can take as the elements vi of B′ simply a countable
dense subset of F for dP. (As mentioned in the proof of Theorem 2.6.10, a slicker proof using
Ito-Nisio’s theorem is possible, but this proof is more elementary.)

3.7.12 Let F1 and F2 be P-pre-Gaussian classes of functions, and let GP be a version of the P-bridge
which is in Cu(Fi,dX) for i = 1,2. Show that there exists an i.i.d. sequence of standard normal
random variables which is dense in (F1 ∪F2,dX) and that GP =∑∞

i=1[E(giGP)]gi a.s. both
as a Cu(F1,dX) and as a Cu(F2,dX) random variable, with uniform convergence in the sup
norm for each and hence uniform in f ∈ F1 ∪F2. Show that, moreover, the functional f �→
E(giGP( f ))gi is in Cu(F1 ∪F2) and that therefore the process f �→ GP( f ), f ∈ F1 ∪F2, is
bounded and uniformly dP-continuous. Conclude that F1 ∪F2 is P-pre-Gaussian. Hint: Proof
similar to that of Exercise 3.7.11.

3.7.13 (The Jain-Marcus CLT.) Let (T,ρ) be a compact metric space, and let X(t), t∈T, be a stochastic
process satisfying EX(t)= 0, EX2(t) <∞, for all t ∈ T, and |X(t,ω)−X(s,ω)| ≤ M(ω)ρ(s, t),
for all s, t ∈ T, ω ∈ �, where EM2 < ∞ and

∫∞
0

√
logN(T,ρ,ε) dε < ∞. Let Xi be i.i.d.

with the same law as X (the coordinates on C(T,d)N). Prove that n−1/2
∑n

i=1 Xi →L G as
random variables taking values in C(T,d), where G is Gaussian. Hint: Set S = C(T,d),
define ft(X) = X(t) and apply Theorem 3.7.36 to F = { ft : t ∈ T} and P = L(X). Note that

en,2(s, t)≤
(
n−1

∑n
i=1 M2

i

)1/2
ρ(s, t), and use the law of large numbers for M2

i .
3.7.14 Consider in L2(P) the topology τ1 of pointwise convergence (with neighbourhood base

N( f ,x1, ,̇xr,ε)= {g ∈ L2 : f (xi − g(xi)| ≤ ε,1 ≤ i ≤ r}, f ∈ L2, xi ∈ S, r ∈N), and denote by τ2
the topology given by the L2-pseudo-norm. Let τ = τ1 ∨ τ2 be the coarsest topology finer than
τ1 and τ2 (τ is the collection of arbitrary unions of A1 ∩A2, where Ai ∈ τi, i = 1,2, and recall
that a map is continuous in the τ -topology if it is continuous in either one of the topologies
τ1 or τ2). Prove that if F is P-Donsker, then so is H̃(F ,P), the closure of F in L2(P) for the
τ -topology. (Thus, we are replacing ‘sequential closure’ by ‘closure’ in Proposition 3.7.34.)
Hint: Set G = sco(F) and H = H̃(F ,P). Use almost-sure representations as in the proof of
Proposition 3.7.34 together with the fact that if Li are linear functionals defined on the linear
span of F that are continuous in either of the two topologies (just as δXi(ω), P and a suitable
version of GP are), then

∥∥∑n
i=1 Li

∥∥
G = ∥∥∑n

i=1 Li

∥∥
H.

3.7.15 Prove that in Theorem 3.7.40 the processes νn,rad in condition (b) can be replaced by the
processes νn,g; that is, it is possible to randomise in the central limit theorem for empirical
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284 Empirical Processes

processes not only by Rademacher but also by standard normal random variables. In fact,
it is possible to randomise by i.i.d. symmetric variables ξi, independent of the Xj, such that
 2,1(ξ1) <∞ (see (3.49)). Hint: Use the randomisation inequality for general multipliers,
Proposition 3.1.26.

3.7.16 Prove that in Theorem 3.7.40 the equivalence of (a) and (b) extends to the following four
conditions which are therefore equivalent to F being P-Donsker:

(c) (F ,eP) is totally bounded, and limδ→0 limsupn Pr
{
‖νn,rad‖F ′

δ
> ε

}
= 0, for all ε > 0.

(d) Same as (c) with νn,g replacing νn,rad.
(e) (F ,eP) is totally bounded, and limδ→0 limsupn E‖νn,rad‖F ′

δ
= 0.

(f) Same as (e) with νn,g replacing νn,rad.

Hint: Use Hoffmann-Jørgensen’ s inequality.
3.7.17 Show that if F is P-Donsker for every P ∈ P f (S), that is, if F is universal Donsker, then

sup f ∈F (supx∈S f (x)− infx∈S f (x)) <∞, so the class { f − inf f : f ∈F} is uniformly bounded.
Hint: If not, there exist xn,yn ∈ S and fn ∈F such that fn(xn)− fn(yn) > 2n for all n. Show that
if Pn =∑∞

n=1(δxn +δyn)/2
n+1, then EPn( fn−E fn)

2 →∞, which implies that sup f ∈F EG2
P( f )=

∞ and hence that F is not P-pre-Gaussian.
3.7.18 Use the asymptotic equi-continuity criterion to prove the central limit theorem in Hilbert

space: Let H be a separable Hilbert space, and let X,Xi, i ∈ N, be independent identically
distributed H-valued random variables such that EX = 0 and E‖X‖2 <∞; then the sequence{
Tn := n−1/2

∑n
i=1 Xi

}∞
n=1

converges in law on H. Hint: As shown in Remark 3.7.30, this
statement is equivalent to the class of functions H1 = {〈h, ·〉 : h∈H,‖h‖≤ 1} being P-Donsker,
where P = L(X). Choose an ortho-normal basis {ei} of H such that the coordinates of X in
this basis are uncorrelated, and assume without loss of generality that Xi = 〈X,ei〉 is not P a.s.
zero. Given N ∈N, consider the complementary orthogonal projections PNx =∑N

i=1〈x,ei〉ei =∑N
i=1 xiei and I − PN. Since E‖X‖2 =∑∞

i=1 E(Xi)2 <∞, we have E‖(I − PN)(X)‖2 → 0 as
N →∞. Use this fact to show that (H1,eP) is totally bounded by reducing the problem to an
easy finite-dimensional one. For the asymptotic equi-continuity notice that if, given ε > 0, Nε
is such that E‖(I−PNε )(X)‖2 ≤ ε2, then

E sup
‖h‖≤2

E〈h,X〉2≤δ

〈h,Tn〉2 ≤ 2E sup
‖h‖≤2

E〈PNε h,X〉2≤δ

〈PNεh,Tn〉2 + 2E
∥∥(I−PNε )(Tn)

∥∥2

≤ 2
Nε∑
j=1

⎛⎝1∧
(
δ/

Nε∑
j=1

P(Xj)2
)⎞⎠P(Xj)2 + 2E

∥∥(I−PNε )(X)
∥∥2

≤ 2Nε(δ∧E‖X‖2)+ 2ε2.

3.7.19 Let H be a separable Hilbert space, let S= {xk : k ∈N} ⊂H with ‖xk‖→ 0, where ‖ · ‖ denotes
Hilbert space norm, and let F = H1 be the unit ball centred at 0 of H, with z ∈ F acting on S
by inner product, as in the preceding exercise. Prove that: F ∈UPG. Hint: Let P=∑∞

k=1αkδxk

with
∑
αk = 1,αk ≥ 0. Then, with gk i.i.d. N(0,1), we have

E‖ZP‖F = E
∥∥∥∑α

1/2
k gkxk

∥∥∥≤ (
E
∥∥∥∑α

1/2
k xkgk

∥∥∥2
)1/2

=
(∑

αk‖xk‖2
)1/2 ≤ sup

k
‖xk‖,
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independently of P. Hence, supP E‖ZP‖F <∞. Also, since eP(z,z′)2 =∑
αk〈xk,z− z′〉2,

E‖ZP‖F ′
δ,P

= E sup∑
αk〈xk ,z〉2≤δ2,‖z‖≤2

∣∣∣∑α
1/2
k 〈xk,z〉gk

∣∣∣
≤ E sup∑

αk〈xk ,z〉2≤δ2

∣∣∣∣∣
n∑

k=1

α
1/2
k 〈xk,z〉gk

∣∣∣∣∣+ 2E sup
‖z‖≤1

∣∣∣∣∣
∞∑

k=n+1

α
1/2
k 〈xk,z〉gk

∣∣∣∣∣
≤ δE

(
n∑

k=1

g2
k

)1/2

+ 2E

∥∥∥∥∥
∞∑

k=n+1

α
1/2
k gkxk

∥∥∥∥∥
≤ δn1/2 + 2

( ∞∑
k=1

αk‖xk‖2

)1/2

≤ δn1/2 + 2sup
k>n

‖x‖k,

independently of P. Thus, F is UPG. (Note that it can be shown that there are sequences
{xk} for which this example satisfies supP

∫∞
0

√
logN(F ,L2(P),ε)dε = ∞ (see Giné and

Zinn (1991)), so this example does not follow from uniform metric entropy bounds as
Example 3.7.42.)

3.7.20 If in Exercise 3.7.19 xk does not tend to zero, then F may not be UPG f : let xk = ek, k ∈ N,
be an ortho-normal basis of H, and take QN =∑N

i=1 δei/N; using a reverse Hölder inequality
(Exercise 2.1.2), show that E‖ZPN‖F ′

δ,PN
≥ c(2∧√

δN). Use Exercise 3.7.18 to show that F is

universal Donsker (here S = {ei}n
i=1, so the probability measures on S integrate ‖x‖2). That is,

there are universal Donsker classes that are not uniform Donsker.
3.7.21 Let F = {IA : A ⊂ N} be the collection of (the indicator functions of) all the subsets of N,

and let P =∑n
i=1 pkδk be a probability measure on N. Prove that F is P-pre-Gaussian if and

only if
∑∞

k=1 p1/2
k <∞. Hint: Since F is uniformly bounded, F is P-pre-Gaussian iff ZP(IA)=∑

k∈A p1/2
k gk, where gk are i.i.d. and N(0,1) is a bounded eP-uniformly continuous process.

Suppose that it is. Then so is the linear extension of ZP to the symmetric convex hull of {IA},
and hence, so is the process (A,B) �→ ZP(IA)−ZP(IB). Therefore,

∞> E sup
A,B⊂N

|ZP(IA)−ZP(IB)| = E sup
τk=±1

∣∣∣∑τkp
1/2
k gk

∣∣∣= E
∑

p1/2
k |gk|.

Conversely, suppose that
∑

p1/2
k <∞, and assume without loss of generality that the sequence

{pk} is nonincreasing. Set kδ = sup{k ∈ N : p1/2
k > δ2}, and note that eP(IA, IB) ≤ δ implies

A�B ⊂ (kδ ,∞). Thus, EsupeP(IA ,IB)≤δ |ZP(A)−ZP(B)| ≤ E
∑

k≥kδ
p1/2

k |gk|→ 0.
3.7.22 Let F be a P-pre-Gaussian bounded class satisfying the pointwise countable approximation

property. Prove that if, for all ε > 0,

lim
n

E∗
[

1∧
∫ n1/4

0

√
logN(F ′

ε,n,L
2(P),λ) dλ

]
= 0,

then F is P-Donsker. Hint: Split the probability Pr
{
‖νn,rad‖F ′

ε,n
> τε

}
according to whether∥∥∑n

i=1 f 2(Xi)
∥∥
F ′
ε,n
> n1/2/4 or ≤ n1/2/4, and apply the square root trick bound on the first

part and the usual metric entropy integral bound, conditionally on the Xi on the second; then
invoke Theorem 3.7.54.

3.7.23 Prove that: If the sequence
√

n‖Pn −P‖∗F is stochastically bounded, then ‖ f (Xn)−P f ‖∗F/
√

n
is also stochastically bounded. Hence, necessarily, sup f ∈F | f (X)−P f |<∞ P-almost surely.
Hint: Note that ‖ f (Xn)−P f ‖∗F/

√
n ≤√

n‖νn‖∗F +√
(n− 1)/n‖νn−1‖∗F .
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3.7.24 Let H be a separable Hilbert space, let (S,d) be a metric space and let T : H �→ Cb(S) be a
continuous linear map. Prove that the set of functions T(U), where U is the unit ball of H, is
P-Donsker for all Borel probability measures P on (S,S). Hint: Let ẽP(T f ,Tg) = ‖ f − g‖,
for f ,g ∈ H. Show that the metric space (T(U), ẽ) is separable. Hence, it suffices to prove
the asymptotic equi-continuity condition (3.261) with e = ẽP. Using Chebyshev’s inequality
and linearity, that condition holds if limsupn Esup f ∈U ((Pn − P)(T f ))2 < ∞, where Pn is
the empirical measure corresponding to n i.i.d. random variables with law P. To prove
that this limit is finite, observe first that if {ek}∞k=1 is an ortho-normal basis of H, then∥∥∑

k ak(Tek)(x)
∥∥∞ ≤ ‖T‖(∑a2

k

)1/2
for all x ∈ S, which implies that

∑
k(Tek)(x))2 ≤ ‖T‖2.

Thus,
∑

k P(Tek)
2 ≤ ‖T‖2 < ∞, and therefore, for every i < ∞, supn

∑i
k=1 E(

√
n(Pn −

P)(Tek))
2 ≤ ‖T‖2 <∞. Finally, argue that

sup∑
a2

k≤1

E

[
√

n(Pn −P)

( ∞∑
k=i+1

ak(Tek)

)]2

≤ sup
n

∞∑
k=i+1

E
(√

n(Pn −P)(Tek)
)2

≤
∞∑

k=i+1

P(Tek)
2 → 0 as i →∞.

3.7.25 Let (T,d) be a separable metric or pseudo-metric space, and let X be a Cu(T,d)-valued random
variable. Let Xn and Yn, n∈N, be sample bounded processes on T such that Xn →L X in �∞(T)
and Xn − Yn → 0 in outer probability. Then Yn →L X in �∞(T). Hint: The second part of the
proof of Theorem 3.7.24 shows that Zn →L X in �∞(T) if and only if E∗H(Zn)→EH(X) for all
H : �∞(T) �→ R bounded Lipschitz. Without loss of generality, assume that ‖H‖BL ≤ 1. Then
(Yn −Xn)

∗ → 0 in probability implies that

|E(H(Yn))
∗ −E(H(Xn))

∗| ≤ E(|H(Yn)−H(Xn)|∗)≤ E(2∧‖Yn −Xn‖∗T)→ 0,

so E∗H(Yn)→ EH(X).

3.8 Notes

Section 3.1 The modern yet classical references to the inequalities of Hoeffding, Bennett, Prokhorov
and Bernstein are Bennett (1962) and Hoeffding (1963). The present exposition of these inequalities
borrows also from McDiarmid (1989), Rio (2009) and Boucheron, Lugosi and Massart (2013),
particularly the proof of Lemma 3.1.1, which improves on Hoeffding’s original proof, follows the
last reference. The convexity argument for the maximal inequalities in (3.30) is due to Pisier (1983),
but the use of �(x) = eλx (instead of, e.g., �(x) = eαx2

in the sub-Gaussian case), which gives very
good constants, comes from Boucheron, Lugosi and Massart (2013), and so does the statement and the
proof of the exponential inequality for Gaussian quadratic forms, which, without specific constants, is
due to Hanson and Wright (1971). For more on Gaussian quadratic and multilinear forms, including
two-sided tail estimates, see Latała (2006).

The present proof of Lévy’s classical inequalities in infinite dimensions is basically taken from
Kahane (1968). Montgomery-Smith (1994) obtained a similar reflection principle for independent,
identically distributed processes. The Lévy-Ottaviani inequality dates back to Ottaviani (1939),
and its consequence, inequality (3.36), was observed by Kwapień and Woyczynski (1992).
Hoffmann-Jørgensen’s inequality, with larger constants than those given in the text, is due to
Hoffmann-Jørgensen (1974) and, with the constants and proof given earlier, to Kwapień and
Woyczynski (1992). Theorem 3.1.16 with constants of the order p/ logp, which are of the best type for
any given q, was discovered by Johnson, Schechtman and Zinn (1985) in R and by Talagrand (1989)
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in Banach spaces, with much less elementary proofs than the one given here. Another important
complement to Hoffmann-Jørgensen’s inequality is that the pth norm in the inequality for q = 1 can
be replaced by the Orlicz exponential norm ψα of order α for 0< α ≤ 1; see Ledoux and Talagrand
(1991).

The contraction principle for Rademacher series was discovered by Kahane (1968) but in
the present form by Hoffmann-Jørgensen (1974), and this important article contains versions of
Theorems 3.1.17 and 3.1.21. The proof of Theorem 3.1.17 borrows from van der Vaart and
Wellner (1996). The symmetrisation inequalities for tail probabilities are classical; see, for example,
Alexander (1984) for a version of Proposition 3.1.24 with fewer measurability requirements and Giné
and Zinn (1984) for Exercise 3.1.5. Inequality (3.50) is due to G. Pisier or X. Fernique (private
communication to one of the authors in 1977, but none of the persons involved remembers exactly),
published, with a different proof, in Giné and Zinn (1984) (see also Giné (1996)). Ledoux and
Talagrand (1986) proved that the integrability condition on ξ cannot in general be relaxed.

Exercise 3.1.1 comes from Boucheron, Lugosi and Massart (2013), Exercise 3.1.4 from Dudley
(1978), Exercise 3.1.9 from Giné and Zinn (1983) and Exercise 3.1.10 from Einmahl and Mason
(1996).

Section 3.2 The comparison principle for Rademacher processes comes from Ledoux and Talagrand
(1989), and the proof given here follows that in Ledoux and Talagrand (1991). In their book,
they attribute the result to Talagrand. Talagrand’s inequality for the convex distance comes
from Talagrand (1995), with the more specialised concentration inequality in the cube given in
Exercise 3.2.2 in Talagrand (1988a). See also Ledoux (2001), McDiarmid (1998) and Ledoux and
Talagrand (1991). The Khinchin-Kahane inequalities for a single vector t are due to Khinchin
(1923) (see also Littlewood (1930) and Paley and Zygmund (1930)) and were extended to Banach
space–valued coefficients by Kahane (1964). With the constants ((p − 1)/(q − 1))1/2, they are
due to Bonami (1970), Gross (1975), Beckner (1975) and Borell (1979) for Banach-valued
coefficients. The best constant in the comparison between the first and second was obtained by
Szarek (1976) in the real case and Latała and Oleskiewicz (1994) in the Banach case, and Haagerup
(1982) obtained the best constants for comparison of any moments with the second. See also
de la Peña and Giné (1999) for an exposition about the Khinchin-Kahane inequalities and their
extensions.

The Sudakov-type metric entropy lower bound for Rademacher processes is due to Talagrand; see
Ledoux and Talagrand (1991). The proof presented here comes from this reference. For further work
on this subject, see this reference, Talagrand (1994a) and, more recently, Bednorz and Latala (2014).

Section 3.3 Talagrand’s inequality, with unspecified constants, was proved in Talagrand (1996) and
a weaker one-sided version of it in Talagrand (1994). Ledoux (1997) gave a simpler proof of the
upper tail in Talagrand’s inequality using the entropy method, and later Samson (2000) showed that
the lower-tail inequality is also accessible by the same method. Ledoux’s method uses tensorisation
of entropy for functions of several independent random variables, somehow allowing effective use
at the exponential level of the cancellation due to independence in order to deduce log-Sobolev-type
integrable differential inequalities for the Laplace transform of the supremum of the empirical process.
Massart (2000), Rio (2001, 2002, 2012), Bousquet (2003), Klein (2002) and Klein and Rio (2005)
have the best results about constants; in particular, Rio (2012) contains a version of the upper tail of
Talagrand’s inequality where the term 2ESn in the definition of vn is replaced by a smaller function
of ESn. The exposition here follows Bousquet (2003), Klein (2002) and Rio (2009), complemented at
some points by Boucheron, Lugosi and Massart (2013).

Hoeffding’s inequality dates back to Hoeffding (1963), and its ‘extension’ for random variables
with bounded differences is due to McDiarmid (1989). This inequality has a simple martingale proof,
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but it seemed fit, to unify the exposition, to transcribe here a proof based on the entropy method that
belongs to A. Maurer (unpublished) and that we have learned from Boucheron, Lugosi and Massart
(2013); see also Maurer (2012). The concentration inequality for self-bounding random variables was
obtained by Boucheron, Lugosi and Massart (2000). The examples on the application of the bounded
differences inequality are taken form Devroye (1991). The sub-Gaussianness of self-normalised sums
was observed in Giné and Mason (1998).

We have considered only bounded empirical processes. Regarding unbounded empirical processes,
we refer to Section 3.5.3, and further results can be found in Adamczak (2008). For a more exhaustive
account of the concentration-of-measure phenomenon, including the earlier history of the subject, see
Ledoux (2001), Massart’s (2007) lecture notes and the above-mentioned monograph by Boucheron,
Lugosi and Massart (2013).

Section 3.4 The moment inequality at the beginning of Section 3.4.1 is due to Pinelis (1994), and
the constants come from Latała (1997) and Giné, Latała and Zinn (2000). The moment inequality for
empirical processes (3.137) in the first subsection was proved by Giné, Latała and Zinn (2000) up to
an undetermined factor Ap, and Boucheron et al. (2005) obtained it with reasonable constants but by
a somewhat more specialised proof that does not depend on Talagrand’s inequality.

The idea of using Rademacher complexities to derive data-driven inequalities belongs to
Koltchinskii (2001, 2006) and to Bartlett, Boucheron and Lugosi (2002), and Theorem 3.4.5 comes
from Koltchinskii (2006). Giné and Nickl (2010a) introduced the weak variance σ 2 in this type of
inequality, and the result presented here, Theorem 3.4.3, was obtained by Lounici and Nickl (2011).

The Bernstein-type inequality for canonical U-processes of order 2 was proved in Giné, Latała
and Zinn (2000) up to an unspecified multiplicative constant using Talagrand’s inequality by way of
inequality (3.137) and ‘decoupling’. The inequality with specific constants as well as its proof come
from Houdré and Reynaud-Bouret (2003), and here we have a slight improvement resulting from the
use of a tighter empirical process bound. The analogue of this inequality for canonical U-statistics of
order larger than 2 was obtained by Adamczak (2006).

Section 3.5 Randomisation by Rademacher variables is a technique used in probability in Banach
spaces at least since Kahane (1968) and, in particular, to prove central limit theorems since Jain
and Marcus (1975). It was introduced in empirical process theory by Pollard (1981), and it was
put to intensive use, together with Gaussian and even Poisson randomisation, by Giné and Zinn
(1984). The expectation bound in Theorem 3.5.6 was proved for Vapnik-Červonenkis (VC) classes
of sets by Talagrand (1994) and for bounded VC classes of functions by Einmahl and Mason (2000),
Giné and Guillou (2001) and Giné and Koltchinskii (2006), who prove a version of Corollary 3.5.7;
see also Giné and Mason (2007) for a proof similar to the one given here and for an extension to
U-processes. The final extension to classes with square integrable envelope, Theorem 3.5.4, belongs
to Chernozhukov, Chetverikov and Kato (2014) with elements of proof from van der Vaart and
Wellner (2011). The partial converse inequality, Theorem 3.5.11, is due to Giné and Koltchinskii
(2006).

Bracketing was introduced as a condition to control empirical processes first by Blum (1955) and
DeHardt (1971) for the uniform law of large numbers and by Dudley (1978, 1984) for the central limit
theorem for classes of sets and uniformly bounded classes of functions. Bass (1984) introduced the
basic idea of truncation at each step of the chain to prove the law of the iterated logarithm under a
bracketing condition for (unbounded) partial-sum processes. Ossiander (1987) used this idea to prove
the central limit theorem for (unbounded) classes of functions, a work sharpened in some respects by
Andersen et al. (1988). The proof of the expectation inequality (Theorem 3.5.13) given here originated
in an adaptation by Arcones and Giné (1983) of these authors’ proof and in van der Vaart and Wellner’s
(1996) replacement of probability estimates with expectation estimates. The precise statement of
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Theorem 3.5.13 is due to van der Vaart and Wellner (1996) and the bracketing exponential bound
in Theorem 3.5.21 to Birgé and Massart (1993) and to van de Geer (1995, 2000). Proposition 3.5.15
and Exercise 3.5.5 come from van der Vaart and Wellner (1996); see also van de Geer (1995). The
bound on the bracketing numbers for classes of uniformly bounded monotone functions on R is due to
van de Geer (1991), following work by Birman and Solomjak (1967); the present exposition follows
van de Geer’s proof but has also benefitted from an adaptation in van der Vaart and Wellner (1996)
that includes Lp-bracketing numbers.

Section 3.6 Vapnik-Červonenkis classes of sets were introduced in the seminal paper of Vapnik and
Červonenkis (1971) in connection with their version of the Glivenko-Cantelli theorem, where the
class of half-lines is replaced by a VC class of sets. They also proved a slightly weaker version of
the basic combinatorial lemma, Theorem 3.6.2, which is due in the present form to Sauer (1972) and
Shelah (1972). The present proof using Proposition 3.6.3 follows this last author. Proposition 3.6.6
comes from the Vapnik and Červonenkis (1974) book (in Russian). The VC property for positivity
(negativity) sets of finite-dimensional spaces of functions was observed by Dudley (1978). Dudley
(1978) also obtained the basic relation between the VC property and metric entropy, which was
extended to VC subgraph classes of functions by Pollard (1982), Theorem 3.6.9. With considerably
more work, it was proved by Haussler (1995) that the exponent of ε in Theorem 3.6.9 can be improved
to −vp (instead of −wp for any w> v). We have chosen to present the simpler yet somewhat weaker
original version of Dudley and Pollard in part because it is close enough to the best for most purposes
and in part because of the beauty and transparency of the Dudley-Pollard proof. Lemma 3.6.11, the
decomposition of functions of bounded p-variation, is classical (Love and Young (1937) via Dudley
(1992)), and the VC property of translations and dilations of these functions comes from Giné and
Nickl (2009) for p 
= 1 and Nolan and Pollard (1987) for p = 1.

The metric entropy bound for convex hulls of classes of functions, Theorem 3.6.17, was obtained,
in a slightly weaker form, by Dudley (1987) and then sharpened by Ball and Pajor (1990) under addi-
tional assumptions on F and, in the present definitive version, by van der Vaart and Wellner (1996) and
Carl (1997). We follow van der Vaart and Wellner in our presentation. The result was shown by Dudley
(1987) to be best possible (up to multiplication constants). The key Lemma 3.6.16 appears in Pisier
(1981), where it is attributed to B. Maurey. Exercise 3.6.17 comes from Kolmogorov and Tikhomirov
(1961).

Section 3.7 The calculus of nonmeasurable random elements, including measurable covers and
envelopes and perfect maps, was developed, in the context of empirical processes, by Dudley
(1966, 1967a, 1985), Dudley and Philipp (1983), Hoffmann-Jørgensen (1984, 1985), and Andersen
(1985). The present definition of convergence in law for sample bounded processes is due to
Hoffmann-Jørgensen (1984), with previous contributions by Dudley (1966, 1967). The asymptotic
equi-continuity condition, which adapts Prohorov’s criterion for uniform tightness in C(S), is due
to Dudley (1978) and, with different pseudo-metrics, to Andersen and Dobrić (1987), and its
present statement and proof (Theorem 3.7.23) come from Giné and Zinn (1986). Giné and Zinn
(1990) observed and used the bounded Lipschitz distance characterisation of convergence in law
(Proposition 3.7.24) in connection with the bootstrap, and so did Dudley (1990). Theorem 3.7.25
extending Skorokhod’s theorem on almost-sure convergent versions of sequences converging in law
is due to Dudley (1985), and the proof here follows the exposition in van der Vaart and Wellner
(1996).

The law of large numbers for the empirical process indexed by classes of sets and classes of
bounded functions was obtained by Vapnik and Cěrvonenkis in their seminal 1971 paper and in its
sequel in 1981. The present version for unbounded classes was obtained by Giné and Zinn (1984),
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290 Empirical Processes

who introduced Gaussian randomisation and the use of Sudakov’s bound, whereas the submartingale
proof for the equivalence of a.s. and in probability convergence comes from Nolan and Pollard (1987)
(see also Strobl (1995)). The law of large numbers under bracketing conditions is due to Blum (1955),
deHardt (1971) and Dudley (1984) at increasing degrees of generality, whereas Mourier (1953) proved
the law of large numbers in Banach spaces.

The existence of suitable versions for P-bridges and the fact that the convex hull of a P-Donsker
class is P-Donsker are due to Dudley (1985) (the extension in Exercise 3.7.14 coming from Giné and
Nickl (2008)), that the union of P-Donsker classes is P-Donsker is due to Alexander (1987) and the
present proof of this last result is ascribed by Dudley (2014) to Arcones. The necessary integrability
condition for F to be P-Donsker comes from Giné and Zinn (1986).

The random entropy integral sufficient condition for F to be P-Donsker comes from Giné and
Zinn (1984), whereas Condition (3.278) is due to Pollard (1982), see Koltchinskii (1981) for a
precedent. The bracketing entropy central limit theorem is due to Ossiander (1987); see Dudley (1978,
1984) for earlier versions and Andersen, Giné, Ossiander and Zinn (1988) for a strictly stronger
version. The proof presented here comes from this last article, as adapted to the present situation
by Arcones and Giné (1993) and by van der Vaart and Wellner (1996). Van der Vaart and Wellner
replaced probability inequalities by expectation inequalities, which makes for a more streamlined
presentation.

The uniform in P central limit theorem comes from Giné and Zinn (1991); Sheehy and Wellner
(1992) consider uniformity on classes of probability measures P other than all of them. The same
question for the law of large numbers was answered by Dudley, Giné and Zinn (1991), but this is
not considered here. The limit theorems for pregaussian classes of functions in the second part of
Subsection 3.7.6, Theorems 3.7.52, 3.7.54 (which contains a necessary and sufficient condition for a
class of sets C to be P-Donsker) and 3.7.55, were obtained by Giné and Zinn (1984). The ‘square root
trick’ inequality, also from the same article, is based on a technique of Le Cam (1986) (see the proof
of his Lemma 6 on page 546). Such results have been useful in the theory of smoothed empirical
processes discussed in Section 5.2, see Giné and Nickl (2008)) – Nickl and Reiß (2012) and Nickl
et al. (2015) use it to prove Donsker type theorems for Lévy measures. It is also worth mentioning
that the approach to limit theorems using pregaussianness was further developed by Talagrand, who
obtained necessary and sufficient conditions in Gaussian and L1(Pn) terms for general classes of
functions F to be P-Donsker in Talagrand (1987). See also Ledoux and Talagrand (1991) and, for a
different exposition of his result, Giné and Zinn (1986). It is worth noting as well that the�C condition
in Theorem 3.7.55 is also necessary for a class of sets C to be P-Donsker (Talagrand (1988)).

The uniform Donsker property for the class of uniformly bounded functions with uniformly
bounded p-variation was proved (differently) by Dudley (1992), the characterization of the probability
measures on R for which 2N is P-Donsker was obtained by Borisov (1981) and Durst and Dudley
(1981), and the present proof comes from Giné and Zinn (1984), whereas central limit theorem for
the empirical process over the bounded Lipschitz functions comes from Giné and Zinn (1986a); see
this last article for alternative ways to prove the last two mentioned results. For more applications to
limit theorems of the results in this section, see Giné and Zinn (1984) and Rhee (1986).
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4

Function Spaces and Approximation Theory

This chapter presents core materials from the theory of function spaces that will serve
as building blocks for the statistical models considered subsequently in this book. Some
classical materials from functional analysis, such as Sobolev spaces and approximate
identities based on convolution kernels or ortho-normal decompositions of L2, are reviewed.
A particular emphasis is placed on wavelet theory, including the complete construction
of ortho-normal wavelet bases with compact support in time or frequency domain. The
main aspects of the theory of Besov spaces as a unifying scale of function spaces are
developed. As a consequence, sharp results on approximation of smooth functions from
finite-dimensional function spaces and related metric entropy results are obtained. The main
presentation is for functions of one variable, defined on R or on a subinterval of it, but it is
shown how the techniques generalise without difficulty to various multivariate settings. The
proofs rely only on basic real and Fourier analysis techniques, the most important of which
are briefly reviewed at the beginning of the chapter.

4.1 Definitions and Basic Approximation Theory

4.1.1 Notation and Preliminaries

We recall that for 1 ≤ p<∞ and A a Borel-measurable subset of R, the space

Lp(A)=
{

f : A →R :
∫

A
| f (x)|pdx<∞

}
consists of p-fold Lebesgue-integrable functions and is normed by

‖ f ‖p := ‖ f ‖Lp(A) =
(∫

A
| f (x)|pdx

)1/p

.

We write Lp only when no confusion about A may arise, and �p for the usual sequence
spaces when A ⊂ Z is equipped with counting measure dx. The Hilbert space L2(A) carries
the natural inner product

〈 f ,g〉 =
∫

A
f (x)g(x)dx.

We shall say that a function f : R �→ R is locally integrable if it satisfies
∫

B | f (x)|dx<∞
for every bounded (Borel) subset B ⊂ R. The symbol L∞(A), L∞ ≡ L∞(R), denotes the
space of bounded measurable functions on A, normed by the usual supremum norm ‖ · ‖∞,
C(A) denotes the subspace of continuous functions and Cu(A) the subspace of uniformly
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continuous functions. When A is a half-open bounded interval with endpoints a,b, then
Cper(A) denotes the space of continuous periodic functions on A, f (a)= f (b). Throughout
δx denotes the Dirac-δ point probability measure at x, whereas δkl denotes the Kronecker-δ
(i.e., δkl = 1 when k = l and 0 otherwise).

Regularity properties of a function f may be measured through the size in Lp of the
derivatives of f . In the Lp-setting, it is natural to consider weakly differentiable functions.
For A⊆R an interval, a function f ∈ Lp(A) is said to be weakly differentiable if there exists
a locally integrable function D f – the weak derivative of f – such that∫

A
f (u)φ′(u)du =−

∫
A

D f (u)φ(u)du, (4.1)

for every infinitely differentiable function φ of compact support in the interior of A. It
follows from integration by parts that any classically differentiable function f on A – with
derivatives understood to be one sided if A includes its endpoints – has a weak derivative that
coincides almost everywhere with the classical derivative. To distinguish the two concepts
when necessary, we shall write Dα for the weak differential operator of order α and f (α)

for the classical derivative of f of order α. If the weak derivative D f is almost everywhere
equal to a continuous function f (1), then we always identify D f with f (1), and f is then
classically differentiable by the fundamental theorem of calculus. One thus defines the
Sobolev spaces of weakly differentiable functions on A: for 1 ≤ p <∞, the Lp-Sobolev
space of order m ∈N is defined as

Hm
p (A)=

{
f ∈ Lp : Dj f ∈ Lp(A) ∀j = 1, . . . ,m : ‖ f ‖Hm

p (A) ≡ ‖ f ‖p +‖Dm f ‖p <∞}
,

and we shall suppress A when no confusion may arise in the notation. One further defines,
for m ∈N,

Cm(A)= {
f ∈ Cu(A) : f (j) ∈ Cu(A) ∀j = 1, . . . ,m : ‖ f ‖Cm(A) ≡ ‖ f ‖∞+‖ f (m)‖∞ <∞}

,

where again Cm ≡ Cm(R). We further define C∞(A) to be the space of infinitely
differentiable functions defined on A, with derivatives defined to be one sided at the
endpoints if A is not open. The subspace C∞

0 (A) consists of all φ ∈ C∞(A) that have
compact support in the interior of A. The Schwartz space S(R) consists of all functions
f ∈ C∞(R) such that all derivatives f (α),α ≥ 0, exist and decay at ±∞ faster than any
inverse polynomial.

Much of the theory in this chapter will be based on exploiting the symmetry of the group
action of translation on R via the Fourier transform. To prepare this, we review here some
standard facts on convolutions and Fourier transforms that can be found in any real analysis
book (see the notes at the end of this chapter). All the preceding spaces make sense for
complex-valued functions, too, and unless necessary, we shall not distinguish in the notation
whether the functions involved are real or complex valued.

For two measurable functions f ,g defined on R, their convolution is

f ∗ g(x)≡
∫
R

f (x− y)g(y)dy, x ∈R,

whenever the integral exists. If f ∈Lp(R),g∈Lq(R)with 1≤ p,q≤∞ such that 1/p+1/q=
1, then f ∗ g defines an element of C(R), and Hölder’s inequality implies that

‖ f ∗ g‖∞ ≤ ‖ f ‖p ‖g‖q . (4.2)
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4.1 Definitions and Basic Approximation Theory 293

Furthermore, if f ∈ Lp(R),g ∈ L1(R),1 ≤ p ≤ ∞, then the function f ∗ g is well defined
a.e., and

‖ f ∗ g‖p ≤ ‖ f ‖p ‖g‖1 , (4.3)

in view of Minkowski’s inequality for integrals. In the case where f ∈C(R), f ∗g is in fact
defined everywhere and itself contained in C(R). We can also define

f ∗μ(x)=
∫
R

f (x− y)dμ(y), x ∈R, (4.4)

for μ ∈ M(R), where M(R) denotes the spaces of finite signed measures on R, and one has
likewise ‖ f ∗μ‖p ≤ ‖ f ‖p|μ|(R), where |μ| is the total variation measure of μ.

For a function f ∈ L1(R), we define the Fourier transform

F [ f ](u)≡ f̂ (u)=
∫
R

f (x)e−iuxdx, u ∈R.

If f ∈ L1(R) is such that f̂ ∈ L1(R), then the Fourier inversion theorem states that

F−1( f̂ )≡ 1

2π

∫
R

eiu· f̂ (u)du = f a.e., (4.5)

and f can be modified on a set of Lebesgue measure zero to equal a continuous function for
which the inversion formula holds everywhere. One immediately has

‖ f̂ ‖∞ ≤ ‖ f ‖1, ‖ f ‖∞ ≤ 1

2π
‖ f̂ ‖1,

and the (inverse) Fourier transform is injective from L1 to L∞. Moreover, if f ∈ L1 ∩ L2,
Plancherel’s theorem states that

‖ f ‖2 = 1√
2π

‖ f̂ ‖2, 〈 f ,g〉 = 1

2π
〈 f̂ , ĝ〉,

and
√

2πF extends continuously to an isometry from L2 to L2. Some further basic properties
of the Fourier transform are the following:

F [ f (·− k)](u)= e−iku f̂ (u), (4.6)

F [ f (a·)](u)= a−1 f̂ (u/a), a> 0, (4.7)

F [ f ∗ g](u)= f̂ (u)ĝ(u), F [ f ∗ f (−·)](u)= | f̂ (u)|2, (4.8)

and finally, for every N ∈N,

dN

(du)N
f̂ (u)=

∫
R

f (x)(−ix)Ne−ixudx, (iu)N f̂ (u)=F [DN f ](u) (4.9)

whenever | f | and | f̂ | integrate | · |N, respectively. Conclude in particular that the Fourier
transform F maps the Schwartz space S(R) into itself.

If instead of R the group is (0,2π] with addition modulo 2π , we have similar results. In
particular, any 2π-periodic f ∈ L2((0,2π]) decomposes into its Fourier series

f =
∑
k∈Z

cke
ik·, in L2((0,2π]), ck ≡ ck( f )= 1

2π

∫ 2π

0
f (x)e−ikxdx, {ck} ∈ �2; (4.10)
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in fact, f �→ {cl} gives a Hilbert space isometry between L2((0,2π]) and �2. If, further,
{ck} ∈ �1, then the Fourier series of f converges a.e. on (0,2π] (pointwise if f is continuous).

Fourier inversion and Fourier series can be linked to each other by the Poisson summation
formula: if f ∈ L1(R), then the periodised sum

S(x)=
∑
l∈Z

f (x+ 2π l), x ∈ (0,2π],

converges a.e., belongs to L1((0,2π]) and the Fourier coefficients of S are given by

ck(S)= 1

2π
f̂ (k)=F−1[ f ](−k). (4.11)

More generally, for a > 0, the series
∑

l f (· + la) converges in L1((0,a]) and has Fourier
coefficients

a−1

∫ a

0

∑
l

f (x+ la)e−ixk2π/adx = a−1 f̂ (2πk/a). (4.12)

We finally introduce generalised functions. Recall the space S = S(R) of infinitely
differentiable functions on R such that all derivatives f (α),α ≥ 0, exist and decay at ±∞
faster than any inverse polynomial. We define a countable family of seminorms on S(R) by

‖ f ‖m,r = max
α≤r

‖(1+| · |2)m f (α)‖∞, m,r ∈N∪{0};
these seminorms provide a metrisable locally convex topology on S(R); in fact, S(R) is
complete, and the set C∞

0 (R) is dense in S(R) for this topology. Henceforth when we speak
of S(R), we will always endow it with this topology.

We define S∗ ≡ S(R)∗ to be the topological dual space of S(R), that is, all continuous
linear forms on S(R). The space S(R)∗ is known as the space of tempered distributions, or
Schwartz distributions, equipped with the weak topology: Tn → T in S∗ if Tn(φ)→ T(φ) for
every φ ∈ S . Weak differentiation defined through (4.1) is then a continuous operation from
S∗ to S∗. If μ is a finite measure, then the action of μ on S(R) via integration gives rise to
an element of S(R)∗ because ∣∣∣∣∫

R

f dμ

∣∣∣∣≤ |μ|(R)|‖ f ‖0,0.

Moreover, any signed measure of at most polynomial growth at ±∞, that is, such that
|μ|(x : |x|<R)� (1+|R|2)l for all R> 0, some l∈N, defines an element of S(R)∗. Likewise,
one shows that any f ∈ Lp acting on S(R) by integration φ �→ ∫

f φ defines an element of
S∗(R).

As remarked earlier, the Fourier transform maps S(R) onto S(R). We thus can define the
Fourier transform of T ∈ S∗ as the element FT of S∗ whose action on S is given by

φ �→FT(φ)= T(φ̂), (4.13)

which, for T = f ∈ L1, returns the usual definition since, by Fubini’s theorem,∫
R

f̂ (u)φ(u)dx =
∫
R

∫
R

e−iux f (x)φ(u)dudx =
∫
R

f (u)φ̂(u)du.

In particular, the Fourier transform maps S∗ continuously onto itself, and F−1[FT] = T
in S∗.
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We can by the same principles define periodic Schwartz distributions. For A any interval
(0,a], we let C∞

per(A) denote the space of infinitely differentiable periodic real-valued
functions on A and let D∗ =D∗(A) denote its topological dual space. The preceding duality
arguments can be carried through in the same way; in particular, the Fourier coefficients
〈 f ,ek〉 of any f ∈D∗ with respect to suitably scaled trigonometric polynomials ek are well
defined, and the Fourier series

∑
k〈 f ,ek〉ek converges in D∗.

4.1.2 Approximate Identities

Convolution with Kernels

For f : R→R, we can define the convolution

Kh ∗ f (x)=
∫
R

Kh(x− y) f (y)dy =
∫
R

f (x− y)Kh(y)dy = f ∗Kh(x) (4.14)

of f with a suitably ‘localised’ kernel function

Kh(x)= 1

h
K
( x

h

)
, h> 0,x ∈R,

where K is typically chosen to be bounded and integrable and in particular satisfies∫
R

K(x)dx = 1. The parameter h governs the degree of ‘localisation’: if we decrease h, then
Kh is more concentrated near zero. For instance, if K = 1[−1/2,1/2], then K0.5 = 2 · 1[−1/4,1/4]
and K0.1 = 10 · 1[−1/20,1/20], so as h → 0 the function Kh looks more and more like a point
mass δ0 at 0. Intuitively, then, convolution with Kh should approximately behave as

f ∗Kh ∼ f ∗ δ0 =
∫
R

f (x− y)dδ0(y)= f (x),

which is why Kh can be called an approximate identity (convolution with δ0 being an identity
operator). A simple and basic result that formalises these ideas is as follows.

Proposition 4.1.1 Let f : R → R be a measurable function, and let K ∈ L1 satisfy∫
R

K(x)dx = 1.

(i) If f is bounded on R and continuous at x ∈ R, then Kh ∗ f (x) converges to f (x) as
h → 0.

(ii) If f is bounded and uniformly continuous on R, then ‖Kh ∗ f − f ‖∞ → 0 as h → 0.
(iii) If f ∈ Lp for some 1 ≤ p<∞, then ‖Kh ∗ f − f ‖p → 0 as h → 0.

Proof By (4.3), the integral Kh ∗ f defines an element of Lp if f ∈ Lp. We have from the
substitution (x− y)/h �→ u with derivative |du/dy| = 1/h, and since K integrates to 1,

Kh ∗ f (x)− f (x)=
∫
R

1

h
K

(
x− y

h

)
f (y)dy− f (x)

=
∫
R

K(u) f (x− uh)du− f (x)

=
∫
R

K(u)( f (x− uh)− f (x))du.
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For (i), by continuity, f (x− uh)− f (x)→ 0 as h → 0 for every u, and since f is bounded,
the last quantity in the last display converges to zero by the dominated convergence theorem.
For (ii), let ε > 0 be given. By integrability of K, outside a fixed interval [−A,A] the quantity
in the last display is bounded by 2‖ f ‖∞

∫
[−A,A]c |K(u)|du< ε/2, and for |u| ≤ A and h small

enough, we can use uniform continuity of f to obtain the same bound ε/2, which implies
the result by adding both bounds. For (iii), by Minkowski’s inequality for integrals,∥∥∥∥∫

R

K(u)( f (·− uh)− f (·))du

∥∥∥∥
p

≤
∫
R

|K(u)|‖ f (·− uh)− f ‖pdu.

By continuity of translation in Lp, we see that ‖ f (· − uh)− f ‖p → 0 as h → 0 for every u,
and since ‖ f (· − uh)− f ‖p ≤ 2‖ f ‖p by invariance of translation of Lebesgue measure,
the quantity in the last display converges to zero again by the dominated convergence
theorem.

We see that Kh ∗ (·) acts asymptotically like δ0 on any Lp-space with 1 ≤ p <∞ and
on the space of bounded uniformly continuous functions equipped with the ‖ · ‖∞-norm. It
also reconstructs a function locally at any continuity point. Note that the condition that f
be bounded in Proposition 4.1.1 can be relaxed if the integral defining Kh ∗ f (x) converges
locally near x.

Orthogonal Series and L2-Projection Kernels

LetL⊂Z be an index set. A family of functions {el : l∈L}⊂L2(A) is called an ortho-normal
system if 〈ek,el〉 = 0 whenever k 
= l and 〈el,el〉 = ‖el‖2

2 = 1 otherwise. The family {el : l∈L}
is further called complete if the linear span{∑

l∈L
clel : cl ∈R

}
is norm-dense in L2(A). Any complete ortho-normal system is called an ortho-normal basis
of L2(A). By completeness of the system, we conclude from basic Hilbert space theory that
an arbitrary f ∈ L2(A) can be decomposed into the series

f =
∑
l∈L

〈 f ,el〉el,

with convergence in L2(A) and where

‖ f ‖2
2 =

∑
l∈L

|〈 f ,el〉|2, 〈 f ,g〉 =
∑

k

〈 f ,ek〉〈g,ek〉, (4.15)

known as Parseval’s identity.
We thus can reconstruct an arbitrary function f ∈ L2(A) in terms of the fixed family

of basis functions el and the coefficients 〈 f ,el〉. This constitutes an alternative to
approximating functions f by convolutions. If we denote by V the closed subspace of L2(A)
generated by the linear span of {el : l ∈ L′} for some subset L′ ⊂ L, then the ortho-normal
projection of any f ∈ L2(A) onto V is given by

πV( f )=
∑
l∈L′

〈 f ,el〉el,
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with convergence in L2(A). Standard Hilbert space theory implies that πV( f ) is the
best L2-approximation of f from the subspace V. Moreover, by definition of the L2(A)
inner product

πV( f )(x)=
∑
l∈L′

〈 f ,el〉el(x)=
∑
l∈L′

∫
A

f (y)el(y)el(x)dy =
∫

A

∑
l∈L′

el(x)el(y) f (y)dy

under suitable conditions that allow summation and integration to be interchanged. If we
define the projection kernel

KV(x,y)=
∑
l∈L′

el(x)el(y), (4.16)

then

πV( f )(x)=
∫

A
KV(x,y) f (y)dy, (4.17)

a representation that resembles (4.14) with the convolution kernel Kh(x,y) = Kh(x − y)
replaced by the general kernel function KV(x,y), not necessarily of translation type.

We shall now discuss some classical examples of ortho-normal bases of L2, including the
trigonometric system and some basic historical examples of wavelet bases, which will be
introduced in full generality later.

The Trigonometric Basis

If A= (0,1], then the trigonometric basis of L2((0,1]) consists of the complex trigonometric
polynomials

{el = e2π il· = cos(2π l·)+ isin(2π l·) : l ∈ Z}.
For intervals A = (0,a], we only modify the phase and take el = a−1/2e(2π/a)il; for a = 2π
we obtain the basis used in (4.10); and for intervals (a,b), we suitably translate the el from
(0,b− a) to (a,b). These functions form an ortho-normal system in L2(A) because

〈el,ek〉 =
∫ 1

0
el(x)ek(x)dx =

∫ 1

0
e2π ilxe−2π ikx =

∫ 1

0
e2π i(l−k)xdx = δlk

equals 1 for l = k and 0 otherwise. The trigonometric polynomials are further dense in
Cper(A) for ‖ · ‖∞ by the Stone-Weierstrass theorem, and Cper(A) is dense in L2(A) by
standard approximation arguments, so the {el}l∈Z indeed form an ortho-normal basis of
L2(A). Thus, any f ∈ L2(A) can be decomposed into its Fourier series

f =
∑
l∈Z

〈 f ,el〉el,

with convergence in L2(A). The partial sums can be represented as

SN( f )(x)=
∑
|l|≤N

〈 f ,el〉el(x)=
∫ 1

0
DN(x− y) f (y)dy = DN ∗ f (x),

where

DN(x)=
∑
|l|≤N

e2π ilx = sin((2N+ 1)πx)

sin(πx)
(4.18)
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is the Dirichlet kernel. We see that in this particular case the L2-projection kernel is in fact
of convolution type. However, the sequence DN is, in contrast to Kh = h−1K(·/h), with
K ∈ L1, not bounded uniformly in L1(A); some simple calculus shows that ‖DN‖1 is of
greater order of magnitude than logN as N→∞. Thus, a proof along the lines of the one of
Proposition 4.1.1 cannot be used to study SN( f )− f . Indeed, convergence of SN( f )→ f in
Lp(A),p 
= 2, or in Cu(A) does not hold in general (see Exercise 4.1.2 for some facts). One
way around this problem is based on the Fejér kernel

Fm = 1

m+ 1

m∑
k=0

Dk, (4.19)

with corresponding Fejér (or Cesàro) sums

f ∗Fm = 1

m+ 1

m∑
k=0

Sk( f ),

which can be shown to converge uniformly to f ∈ Cper((0,1]) (see Exercise 4.1.3). This
averaging over partial Fourier sums, however, has no simple interpretation in terms of
ortho-normal bases.

The Haar Basis

The drawbacks of the Fourier basis in Lp,p 
= 2, motivated the first construction of an
ortho-normal basis of L2 for which an analogue of Proposition 4.1.1 can be proved. We
partition R into dyadic intervals (k/2j,(k+ 1)/2j], where j ∈ N∪ {0}, k ∈ Z. For φ = 1(0,1],
the normalised indicator functions

{φjk ≡ 2j/2φ(2j(·)− k),k ∈ Z}, j ∈N∪{0},
form an ortho-normal system in L2 simply because they all have disjoint support. The L2

projection kernel equals

Kj(x,y)= 2jK(2jx,2jy)=
∑
k∈Z

2jφ(2jx− k)φ(2jy− k)=
∑
k∈Z
φjk(x)φjk(y), (4.20)

and the best L2-approximation of f in L2 by a function piecewise constant on the dyadic
intervals (k/2j,(k+ 1)/2j] is given by Kj( f )= ∫

R
Kj(x,y) f (y)dy, which is of a similar form

to the convolution approximation from (4.14) if we convert 2−j to h, but with a kernel

K(x,y)=
∑
k∈Z
φ(x− k)φ(y− k),

which is now not of convolution type. It still has some comparable approximation properties,
however.

Proposition 4.1.2 Let f :R→R be a measurable function, and let K be the Haar projection
kernel from (4.20).

(i) If f is bounded on R and continuous at x ∈ R, then Kj( f )(x) converges to f (x) as
j →∞.
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4.1 Definitions and Basic Approximation Theory 299

(ii) If f is bounded and uniformly continuous on R, then ‖Kj( f )− f ‖∞ → 0 as j →∞.
(iii) If f ∈ Lp for some 1 ≤ p<∞, then ‖Kj( f )− f ‖p → 0 as j →∞.

Proof From the partition properties, we clearly have∫
R

K(x,y)dy =
∑
k∈Z

1(0,1](x− k)= 1 ∀x ∈R.

Moreover,

sup
x∈R

|K(x,x− u)| ≤ 1[−1,1](u)

because φ is supported in [0,1] and bounded by 1. We substitute 2jy �→ 2jx − u with
derivative |du/dy| = 2j to obtain

|Kj( f )(x)− f (x)| =
∣∣∣∣∫

R

2jK(2jx,2jy) f (y)dy− f (x)

∣∣∣∣
=
∣∣∣∣∫

R

K(2jx,2jx− u) f (x− u2−j)du− f (x)

∣∣∣∣
=
∣∣∣∣∫

R

K(2jx,2jx− u)( f (x− u2−j)− f (x))du

∣∣∣∣
≤
∫ 1

−1
| f (x− u2−j)− f (x)|du. (4.21)

The rest of the proof is as in the proof of Proposition 4.1.1, replacing h → 0 by 2−j → 0 for
j →∞ and |K(u)| by 1[−1,1](u) everywhere.

Having established the preceding, we can telescope the projections

Kj( f )= K0( f )+
j−1∑
l=0

(Kl+1( f )−Kl( f )), (4.22)

and an elementary computation shows that

Kl+1( f )−Kl( f )=
∑
k∈Z

〈ψlk, f 〉ψlk,

where ψ = 1[0,1/2] − 1(1/2,1], ψlk(x) = 2l/2ψ(2lx − k). We see that the ψlk and φ(· − k)
form an ortho-normal system, and since Kj( f )→ f in Lp for any f ∈ Lp,1 ≤ p <∞, by
Proposition 4.1.2, we can take Lp-limits in (4.22) to conclude, writing φk = φ(·− k), that

f =
∑
k∈Z

〈φk, f 〉φk +
∞∑
l=0

∑
k∈Z

〈ψlk, f 〉ψlk,

with convergence in Lp,1 ≤ p < ∞, and with uniform convergence if f ∈ Cu(R). In
particular, the family

{φk,ψlk : k ∈ Z, l ∈N∪{0}}
forms an ortho-normal basis of L2 known as the Haar basis.
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300 Function Spaces and Approximation Theory

The Shannon Basis

Consider a function f ∈ Vπ , where Vπ is the space of continuous functions f ∈ L2,
which have (distributional) Fourier transform f̂ supported in [−π ,π ]. One also says that
f is a band-limited function (with band limit π ). As discussed earlier, the functions
{(2π)−1/2eik·}k∈Z form an ortho-normal system in L2([−π ,π ]), and we thus can represent
f̂ by its Fourier series

f̂ =
∑
k∈Z

cke
ik(.), in L2([−π ,π ]),

with Fourier coefficients given by

ck = ck( f̂ )= 1

2π

∫ π

−π
e−iku f̂ (u)du = f (−k),

the last identity following from (4.5) if f ∈ L1. In this case, by Fourier inversion, for every
x ∈R \Z, and if {ck : k ∈ Z} ∈ �1,

f (x)= 1

2π

∫ ∞

−∞
eiux f̂ (u)du

= 1

2π

∫ π

−π
eiux

∑
k∈Z

cke
ikudu

= 1

2π

∑
k∈Z

ck

∫ π

−π
eiu(k+x)du

=
∑
k∈Z

f (k)
sinπ(x− k)

π(x− k)
,

and this argument extends to all f ∈ Vπ by standard approximation arguments (using that∑
l |cl|2 = ‖ f ‖2

2 <∞). Conclude that such f can be exactly reconstructed by its ‘sampled’
values f (k),k ∈ Z. This result is known as the Shannon sampling theorem. Setting φ(x)=
sin(πx)/(πx), we have φ̂ = 1[−π ,π ],φ ∈ Vπ , so, in particular, by Plancherel’s theorem and
(4.6), the integer translates of the function φ are ortho-normal in L2, and the family {φk =
φ(·− k) : k ∈ Z} is an ortho-normal basis for the space Vπ . Since

φ̂(2j·)= 2−j1[−2jπ ,2jπ ],

we see, moreover, that the functions {φjk = 2j/2φ(2j(·)−k) : k∈Z} span V2jπ . The projection
of f ∈ L2(R) onto V2jπ is thus

�V2jπ
( f )=

∑
k

〈φjk, f 〉φjk.

As j → ∞, the projections �V2jπ
( f ) converge to f in L2 because they are the best

approximations in L2 from the spaces (V2jπ)j≥0 which are dense in L2(R) (noting that
‖ f̂ − f̂ 1[−2jπ ,2jπ ]‖2 → 0 as j → ∞, so F−1( f̂ 1[−2jπ ,2jπ ]) converges to f by Plancherel’s
theorem). As for the Haar basis, we can telescope these projections: set

ψ =F−1[1[−2π ,−π ] + 1[π ,2π ]];
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then the functions {ψlk = 2l/2ψ(2l ·−k) : k ∈ Z} form an ortho-normal basis for Wl = V2lπ .
V2l−1π . This is proved by a similar sampling formula as earlier (with [−π ,π ] enlarged to
[−2π ,2π ], noting that ψ = 2φ(2·)−φ and that φ vanishes at the integers, so one can ignore
half-integers in the sampling formula). We thus can expand every f ∈ L2(R) into the series

f =
∑

k

〈φk, f 〉φk +
∞∑
l=0

∑
k

〈ψlk, f 〉ψlk,

and the ortho-normal ‘Shannon’ basis

{φk,ψlk : k ∈ Z, l ∈N∪{0}}
of L2 can be regarded as the frequency domain analogue of the Haar basis.

4.1.3 Approximation in Sobolev Spaces by General Integral Operators

We now consider the general framework of integral operators

f �→ Kh( f )=
∫
R

Kh(·,y) f (y)dy = 1

h

∫
R

K
( ·

h
,
y

h

)
f (y)dy, h> 0, (4.23)

under general conditions on the kernel K :R×R→R. Such operators are sometimes called
Calderon-Zygmund operators in the theory of singular integrals. They accommodate both
convolution and projection kernels, with the obvious notational conversion h = 2−j.

The following proposition is proved exactly in the same way as Proposition 4.1.2:

Proposition 4.1.3 Let f : R → R be a measurable function, let Kh be as in (4.23) and
suppose that

∫
R

supv∈R |K(v,v−u)|du<∞,
∫
R

K(x,y)dy= 1 for every x∈R. Then we have

(i) If f is bounded on R and continuous at x ∈ R, then Kh( f )(x) converges to f (x) as
h → 0.

(ii) If f is bounded and uniformly continuous on R, then ‖Kh( f )− f ‖∞ → 0 as h → 0.
(iii) If f ∈ Lp for some 1 ≤ p<∞, then ‖Kh( f )− f ‖p → 0 as h → 0.

To investigate further approximation properties, we shall impose the following condition.

Condition 4.1.4 Let K be a measurable function K(x,y) : R×R→ R. For N ∈ N, assume
that

(M): cN(K)≡
∫
R

supv∈R |K(v,v− u)||u|Ndu<∞.
(P): For every v ∈R and k = 1, . . . ,N− 1,∫

R

K(v,v+ u)du = 1 and
∫
R

K(v,v+ u)ukdu = 0.

We wish to study quantitative approximation properties of Kh( f ) for functions f ∈ Lp.
For spaces of Lp-differentiable functions, we have the following basic approximation
result.

Proposition 4.1.5 Let K be a kernel that satisfies Condition 4.1.4 for some N∈N, let Kh( f )
be as in (4.23) and let

c(m,K)= cm(K)
∫ 1

0

(1− t)m−1

(m− 1)! dt,
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for any integer m ≤ N.

(i) If f ∈ Hm
p (R),1 ≤ p<∞, then

‖Kh( f )− f ‖p ≤ c(m,K)‖Dm f ‖ph
m,

(ii) If f ∈ Cm(R), then

‖Kh( f )− f ‖∞ ≤ c(m,K)‖ f (m)‖∞hm.

Proof By Taylor’s theorem (for part (i), cf. Exercise 4.1.1), for any z,x,

f (z)− f (x)=
m−1∑
k=1

Dk f (x)

k! (z− x)k + rm f (z,x),

with the convention r1 f (z,x)= f (z)− f (x) and otherwise with remainder

rm f (z,x)=
∫ 1

0
(z− x)m

(1− t)m−1

(m− 1)! Dm f (x+ t(z− x))dt.

Using the substitution y/h �→ (x/h)− u with derivative |dy/du| = h, the Taylor expansion
with z = x− uh and Condition 4.1.4, we thus may write

Kh( f )(x)− f (x)=
∫

1

h
K
( x

h
,
y

h

)
f (y)dy− f (x)

=
∫

K
( x

h
,
x

h
− u

)
f (x− uh)du− f (x)

=
∫

K
( x

h
,
x

h
− u

)
( f (x− uh)− f (x))du

=
∫

K
( x

h
,
x

h
− u

) m−1∑
k=1

Dk f (x)

k! (−uh)kdu+
∫

K
( x

h
,
x

h
− u

)
rm(x− uh,x)du

=
∫ ∫ 1

0
K
( x

h
,
x

h
− u

)
(−u)mhm (1− t)m−1

(m− 1)! Dm f (x+ tuh)dtdu.

Now, for 1 ≤ p <∞, by Minkowski’s inequality for integrals, and directly for p =∞, we
have

‖Kh( f )− f ‖p ≤ hm

∫
sup

v
|K(v,v− u)||u|mdu

∫ 1

0

(1− t)m−1

(m− 1)! dt ‖Dm f ‖p,

which completes the proof.

The basic example for an operator satisfying Condition 4.1.4 is to take a translation
kernel K(x,y) = K(x − y), where K ∈ L1(R) integrates to 1. If K is also symmetric, then∫
R

K(u)udu = 0, that is, Condition 4.1.4 (P) with N = 2, and Condition 4.1.4 (M) reduces
to a standard moment condition on K satisfied, for instance, for any compactly supported
function K. Higher-order kernels of compact support exist for any N ∈ N, as the following
result shows.
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Proposition 4.1.6 For every N ∈N there exists a bounded measurable function K(N) : R→
R supported in [−1,1] such that

∫
R

K(N)(u)du = 1 and
∫
R

K(N)(u)ukdu = 0, for every k =
1, . . . ,N− 1.

Proof Let {φm}m∈N be the ortho-normal system in L2([−1,1]) of Legendre polynomials
defined by

φ0(x) := 2−1/2, φm(x)=
√

2m+ 1

2

1

2mm!
dm

dxm
[(x2 − 1)m],

for x ∈ [−1,1] and m ∈N. Define

K(N)(u)=
N−1∑
m=0

φm(0)φm(u)1{|u| ≤ 1},

which is bounded and supported in [−1,1]. The {φq}q≤k form a basis for the space of
polynomials of degree at most k, so we can find coefficients bqk, q = 1, . . . ,k, such that
uk =∑k

q=0 bqkφq(u)=: L(u). Therefore, for k ≤ N− 1, we conclude, using ortho-normality
of the φm in L2([−1,1]), that∫

R

K(N)(u)ukdu =
∫ 1

−1

k∑
q=0

bqkφq(u)
N−1∑
m=0

φm(0)φm(u)du

=
k∑

q=0

N−1∑
m=0

bqkφm(0)
∫ 1

−1
φq(u)φm(u)du

=
k∑

q=0

bqkφq(0)= L(0),

which equals 1 if k = 0 and 0 otherwise and completes the proof.

For projection-type kernels, such results are not necessarily as simple. The proof of
Proposition 4.1.2 implies the following:

Proposition 4.1.7 The Haar kernel K(x,y) from (4.20) satisfies Condition 4.1.4 with N= 0.

For N ≥ 1, the Haar kernel does not satisfy Condition 4.1.4: one sees immediately that∫
R

K(1,1+ u)udu 
= 0.

However, if φ is the Shannon-basis function so that F [φ] = 1[−π ,π ], then from the point of
view of Schwartz distributions, we can formally write∫

R

xkφ(x)dx = (−i)−kDkF [φ](0)= 0 ∀k ∈N,

but this does not make sense in the Lp setting because φ /∈ L1. We would like to construct
ortho-normal bases of L2 that are in a sense ‘interpolating’ between the Haar and Shannon
bases, and this is what leads to wavelet theory, as we shall see later.
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4.1.4 Littlewood-Paley Decomposition

The main idea behind the Haar and Shannon bases of L2 was a partition of unity either in the
time or the frequency domain. The functions used in the partition are, however, indicators of
intervals and thus not smooth, which poses a difficulty either in approximating very regular
functions well or in approximating functions in norms other than L2. The main idea behind
Littlewood-Paley theory is to construct partitions of unity that consist of smooth functions,
relaxing the requirement of orthogonality of the functions involved.

Take φ ∈ S(R) to be any symmetric function such that

φ̂ ∈ C∞
0 (R), supp(φ̂) ∈ [−1,1], φ̂ = 1 on

[
−3

4
,
3

4

]
. (4.24)

Define, moreover,

ψ̂ = φ̂
( ·

2

)
− φ̂ equivalent to ψ = 2φ(2·)−φ

so that ψ̂ is supported in {2−1 ≤ |u| ≤ 2}. If we set ψ2−j = 2jψ(2j·), then ψ̂2−j = ψ̂(·/2j), and
by a telescoping sum, for every u ∈R,

φ̂(u)+
∞∑
j=0

ψ̂(u/2j)= lim
J→∞

⎛⎝φ̂(u)+ J−1∑
j=0

ψ̂(u/2j)

⎞⎠= lim
J
φ̂(u/2J)= 1. (4.25)

Note that for fixed u, the preceding sums are all finite. Thus, for f with Fourier transform
f̂ (u) and every u ∈R,

f̂ (u)= f̂ (u)φ̂(u)+
∞∑
j=0

ψ̂(u/2j) f̂ (u), (4.26)

which by (4.8) is formally the same as

f = f ∗φ+
∞∑
j=0

f ∗ψ2−j = lim
J→∞

f ∗φ2−J , (4.27)

where φ2−J = 2Jφ(2J·). Since φ̂(0)= 1, we see that
∫
φ= 1, and since φ ∈S(R), we conclude

from Proposition 4.1.1 that the last limit holds in Lp whenever f ∈ Lp ( f ∈ Cu(R) when
p = ∞). Moreover,

∫
R

xkφ(x)dx equals zero for every k ∈ N because DkF [φ](0) does, so
Proposition 4.1.5 applies for every N with h= 2−j. We have thus succeeded in decomposing
f into a sum of infinitely many band-limited functions, known as the Littlewood-Paley
decomposition of f . It shares in some sense the good properties of both the Haar and
Shannon bases but itself does not constitute an ortho-normal basis of L2.

Exercises

4.1.1 Let f be a function that has N weak derivatives Dj f , j= 1, . . . ,N, on an interval I⊂R containing
x. Prove that f can be redefined on a set of measure zero such that the following properties hold:
if N = 1 and D f is integrable on I, then, for y ≥ x,y ∈ I,

f (y)− f (x)=
∫ y

x
D f (t)dt;
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in particular, f is continuous on I. Moreover, for N ≥ 1, we have Taylor’s formula

f (y)= f (x)+
N−1∑
k=1

Dk f (x)

k! (y− x)k +
∫ 1

0
(y− x)N

(1− t)N−1

(N− 1)! DN f (x+ t(y− x))dt.

Hint: If f has a weak derivative D f , then use

f (y)= f (x)+
∫ 1

0
D f (x+ t(y− x))(y− x)dt

recursively.
4.1.2 For Dm the Dirichlet kernel, let

Sm( f )(x)= f ∗Dm(x)

be the mth Fourier partial sum of f ∈ Cper((0,1]), and let x ∈ (0,1] be arbitrary. Prove that
there exists f ∈ Cper((0,1]) such that Sm( f )(x) does not converge. Prove that in fact the set of
f ∈ Cper((0,1]) such that Sm( f )(x) converges is nowhere dense for the uniform-norm topology
of Cper((0,1]). Hint: Prove first that ‖Dm‖1 → ∞ as m → ∞. Then use the fact that f �→
Sm( f )(x) for x fixed is a continuous linear form on Cper((0,1]) of operator (dual) norm ‖Dm‖1,
and invoke the uniform boundedness principle (Banach-Steinhaus theorem) from functional
analysis to deduce a contradiction.

4.1.3 Let

Fm(x)= 1

m+ 1

m∑
k=0

Dk(x)

be the Fejér kernel. Show that for every f ∈ Cper((0,1]), ‖ f ∗ Fm − f ‖∞ → 0 as m → ∞.
Hint: Prove first that Fm is a probability density function on (0,1], and then apply a variant of
Proposition 4.1.1 to the periodic extension of f .

4.2 Orthonormal Wavelet Bases

In this section we present some of the basic ingredients of wavelet theory, the main
goal being the construction of smooth wavelet bases that have compact support in time
or frequency domain and which outperform the classical Haar and Shannon bases in
many respects, particularly from an approximation-theoretic perspective. We focus on the
one-dimensional theory – multivariate wavelets can be constructed from univariate ones by
a simple tensor-product method that will be introduced and used in Section 4.3.6.

4.2.1 Multiresolution Analysis of L2

The abstract framework in which wavelets naturally arise and which unifies some of the
ideas of the preceding section is the one of a multiresolution analysis of L2.

Definition 4.2.1 We say that φ ∈ L2(R) is the scaling function of a multiresolution analysis
(MRA) of L2(R) if it satisfies the following conditions:

(a) The family

{φ(·− k) : k ∈ Z}

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.005
http:/www.cambridge.org/core


306 Function Spaces and Approximation Theory

is an ortho-normal system in L2(R); that is, 〈φ(·− k),φ(·− l)〉 equals 1 when k = l and
0 otherwise.

(b) The linear spaces

V0 =
{

f =
∑
k∈Z

ckφ(·− k), {ck}k∈Z :
∑
k∈Z

c2
k <∞

}
, . . . ,

Vj = {h = f (2j(·)) : f ∈ V0}, . . . ,
are nested; that is, Vj−1 ⊂ Vj for every j ∈N.

(c) The union ∪j≥0Vj is dense in L2.

We note that under (a) and (b), it is immediate that the functions

φjk = 2j/2φ(2j(·)− k), k ∈ Z,

form an ortho-normal basis of the space Vj, j ∈N.
Examples for φ generating a multiresolution analysis exist, for example, the Haar

function φ = 1(0,1] from the preceding section, where Vj equals the space of functions that
are piecewise constant on the dyadic intervals (k/2j,(k+ 1)/2j]. Another example from the
preceding section is the function φ(x)= sin(πx)/(πx) from the Shannon basis, where Vj ≡
V2jπ . These examples are in some sense opposite extremes because the function φ generating
the Haar basis is localised in time but not in frequency, and the function φ generating the
Shannon basis is localised in frequency but not in time. A question that has been essential
to the development of wavelet theory and, more generally, to time-frequency analysis was,
among other things, whether good localisation properties of φ could be achieved in time and
frequency simultaneously, in the flavour of a Littlewood-Paley decomposition, but without
loosing the ortho-normal basis property.

Before we answer this question in the positive, let us first spell out some simple
properties of a multiresolution analysis of L2 that follow immediately from its definition.
Since the spaces Vj are nested, there are nontrivial subspaces of L2 obtained from taking
the orthogonal complements Wl := Vl+1 . Vl in Hilbert space: we can ‘telescope’ these
orthogonal complements to see that the space Vj can be written as

Vj = V0 ⊕
(

j−1⊕
l=0

Wl

)
. (4.28)

If we want to find the orthogonal L2-projection of f ∈ L2 onto Vj, then the preceding
decomposition of Vj tells us that we can describe this projection as the projection of f
onto V0 plus the sum of the projections of f onto Wl from l= 0 to j−1. The projection of f
onto V0 is

K0( f )(x)=
∑
k∈Z

〈φk, f 〉φk(x),

where we write φk = φ(· − k). To describe the projections onto Wl, we would like to find
basis functions that span the spaces Wl, and this is where the wavelet function ψ enters the
stage: assume that there exists a fixed ψ ∈ L2(R) such that, for every l ∈N∪{0},{

ψlk := 2l/2ψ(2l(·)− k) : k ∈ Z
}
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4.2 Orthonormal Wavelet Bases 307

is an ortho-normal set of functions that spans Wl. Again, such ψ exists: if φ = 1(0,1], the
corresponding Haar wavelet is ψ = 1[0,1/2] − 1(1/2,1]; for the Shannon basis, we have ψ =
F−1[1[−2π ,−π ] + 1[π ,2π ]]. The projection of f onto Wl is∑

k

〈ψlk, f 〉ψlk,

and adding things up, we see that the projection Kj( f ) of f onto Vj has the two identical
presentations

Kj( f )(x)=
∑
k∈Z

〈φjk, f 〉φjk(x) (4.29)

=
∑
k∈Z

〈φk, f 〉φk(x)+
j−1∑
l=0

∑
k∈Z

〈ψlk, f 〉ψlk(x). (4.30)

This projection is the partial sum of what is called the wavelet series of a function f ∈ L2:
to understand this, note that, if ∪j≥0Vj is dense in L2, then (4.28) implies that the space L2

can be decomposed into the direct sum

L2 = V0 ⊕
( ∞⊕

l=0

Wl

)
,

so the set of functions

{φ(·− k),2l/2ψ(2l(·)− k) : k ∈ Z, l ∈N∪{0}} (4.31)

is an ortho-normal wavelet basis of the Hilbert space L2. It will often be convenient in later
chapters to denote the scaling functions φk as the ‘first’ wavelets’ ψ−1k – this way we can
abbreviate the wavelet basis as consisting of functions {ψlk}, which expedites notation. As a
consequence, every f ∈ L2 has the wavelet series expansion

f =
∑
k∈Z

〈φk, f 〉φk +
∞∑
l=0

∑
k∈Z

〈ψlk, f 〉ψlk (4.32)

=
∑
k∈Z

〈φjk, f 〉φjk(x)+
∞∑
l=j

∑
k∈Z

〈ψlk, f 〉ψlk

=
∑
l≥−1

∑
k∈Z
ψlk〈ψlk, f 〉,

where convergence is guaranteed at least in the space L2.
Now the question arises as to whether functions φ and ψ other than those given by the

Haar and Shannon bases exist such that the class of functions (4.31) forms a multiresolution
analysis of L2. The following theorem gives Fourier-analytical conditions for the first two
relevant properties in Definition 4.2.1 and also gives a generic construction of the wavelet
function ψ .
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Theorem 4.2.2 Let φ ∈ L2(R),φ 
= 0.

(a) The family of functions {φ(·−k) : k∈Z} forms an ortho-normal system in L2 if and only
if ∑

k∈Z
|φ̂(u+ 2πk)|2 = 1 a.e. (4.33)

(b) Suppose that the {φ(· − k) : k ∈ Z} form an ortho-normal system in L2. Then the
corresponding spaces (Vj)j∈Z are nested if and only if there exists a 2π-periodic function
m0 ∈ L2((0,2π]) such that

φ̂(u)= m0

(u

2

)
φ̂
(u

2

)
a.e. (4.34)

(c) Let φ be a scaling function satisfying properties (a) and (b) of Definition 4.2.1, and let
m0 satisfy (4.34). If ψ ∈ L2 satisfies

ψ̂(u)= m1

(u

2

)
φ̂
(u

2

)
a.e., (4.35)

where m1(u) = m0(u+π)e−iu, then ψ is a wavelet function; that is, {ψ(· − k) : k ∈
Z} forms an ortho-normal basis of W0 = V1 . V0, and any f ∈ V1 can be uniquely
decomposed as

∑
k ckφ(·− k)+∑

k c′kψ(·− k) for sequences {ck}, {c′k} ∈ �2.

Proof

(a) If we let φ̃ = φ(−·),q = φ ∗ φ̃, then

S(u)≡
∑

k

|φ̂(u+ 2πk)|2 =
∑

k

q̂(u+ 2πk).

Since φ ∈ L2, we have q̂ ∈ L1 by Plancherel’s theorem and the Cauchy-Schwarz
inequality, so the Poisson summation formula (before (4.11)) implies that the series
defining S converges a.e. on (0,2π ] and has Fourier coefficients ck = F−1[q̂](−k) =
q(−k). Now, if δkl is the Kronecker-δ, we need to show that, for every k, l ∈ Z,∫

R

φ(x− k)φ(x− l)dx = δkl

or, equivalently, ∀k ∈ Z, ∫
R

φ(x)φ̃(k− x)dx = q(k)= δ0k.

The Poisson summation formula yields∑
k

q̂(u+ 2πk)=
∑

k

cke
iku =

∑
k

q(k)e−iku, (4.36)

where we note that {ck} ∈ �1 because either S = 1 or q(k) = δ0k. In fact, if q(k) = δ0k,
then the preceding sum equals 1, and if the preceding sum equals 1, then q(k)= δ0k by
uniqueness of Fourier series.
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4.2 Orthonormal Wavelet Bases 309

(b) By definition of the spaces Vj, it suffices to prove that V0 ⊆ V1. We first assume that
V0 ⊆ V1, so φ ∈ V1, and hence for coefficients hk =

√
2
∫
φ(x)φ(2x− k)dx, {hk} ∈ �2;

we can represent φ in the basis of V1, that is,

φ(x)=√
2
∑

k

hkφ(2x− k).

Taking Fourier transforms on both sides, we see that

φ̂(u)= 2−1/2
∑

k

hke
−iuk/2φ̂(u/2)≡ m0(u/2)φ̂(u/2)

almost everywhere.

For the converse, we first need an auxiliary result that will be useful repeatedly in what
follows.

Lemma 4.2.3 Let {φ(·−k) : k∈Z} be an ortho-normal system in L2(R). Every 2π-periodic
function m0 ∈ L2((0,2π]) satisfying (4.34) also satisfies

|m0(u)|2 +|m0(u+π)|2 = 1 a.e.,

in particular, any such m0 is bounded on (0,2π].
Proof From (4.34), we have

|φ̂(2u+ 2πk)|2 = |m0(u+πk)|2|φ̂(u+πk)|2.
Summing this identity, using part (a), splitting the summation indices into odd and even
integers (possible by absolute convergence) and using periodicity of m0 and part (a) again,
we have

1 =
∑

k

|m0(u+πk)|2|φ̂(u+πk)|2

=
∑

l

|m0(u+ 2π l)|2|φ̂(u+ 2π l)|2 +
∑

l

|m0(u+ 2π l+π)|2|φ̂(u+ 2π l+π)|2

=
∑

l

|m0(u)|2|φ̂(u+ 2π l)|2 +
∑

l

|m0(u+π)|2|φ̂(u+ 2π l+π)|2

= |m0(u)|2 +|m0(u+π)|2,
completing the proof.

To proceed, any f ∈ V0 has Fourier transform

f̂ (u)= φ̂(u)
∑

k

cke
−iuk ≡ φ̂(u)m(u), {ck} ∈ �2,

where m is a 2π -periodic square integrable function on (0,2π], and any m ∈ L2((0,2π])
gives rise to such f by the Fourier isometry of L2((0,2π])with �2. Conclude that the images
V̂0, V̂1 of V0,V1, respectively, under the Fourier transform are

V̂0 = {m(u)φ̂(u) : m is 2π − periodic ,m ∈ L2((0,2π])}
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and

V̂1 = {m(u/2)φ̂(u/2) : m is 2π − periodic ,m ∈ L2((0,2π])}.
The identity (4.34) then implies that any element of V̂0 can be written as
m(u)m0(u/2)φ̂(u/2), which belongs to V̂1 as the boundedness and 2π-periodicity of m
imply that m(2·)m0 is also 2π-periodic and in L2. By injectivity of the Fourier transform,
we conclude that V0 ⊆ V1.
(c) We finally turn to construction of the wavelet function, and we proceed in three steps.

(i) To show that the translates of ψ form an ortho-normal system in L2, we verify
(4.33) with ψ in place of φ. Indeed, using the hypothesis on ψ̂ , 2π -periodicity and
boundedness of m0, (4.33) for φ and Lemma 4.2.3, we see that∑

k

|ψ̂(u+ 2πk)|2 =
∑

k

∣∣∣m1

(u

2
+πk

)∣∣∣2 ∣∣∣φ̂(u

2
+πk

)∣∣∣2
=
∑

k

∣∣∣m0

(u

2
+π +πk

)∣∣∣2 ∣∣∣φ̂(u

2
+πk

)∣∣∣2
=
∑

l

∣∣∣m0

(u

2
+π + 2π l+π

)∣∣∣2 ∣∣∣φ̂(u

2
+ 2π l+π

)∣∣∣2
+
∑

l

∣∣∣m0

(u

2
+π + 2π l

)∣∣∣2 ∣∣∣φ̂(u

2
+ 2π l

)∣∣∣2
=
∣∣∣m0

(u

2

)∣∣∣2 + ∣∣∣m0

(u

2
+π

)∣∣∣2 = 1 a.e.

(ii) We further need to show that the translates of ψ are orthogonal to φ, that is, 〈φ(· −
k),ψ(·− l)〉 = 0 ∀k, l, or equivalently, recalling the notation ψ̃ =ψ(−·),

g(k)≡ 〈φ,ψ(·− k)〉 = φ ∗ ψ̃(k)= 0, k ∈ Z.

We have ĝ = φ̂ ˆ̃ψ = φ̂ψ̂ ∈ L1 by the Cauchy-Schwarz inequality, and the Poisson
summation formula (4.11) applied to the 2π-periodic function S=∑

k ĝ(·+2πk) gives
Fourier coefficients g(−k) of S. Therefore, g(k) = 0 ∀k is equivalent to S(u) = 0 a.e.
on (0,2π], or reinserting the definition of ĝ,∑

k

φ̂(u+ 2πk)ψ̂(u+ 2πk)= 0 a.e., (4.37)

which it remains to verify. Using the definition of ψ̂ , (4.34), part (a), periodicity
and boundedness of m0,m1 (Lemma 4.2.3), the left-hand side in the preceding display
equals ∑

k

φ̂
(u

2
+πk

)
m0

(u

2
+πk

)
φ̂
(u

2
+πk

)
m1

(u

2
+πk

)
=
∑

k

∣∣∣φ̂(u

2
+πk

)∣∣∣2 m0

(u

2
+πk

)
m1

(u

2
+πk

)
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=
∑

l

∣∣∣φ̂(u

2
+ 2π l

)∣∣∣2 m0

(u

2
+ 2π l

)
m1

(u

2
+ 2π l

)
+
∑

l

∣∣∣φ̂(u

2
+ 2π l+π

)∣∣∣2 m0

(u

2
+ 2π l+π

)
m1

(u

2
+ 2π l+π

)
= m0

(u

2

)
m1

(u

2

)
+m0

(u

2
+π

)
m1

(u

2
+π

)
It thus suffices to prove that m0m1 + m0(· + π)m1(·+π) equals zero almost
everywhere, which follows because, by definition of m1, this quantity equals

m0(u)e
ium0(u+π)+m0(u+π)m0(u)e

iu+iπ = m0(u)m0(u+π)eiu(1+ eiπ)= 0.

(iii) It remains to establish the unique decomposition of f ∈ V1 as desired. Expand f into
a series with respect to the basis {√2φ(2(·)− k) : k ∈ Z} of V1, which, in the Fourier
domain, and proceeding as in the proof of part (a), reads as

f̂ (u)= q
(u

2

)
φ̂
(u

2

)
with q(u)= 1√

2

∑
k

q(k)e−iuk. (4.38)

Now, using the formulas for φ̂, ψ̂ , we see that

m0

(u

2

)
φ̂(u)=

∣∣∣m0

(u

2

)∣∣∣2 φ̂(u

2

)
, m1

(u

2

)
ψ̂(u)=

∣∣∣m1

(u

2

)∣∣∣2 φ̂(u

2

)
,

and summing these identities,

φ̂
(u

2

)[∣∣∣m0

(u

2

)∣∣∣2 + ∣∣∣m1

(u

2

)∣∣∣2]= m0

(u

2

)
φ̂(u)+m1

(u

2

)
ψ̂(u) a.e.

By definition of m1, we see |m1(u/2)|2 = |m0(π + u/2)|2, so, by Lemma 4.2.3,
φ̂(u/2) = m0(u/2)φ̂(u)+m1(u/2)ψ̂(u), which when substituted into (4.38) gives the
decomposition

f̂ (u)= q
(u

2

)
m0

(u

2

)
φ̂(u)+ q

(u

2

)
m1

(u

2

)
ψ̂(u).

Taking inverse Fourier transforms gives the result.

Theorem 4.2.2 gives sufficient conditions to construct φ,ψ in the Fourier domain. In the
time domain, these properties imply the following representations of φ,ψ :

Corollary 4.2.4 For φ a scaling function generating a multiresolution analysis of L2, we
have

φ(x)=√
2
∑

k

hkφ(2x− k) a.e., hk =
√

2
∫
R

φ(x)φ(2x− k)dx (4.39)

and
ψ(x)=√

2
∑

k

λkφ(2x− k) a.e., λk = (−1)k+1h̄1−k. (4.40)

Moreover, if
∫
R
φ(x)dx = 1, then∑

k

h̄khk+2l = δ0l,
1√
2

∑
k

hk = 1. (4.41)
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Proof The proof of the direct part of Theorem 4.2.2, part (b), already established (4.39), as
well as that m0(u)= 2−1/2

∑
k hke−iku. If φ̂(0)= ∫

φ(x)dx= 1, we have necessarily m0(0)= 1
from (4.34), which already implies the second claim in (4.41). Using this representation of
m0, we see that

m0

(u

2
+π

)
= 1√

2

∑
k

hke−ik((u/2)+π) = 1√
2

∑
k

h̄k(−1)keik(u/2),

and from Theorem 4.2.2, part (c) we further have

ψ̂(u)= 1√
2

∑
k

h̄k(−1)kei(k−1)(u/2)φ̂
(u

2

)
=√

2
∑

k′
h̄k′(−1)k

′+1e−ik′(u/2) 1

2
φ̂
(u

2

)
=√

2
∑

k′
λke

−ik′(u/2) 1

2
φ̂
(u

2

)
,

so (4.40) follows from taking inverse Fourier transforms. Finally, the conclusion of
Lemma 4.2.3 gives

m0(u)m0(u)+m0(u+π)m0(u+π)= 1;

thus,

1 = 1

2

∑
k,k′

h̄khk′e
−iu(k′−k)+ 1

2

∑
k,k′

h̄kh
′
ke

−iu(k′−k)−i(k′−k)π

= 1

2

∑
k,k′

e−iu(k−k′)[1+ e−i(k′−k)π ] =
∑

l

∑
k

h̄khk+2le
−2iul,

implying the first property of (4.41).

4.2.2 Approximation with Periodic Kernels

The preceding results give conditions to verify (a) and (b) from Definition 4.2.1 in the
Fourier domain. They do not, however, address the question of whether the {Vj}j≥0 are
dense in L2. This can be established by showing that the projection kernel K(x,y) =∑

kφ(x − k)φ(y − k) satisfies the conditions of Proposition 4.1.3, or in fact the stronger
Condition 4.1.4, so that then K2−j( f )→ f in L2 as j → ∞. Convergence then will in
fact hold in any Lp,1 ≤ p <∞, and in Cu(R) whenever f is in any of these spaces, with
quantitative bounds on the approximation errors depending on regularity properties of f .

We consider general projection kernels of the form

K(x,y)≡ Kφ(x,y)=
∑
k∈Z
φ(x− k)φ(y− k), (4.42)

where φ ∈ L2 is a fixed real-valued function such that the preceding sum converges
pointwise. Note that in this subsection we do not require that φ generate a multiresolution
analysis, although the results are tailor-made for such situations. If φ is a bounded function
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of compact support in the interval [−a,a] say, then

sup
x

∑
k∈Z

|φ(x− k)| ≤ ‖φ‖∞
∑

k

1{k:−2a≤k≤2a}(x)≤ (4a+ 1))‖φ‖∞, (4.43)

|K(v,v− u)| ≤ C(‖φ‖∞,a)1[−2a,2a](u) ∀u ∈R, (4.44)

and this generalises to noncompactly supported φ in the sense that good localisation
properties of φ imply good localisation properties of the kernel K. Note that the conditions
of the following proposition exclude too spread-out functions φ such as the function φ
generating the Shannon basis (where φ /∈ L1):

Proposition 4.2.5 Assume that for some nonincreasing function � ∈ L∞([0,∞)) ∩
L1([0,∞)) we have |φ(u)| ≤�(|u|) ∀u ∈R. Then

(a)
∑

k∈Z |φ(·− k)| ∈ L∞(R) and
(b) supv∈R |K(v,v− u)| ≤ c1�(c2|u|) for some 0< c1,c2 <∞ and every u ∈R.

Proof The function
∑

k∈Z |φ(x− k)| is one periodic, so we can restrict to bounding it on
[0,1]. For x ∈ [0,1], |k| ≥ 2, we have |x − k| ≥ |k|/2, so by monotonicity, �(|x − k|) ≤
�(|k|/2) for those x,k. Thus, again using monotonicity of �,∑

k∈Z
|φ(x− k)| ≤

∑
k∈Z
�(|x− k|)≤

∑
|k|≤1

�(|x− k|)+
∑
|k|≥2

�(|k|/2)

≤ 4�(0)+
∫
R

�(|u|/2)du<∞.

As mentioned earlier, part (b) is immediate for compactly supported φ (see (4.44)), and the
general case is proved using similar arguments as in part (a), (see Exercise 4.2.1).

Verifying Condition 4.1.4 (P) for K is more delicate; finer properties of the function φ are
required. The following theorem allows us to derive wavelet projection kernel analogues of
Proposition 4.1.6 from properties of φ̂ only.

Proposition 4.2.6 Assume the conditions of Proposition 4.2.5 with � such that∫
R
�(|u|)|u|Ndu<∞ for some N ∈N∪{0}. Assume, moreover, that, as u → 0,

|φ̂(u)|2 = 1+ o(|u|N), φ̂(u+ 2πk)= o(|u|N) ∀k 
= 0. (4.45)

Then
∣∣∫

R
φ(x)dx

∣∣= 1, and for every l = 1, . . . ,N and almost every x ∈R, we have∫
R

K(x,x+ u)du = 1 and
∫
R

K(x,x+ u)ul = 0. (4.46)

Proof The assumption |φ̂(0)|2 = 1 implies that
∣∣∫

R
φ(x)dx

∣∣= 1. To prove (4.46), note that
by a change of variables it suffices to prove that∫

R

K(x,y)(y− x)ldy = δ0l,
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where δ0l is the Kronecker delta. The integral in question equals, by the binomial theorem
and a change of variables,∑

m

∫
R

φ(x−m)φ(y−m)(y−m+m− x)ldy

=
l∑

j=0

(−1)l−jCl
j

∫
R

yjφ(y)dy
∑

m

φ(x−m)(x−m)l−j, (4.47)

where the interchange of integration and summation is permitted in view of Fubini’s theorem
and Proposition 4.2.5. Note next that

(Djφ̂)(2πk)=
∫
R

φ(y)(−iy)je−i2πkydy, k ∈ Z, (4.48)

in view of (4.9). The Poisson summation formula (4.12) with a = 1 implies that

(Djφ̂)(2πk)=
∫ 1

0

∑
m∈Z
φ(x−m)(−i(x−m))je−i2πkxdx ≡ 〈Dj,ek〉.

Since φ̂(u+2πk)= o(|u|N) ∀k 
= 0, we see (Djφ̂)(2πk)= 0 ∀k 
= 0 for j≤ N, so the Fourier
coefficients (k 
= 0) of Dj(x) =∑

m∈Zφ(x − m)(−i(x − m))j all vanish, and Dj(x) = Dj =
(Djφ̂)(0) is thus constant. However, (4.48) at k = 0 gives (Djφ̂)(0) = ∫

R
φ(y)(−iy)jdy, so

the quantity in (4.47) equals, again by the binomial theorem,

l∑
j=0

(−1)l−jCl
j

∫
R

yjφ(y)dy
∫
R

zl−jφ(z)dz =
∫
R

∫
R

l∑
j=0

Cl
jy

j(−z)l−jφ(y)φ(z)dydz

=
∫
R

∫
R

(y− z)lφ(y)φ(z)dydz

=
∫
R

(−t)l(φ ∗ φ̃)(t)dt,

where we recall the notation φ̃ = φ(−·). This last expression equals i−l(Dl|φ̂|2)(0), which
equals 1 for l = 0 and 0 otherwise in view of the assumption |φ̂(u)|2 = 1 + o(|u|N),
completing the proof.

It is easily shown that the conclusions of the preceding proposition hold for every x∈R if
the scaling function φ involved is continuous. If the conditions of the preceding proposition
are satisfied for some N ≥ 0, we conclude, combining Propositions 4.1.3, 4.2.5 and 4.2.6,
that ‖K2−j( f )− f ‖p → 0 whenever f ∈ Lp,1 ≤ p<∞. In particular, if K2−j is the projector
onto Vj, then the {Vj}j≥0 are dense in Lp. The same remarks apply to p =∞ if Lp is replaced
by Cu and if φ is continuous.

If the function φ in the preceding proposition comes from a multiresolution analysis, we
further have that the wavelet function ψ corresponding to φ is automatically ‘orthogonal to
polynomials’ up to degree N, proved as follows.
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Proposition 4.2.7 Let φ,ψ be as in Theorem 4.2.2, part (c), and suppose that φ satisfies the
conditions of Proposition 4.2.6 for some N. Then∫

R

ψ(x)xldx = 0 ∀l = 0, . . . ,N.

Proof The integral in question is proportional to (Dlψ̂)(0) – it thus suffices to show that

ψ̂(u)= m1

(u

2

)
φ̂
(u

2

)
= o(|u|N),

as u → 0. By definition of m1 (see Theorem 4.2.2, part (c)) and boundedness of φ̂ (noting
|φ| ≤ � ∈ L1), it thus suffices to show that m0(u+ π) = o(|u|N) as u → 0. By (4.33), the
preceding proposition and Exercise 4.2.2 we necessarily have φ̂(π+2πk0) 
= 0 for some k0,
and letting k′ = 2k0 + 1, we see, using the periodicity of m0, that

φ̂(u+ 2πk′)= m0

(u

2
+πk′

)
φ̂
(u

2
+πk′

)
= m0

(u

2
+π

)
φ̂
(u

2
+π + 2πk0

)
.

Since φ̂(u+ 2πk′)= o(|u|N), by hypothesis, we deduce, as u → 0, that

m0

(u

2
+π

)
= o(|u|N),

concluding the proof.

We conclude this subsection with the following basic but important result on the
relation between the Lp-norms of translation averages

∑
k∈Z ck2l/2φ(2lx − k) for functions

φ satisfying
∑

k |φ(· − k)| ∈ L∞ and the �p-norms of {ck : k ∈ Z}. For scaling functions φ,
the result holds with equality for p = 2 by Parseval’s identity; for p 
= 2, the result holds as
a two-sided inequality with universal scaling constants.

Proposition 4.2.8 Suppose that φ ∈ L1(R) is such that supx∈R
∑

k∈Z |φ(x−k)| ≡ κ <∞. Let
c ≡ {ck : k ∈ Z} ∈ �p,1 ≤ p ≤∞. Then, for every l ≥ 0 and some constant K = K(κ ,‖φ‖1,p),
we have ∥∥∥∥∥∑

k∈Z
ck2

l/2φ(2l ·−k)

∥∥∥∥∥
p

≤ K‖c‖p2
l(1/2−1/p).

If, moreover, the set {φ(· − k) : k ∈ Z} is ortho-normal in L2, then, for some constant K′ =
K′(κ ,‖φ‖1,p), ∥∥∥∥∥∑

k∈Z
ck2

l(1/2−1/p)φ(2l ·−k)

∥∥∥∥∥
p

≥ K′‖c‖p2
l(1/2−1/p).

Proof For c ∈ �p ⊂ �∞, the series
∑

k ckφ(· − k) converges absolutely uniformly; in
particular, the case p = ∞ is immediate in the first inequality. For p <∞, we consider
first l = 0 and have, for q such that 1 = 1/p+ 1/q,∣∣∣∣∣∑

k

ckφ(x− k)

∣∣∣∣∣≤∑
k

|ck||φ(x− k)|1/p|φ(x− k)|1/q,
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so, by Hölder’s inequality,∥∥∥∥∥∑
k

ckφ(·− k)

∥∥∥∥∥
p

p

≤
∫
R

∑
k

|ck|p|φ(x− k)|
(∑

k

|φ(x− k)|
)p/q

dx

≤ κp/q‖c‖p
p‖φ‖1,

which gives the desired result for l= 0. The case l> 0 follows directly from the last estimate
and ‖φ(2l·)‖1 = 2−l‖φ‖1.

For the converse, we again restrict to l = 0 as the general case is the same up to scaling.
Note that if we define h(x)=∑

k ckφ(x− k), then the ck necessarily equal the inner products
〈h,φ(·− k)〉. Using Hölder’s inequality and writing φk = φ(·− k) as usual, the estimate

‖〈φ·,h〉‖p
p ≤

∑
k

(∫
|h(x)||φk(x)|1/p|φk(x)|1/qdx

)p

≤
∑

k

∫
|h(x)|p|φk(x)|dx

(∫
|φk(x)|dx

)p/q

≤ ‖φ‖p/q
1 ‖h‖p

pκ (4.49)

gives

‖c‖p = ‖〈φ·,h〉‖p ≤ ‖φ‖1/q
1 κ

1/p

∥∥∥∥∥∑
k

ckφ(·− k)

∥∥∥∥∥
p

,

the desired result for p<∞. The case p =∞ is again obvious.

4.2.3 Construction of Scaling Functions

We now want to construct concrete scaling functions φ that generate a multiresolution
analysis of L2(R) as in Definition 4.2.1 and whose projection kernels have good
approximation properties in the sense that they satisfy Condition 4.1.4. We will focus here on
the construction of two main examples of scaling functions and wavelets – one where φ,ψ
have compact support and one where φ̂, ψ̂ have compact support – and in both cases such
that the relevant functions are well localised in both the frequency and the time domains,
avoiding the shortcomings of Haar and Shannon wavelets. Note that it is impossible to
have both φ and φ̂ of compact support (loosely speaking, this is Heisenberg’s uncertainty
principle). As the construction of band-limited wavelets (i.e., with compactly supported
Fourier transform) is significantly easier, we start with this case.

Band-Limited Wavelets

One of the first examples of a wavelet basis was the Meyer scaling function φ defined by

φ̂ν(u)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 |u| ≤ 2π

3

cos

[
π

2
ν

(
3

2π
|u|− 1

)]
2π

3
≤ |u| ≤ 4π

3
0 otherwise,

(4.50)
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4.2 Orthonormal Wavelet Bases 317

where ν : [0,∞)→R is any infinitely differentiable function that satisfies ν(0)= 0,ν(x)=
1 ∀x ≥ 1 and ν(x)+ ν(1 − x) = 1. Using the results from the preceding subsection, one
can check directly that φ generates a multiresolution analysis. More generally, we construct
band-limited wavelets as follows: take μ any probability measure supported in a closed
subinterval of [−π/3,π/3], and define φ by

φ̂(u)=
√∫ u+π

u−π
dμ, (4.51)

which is supported in [−4π/3,4π/3] and equals 1 on (−2π/3,2π/3); in particular,
∫
φ =

φ̂(0)= 1. Suitable choices of μ give the Meyer function and other examples, including the
Shannon scaling function (μ= δ0). We have∑

k∈Z
|φ̂(u+ 2πk)|2 =

∑
k∈Z

∫ u+(2k+1)π

u+(2k−1)π
dμ=

∫
R

dμ= 1,

which checks the first condition of Definition 4.2.1 in view of Theorem 4.2.2, part (a). Next,
we set, for u ∈ [−2π ,2π ],

m0(u/2)=
{
φ̂(u) |u| ≤ 4π/3

0 4π/3< |u| ≤ 2π
(4.52)

extended periodically to the real line so that the second condition of Definition 4.2.1 follows
in view of Theorem 4.2.2, part (b). Since φ̂ is identically 1 near the origin, we trivially have
|φ̂(u)|2 = 1 + o(|u|N) for every N, and since φ̂ is supported in [−4π/3,4π/3], we also
have, for |u| small enough and every N, φ̂(u + 2πk) = 0 = o(|u|N) whenever k 
= 0, so
Proposition 4.2.6 can be used. By Theorem 4.2.2, part (c), the wavelet ψ is seen to equal

ψ̂(u)= e−iu/2

√∫ |u|−π

|u/2|−π
dμ, (4.53)

which is supported in {u : |u| ∈ [2π/3,4π/3]}; in particular,
∫
ψ = ψ̂(0) = 0. Finally, by

taking μ to have a suitably regular density, we can take φ̂, ψ̂ ∈ C∞ with compact support,
so φ and ψ are contained in the Schwartz space S and have dominating functions�,� with
moments of arbitrary order; thus, Proposition 4.2.5 applies. Summarising, we have proved
the following result, which joins the forces of the Littlewood-Paley decomposition and the
Shannon basis.

Theorem 4.2.9 There exists a band-limited ortho-normal multiresolution wavelet basis

{φk = φ(·− k),ψlk = 2l/2ψ(2l(·)− k) : k ∈ Z, l ∈N∪{0}}
of L2(R) with scaling function φ ∈S(R),

∫
φ= 1, waveletψ ∈S(R),

∫
ψ = 0 and projection

kernel K(x,y)=∑
k∈Zφ(x− k)φ(y− k) such that

(a) supp(φ̂)⊂ {u : |u| ≤ 4π/3}, supp(ψ̂)⊂ {u : |u| ∈ [2π/3,4π/3]},
(b)

∫
R
ψ(u)uldu = 0 ∀l ∈N∪{0} and, for all v ∈R, l ∈N,∫

R

K(v,v+ u)du = 1,
∫
R

K(v,v+ u)uldu = 0,
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(c)
∑

k∈Z |φ(·− k)| ∈ L∞(R),
∑

k∈Z |ψ(·− k)| ∈ L∞(R), and
(d) For κ(x,y) equal to either K(x,y) or

∑
kψ(x− k)ψ(y− k),

sup
v∈R

|κ(v,v− u)| ≤ c1�(c2|u|) for some 0< c1,c2 <∞ and every u ∈R,

for some bounded function � : [0,∞) → R that decays faster than any inverse
polynomial at +∞.

Daubechies Wavelets

We now construct a scaling function φ and wavelet ψ that have compact support and, unlike
the Haar wavelet, possess a prescribed number of derivatives. These wavelets are called
Daubechies wavelets because I. Daubechies gave the first construction of such a remarkable
basis.

Theorem 4.2.10 For every N∈N there exists an ortho-normal multiresolution wavelet basis

{φk = φ(·− k),ψlk = 2l/2ψ(2l(·)− k) : k ∈ Z, l ∈N∪{0}}
of L2(R) with scaling function φ ≡ φ(N), ∫ φ = 1, wavelet ψ ≡ψ(N), ∫ ψ = 0 and projection
kernel K(x,y)=∑

k∈Zφ(x− k)φ(y− k) such that

(a) supp(φ)⊂ {x : 0 ≤ x ≤ 2N− 1}, supp(ψ)⊂ {x : −N+ 1 ≤ x ≤ N},
(b)

∫
R
ψ(u)uldu = 0 ∀l = 0,1, . . . ,N− 1, and, for all v ∈R,∫

R

K(v,v+ u)du = 1,
∫
R

K(v,v+ u)uldu = 0, ∀l = 1, . . . ,N− 1,

(c)
∑

k∈Z |φ(·− k)| ∈ L∞(R),
∑

k∈Z |ψ(·− k)| ∈ L∞(R),
(d) For κ(x,y) equal to either K(x,y) or

∑
kψ(x− k)ψ(y− k),

sup
v∈R

|κ(v,v− u)| ≤ c1�(c2|u|)

for some 0< c1,c2 <∞ and every u ∈ R, for some bounded and compactly supported
function � : [0,∞)→R, and

(e) For N ≥ 2, both functions φ,ψ are elements of C[λ(N−1)](R) for some λ≥ 0.18.

Remark 4.2.11 We recall for part (e) that the spaces Cm for m ∈ N have been defined at
the beginning of this chapter; when [λN] = 0, we understand C0 as the space of bounded
uniformly continuous functions. In fact, the conclusion in (e) holds as well with λN replacing
its integer part [λN] if we use the more general definition of Cs, real s > 0, from (4.111).
Also, the smoothness estimate can be slightly improved to λ≥ 0.193 (but not much beyond
that).

Proof For N = 1, the theorem follows from taking φ(1) equal to the Haar scaling function
(Section 4.1.2). We thus consider only N ≥ 2. The rough idea is as follows: since,
trigonometric polynomials have inverse Fourier transforms of compact support, one starts
by constructing a trigonometric polynomial m0 from scratch that satisfies the conclusion of
Lemma 4.2.3. The recursion (4.34) then motivates us to define

φ̂ =�∞
j=1m0(2

−j·), φ =F−1φ̂.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.005
http:/www.cambridge.org/core


4.2 Orthonormal Wavelet Bases 319

Since trigonometric polynomials are Fourier transforms of Dirac measures, the function φ
can be understood as an infinite convolution product of certain discrete signed measures.
Remarkably, such φ can be shown to be in L2, to have compact support and in fact to
generate a multiresolution analysis. The proof of this fact, however, is neither short nor
simple. The numerical computation of φ as an inverse Fourier transform of φ̂ is possible by
efficient algorithms – we discuss this in the notes at the end of this chapter.

Step I: Construction of m0 We wish to construct a trigonometric polynomial m0 on (0,2π]
(periodically extended to R) such that

|m0(u)|2 +|m0(u+π)|2 = 1 ∀u. (4.54)

For reasons that will become apparent later, we also want m0 to factorise, for the given N, as

m0(u)=
(

1+ e−iu

2

)N

L(u), (4.55)

where L is the trigonometric polynomial to be found. If we write M0(u)= |m0(u)|2,L(u)=
|L(u)|2, this is the same as requiring, for all u,

M0(u)+M0(u+π)= 1 and M0(u)=
(
cos2 u

2

)N
L(u).

Note that both M and L are now polynomials in cosu, and if we rewrite L as a polynomial P
in sin2(u/2)= (1− cosu)/2, then

M0(u)=
(
cos2 u

2

)N
P
(
sin2 u

2

)
,

so the desired equation becomes

(1− y)NP(y)+ yNP(1− y)= 1 ∀y ∈ [0,1]. (4.56)

The proof of the following lemma is not difficult using Bezout’s theorem; see
Exercise 4.2.3.

Lemma 4.2.12 For any N ∈N, the polynomial

PN(y)=
N−1∑
k=0

(
N− 1+ k

k

)
yk

is a solution of equation (4.56).

Note that there are other solutions than PN which could be used as well, but this shall
not concern us here. The solution PN uniquely defines |m0(u)|2. Moreover, any positive
polynomial in cos(u) has a square root that is itself a trigonometric polynomial of the same
degree, with real coefficients (Exercise 4.2.4). Applying this to L(u) = PN(sin

2(u/2)), we
conclude that there exists, for every N ∈N, a trigonometric polynomial

m0 = m(N)0 = 1√
2

2N−1∑
k=0

hke
−ik·, hk = h(N)k , (4.57)
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satisfying the desired properties (4.54) and (4.55). (The scaling by 1/
√

2 will be convenient
later.) We finally notice that L(0) = 1 implies that |m0(0)|2 = 1, and since m0(0) is real
valued, we can always take the positive square root in the preceding argument so that

m0(0)= 1,
1√
2

∑
k

hk = 1. (4.58)

Step II: Definition of φ(N),ψ(N) and their support properties Given the integer N ≥ 2, let
m(N)0 be the function from (4.57), and define

φ̂(u)= φ̂(N)(u)=
∞∏
j=1

m0(2
−ju), u ∈R. (4.59)

The infinite product is well defined: since m0(0) = 1 and the polynomial m0 is Lipschitz
continuous, we have |m0(2−ju)| ≤ 1+|m0(2−ju)−m0(0)| ≤ 1+K2−ju for some constant K,
hence,

∞∏
j=1

|m0(2
−ju)| ≤ exp

⎧⎨⎩K
∞∑
j=1

2−j|u|
⎫⎬⎭≤ eK|u| <∞ (4.60)

and thus the infinite product converges uniformly on compact subsets of R. Moreover, the
functions

fk(u)≡ 1[−π ,π ](2−ku)
k∏

j=1

m0(2
−ju) (4.61)

converge to φ̂(u) pointwise as k →∞. The following observation on the integrals∫
R

| fk(u)|2einudu =
∫ 2kπ

−2kπ

| fk(u)|2einudu, n ∈ Z,

will be useful: using 2π-periodicity of m0 and (4.54), the first ‘half’ of this integral equals,
per substitution v = u+ 2kπ ,∫ 0

−2kπ

k∏
j=1

|m0(2
−ju)|2einudu =

∫ 2kπ

0

k∏
j=1

|m0(2
−jv− 2k−jπ)|2ein(v−2kπ)dv

=
∫ 2kπ

0

k−1∏
j=1

|m0(2
−jv)|2|m0(2

−jv+π)|2einvdv

=
∫ 2kπ

0

k−1∏
j=1

|m0(2
−jv)|2einvdv−

∫ 2kπ

0

k∏
j=1

|m0(2
−jv)|2einvdv.

Hence, using again the periodicity of m0,∫
| fk(u)|2einudu =

∫
| fk−1(u)|2einudu = 2πδ0n ∀n ∈ Z,k ≥ 2, (4.62)
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with the last identity following from∫
| f1(u)|2einudu =

∫ 0

−2π
|m0(u/2)|2einudu+

∫ 2π

0
|m0(u/2)|2einudu

= 2
∫ π

0

(|m0(v)|2 +|m0(v+π)|2
)
ei2nvdv

=
∫ 2π

0
einvdv = 2πδ0n.

We conclude, in particular, for n = 0 and from Fatou’s lemma combined with | fk|2 → |φ̂|2
pointwise, that φ̂ ∈ L2; in fact,

‖φ̂‖2
2 ≤ limsup

k
‖ fk‖2

2 ≤ 2π .

We can therefore define, by Plancherel’s theorem,

φ = φ(N) =F−1(φ̂(N)) (4.63)

as an element of L2 satisfying ‖φ‖2 ≤ 1. We immediately have from m0(0)= 1 that φ̂(0)=∫
φ = 1.
Having defined φ, we next show that it has compact support contained in [0,2N − 1],

where the isomorphism of S∗(R) under the distributional Fourier transform is helpful: from
(4.57) and (4.58) we know that m0 is the Fourier transform of the discrete probability
measure

1√
2

2N−1∑
k=0

hkδk,

and thus the (distributional) inverse Fourier transform F−1(m0(·/2j)) has support contained
in [0,2−j(2N− 1)] for j ≥ 0. Moreover, we established earlier that, as J →∞,

J∏
j=1

m0

( ·
2j

)
→

∞∏
j=1

m0

( ·
2j

)
= φ̂

uniformly on compact subsets of R, which implies, in particular, convergence in S∗. Since
F−1 is a continuous isomorphism of S∗, we conclude, as J →∞, that

F−1

⎡⎣ J∏
j=1

m0

( ·
2j

)⎤⎦=F−1
[
m0

( ·
2

)]
∗ · · · ∗F−1

[
m0

( ·
2J

)]
→ φ

in S∗. The support of the convolution productsF−1[m0(·/2)]∗· · ·∗F−1m0(·/2J) is contained
in [0,(2N− 1)

∑J
j=1 2−j] ⊂ [0,(2N− 1)] uniformly in J, so supp(φ)⊂ [0,2N] follows from

taking limits (and noting that convergence in S∗ implies convergence of the support sets by
checking all integrals against suitably supported test functions).

Trusting that φ will give rise to a scaling function, it is now natural to define, in light of
(4.35),

ψ̂(u)= ψ̂(N) = m1

(u

2

)
φ̂
(u

2

)
, (4.64)
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where m1(u) = m0(u+π)e−iu. As m1 is bounded by 1 (by (4.54)), and since φ̂ ∈ L2, we
immediately conclude that ψ̂ ∈ L2, and we can define the Daubechies wavelet function by

ψ =ψ(N) =F−1(ψ̂(N)), (4.65)

which is also in L2 by Plancherel’s theorem. From (4.54) and m0(0)= 1, we obtain ψ̂(0)=∫
ψ = 0. Moreover, as in the proof of Corollary 4.2.4, one shows that

ψ(x)=√
2
∑

k

λkφ(2x− k),

with λk,hk as in that Corollary for φ=φ(N). By the just established support property of φ, we
necessarily have that the preceding sum extends over finitely many k, namely, 0 ≤ 1− k ≤
2N−1 (as only these λk 
= 0) and 0≤ 2x−k≤ 2N−1, which combined gives that x is in the
support of ψ whenever

1− 2N+ 1 ≤ 2x ≤ 1+ 2N− 1 ⇐⇒ −N+ 1 ≤ x ≤ N.

Step III: Verifying ortho-normality Although we have constructed φ, we do not yet
know if it is the scaling function of a multiresolution analysis. It remains to establish
the ortho-normality of the translates of φ; the nestedness of the Vj spaces and the
ortho-normality properties of ψ then follow immediately from Theorem 4.2.2, noting that
the property (4.34) is immediate from the definition of φ̂. Let us thus prove that for φ=φ(N);
we have, for all n ∈ Z,∫

φ(x)φ(x− n)dx =
∫

|φ̂(u)|2einudu = 2πδ0n, (4.66)

using Plancherel’s theorem in the first identity. We recall the functions fk from (4.61), for
which we have already shown | fk|2 →|φ̂|2 pointwise. Moreover, in (4.62) we proved that∫

| fk|2einu = 2πδ0n, ∀n ∈ Z,k ≥ 1. (4.67)

We want to integrate the limit | fk|2 → |φ̂|2 to deduce (4.66) from (4.67), and to achieve
this, we will construct a dominating function for {| fk|2 : k ≥ 1} that is integrable: from the
explicit representation of m0 from step 1, we have inf|u|≤π/2 |m0(u)|2 ≥ cos2N(π/4)> 0 (using
L(u)≥ 1), and thus, for some C> 0, every j ≥ 1,

inf
|u|≤π

|m0(2
−ju)| ≥ C.

Moreover, again by m0(0)= 1 and by Lipschitz continuity of m0, for some C′,

|m0(u)| ≥ 1−C′|u|.
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We next choose j0 large enough that 2−j0C′|u| < 1/2 for |u| ≤ π . Then, using 1− x ≥ e−2x

for 0 ≤ x ≤ 1/2, we obtain, for all |u| ≤ π ,

|φ̂(u)| =
j0∏

j=1

|m0(2
−ju)|

∞∏
j=j0+1

|m0(2
−ju)|

≥ Cj0

∞∏
j=j0+1

e−2C′2−j|u|

≥ Cj0e−C′2−j0+1π ≡ C′′ > 0

or, equivalently, 1[−π ,π ](u)≤ |φ̂(u)|2(C′′)−2 for all u. Thus, by (4.59),

| fk(u)|2 =
k∏

j=1

|m0(2
−ju)|21[−π ,π ](2−ku)

≤ (C′′)−2
k∏

j=1

|m0(2
−ju)|2|φ̂(u)(2−ku)|2

= (C′′)−2|φ̂(u)|2.
Since we already know |φ̂|2 ∈L1 from the preceding step, we deduce from | fk(u)|2 →|φ̂(u)|2
pointwise, (4.67) and the dominated convergence theorem that (4.66) indeed holds true.

Step IV: Regularity of φ,ψ We next establish property (e) – once this is achieved, the claims
(c) and (d) of the theorem follow from Proposition 4.2.5 because φ,ψ are then bounded and
continuous (being Cγ for some γ > 0) and compactly supported, so a bounded dominating
function � of compact support exists.

To establish φ ∈ Cγ , it suffices to show, by Fourier inversion and (4.9), that
∫ |φ̂(u)|(1+

|u|)γ <∞ and therefore to establish the estimate

|φ̂(u)| ≤ C(1+|u|)−γ−1−δ , (4.68)

for some C,δ > 0 and all u. From (4.64) and since m1 is bounded, we see that any such
proof will also establish ψ ∈Cγ ; we thus restrict to φ. We will use the factorisation m0(u)=
[(1+ e−iu)/2)]NL(u) from step I, which implies that

|φ̂(u)|2 =
∞∏
j=1

∣∣∣cos
u

2j+1

∣∣∣2N
∞∏
j=1

∣∣∣L( u

2j

)∣∣∣2 = |sin(u/2)|2N

|u/2|2N

∞∏
j=1

∣∣∣L( u

2j

)∣∣∣2 , (4.69)

where we have used the identity

sinx

x
=

∞∏
j=1

cos
x

2j
,

which follows easily from sin2x= 2cosxsinx. We can thus reduce the problem to estimating
the uniform norms of the polynomial L(u). To obtain useful results, some care is necessary.
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Lemma 4.2.13 Let

ql = sup
u

∣∣∣∣∣
l−1∏
k=0

L
( u

2k

)∣∣∣∣∣ , κl = logql

l log2
,

and suppose that κ� < N− 1− γ for some � ∈N. Then φ ∈ Cγ .

Proof Setting L�(u)=∏�−1
k=0L(2−ku), we can write

∞∏
j=1

L
( u

2j

)
=

∞∏
j=0

�−1∏
k=0

L(2−k−�j−1u)=
∞∏
j=0

L�(2−�j−1u).

We know that L(0) = L�(0) = 1, and since L� is a polynomial, it is locally Lipschitz, so
|L�(u)| ≤ 1+C|u|, for all |u| ≤ 1 and some fixed 0<C<∞. Thus, as in (4.60), we see, for
all |u| ≤ 1, that

∞∏
j=0

|L�(2−�j−1u)| ≤ eC.

For |u| ≥ 1, we choose J large enough that 2J−1 ≤ |u| ≤ 2J and observe that

∞∏
j=0

|L�(2−�j−1u)| =
J∏

j=0

|L�(2−�j−1u)|
∞∏
j=0

|L�(2−J2−�j−1u)|

≤ qJ
�e

C = 2J(
logq�
� log2 )eC

= 2Jκ�eC ≤ 2J(N−1−γ−δ)eC = O(|u|N−1−γ−δ),

for some δ > 0, which combined with (4.68) and (4.69) gives the result.

Now estimates on κ� for �≥ 1 lead to smoothness estimates for φ. Considering �= 2 and
making the dependence of L=LN on N explicit in the notation for the moment, we need to
bound

q2
2 = sup

u
|LN(u)LN(2u)|2 = sup

y∈[0,1]
|PN(y)PN(4y(1− y))|,

recalling that |LN(u)|2 =PN(u)with P=PN from Lemma 4.2.12 and using the trigonometric
identity sin2 u = 4sin2(u/2)(1 − sin2(u/2)). Simple computations, using that PN solves
(4.56), establish that

PN(y)≤ 2N−1 max(1,2y)N−1, y ∈ [0,1],
so for such y further satisfying either y≤ (1/2)−√

2/4 or y≥ (1/2)+√
2/4 (so that 4y(1−

y)≤ 1/2), we have √|PN(y)PN(4y(1− y))| ≤ 23(N−1)/2.

For the remaining y∈ [(1/2)−(√2/4),(1/2)+(√2/4)], we have likewise, since y2(1−y)≤
4/27 for y ∈ [0,1], that√|PN(y)PN(4y(1− y))| ≤ 2N−1[16y2(1− y)](N−1)/2 ≤ 23(N−1)(4/27)(N−1)/2,
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a bound which strictly dominates the preceding one and which results in

q2 ≤ 24(N−1)3−3(N−1)/2, κ2 ≤ (N− 1)

[
2− 3

4

log3

log2

]
.

Hence, to establish that φ ∈C(N−1)λ, we need to check [2− (3/4) (log3/log2)]< 1−λ, true,
for instance, for λ= 0.18. (Better values can be obtained from estimating � > 2.)

Step V: Cancellation properties We finally establish (b) by verifying the hypotheses of
Proposition 4.2.6 so that this proposition and Proposition 4.2.7 imply the desired result.
A dominating function � with arbitrary moments exists by the preceding step, so it remains
to verify (4.45) with N replaced by N− 1. We note from step I and since P is bounded on
any compact set,

|m0(u+π)|2 =
∣∣∣∣cos

u+π
2

∣∣∣∣2N

P

(
sin2 u+π

2

)
= O(|u|2N)= o(|u|2(N−1)), as |u|→ 0. (4.70)

We thus have, for k ∈ Z,k 
= 0,q ≥ 0, such that k = 2qk′, k′ odd, that, as u → 0,

φ̂(u+ 2kπ)= φ̂
(u

2
+ kπ

)
m0

(u

2
+ kπ

)
= φ̂

( u

2q+1
+ k′π

)
m0

( u

2q+1
+ k′π

)
· · ·m0

(u

2
+ kπ

)
= o(|u|N−1)

because φ̂,m0 are bounded and because, by the periodicity of m0,

m0

( u

2q+1
+ k′π

)
= m0

( u

2q+1
+π

)
= o(|u|N−1)

in view of (4.70). Next, (4.54) and (4.70) imply that |m0(u)|2 = 1+ o(|u|2(N−1)), and so, as
u → 0,

|φ̂(u)|2 =
∣∣∣φ̂(u

2

)∣∣∣2 ∣∣∣m0

(u

2

)∣∣∣2 = ∣∣∣φ̂(u

2

)∣∣∣2 (1+ o(|u|2(N−1))).

Moreover, as φ̂ is the Fourier transform of a compactly supported continuous function, it
possesses derivatives of all orders, and so then does |φ̂|2. Since |φ̂(0)|2 = 1 has already been
established, we know that |φ̂|2 has a Taylor expansion

|φ̂(u)|2 = 1+
N−1∑
k=1

bku
k + o(|u|N−1), bk ∈R,

near the origin. Summarising, for all u near 0,

1+
N−1∑
k=1

bku
k + o(|u|N−1)= (1+ o(|u|2(N−1)))

(
1+

N−1∑
k=1

bk

(u

2

)k + o(|u|N−1)

)
,

so all the bk,0 ≤ k ≤ N− 1, necessarily must equal zero, implying that

|φ̂(u)|2 = 1+ o(|u|N−1),

verifying the second hypothesis in Proposition 4.2.6 and completing step V and thereby also
the proof of the theorem.
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S-Regular Wavelet Bases

For several results we shall not be needing a particular wavelet basis, but any that satisfies
the following key properties. Meyer and Daubechies wavelets provide examples, but other
wavelet bases (not treated here in detail) satisfy the conditions as well.

Definition 4.2.14 A multiresolution wavelet basis

{φk = φ(·− k),ψlk = 2l/2ψ(2l(·)− k) : k ∈ Z, l ∈N∪{0}}
of L2(R) with projection kernel K(x,y) =∑

kφ(x − k)φ(y − k) is said to be S-regular for
some S ∈N if the following conditions are satisfied:

(a)
∫
R
ψ(u)uldu = 0 ∀l = 0,1, . . . ,S− 1,

∫
R
φ(x)dx = 1, and, for all v ∈R,∫

R

K(v,v+ u)du = 1,
∫
R

K(v,v+ u)uldu = 0 ∀l = 1, . . . ,S− 1,

(b)
∑

k∈Z |φ(·− k)| ∈ L∞(R),
∑

k∈Z |ψ(·− k)| ∈ L∞(R), and
(c) For κ(x,y) equal to either K(x,y) or

∑
kψ(x− k)ψ(y− k),

sup
v∈R

|κ(v,v− u)| ≤ c1�(c2|u|), for some 0< c1,c2 <∞ and every u ∈R,

for some bounded integrable function � : [0,∞)→R such that
∫
R
|u|S�(|u|)du<∞.

When using such an S-regular wavelet basis, we see from Proposition 4.1.3 and the
discussion after Definition 4.2.1 that the associated wavelet series

f =
∑
k∈Z

〈φk, f 〉φk +
∞∑
l=0

∑
k∈Z

〈ψlk, f 〉ψlk (4.71)

converges not only in L2 but also in fact in Lp or Cu(R) whenever f ∈ Lp(R),1 ≤ p<∞, or
f ∈ Cu(R), respectively.

Exercises

4.2.1 Prove Proposition 4.2.5(b). Hint: Show that for any u,v, we have

�(|v|)�(|v− u|)≤�(|u|/2)max(�(|v|),�(|v− u|))
because either |v| ≥ |u|/2 or |v− u| ≥ |u|/2; hence

K(v,v− u)| ≤ 2

∥∥∥∥∥∑
k

�(·− k)

∥∥∥∥∥
∞
�(|u|/2).

4.2.2 Suppose that
∑

k |φ̂(·+ 2πk)|2 = 1 almost everywhere and that
∑

k |φ(·− k)| ∈ L∞. Prove that∑
k

|φ̂(u+ 2πk)|2 = 1 ∀u ∈R.

Hint: Define

gu(x)=
∑

n

φ(x+ n)e−iu(x+n),

and use the Poisson summation formula as well as Parseval’s identity to show that
∑

k |φ̂(u+
2kπ)|2 = ∫ 1

0 |gu(x)|2dx for every u ∈R.
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4.2.3 Prove that if p1,p2 are two polynomials of degree n1,n2, respectively, with no common zeros,
then there exist unique polynomials q1,q2 of degree n2−1,n1−1, respectively, such that p1q1+
p2q2 = 1 (this is known as Bezout’s theorem). Deduce that there exist unique polynomials q1,q2

of degree less than or equal to N− 1 such that

(1− y)Nq1(y)+ yNq2(y)= 1,

and use this to prove Lemma 4.2.12.
4.2.4 (Riesz’ lemma.) Let

A(u)=
M∑

m=0

am cos(mu), am ∈R,

be a positive trigonometric polynomial. Prove that there exists a trigonometric polynomial

B(u)=
M∑

m=0

bmeimu, bm ∈R, s.t. |B(u)|2 = A(u).

4.2.5 If a multiresolution basis is S-regular for some S> 0, prove that, for all 1 ≤ p<∞, there exist
cp > 0, dp <∞ such that, for all x,

cp ≤
∫

|K(x,y)|pdx ≤ dp.

Hint: For the upper bound, use the domination of K by a majorising kernel�. The lower bound
is clear for p = 1 because

∫
K(v,v+ u)du = 1.

4.2.6 Let Vj be a multiresolution analysis of L2(R) based on φ,ψ ∈ CS(R). Prove that, for every
α < S,1 ≤ p ≤∞ and f ∈ Vj, we have the following Bernstein-type inequality:

‖Dα f ‖p ≤ C2|α|j‖ f ‖p,

for some finite constant C > 0. Hint: Reduce to j = 0, and argue as in the proof of
Proposition 4.2.8.

4.3 Besov Spaces

There are several ways to measure regularity properties of functions. A common and
meaningful one is in terms of quantitative bounds on the Lp-norms of the derivatives
of a function or, more generally, on the Lp-size of its local oscillations. This paradigm
encompasses classical Hölder, Lipschitz and Sobolev smoothness conditions but also relates
well to the notion of p-variation of a function. The fact that derivatives and moduli of
continuity are defined in terms of the translation operator gives rise to powerful ‘harmonic
analysis’ characterisations of the function spaces defined through such regularity properties.
In this section we construct a unifying scale of function spaces – the Besov spaces – that
allows us to measure the regularity of functions in a general and flexible way. The classical
smoothness function spaces will be seen to be contained in these spaces as special cases.
We shall use Besov spaces for the construction of high- and infinite-dimensional statistical
models in subsequent chapters.

4.3.1 Definitions and Characterisations

Besov spaces can be defined in various ways, and we give several of these definitions and
then establish their equivalence. We first develop the theory for Besov spaces defined on
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328 Function Spaces and Approximation Theory

the real line and turn to Besov spaces over different domains of definition in Sections 4.3.4
to 4.3.6.

When studying embeddings between function spaces, the following remark will be used
repeatedly:

Remark 4.3.1 An imbedding X ⊆ Y of a normed space into another is continuous if the
identity map id : X → Y is continuous, in this case, by linearity, ‖x‖Y ≤ C‖x‖X for some
universal constant 0 < C <∞. Thus, if a normed space X is continuously imbedded into
another normed space Y, and vice versa, then X= Y, and the norms of X,Y are equivalent. If
X,Y is any pair of function spaces in which norm convergence implies convergence almost
everywhere along a subsequence, and if X⊆ Y, then the identity map id : X→ Y has a closed
graph and is thus automatically continuous by the closed-graph theorem from functional
analysis. In particular, establishing the set inclusions X ⊂ Y,Y ⊂ X and thus X = Y for such
spaces automatically implies equivalence of the norms ‖ · ‖X,‖ · ‖Y.

Definition by Moduli of Smoothness

For a function f defined on a subinterval A of R, possibly A = R, we let τh,h ∈ R, denote
the translation operator; that is, τh( f )(x)= f (x+ h) whenever x+ h is in the domain of f .
The difference operator then equals �h = τh − id, so �h( f )= f (·+h)− f . Inductively, we
define, for r ∈N, �r

h ≡�h[�r−1
h ] = (τh − id)r, which by the binomial theorem equals

�r
h( f )(x)=

r∑
k=0

(
r

k

)
(−1)r−k f (x+ kh). (4.72)

If A = R, then this operator is defined everywhere, and if A = [a,b],h > 0, its domain
of definition is Arh = [a,b − rh], in which case we set, by convention, �r

h( f )(x) ≡ 0, for
x ∈ A \Arh.

For f ∈ Lp(A),1 ≤ p ≤∞, we define the rth modulus of smoothness

ωr( f , t)≡ ωr( f , t,p)= sup
0<h≤t

‖�r
h( f )‖p, t> 0, (4.73)

occasionally not reflecting the dependence on p when no confusion may arise.
If the weak derivative D f exists and is locally integrable, then (cf. Exercise 4.1.1)

�1
h( f )(x)=

∫ x+h

x
D f (u)du =

∫
R

D f (u)1[0,1]

(
u− x

h

)
du,

and by a simple induction argument on r we show more generally that

�r
h( f )(x)= hr

∫
R

Dr f (u)Nr,h(u− x)du, x ∈ Arh, (4.74)

whenever Dr f exists and is locally integrable, where Nr,h(x) = h−1Nr(·/h), and Nr is the
r− 1-fold convolution of 1[0,1] = N1 with itself. Note that as h → 0, we have approximately

h−r�r
h( f )(x)∼ Dr f (x)

since {Nr,h}h↘0 is an approximate identity (cf. Proposition 4.1.1) – so higher differences
�r

h( f ) encode precise quantitive information about higher derivatives of a function f .
Moreover, we see, by Minkowski’s inequality for integrals and since ‖Nr,h‖1 = 1, that

ωr( f , t,p)≤ tr‖Dr f ‖p (4.75)
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4.3 Besov Spaces 329

and, similarly,
ωr+r′( f , t,p)≤ trωr′(D

r f , t,p). (4.76)

Let now s> 0 be given, and let r> s be an integer. For 1≤ q≤∞,1≤ p≤∞, we define
the Besov space

Bs
pq ≡ Bs

pq(A)=
{{

f ∈ Lp(A) : ‖ f ‖Bs
pq ≡ ‖ f ‖p +| f |Bs

pq <∞}
, 1 ≤ p<∞,{

f ∈ Cu(A) : ‖ f ‖Bs
pq ≡ ‖ f ‖p +| f |Bs

pq <∞}
, p =∞,

(4.77)

where

| f |Bs
pq ≡ | f |Bs

pq(A) =

⎧⎪⎪⎨⎪⎪⎩
(∫∞

0

[
ωr( f , t,p)

ts

]q dt

t

)1/q

, 1 ≤ q<∞,

supt>0

ωr( f , t,p)

ts
, q =∞,

(4.78)

is the Besov seminorm. One shows (Exercise 4.3.2) that an equivalent norm on Bs
pq is

obtained if the integral/supremum over t in the preceding display is restricted to (0,1) and
also if ωr is replaced by ωk for any k> r. In fact, Theorem 4.3.2 will imply that this definition
is independent of the choice of r as long as r> s.

The integral in the preceding norm can be ‘discretised’ in a natural way. Since ωr( f , t,p)
is monotone increasing in t, we show, using also the hint for Exercise 4.3.2, that

2−rωr( f ,2−k)

2−ks
≤ ωr( f , t)

ts
≤ 2sωr( f ,2−k)

2−ks
, ∀t ∈ [2−k−1,2−k],

so, up to constants independent of f ,k,(∫ 2−k

2−k−1

[
ωr( f , t)

ts

]q dt

t

)1/q

∼ ωr( f ,2−k)

2−sk
, k ∈ Z.

We thus obtain the equivalent norm

‖ f ‖Bs
pq ∼

{
‖ f ‖p +

(∑∞
k=0[2ksωr( f ,2−k,p)]q)1/q

, 1 ≤ q<∞,

‖ f ‖∞+ supk≥0(2
ksωr( f ,2−k,p)), q =∞,

(4.79)

on Bs
pq. An immediate conclusion is that Bs

pq ⊂ Bs
pq′ whenever 0< q ≤ q′ ≤∞.

Other equivalent norms exist, in a similar flavour of measuring the Lp-size of certain
moduli of smoothness. In particular, we can restrict to second differences only if we consider
the last existing derivative of f (we refer to the notes at the end of this chapter for some
references).

Definition by Low-Frequency Approximations

In this section we give an alternative definition of Besov spaces on the real line that will
be seen to be equivalent to the one given in the preceding subsection and which realises
Besov spaces as consisting of functions that have a prescribed rate of approximation by
band-limited functions (the continuous analogue of Fourier series). For t > 0,1 ≤ p ≤∞,
we introduce the spaces

Vp
t = { f ∈ Lp(R),supp( f̂ ) ∈ {u : |u| ≤ t}}
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of functions f ∈ Lp whose Fourier transform f̂ (in the distributional sense of (4.13) in case
p > 2) is band limited by t. We may approximate arbitrary f ∈ Lp by elements of Vp

t with
approximation errors

σp(t, f )= inf
g∈Vp

t

‖ f − g‖p, (4.80)

and define Besov spaces, for 1 ≤ p ≤∞,1 ≤ q ≤∞,s> 0, as

Bs,V
pq ≡

{{ f ∈ Lp(R) : ‖ f ‖Bs,V
pq
≡ ‖ f ‖p +| f |Bs,V

pq
<∞}, 1 ≤ p<∞,

{ f ∈ Cu(R) : ‖ f ‖Bs,V
pq
≡ ‖ f ‖p +| f |Bs,V

pq
<∞}, p =∞,

(4.81)

where

| f |Bs,V
pq
≡

⎧⎪⎨⎪⎩
(∫∞

1

[
tsσp(t, f )]q dt

t

])1/q

, 1 ≤ q<∞,

supt≥1 tsσp(t, f ), q =∞,
(4.82)

is the relevant Besov seminorm. Extending the integral/supremum over all t> 0 also gives
an equivalent norm (since f ∈ Lp). Also, as in the preceding section, the integral can be
discretised by estimating σp(t, f ) from above and below on intervals [2j,2j+1] to give an
equivalent seminorm

| f |Bs,V
pq
∼
⎧⎨⎩
(∑∞

j=1[2jsσp(2j, f )]q]
)1/q

, 1 ≤ q<∞,

supj≥1 2jsσp(2j, f ), q =∞.
(4.83)

Definition by Littlewood-Paley Theory

The ideas from Section 4.1.4 can be used to give another definition of Besov spaces
which foreshadows the wavelet definition from the next subsection and which will be
independently useful in what follows. We have seen in (4.27) that any f ∈ Lp(R) for p<∞
and every f ∈ Cu(R) for p =∞ can be written as

f = f ∗φ+
∞∑
j=0

f ∗ψ2−j , in Lp, 1 ≤ p ≤∞, (4.84)

where φ,ψ ∈ L1 are smooth functions of compactly supported Fourier transform, ψ2−j =
2jψ(2j·). By (4.3), we have ‖ f ∗ φ‖p ≤ ‖φ‖1‖ f ‖p <∞, and Besov spaces can be defined
by requiring sufficient geometric decay of the �q-sequence space norms of {‖ f ∗ψ2−j‖p}j≥0.
Formally for 1 ≤ p ≤∞,1 ≤ q ≤∞,s> 0, we set

Bs,LP
pq ≡

{{ f ∈ Lp(R) : ‖ f ‖Bs,LP
pq
<∞}, 1 ≤ p<∞,

{ f ∈ Cu(R) : ‖ f ‖Bs,LP
pq
<∞}, p =∞,

(4.85)

where the Littlewood-Paley norm is given, for s ∈R, by

‖ f ‖Bs,LP
pq

≡
⎧⎨⎩‖ f ∗φ‖p +

(∑∞
j=0 2jsq‖ f ∗ψ2−j‖q

p

)1/q
, 1 ≤ q<∞,

‖ f ∗φ‖p + supj≥0 2js‖ f ∗ψ2−j‖p, q =∞.
(4.86)

Theorem 4.3.2 will imply that this definition is independent of the choice of φ,ψ as long as
φ,ψ satisfy the requirements in and after (4.24).
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Definition by Wavelet Coefficients

We will finally give the for our purposes perhaps most useful definition of Besov spaces
in terms of wavelet expansions. We shall use a wavelet basis of regularity S > s,S ∈
N, in the sense of Definition 4.2.14, satisfying in addition that φ,ψ ∈ CS(R) with
DSφ, DSψ dominated by some integrable function. For instance, we can take band-limited
or sufficiently regular Daubechies wavelets. Starting from the wavelet series

f =
∑
k∈Z

〈φk, f 〉φk +
∞∑
l=0

∑
k∈Z

〈ψlk, f 〉ψlk, in Lp, 1 ≤ p ≤∞, (4.87)

of f ∈ Lp(R) (p<∞) and of f ∈Cu(R) (p=∞), the idea is to use the decay, as l→∞, of
the Lp norms ∥∥∥∥∥∑

k

〈 f ,ψlk〉ψlk

∥∥∥∥∥
p

� 2l( 1
2− 1

p )‖〈 f ,ψl·〉‖p

to describe the regularity of a function f (recalling Proposition 4.2.8 for the preceding
display). Formally for 1 ≤ p ≤∞,1 ≤ q ≤∞,0< s< S, we set

Bs,W
pq ≡

{{ f ∈ Lp(R) : ‖ f ‖Bs,W
pq
<∞}, 1 ≤ p<∞

{ f ∈ Cu(R) : ‖ f ‖Bs,W
pq
<∞}, p =∞ (4.88)

with wavelet-sequence norm given, for s ∈R, by

‖ f ‖Bs,W
pq

≡
⎧⎨⎩‖〈 f ,φ·〉‖p +

(∑∞
l=0 2ql(s+ 1

2− 1
p )‖〈 f ,ψl·〉‖q

p

)1/q
, 1 ≤ q<∞,

‖〈 f ,φ·〉‖p + supl≥0 2l(s+ 1
2− 1

p )‖〈 f ,ψl·〉‖p, q =∞.
(4.89)

Theorem 4.3.2 implies that the definition is independent of the wavelets φ,ψ ∈ CS used as
long as they are S-regular.

Equivalence of All Definitions

We now prove that, on the real line, all the preceding definitions of Besov spaces coincide
and that the respective norms are equivalent. Since Bs,V

pq does not depend on any free
parameters, the result implies, in particular, that the preceding definitions are independent of
the particular choice of φ,ψ ,r. Equivalence results for domains different from A (including
in particular A = [0,1]) will be discussed in Sections 4.3.4 and 4.3.5.

Theorem 4.3.2 Let 1 ≤ p ≤∞,1 ≤ q ≤∞,s> 0. Then we have

Bs
pq(R)= Bs,V

pq = Bs,LP
pq = Bs,W

pq . (4.90)

Moreover, the norms ‖ · ‖Bs
pq ,‖ · ‖Bs,V

pq
,‖ · ‖Bs,LP

pq
,‖ · ‖Bs,W

pq
are all pairwise equivalent.

Proof The spaces Bs
pq(R),B

s,V
pq ,Bs,LP

pq ,Bs,W
pq are all Banach spaces of real-valued functions

defined on R in which norm convergence implies convergence almost everywhere along a
subsequence. This is obvious for the first two norms as these imply Lp-convergence, which,
in turn, implies convergence almost everywhere along a subsequence. It follows likewise
for the third and fourth norms, noting that the respective ‖ · ‖s,p,q-norms, s> 0, dominate the
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332 Function Spaces and Approximation Theory

‖ · ‖p-norm, using the Lp-identities (4.84), (4.87) (and also Proposition 4.2.8 in the wavelet
case). By Remark 4.3.1, it thus remains to prove the set-theoretic identities (4.90) to prove
the theorem. This will be organised into two separate steps.

We start with the following simple result relating low frequency approximations to
Littlewood-Paley decompositions. Recall the functions φ,ψ from Section 4.1.4, where in
the following proposition we write φ2−j = 2jφ(2j·) in slight abuse of (wavelet) notation.

Proposition 4.3.3 For f ∈ Lp and s,p,q as in Theorem 4.3.2, the following are
equivalent:

(a) f ∈ Bs,V
pq ,

(b) ‖φ2−j ∗ f − f ‖p = cj2−js, ∀j ≥ 0, for some nonnegative sequence {cj} ∈ �q, and
(c) ‖ψ2−j ∗ f ‖p = cj2−js, ∀j ≥ 0, for some nonnegative sequence {cj} ∈ �q.

Proof (a) ⇐⇒ (b): By definition, φ2−j has a Fourier transform supported in [−2j,2j], and
thus, φ2−j ∗ f ∈ Vp

2j by (4.8), (4.3), so

σp(2
j, f )≤ ‖φ2−j ∗ f − f ‖p,

and (4.83) gives one direction. Conversely, for h ∈ Vp
2j we have φ2−j+1 ∗ h = h since

F [φ2−j+1] = 1 on the support [−2j,2j] of ĥ. We can then write φ2−j+1 ∗ f − f = φ2−j+1 ∗
( f − h)+ h− f , so

‖φ2−j+1 ∗ f − f ‖p ≤ ‖φ2−j+1 ∗ ( f − h)‖p +‖ f − h‖p ≤ (1+‖φ‖1)‖ f − h‖p

by (4.3). Since h was arbitrary, we can take the infimum over Vp
2j to see that, for every j,

1

1+‖φ‖1
‖φ2−j+1 ∗ f − f ‖p ≤ σp(2

j, f )≡ 2−jscj,

where {cj} ∈ �q in view of (4.83).
(b) ⇐⇒ (c): We have from the definitions that

‖ψ2−j ∗ f ‖p = ‖(φ2−j+1 −φ2−j)∗ f ‖p ≤ ‖φ2−j ∗ f − f ‖p +‖φ2−j+1 ∗ f − f ‖p,

and, conversely,

‖φ2−j ∗ f − f ‖p ≤
∑
l≥j

‖ψ2−l ∗ f ‖p ≤
∑
l≥j

cl2
−ls ≤ 2−js

∑
l≥j

cl2
−|l−j|s = c′j2

−js

using Exercise 4.3.1.

To complete the proof of Theorem 4.3.2, we first need the following lemma on
band-limited functions f ∈ Vp

t .

Lemma 4.3.4 (Bernstein) Let f ∈ Vp
t . Then, for some fixed constant 0 < C < ∞ that

depends only on n,

(a) Dn f ∈ Vp
t , for every n ∈N,

(b) ‖Dn f ‖p ≤ Ctn‖ f ‖p, and
(c) ‖Dn f ‖p ≤ Ctn−k‖Dk f ‖p.
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Proof By (4.9),

F [Dn f ](u)= f̂ (u)(iu)n,

which implies the first claim (a) modulo showing Dn f ∈ Lp (part (b)). Take � ∈ S(R) such
that 0 ≤ �̂≤ 1, �̂(u)= 1, for |u| ≤ 1, supported in {u : |u| ≤ 2} and such that ‖Dn�‖1 <∞.
We then have f̂ (u) = f̂ (u)�̂(u/t) or, in other words, f = f ∗�1/t, where we recall the
notation �1/t = t�(t·). Now Dn(�1/t) = tn(Dn�)1/t and, interchanging differentiation and
integration,

Dn f = tn f ∗ ((Dn�)1/t),

so (b) follows with C= ‖Dn�‖1 from (4.3). Part (c) follows likewise, writing Dn f =Dk f ∗
Dn−k(�1/t) and proceeding as earlier.

The key result is now the following, in which the Littlewood-Paley approach to the
definition of Besov spaces turns out to be very helpful:

Proposition 4.3.5 For f ∈ Lp and s,p,q as in Theorem 4.3.2, the following are
equivalent:

(a) ‖ψ2−j ∗ f ‖p = cj2−js, for some nonnegative sequence {cj} ∈ �q,
(b) There exists N∈N,N> s, functions {ul} ∈ Lp and a nonnegative sequence {cl} ∈ �q such

that

f =
∞∑
l=0

ul in Lp, ‖ul‖p ≤ cl2
−ls, ‖DNul‖p ≤ cl2

l(N−s),

(c) f ∈ Bs
pq(R), and

(d) f =∑
k∈Z〈φk, f 〉φk +∑∞

l=0

∑
k∈Z〈ψlk, f 〉ψlk in Lp, and for some nonnegative {cl} ∈ �q,

‖〈φ·, f 〉‖p <∞,‖〈ψl·, f 〉‖p ≤ cl2
−l(s+1/2−1/p).

Proof (a) ⇒ (b): letting u0 = φ ∗ f ,ul = ψ2−l ∗ f , we see that f = ∑
l ul from (4.27).

Clearly,

‖u0‖p ≤ ‖φ‖1‖ f ‖p, ‖ul‖p = ‖ψ2−l ∗ f ‖p = cl2
−ls.

Moreover, ul ∈ Vp

2l+1 by definition of φ,ψ , so Lemma 4.3.4 gives, for any N ∈N,

‖DNul‖p ≤ ‖φ‖12
(l+1)N‖ul‖p,

which, combined with the preceding display, gives the last bound in (b).
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(b) ⇒ (c): Using (4.3) and (4.74) and setting r = N, we can write, for any j,

‖�r
h( f )‖p =

∥∥∥∥∥
∞∑
l=0

�r
h(ul)

∥∥∥∥∥
p

≤
∞∑
l=0

‖�r
h(ul)‖p ≤

∞∑
l=0

min(2r‖ul‖p, |h|r‖Drul‖p)

≤
∞∑
l=0

min(2rcl2
−ls, |h|rcl2

l(r−s))≤ |h|r
j∑

l=0

cl2
l(r−s)+ 2r

∑
l>j

cl2
−ls

= |2jh|r2−js
j∑

l=0

cl2
−|j−l|(r−s)+ 2r2−js

∑
l>j

cl2
−|j−l|s,

so we can conclude from Exercise 4.3.1 that

ωr( f ,2−j,p)≤ c′l2
−js,

for some {c′l} ∈ �q. The result now follows from the equivalence (4.79).
(c) ⇒ (a): Since the support of ψ̂ is contained in {1/2 ≤ |u| ≤ 2}, we see that

Ĥr(u)≡ ψ̂(u)

(eiu − 1)r

is contained in S(R). Note, moreover, that �̂r
h( f )= (eih· − 1)r f̂ , so

F [ψ2−j ∗ f ](u)= ψ̂(u/2j) f̂ (u)= ψ̂(u/2j)

(eiu/2j − 1)r
(eiu/2j − 1)r f̂ (u)=F

[
(Hr)2−j ∗�r

2−j( f )
]
(u).

Thus, we see, using (4.3), that

‖ψ2−j ∗ f ‖p ≤ ‖Hr‖1ωr( f ,2−j,p),

which completes the proof using the equivalence (4.79).
(d) ⇒ (b): Setting

u0 =
∑
k∈Z

〈φk, f 〉φk, ul =
∑
k∈Z

〈ψlk, f 〉ψlk,

the identity f = ∑
l ul in Lp follows directly from (4.87). Moreover, for l > 0, by

Proposition 4.2.8,

‖ul‖p ≤ 2−ls2l(s+ 1
2− 1

p )‖〈ψl·, f 〉‖p ≡ 2−lscl,

where {cl} ∈ �q in view of (4.89), and a similar estimate holds for u0. Setting N= S, we know
by hypothesis that DNψ is bounded, continuous and dominated by some integrable function.
Thus, interchanging differentiation and summation, we have, from the chain rule,

DNul =
∑
k∈Z

〈ψlk, f 〉DN(ψlk)= 2lN
∑
k∈Z

〈ψlk, f 〉2l/2(DNψ)(2l(·)− k),

so Proposition 4.2.8 applied with φ =DNψ (possible in view of Proposition 4.2.5, using the
dominating function for DNψ) allows us to proceed as in the preceding estimate to establish
‖DNul‖p ≤ cl2l(N−s).
(b) ⇒ (d): By what has already been proved, we can use without loss of generality the
Littlewood-Paley decomposition f =∑

l ul, where u0 = φ ∗ f ,ul = ψ2−l ∗ f (with slight
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abuse of notation for φ), and we let Kj( f ) be the wavelet projection of f onto Vj at resolution
level j. Then, using the majorising kernel � for Kj (Definition 4.2.14), we see that

Kj( f )− f =
∑

l

(Kj(ul)− ul)

and

‖Kj( f )− f ‖p ≤
∑

l

‖Kj(ul)− ul‖p ≤
∑
l≤j

‖Kj(ul)− ul‖p +
∑
l>j

(‖�‖1 + 1)‖ul‖p.

We know that ‖ul‖p ≤ 2−lscl for some {cl} ∈ �q, so the tail of the second term in the preceding
expression is of order 2−jscj by Exercise 4.3.1. Moreover, the support of ûl is in [−2l+1,2l+1],
so by Lemma 4.3.4, we see, for N = S, that

‖DNul‖p ≤ C2Nl‖ul‖p ≤ c′l2
(N−s)l, {c′l} ∈ �q.

We thus have, by Proposition 4.1.5 with h = 2−j, that

‖Kj(ul)− ul‖p ≤ c2−jN‖DNul‖p ≤ c′′l 2(N−s)l2−jN, {c′′l } ∈ �q,

and the sum over l ≤ j of these terms is bounded by c′′′j 2−js for some {c′′′j } ∈ �q using
Exercise 4.3.1. Summarising, for every j ≥ 0,

‖Kj( f )− f ‖p ≤ dj2
−js, {dj} ∈ �q.

This implies, for every j ≥ 0, that∥∥∥∥∥∑
k

〈ψjk, f 〉ψjk

∥∥∥∥∥
p

= ‖Kj+1( f )−Kj( f )‖p ≤ ‖Kj+1( f )− f ‖p +‖Kj( f )− f ‖p ≤ 2dl2
−js.

To translate this into an estimate on the wavelet coefficients themselves, we use
Proposition 4.2.8 to see that

‖〈ψj·, f 〉‖p ≤ C(ψ)2j(1/p−1/2)

∥∥∥∥∥∑
k

〈ψjk, f 〉ψjk

∥∥∥∥∥
p

≤ d′j2
j(1/p−1/2−s), {d′j} ∈ �q,

which proves the implication (b) ⇒ (d) (noting that the estimate for ‖〈φk, f 〉‖p is the same).
The proof of Proposition 4.3.5 is complete.

The two preceding propositions complete the proof of Theorem 4.3.2.

First Basic Properties of Besov Spaces

Proposition 4.3.6 Let s,s′ > 0,p,p′,q,q′ ∈ [1,∞]. Then the following continuous imbed-
dings hold:

(i) Bs
pq ⊂ Bs

pq′ whenever q ≤ q′,
(ii) Bs

pq ⊂ Bs′
pq′ whenever s> s′, and

(iii) Bs
pq ⊂ Bs′

p′q whenever p ≤ p′, s′ − (1/p′)= s− (1/p).
Proof These assertions are immediate for the wavelet definition of Besov spaces using the
imbedding �r ⊂ �′r for r ≤ r′, so the result follows from Theorem 4.3.2.
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Approximation Operators and Besov Spaces

The essence of the proof of Theorem 4.3.2 can be distilled into a general theorem
that is quite independent of Littlewood-Paley or wavelet theory and that applies to
general approximation operators satisfying certain conditions. By the preceding proofs, the
Littlewood-Paley convolution operator Pj( f )= φ2−j ∗ f or the wavelet projection operator
Pj( f ) = Kj( f ) is admissible in the following theorem, but other approximation schemes
could be used.

Theorem 4.3.7 Let 1 ≤ p ≤∞, and let

{Pj : Lp → Lp}∞j=0

be a family of operators on Lp such that, for some fixed constant 0<C<∞, some N∈N,

(i) supj sup f :‖ f ‖p≤1 ‖Pj( f )‖p ≤ C,

(ii) ‖Pj( f )− f ‖p ≤ C2−jN‖DN f ‖p ∀j ≥ 0, f ∈ HN
p , and

(iii) For Qj = Pj+1 −Pj and every f ∈ Lp, j ≥ 0, we have

‖DN(Qj( f ))‖p ≤ C2jN‖Qj( f )‖p, ‖DN(P0( f ))‖p ≤ C‖ f ‖p.

Then, for f ∈ Lp and 0< s< N,1 ≤ q ≤∞, we have

f ∈ Bs
pq(R) ⇐⇒ ‖Pj( f )− f ‖p ≤ c′j2

−js; for some sequence {c′j} ∈ �q.

Proof We prove the result by showing the equivalence of the hypotheses on Pj( f ) with
part (b) of Proposition 4.3.5. First, if uj = Qj( f ) for j > 0, u0 = P0( f ); from a telescoping
series we have, as usual,

f = P0( f )+
∞∑
j=0

Qj( f )

in Lp, under the hypothesis ‖Pj( f )− f ‖p ≤ c′j2
−js → 0 as j →∞. Moreover,

‖uj‖p = ‖Qj( f )‖p ≤ ‖Pj( f )− f ‖p +‖Pj+1( f )− f ‖p = cj2
−js, {cj} ∈ �q,

and similarly, ‖u0‖p ≤ c0. Moreover, by assumption (iii),

‖DN(Qj( f ))‖p ≤ C2jN‖Qj( f )‖p ≤ Ccj2
j(N−s),

with {cj} ∈ �q, so f ∈ Bs
pq by Proposition 4.3.5. Conversely, if f ∈ Bs

pq, we can decompose it
in Lp as f =∑∞

k=0 uk from Proposition 4.3.5, part (b). Then Pj( f )− f =∑
j(Pjuk − uk), so,
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using assumption (ii) and Exercise 4.3.1

‖Pj( f )− f ‖p ≤
∞∑

k=0

‖Pjuk − uk‖p ≤
∞∑

k=0

min(2C‖uk‖p,C2−jN‖DNuk‖p)

≤ C
∞∑

k=0

min(2ck2
−ks,2−jNck2

k(N−s))

≤ C
j∑

k=0

2−jNck2
k(N−s)+ 2C

∞∑
k=j+1

ck2
−ks

= C2−js
j∑

k=0

2−|j−k|(N−s)ck + 2C2−js
∞∑

k=j+1

ck2
−|k−j|s

= c′j2
−js,

(4.91)

completing the proof.

We can now refine Proposition 4.1.5, which was restricted to the spaces Hm
p and Cm, to

cover approximation in the full scale of Besov spaces. We recall the integral operators

f �→ Kh( f )=
∫
R

Kh(·,y) f (y)dy = 1

h

∫
R

K
( ·

h
,
y

h

)
f (y)dy, h> 0,

which cover approximate identities arising from either convolution or projection kernels
(using the conversion h = 2−j in the latter case).

The following result is almost trivial for wavelet projection kernels Kh = K2−j in
view of the wavelet definition of the Besov norm when the basis is N-regular and
φ,ψ ∈ CN. While sufficient smoothness of φ,ψ is necessary to characterise Besov spaces,
for approximation-theoretic results, it is not because N-regular wavelet bases may satisfy
condition (B) in the following proposition without requiring φ ∈CN (cf. Definition (4.2.14)).

Proposition 4.3.8 Let N ∈N, and let K(·, ·) be a kernel such that either

(Ai) suph>0 sup f :‖ f ‖p≤1 ‖Kh( f )‖p ≤ C and

(Aii) ‖Kh( f )− f ‖p ≤ ChN‖DN f ‖p ∀h> 0, f ∈ HN
p or

(B) Condition 4.1.4 is satisfied for this N.

If f ∈ Bs
pq for some 0< s< N,1 ≤ p,q ≤∞, then, for some constant 0< C(K) <∞,

‖Kh( f )− f ‖p ≤ C(K)‖ f ‖Bs
pqh

s.

Proof First, by Proposition 4.1.5, condition (B) implies condition (A), so it suffices to
prove the result for the latter assumption. Moreover, since Bs

pq ⊂Bs
p∞, it suffices to prove that

q =∞. By Proposition 4.3.5, we can decompose f =∑
k uk with 2ks‖uk‖p = 2ks‖ f ∗ψ2−k‖p

bounded by c‖ f ‖Bs
p∞ for some c> 0 and every k. The result now follows from the estimate

(4.91) with ck = c‖ f ‖Bs
p∞ .
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4.3.2 Basic Theory of the Spaces Bs
pq

Besov Spaces, Lp-Spaces and Sobolev Imbeddings

Fix a wavelet basis of regularity S > 0. If f ∈ Lp,1 ≤ p <∞, then, by (4.87), the partial
sums ∑

k∈Z
〈 f ,φk〉φk +

J−1∑
l=0

∑
k∈Z

〈 f ,ψlk〉ψlk (4.92)

converge to f in Lp as J→∞, and by completeness of Lp, any function f that is the Lp-limit
of such partial sums belongs to Lp. There exists a proper subspace of Lp of those f ∈ Lp for
which the partial sums in l converge absolutely, that is, for which

∞∑
l=0

∥∥∥∥∥∑
k

〈 f ,ψlk〉ψlk

∥∥∥∥∥
p

<∞.

Recalling Proposition 4.2.8, these functions are precisely those for which

∞∑
l=0

2l( 1
2− 1

p )‖〈 f ,ψl·〉‖p <∞.

Formally, we define this set of functions, for 1 ≤ p<∞, to be

B0
p1 =

{
f ∈ Lp : ‖〈 f ,φ·〉‖p +

∞∑
l=0

2(1/2−1/p)‖〈 f ,ψl·〉‖p <∞
}

.

Denoting this space by B0
p1 suggests itself from definition of the norm (4.89) for general

values of s. Likewise, for p =∞, we define

B0
∞1 =

{
f ∈ Cu(R) : ‖〈 f ,φ·〉‖∞ +

∞∑
l=0

2l/2‖〈 f ,ψl·〉‖∞ <∞
}

.

The continuous imbeddings

B0
p1(R)⊂ Lp(R), 1 ≤ p<∞, B0

∞1(R)⊂ Cu(R) (4.93)

now follow directly from

‖ f ‖p =
∥∥∥∥∥∑

k∈Z
〈 f ,φk〉φk +

∞∑
l=0

∑
k

〈ψlk, f 〉ψlk

∥∥∥∥∥
p

� ‖ f ‖B0
p1

.

Moreover, when p = q = 2, then Parseval’s identity (4.15) implies directly that

B0
22(R)= L2(R).

Combined with Proposition 4.3.6, we obtain the following ‘Sobolev’ imbedding proposition
for Besov spaces:

Proposition 4.3.9 Let s ≥ 0,p,p′,q,∈ [1,∞]. Then the following continuous imbeddings
hold:

(i) Bs
pq(R)⊂ Cu(R) whenever s> 1/p or s = 1/p,q = 1,
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(ii) Bs
pq(R) ⊂ Lp′(R) whenever p ≤ p′ and s > 1/p − 1/p′ or s = 1/p − 1/p′,

q = 1,
(iii) Bs

pq(R) ⊂ L2(R) whenever p ≤ 2 and s > 1/p − 1/2 or s = 1/p − 1/2,
q ≤ 2.

This result can be used to show that pointwise products of f ,g ∈ Bs
pq also belong to Bs

pq

whenever the Sobolev imbedding into L∞ holds (see Exercise 4.3.4).
The preceding motivates that, for q> 1, the spaces B0

pq could be defined likewise, simply
by requiring finiteness of the ‖ · ‖B0

pq
-norm. For p 
= 2 or q> 2, however, a problem arises,

as it is not a fortiori clear that convergence of the partial sums (4.92) for the norm ‖ · ‖B0
pq

implies that the full wavelet series defines an element of Lp. More precisely, for q> 1, the
Besov spaces need to contain elements which are not functions in order to be Banach spaces.
Indeed, considering the example of Dirac measure δ0 acting on the wavelet coefficients by
integration (i.e., evaluation at zero), we see that

‖δ0‖B0
1∞

=
∑

k

|φ(k)|+ sup
l≥0

2−l/22l/2
∑

k

|ψ(k)|<∞

by Definition 4.2.14, so any reasonable definition of B0
1∞ will be such that δ0 ∈ B0

1∞. In fact,
by the same argument, if we let M(R) be the space of finite signed measures, then

‖μ‖B0
1∞

≤ C|μ|(R) ∀μ ∈ M(R), M(R)⊂ B0
1∞(R), (4.94)

where |μ| is the total variation measure of μ, and 0 < C <∞ is some universal constant.
Thus, for general q> 1,s ≤ 0,1 ≤ p ≤∞, Besov spaces need to be interpreted as spaces of
‘generalised functions’, that is, as elements of the space S∗ of tempered distributions.

Besov Spaces of Tempered Distributions

We shall now define Besov spaces for general s∈R as spaces of tempered distributions. For
1 ≤ p ≤∞,1 ≤ q ≤∞,s ∈R, we set

Bs
pq ≡ { f ∈ S∗ : ‖ f ‖Bs

pq <∞}, (4.95)

where the Besov norms

‖ · ‖Bs
pq ≡ ‖ · ‖Bs,W

pq

are given as in (4.89) using the band-limited wavelet basis from Theorem 4.2.9. The inner
products 〈 f ,φk〉, 〈 f ,ψlk〉 are now interpreted as the action of f on φk,ψlk ∈S in the sense of
tempered distributions. Alternatively, we require the Littlewood-Paley norms ‖·‖Bs,LP

pq
,s∈R,

from (4.86) to be finite, where the convolutions f ∗ (·)(x) are defined as the action of f
on φ(· − x) and on ψ2−l(· − x). Since at each level l the wavelet and Littlewood-Paley
norms only involve Lp-functions, we show as in the proof of Theorem 4.3.2 that the
Littlewood-Paley and wavelet definitions coincide, with equivalent norms. Moreover, this
definition reproduces the definition of the space Bs

pq,s> 0, and of B0
p1, by identifying f ∈ Lp

with the tempered distribution φ �→ ∫
R
φ f . To see this, note that finiteness of ‖ f ‖Bs

pq implies
that f ∈ S∗ is the Lp/uniform limit of Lp/uniformly continuous functions and thus must
itself lie in Lp/Cu. Moreover, we shall see in the next subsection that B−s

pq for s > 0 can be
interpreted as a dual space of a Besov space of index s. As the definition of the latter space
is independent of the wavelet basis used, so is the definition of B−s

pq .
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It is now immediate that Proposition 4.3.6 holds without the restriction s,s′ > 0.

Proposition 4.3.10 Let s,s′ ∈ R, p, p′, q,q′ ∈ [1,∞]. Then the following continuous
imbeddings hold:

(i) Bs
pq ⊂ Bs

pq′ whenever q ≤ q′,
(ii) Bs

pq ⊂ Bs′
pq′ whenever s> s′, and

(iii) Bs
pq ⊂ Bs′

p′q whenever p ≤ p′, s′ − 1/p′ = s− 1/p.

Moreover, the spaces B0
p∞ always contain the Lp-spaces.

Proposition 4.3.11 Let 1 ≤ p ≤∞. We have the continuous imbedding Lp ⊂ B0
p∞.

Proof The result follows immediately from the definition (4.89) of the Besov norm and,
for p<∞, from the second part of Proposition 4.2.8 combined with the estimate∥∥∥∥∥∑

k

〈 f ,ψlk〉ψlk

∥∥∥∥∥
p

≤ 2sup
l
‖Kl( f )‖ ≤ C‖ f ‖p.

We note again that for p = 2, we have L2 = B0
22.

Duality of Besov Spaces

Besov spaces for s< 0, alternatively, can be defined as the dual spaces of the Besov spaces
with s > 0. Let us first consider the easiest case, p = q = 2, so that Bs

22 is a Hilbert space.
Since S ⊂ Bs

22, we can naturally view the topological dual space (Bs
22)

∗ as a subset of S∗,
and viewed in such a way, this alternative definition coincides with the one from (4.95).

Proposition 4.3.12 Let s> 0. We have

(Bs
22)

∗ = B−s
22 ,

and the norms are equivalent:

‖ f ‖(Bs
22)

∗ ≡ sup
g:‖g‖Bs

22
≤1

∣∣∣∣∫
R

g(x) f (x)

∣∣∣∣� ‖ f ‖B−s
22

.

Proof We write throughout φk = ψ−1,k to shorten notation. If f ∈ L2 and φ is any element
of Bs

22 ⊂ L2, then, by Parseval’s identity and the Cauchy-Schwarz inequality,∫
R

f φ =
∑

l,k

〈 f ,ψlk〉〈φ,ψlk〉 =
∑

l

∑
k

2−ls〈 f ,ψlk〉2ls〈φ,ψlk〉

≤ ‖ f ‖B−s
22
‖φ‖Bs

22
= C‖φ‖Bs

22
,

for

C = ‖ f ‖B−s
22
≤ ‖ f ‖2.

Thus, any f ∈L2, acting by integration on Bs
22, belongs to (Bs

22)
∗. By standard approximation

arguments (using that S is dense in Bs
22 and that L2 is dense in B−s

22 ), we see that any tempered
distribution f ∈ B−s

22 defines an element of (Bs
22)

∗. Conversely, let L ∈ (Bs
22)

∗. In view of the
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wavelet definition of Besov spaces, we see that Bs
22 is isometric to the Hilbert space �2(μs)

of sequences {clk}k∈Z,l≥−1 that are square summable with regard to the weighted counting
measure dμs(k, l) = 22lsdldk. Thus, L defines a continuous linear form on �2(μs), and by
the Riesz-representation theorem for continuous linear functionals on �2(μs), there exists
gL ∈ �2(μs) such that

L(φ)=
∑

k,l

22ls〈gL,ψlk〉〈φ,ψlk〉 ∀φ ∈ Bs
22, ‖gL‖�2(μs) = ‖L‖(Bs

22)
∗ .

Now, since S ⊂ Bs
22, we have L ∈ S∗ and, using the last representation for L(ψlk) and

ortho-normality of the ψlk ∈ S ,

‖L‖B−s
22
=
∑

l,k

2−2ls|L(ψlk)|2 =
∑

l,k

22ls|〈gL,ψlk〉|2 = ‖L‖(Bs
22)

∗ <∞,

so L ∈ B−s
22 , completing the proof.

The same result holds for s ≤ 0 as the spaces involved are Hilbert spaces and hence
reflexive. Moreover, these arguments extend without conceptual difficulty to 1< p,q<∞,
and one shows that

(Bs
pq)

∗ = B−s
p′q′ , 1/p+ 1/p′ = 1, 1/q+ 1/q′ = 1, (4.96)

in this situation. The proofs, which follow from the same arguments as in the proof of the
preceding proposition combined with standard duality theory of �p-spaces, are left to the
reader.

Since Bs
pq can be defined using a wavelet basis of regularity r> s with equivalent norms,

we see that we can define B−s
p′q′ for these values of p,q also using such a wavelet basis, and

there is no need to restrict ourselves to φ,ψ ∈ S as long as the wavelets are S-regular, s< S.
The limiting cases where p or q take values in {1,∞} deserve separate attention. In

essence, we shall be interested in the following estimate:

Proposition 4.3.13 Let s> 0. Then

(a) Every f ∈ L∞ defines a tempered distribution in B−s
∞1, and

sup
g:‖g‖Bs

1∞≤1

∣∣∣∣∫
R

f (x)g(x)dx

∣∣∣∣≤ ‖ f ‖B−s
∞1

.

(b) Every finite signed measure μ defines a tempered distribution in B−s
1∞, and

sup
g:‖g‖Bs∞1

≤1

∣∣∣∣∫
R

g(x)dμ(x)

∣∣∣∣≤ ‖μ‖B−s
1∞ .

Proof (a) We have

f ∈ L∞ ⊂ B0
∞∞ ⊂ B−s

∞1, g ∈ Bs
1∞ ⊂ B0

11 ⊂ L1

by Propositions 4.3.9, 4.3.10 and 4.3.11. The wavelet series of g converges in L1, and thus,
by dominated convergence,∫

R

f g =
∑

l,k

∫
f (x)〈g,ψlk〉ψlk(x)dx =

∑
l,k

〈g,ψlk〉〈 f ,ψlk〉,
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so ∣∣∣∣∫
R

f g

∣∣∣∣≤ sup
l

2l(s−1/2)‖〈g,ψl·〉‖1 ·
∑

l

2l(−s+1/2)‖〈 f ,ψl·〉‖∞ = ‖g‖Bs
1∞‖ f ‖B−s

∞1
,

which gives part (a). Part (b) is proved in exactly the same way, noting that the wavelet
series g ∈ Bs

∞1 ⊂ Cu converges uniformly and replacing f (x)dx by dμ(x) everywhere.

Unlike in the cases 1 < p,q <∞, one cannot conclude, however, that (Bs
1∞)

∗ = B−s
∞1

and (Bs
∞1)

∗ = B−s
1∞ because S is not dense in Bs

pq for max(p,q)=∞ (so the approximation
arguments from before cannot be used). Rather, the spaces Bs

1∞,Bs
∞1 have to replaced by the

completion of S for the corresponding norms. We do not pursue this further as it will not be
relevant in what follows.

Approximation of Functions in Weak Norms and for Integral Functionals

In Propositions 4.1.5 and 4.3.8 we studied properties of kernel-type approximation schemes
in Lp-type distance functions. These bounds clearly imply the same approximation rates in
weaker distance functions than Lp-loss, such as B−r

pq -loss for r> 0, simply by the continuous
imbeddings of Lp ⊂ B−r

pq . However, the bounds can be quantitatively improved in such
situations, and this can be most easily understood for wavelet approximation schemes.

Proposition 4.3.14 Let Kj = 2jK(2j·,2j·) be the projection kernel of an S-regular wavelet
basis of L2(R), and let max(s,r) < S, 1 ≤ p,q ≤ ∞. Suppose that f ∈ Bs

pq(R). Then, for
every s ≥ 0,r ≥ 0, j ≥ 0, and some constant C that depends only on the wavelet basis,

‖Kj( f )− f ‖B−r
pq
≤ C‖ f ‖Bs

pq2
−j(s+r).

Proof For notational simplicity, we prove only q=∞; the general case is the same. Using
the wavelet characterisation of the Besov norm, we have

‖Kj( f )− f ‖B−r
p∞ = sup

l≥j
2l(−r+1/2−1/p)‖〈 f ,ψl·〉‖p

≤ 2−j(s+r) sup
l≥j

2l(s+1/2−1/p)‖〈 f ,ψl·〉‖p

≤ 2−j(s+r)‖ f ‖Bs,W
p∞

so the result follows from equivalence of the different Besov norms.

This result, in view of the duality theory of the preceding section, can be used to bound
the approximation errors of integrals∣∣∣∣∫

R

g(x)(Kj( f )− f )(x)dx

∣∣∣∣� ‖Kj( f )− f ‖B−s
pq
‖g‖Br

p′q′ ≤ C‖ f ‖Bs
pq‖g‖Br

p′q′2
−j(s+r), (4.97)

for f ∈ Lp,g ∈ Lq, 1/p+ 1/p′ = 1,1/q+ 1/q′ = 1 and 0< C<∞ some universal constant,
showing that for smooth integral functionals the precision of approximation of f by Kj( f )
can be quantitatively better than in Lp. In particular, these arguments can be applied to
g contained in the spaces Hm

p ,Cm by using their imbeddings into suitable Br
pq spaces, as

discussed in the next section.
For some functions, direct estimates are preferable over duality arguments. We illustrate

this for indicator functions 1(−∞,t] which are bounded but smooth in L1 only, so the duality
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theory via Besov spaces is not efficient. The following proposition generalises immediately
to classes G of functions of bounded variation (defined in the next section) and then also to
the space H1

1 and, more generally, to the spaces Hm
1 (see Exercise 4.3.5).

Proposition 4.3.15 Let Kj = 2jK(2j·,2j·) be the projection kernel of an S-regular wavelet
basis of L2(R). Assume that f ∈ Bs

∞∞ ∩ L1 for some s< S. Let G = {1(−∞,t] : t ∈ R}. Then,
for some constant C depending only on the wavelet basis and every l ≥ 0,

sup
g∈G

‖〈g,ψl·〉‖1 ≤ C2−l/2 (4.98)

and

sup
g∈G

∣∣∣∣∫
R

(Kj( f )− f )g

∣∣∣∣≤ C‖ f ‖Bs,W∞∞2−j(s+1). (4.99)

Proof Since the wavelet series of f converges in L1, we have

Kj( f )− f =−
∞∑
l=j

∑
k

〈 f ,ψlk〉ψlk in L1,

and since g = 1(−∞,s] ∈ L∞, we can interchange integration and summation to see that

∫
(Kj( f )− f )g =

∞∑
l=j

∑
k

〈 f ,ψlk〉〈g,ψlk〉.

We now have

‖〈g,ψl·〉‖1 ≤
∫ ∑

k

|(Kl+1 −Kl)(g)(x)||ψlk(x)|dx

≤ 2l/2

∥∥∥∥∥∑
k

|ψ(2l(·)− k)|
∥∥∥∥∥
∞
‖Kl+1(g)−Kl(g)‖1 (4.100)

≤ c2l/2 (‖Kl+1(g)− g‖1 +‖Kl(g)− g‖1) .

To bound the right-hand side, we have by Fubini’s theorem, using a majorising kernel� for
K(x,y),∫ ∣∣∣∣∫ 2lK(2ly,2lx)g(x)dx− g(y)

∣∣∣∣dy =
∫ ∣∣∣∣∫ 2lK(2ly,2lu+ 2ly)(g(u+ y)− g(y))du

∣∣∣∣dy

≤
∫ ∫

2l�(2lu)|g(u+ y)− g(y)|dudy
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=
∫
�(u)

∫
|g(2−lu+ y)− g(y)|dydu

=
∫
�(u)

∣∣∣∣∫ s

s−2−lu
dy

∣∣∣∣du

≤ 2−l

∫
�(u)|u|du

to conclude that (4.98) holds true. For the wavelet coefficients of f , we have by the wavelet
definition of the Besov norm that ‖〈 f ,ψl·〉‖∞ ≤ C2−l(s+1/2). Combining these two bounds
gives (4.99).

A similar phenomenon occurs for convolution kernel approximations∫
R

g(x)(Kh ∗ f − f )(x), Kh = h−1K(·/h),
where we cannot use the wavelet characterisation of Besov spaces directly, however. Instead,
we notice the following:

Lemma 4.3.16 Let K ∈ L1(R),
∫

K = 1, f ∈ Lp(R),g ∈ Lq(R), with 1/p+ 1/q = 1. Then,
writing f̄ = f (−·), we have f̄ ∗ g ∈ C(R), and∫

R

g(x)(Kh ∗ f − f )(x)dx =
∫
R

K(t)[ f̄ ∗ g(ht)− f̄ ∗ g(0)]dt. (4.101)

Proof By (4.2) and (4.3), the properties of f̄ ∗ g follow and also that ( f ∗Kh)g, f g ∈ L1.
By substitution and Fubini’s theorem,

1

h

∫
R

∫
R

( f (x− y)− f (x))K
( y

h

)
dyg(x)dx

=
∫
R

∫
R

( f (x− th)− f (x))K(t)dtg(x)dx

=
∫
R

K(t)

[∫
R

f (x− th)g(x)dx−
∫
R

f (x)g(x)dx

]
dt

=
∫
R

K(t)

[∫
R

f̄ (th− x)g(x)dx−
∫
R

f̄ (0− x)g(x)dx

]
dt

=
∫
R

K(t)[ f̄ ∗ g(ht)− f̄ ∗ g(0)]dt.

Using Taylor expansion arguments as in the case p=∞ in Proposition 4.1.5, we now see
that the regularity of the convolution f̄ ∗g near zero governs the rate of convergence to zero
of the quantity in the preceding lemma. More precisely, if we can bound the Cm(R)-norm
of f̄ ∗ g, then we will obtain a bound of the order of hm for

∣∣∫
R
(Kh ∗ f − f )g

∣∣. To obtain
sharp results, one notices that, intuitively speaking, the smoothness of f̄ ∗ g will be the sum
of the smoothness degrees of the individual functions f ,g, paralleling the role of s+ r in
Proposition 4.3.14.

To investigate this further, we start with the following simple lemma, for which we note
that a locally integrable function f may have a weak derivative D f = ν f equal to a signed
measure by interpreting D f (u)du in (4.1) as dν f (u).

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.005
http:/www.cambridge.org/core


4.3 Besov Spaces 345

Lemma 4.3.17 (a) Let f ∈ C(R) be such that D f ∈ L∞(R), and let ν ∈ M(R) be a finite
signed measure. Then, for every x ∈R, D( f ∗ ν)(x) exists, and

D( f ∗ ν)(x)= (D f ∗ ν)(x).

(b) Let g ∈ C(R), let f ∈ L∞(R) be such that D f ∈ M(R) and suppose that g ∗ f (x) is
defined for every x ∈R. Then, for every x ∈R, D(g∗ f )(x) exists, and

D(g∗ f )(x)= (g∗ ν f )(x),

where ν f is the finite signed measure defined by ν f ((a,b]) = f̃ (b) − f̃ (a), f̃ (x) ≡
D f ((−∞,x]).

Proof For part (a), note that by the mean value theorem and boundedness of D f ,
h−1[ f (x− y+ h)− f (x− y)] is uniformly bounded; hence, by the dominated convergence
theorem, we have

D( f ∗ ν)(x)= lim
h→0

h−1

∫
R

( f (x− y+ h)− f (x− y))dν(y)dy

=
∫
R

lim
h→0

h−1[ f (x− y+ h)− f (x− y)]dν(y)dy

=
∫
R

D f (x− y)dν(y)dy = (D f ∗ ν)(x),

the last integral being convergent for every x ∈R because D f is bounded.
For part (b), we have f = f̃ almost everywhere (Exercise 4.3.6), and thus, (g ∗ f )(x)=

(g∗ f̃ )(x) holds for every x ∈R, so we have

D(g∗ f )(x)= lim
h→0

h−1

∫
R

(
f̃ (x− y+ h)− f̃ (x− y)

)
g(y)dy

= lim
h→0

h−1

∫
R

∫ x−y+h

x−y
dν f (t)g(y)dy

= lim
h→0

h−1

∫
R

∫ x−t+h

x−t
g(y)dydν f (t)

=
∫
R

lim
h→0

h−1

∫ x−t+h

x−t
g(y)dydν f (t)

=
∫
R

g(x− t)dν f (t)= g∗ ν f (x),

for every x. The first two equalities are obvious. The third is Fubini’s theorem, and the fourth
equality follows from g ∈ C(R) and the dominated convergence theorem. The fifth equality
follows from the fundamental theorem of calculus. The integral in the last line converges
for every x ∈R by the boundedness of g.
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In the p = 2 setting we have the following:

Lemma 4.3.18 Assume that f ∈ Hs
2(R),g ∈ Hr

2(R) for nonnegative integers s,r ≥ 0 (where
H0

2 = L2). Then f ∗ g ∈ Cs+r(R), and

‖ f ∗ g‖Cs+r(R) ≤ 2π‖ f ‖Hs
2(R)

‖g‖Hr
2(R)

,

for some universal constant C.

Proof We have ‖ f ∗ g‖∞ ≤ ‖ f ‖2‖g‖2, and using the Fourier-analytical tools reviewed in
Section 4.1, as well as the Cauchy-Schwarz inequality, we get

‖Ds+r( f ∗ g)‖∞ ≤
∫
R

|u|s+r| f̂ (u)||ĝ(u)|du

=
∫
R

|F [Ds f ](u)||F [Drg](u)|du

≤ ‖F [Ds f ]‖2‖F [Drg]‖2 ≤ 2π‖ f ‖Hs
2
‖g‖Hr

2
,

giving the result.

We can conclude that if f ∈ Cs(R),g ∈ Hr
1(R) or f ∈ Hs

2(R),g ∈ Hr
2(R), then

Ds+r( f ∗ g)= Ds f ∗Drg ⇒ f ∗ g ∈ Cs+r(R) (4.102)

from the preceding lemmas (applied iteratively in the first case). In particular, if K is a kernel
that satisfies Condition 4.1.3 for N = s+ r, then∣∣∣∣∫

R

g(x)(Kh ∗ f − f )(x)

∣∣∣∣≤ Chs+r, (4.103)

where C equals a universal constant times ‖ f ‖Cs‖g‖Hr
1

or ‖ f ‖Hs
2
‖g‖Hr

2
, respectively. To

obtain similar results for p /∈ {1,2,∞} and s,r /∈ N for convolution kernel approximations
is possible but requires more sophisticated arguments; we give some references in the
notes at the end of this chapter. Recall, however, that for wavelet approximations one can
immediately use Proposition 4.3.14 without difficulty for such values of s,r,p.

The Differential Operator on Besov Spaces

Since Besov spaces model regularity properties, it is natural to expect that the differentiation
operator f �→ Dn f acts on the scale Bs

pq by decreasing the s index by n. This holds true in
general (s ∈R), where derivatives are understood in the distributional sense of the space S∗

if necessary.

Proposition 4.3.19 Let s ∈R,p,q ∈ [1,∞]. For any n ∈N, the mapping f �→Dn f is linear
and continuous from Bs

pq(R) to Bs−n
pq (R).

Proof We estimate the Littlewood-Paley norm

‖Dn f ‖Bs−n
pq

= ‖(Dn f )∗φ‖p +
⎛⎝ ∞∑

j=0

2j(s−n)q‖(Dn f )∗ψ2−j‖q
p

⎞⎠1/q
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with obvious notational modifications if q=∞. We use Lemma 4.3.4 and the fact that f ∗φ
has compactly supported Fourier transform to see that

‖(Dn f )∗φ‖p = ‖Dn( f ∗φ)‖p ≤ C‖ f ∗φ‖p.

Moreover, again by Lemma 4.3.4 and since the support of the Fourier transform of f ∗ψ2−j

is contained in an interval of width of order 2j, we have, from the same argument,

∞∑
j=0

2j(s−n)q‖(Dn f )∗ψ2−j‖q
p ≤

∞∑
j=0

2jsq‖ f ∗ψ2−j‖q
p,

which implies that

‖Dn f ‖Bs−n
pq

≤ ‖ f ‖Bs
pq ,

completing the proof.

4.3.3 Relationships to Classical Function Spaces

We have seen that Besov spaces are the maximal spaces for which the accuracy of
approximation from a variety of common approximation schemes has a prescribed degree of
precision. We show in this section that many of the more familiar classical spaces of smooth
functions (i) either coincide with or (ii) are contained in a suitable Besov space. In the former
cases, this implies, by virtue of Theorem 4.3.2, that the classical spaces, which themselves
are usually defined by more intuitive regularity conditions, have powerful characterisations
by their wavelet coefficients. In the latter case, it allows us to use approximation-theoretic
results such as Proposition 4.3.8 for these Besov subspaces as well. The results in this
subsection particularly establish that for the purposes of constructing statistical models for
functions, Besov spaces are in a sense the right general framework.

Spaces of Differentiable Functions

We recall, for m ∈N, 1 ≤ p<∞, that

Hm
p ≡ Hm

p (R)=
{

f ∈ Lp : Dj f ∈ Lp ∀j = 1, . . . ,m : ‖ f ‖Hm
p := ‖ f ‖p +‖Dm f ‖p <∞}

,

and for p =∞,

Cm ≡ Cm(R)= { f ∈ Cu(R) : f (j) ∈ Cu(R) ∀j = 1, . . . ,m : ‖ f ‖Cm := ‖ f ‖∞+‖ f (m)‖∞ <∞}.
These spaces can be related to Besov spaces Bs

pq(R) in a natural way.

Proposition 4.3.20 The following continuous imbeddings hold: for every 1≤ p<∞,m∈N,

Bm
p1(R)⊂ Hm

p (R)⊂ Bm
p∞(R), if 1 ≤ p<∞, Bm

∞1(R)⊂ Cm(R)⊂ Bm
∞∞(R), (4.104)

as well as

Bm
22(R)= Hm

2 (R), (4.105)

with equivalent norms.
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Proof In view of (4.75) and the modulus of continuity definition of Bs
pq, we immediately

deduce Hm
p (R) ⊆ Bm

p∞(R),C
m(R) ⊂ Bm

∞∞(R). Moreover, using Proposition 4.3.5, part
(b), we see that for f ∈ Bm

p1(R) we have f ∈ Lp and, interchanging differentiation and
summation,

‖Dm f ‖p =
∥∥∥∥∥Dm

∑
l

ul

∥∥∥∥∥
p

≤
∑

l

‖Dmul‖p ≤
∑

l

cl <∞,

so (4.104) follows.
To establish (4.105), assume first that f ,Dm f ∈ L2, and let us show that the

Littlewood-Paley Besov norm (4.86) is finite. By Plancherel’s theorem,

22jm‖ψ2−j ∗ f ‖2
2 =

22jm

2π

∫ 2−j+1

2−j−1
|ψ̂(2−ju)|2| f̂ (u)|2|u|2m|u|−2mdu

≤ c
∫

|ψ̂(2−ju)|2|F [Dm f ](u)|2du,

and this bound is summable because∑
j

|ψ̂(2−ju)|2 ≤ 2‖ψ̂‖2
∞,

∫
|F [Dm f ](u)|2du ≤ ‖Dm f ‖2

2,

using that ψ̂(2−ju) and ψ̂(2−j′u) have disjoint support as soon as |j− j′| ≥ 2. Thus, Hm
2 ⊂ Bm

22

follows.
Conversely, assume that f ∈ Bm

22. Hence, f ∈ L2, and it suffices to show that ‖Dm f ‖2 <

∞. It is easy to see that the function ψ in the Littlewood-Paley decomposition can be chosen
such that

inf
u∈R

∑
j

|ψ̂(2−ju)|2 ≥ c> 0,

for some universal constant c so that, by Plancherel’s theorem,∑
j

22jm‖ψ2−j ∗ f ‖2
2 =

1

2π

∑
j

22jm

∫ 2−j+1

2−j−1
|ψ̂(2−ju)|2| f̂ (u)|2|u|2m|u|−2mdu

≥ c′
∫ ∑

j

|ψ̂(2−ju)|2|F [Dm f ](u)|2du

≥ c′′‖Dm f ‖2
2,

so Dm f ∈ L2, and the result follows.

Bounded Variation Spaces

The space H1
1 is the space of functions f ∈ L1 with weak derivative D f in L1. Since D f

is understood in the sense of (4.1), the requirement D f ∈ L1 can be weakened further to
require only that D f ∈ M(R), that is, that D f is a finite signed measure on R; in this case,
we speak of a function of bounded variation

BV ≡ BV(R)= { f ∈ L1(R) : D f ∈ M(R)} (4.106)
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equipped with the norm

‖ f ‖BV = ‖ f ‖1 +|D f |(R),
where |D f | is the total variation of D f .

Proposition 4.3.21 We have the continuous imbeddings

B1
11(R)⊂ H1

1(R)⊂ BV(R)⊂ B1
1∞(R).

Proof Clearly, H1
1 ⊆ BV as any D f ∈ L1 is the density of a finite signed measure, so in

particular, B1
11 ⊂ BV by (4.104). It remains to prove the third imbedding. We can write

f (x)= f (−∞)+
∫
R

1(−∞,x](u)dD f (u),

and thus from Fubini’s theorem and since
∫
ψlk = 0, we have

〈 f ,ψlk〉 =
∫
R

〈1[u,∞),ψlk〉dD f (u).

The estimate (4.98) now implies that

sup
l≥0

2l/2
∑

k

|〈 f ,ψlk〉|� |D f |(R),

and since ‖〈 f ,φ·〉‖1 ≤ C‖ f ‖1, we conclude that ‖ f ‖B1
1∞ <∞, implying the result.

In a similar vein, if instead of requiring f ∈ L1 in the definition of BV(R) we require
f ∈ L∞, then the norm ‖ f ‖∞ + |D f |(R) of this space can be estimated by ‖ f ‖∞ +
‖D f ‖0,1,∞. We recall that so-defined bounded variation spaces are related to the classical
notion of BV spaces as follows: if P denotes the set of all finite dissections {xi}n

i=1 of R, then
one shows (Exercise 4.3.6) that any function f ∈ BV(R) is a.e. equal to a function f which
satisfies

sup
{xi}∈P

∑
i

| f (xi+1)− f (xi)|<∞, (4.107)

and conversely, any f for which the last supremum is finite defines an element of BV(R).
A similar remark holds for the relationship between H1

1 and the classical space of absolutely
continuous functions.

Finally, if in the preceding definition pth powers are used, we obtain the spaces of
functions of bounded p-variation, that is,

BVp(R)=
{

f : R→R : vp( f )≡ sup
{xi}∈P

∑
i

| f (xi+1)− f (xi)|p <∞
}

, 1 ≤ p<∞.

An important case is p = 2, the space of functions of finite quadratic variation.

Proposition 4.3.22 Let 1 ≤ p<∞. Then we have

BVp(R)∩Lp(R)⊂ B1/p
p∞(R).
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Proof The case p = 1 is already established, and we only prove p = 2; the general case is
the same in view of Lemma 3.6.11. Since f ∈ L2, it suffices to show that the squared Besov
norm

sup
t>0

ω2
1( f , t,2)

t
= sup

t>0

∫
( f (x+ t)− f (x))2dx

t

from (4.78) with r = 1 > 1/2 is finite; in fact, since f ∈ L2, we can restrict the supremum
and the integral to a bounded set K including the origin. By Lemma 3.6.11, we have f (x)=
g(m(x)), where m(x) is a nondecreasing function with range contained in [0,v2( f )] and g is
1/2-Hölder continuous on [0,v2( f )]. In particular, m∈BV has a weak derivative of variation
at most v2( f ), and thus, the quantity in the preceding display can be bounded, using Fubini’s
theorem and Exercise 4.3.6, by

sup
t∈K

∫
K |m(x+ t)−m(x)|dx

t
= sup

t∈K

1

t

∫
K

∫ x+t

x
|dDm(u)|dx ≤ C(K)v2( f ),

completing the proof.

Using more sophisticated techniques from interpolation theory, one can also prove a
‘converse’ of the preceding proposition in the sense that

B1/p
p1 (R)⊂ BVp(R) (4.108)

(see the notes at the end of this chapter for references). The easier case p = 2 is hinted at in
Exercise 4.3.10.

Spaces Defined by Hölder-Type Conditions

For A an arbitrary measurable subset of R, the classical Lipschitz space is defined as

BL(A)=
{

f ∈ Cu(A) : ‖ f ‖∞+ sup
x
=y,x,y∈A

| f (x)− f (y)|
|x− y| <∞

}
. (4.109)

For A an interval possibly equal to R, the space BL(A) contains, by the mean value theorem,
the space C1(A), and this containment is strict (since | · | ∈ BL(R)\C1(R)). Lipschitz spaces
have an obvious generalisation to noninteger s ∈ (0,1) as

Cs(A)=
{

f ∈ Cu(A) : ‖ f ‖∞+ sup
x
=y,x,y∈A

| f (x)− f (y)|
|x− y|s <∞

}
, (4.110)

and then, for s> 0, any noninteger real number with integer part [s],

Cs(A)=
{

f ∈ Cu(A) : ‖ f ‖Cs(A) ≡ ‖ f ‖C[s](A)+ sup
x
=y,x,y∈A

|D[s] f (x)−D[s] f (y)|
|x− y|s−[s]

}
. (4.111)

For noninteger s, the spaces Cs(A) are known as Hölder spaces. It is immediate from (4.78)
that, for A an interval,

Cs(A)= Bs
∞∞(A), 0< s< 1,

and (4.76) gives Cs(A) ⊂ Bs
∞∞(A) for any s /∈ N. Finally, Exercise 4.3.3 shows that also

Bs
∞∞(A)⊂ Cs(A). Summarising:
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Proposition 4.3.23 We have

Cs(A)= Bs
∞∞(A), 0< s<∞,s /∈N,

with equivalent norms.

Remarkably, the norm of the nonseparable (see Exercise 4.3.7) space Cs(A),s /∈ N,
has several useful equivalent characterisations by wavelet or Littlewood-Paley bases
(cf. Theorem 4.3.2). Combined with the imbedding Cm ⊂ Bm

∞∞,m ∈ N, we see that, for
any s> 0,

f ∈ Cs(R)⇒ sup
k∈Z

|〈 f ,ψlk〉| ≤ K‖ f ‖Cs(R)2
−l(s+1/2), (4.112)

for some constant K that depends only on the (S-regular, S > s) wavelet basis. Thus,
smoothness of f translates into faster decay of the wavelet coefficients, and for s /∈ N,
this implication is in fact an equivalence.

The preceding definitions of Cs(A) and BL(A) leads to potential ambiguities when s is
an integer. For convenience of the reader, we discuss here what is known without going
into detailed proofs, and we refer you to the notes at the end of this chapter for references.
The classical definition of Cm, and the one we use, is in terms of derivatives, given at the
beginning of this chapter. Alternatively, one can generalise the Lipschitz spaces and define,
for s ∈N,

BL(s,A)=
{

f ∈ Cu(A) : ‖ f ‖Cs(A) ≡ ‖ f ‖∞+ sup
x
=y,x,y∈A

|D(s−1) f (x)−D(s−1) f (y)|
|x− y|

}
. (4.113)

We have already noted that Cm ⊂ Bm
∞∞, and one may show that this imbedding is strict,

Cm 
= Bm
∞∞ for m ∈ N as the latter space contains nondifferentiable functions (e.g., | · |, as

is easily seen). One may next ask whether BL(m,A) = Bm
∞∞(A) holds true. The answer is

also negative; the Besov norm in terms of higher differences gives rise to a space that is still
larger than an s-Lipschitz space – in some sense, the Bm

∞∞ are the largest spaces that still
have L∞-regularity m. The spaces Bm

∞∞ are sometimes studied separately under the name
of Hölder-Zygmund or just Zygmund spaces, and are then denoted by Cm. For these spaces,
(4.112) is always an equivalence, including the case s ∈N. Summarising, we note that

Cm(R)� BL(m,R)� Bm
∞∞(R)≡ Cm(R), m ∈N.

Similar remarks apply to the p <∞ case when considering the integrated Hölder-type
conditions (s /∈ N) that define Bs

pq. For noninteger s, another approach to define the spaces
Hs

p exists. Note first that in the definition of Hm
2 ,m ∈N, we require

f +Dm f ∈ L2 ⇐⇒ f̂ + (iu)m f̂ = (1+ (iu)m) f̂ ∈ L2 (4.114)

by Plancherel’s theorem and (4.9). One thus can construct an equivalent norm on Hm
2 by

‖ f ‖ = ‖〈u〉m f̂ ‖2, where 〈u〉 ≡ (1+ |u|2)m/2. This motivates the definition, for general s ≥
0,1 ≤ p<∞,

Ĥs
p = { f ∈ Lp : ‖F−1〈u〉s f̂ ‖p <∞},

with Fourier transform understood in the sense of (4.13) if p> 2. The preceding arguments
and Plancherel immediately give Ĥm

2 = Hm
2 = Bm

22 for m ∈N, and the proof of

Ĥs
2 = Bs

22 ∀s> 0, (4.115)
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with equivalent norms, is only slightly more involved, using the spectral synthesis of the
translation operator (4.6). A deeper fact is

Bs
pp = Ĥs

p, 1< p<∞, (4.116)

which can be proved using Fourier multiplier arguments that we do not develop here.

Local Wavelet Reconstruction of Hölderian Functions

If the wavelet basis is sufficiently localised, then the estimate (4.112) is in fact a local
phenomenon. For instance, take an S-regular Daubechies wavelet ψ , and recall that the
support of ψlk is [(−N+ 1+ k)/2l,(N+ k)/2l]. Fix a point x0 ∈ R, let δ > 0, let Ax0,δ be the
δ-neighborhood of x0 and assume that f ∈Cs(Ax0,δ) for some s> 0. If k0 is any integer such
that the support set

[(−N+ 1+ k0)/2
l,(N+ k0)/2

l]
of ψlk0 is contained in Ax0,δ, then∫

Ax0,δ

ψlk0(x)x
�dx =

∫
R

ψlk0x
�dx = 0,

for every �= 0, . . . ,S− 1, and

〈 f ,ψlk0〉 =
∫
R

f (x)ψlk0(x)dx = 2l/2

∫
A(x0,δ)

( f (x)− f (x0))ψ(2
lx− k0)dx

so that, after the usual Taylor expansion arguments (as in Proposition 4.1.5),∣∣〈 f ,ψlk0〉
∣∣≤ C2−l(s+1/2), (4.117)

where C depends only on S and the local Hölder constant of f . This result is in fact uniform
in all k0 for which ψlk0 is supported in Ax,δ.

4.3.4 Periodic Besov Spaces on [0,1]
The function spaces considered so far consisted of functions defined on all of R, the only
exception being the definition of Besov and Hölder spaces on subintervals A of R by
(integrated) moduli of smoothness (e.g., (4.77)). The restriction to R was not arbitrary, as the
group structure of the real line was exploited heavily in the proofs via the Fourier transform.
In this section we show how a similar theory can be developed on a fixed interval (a,b] when
one restricts to periodic functions so that the group operation of translation modulo 1 can
be used. In the case where periodicity is inappropriate, one needs to introduce a boundary
correction that we discuss in the next section.

We restrict to the case where (a,b] = (0,1] as the general case consists only in more
cumbersome notation. Perodic Besov spaces on (0,1] can be defined via integrated moduli
of continuity as in (4.77) with the choice of A = [0,1], and if the translation · + h is
understood ‘modulo 1’ in the definition of the translation operator, �h( f ) = f (· + h)− f
(whose domain of definition is then all of (0,1] instead of the restricted set Arh from
after (4.72)). Note that continuous functions are then necessarily periodic, f (0) = f (1).
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Throughout this section, Bs
pq((0,1]) will thus stand for the Besov space defined as in (4.77)

with the translation operator adapted to the periodic setting.
Alternatively, we can define Besov spaces through approximation properties of their

elements from ‘band-limited functions’, as in (4.80). Since the group characters of (0,1]
with addition modulo 1 are given by the Fourier basis

{ek = e2π i(·)k : k ∈ Z}
of L2 = L2((0,1]), these spaces consist of all trigonometric polynomials of degree less than
t ∈N; more precisely,

Vt =
⎧⎨⎩ f =

∑
k:|k|≤t

ekck : ck ∈R

⎫⎬⎭ . (4.118)

Now if
σp(t, f )= inf

g∈Vt
‖ f − g‖p (4.119)

is the best approximation error of f ∈ Lp from Vt, then, for 1≤ p≤∞,1≤ q≤∞,s> 0, we
define

Bs,V
pq ((0,1])≡

{{ f ∈ Lp((0,1]) : ‖ f ‖Bs,V
pq
≡ ‖ f ‖p +| f |Bs,V

pq
<∞}, 1 ≤ p<∞

{ f ∈ Cper((0,1]) : ‖ f ‖Bs,V
pq
≡ ‖ f ‖p +| f |Bs,V

pq
<∞}, p =∞,

(4.120)

where

| f |Bs,V
pq
≡
⎧⎨⎩
(∑∞

j=1[2jsσp(2j, f )]q]
)1/q

, 1 ≤ q<∞
supj≥1 2jsσp(2j, f ) q =∞

(4.121)

is the relevant Besov seminorm.
The main purpose of this section is to show that

Bs,V
pq ((0,1])= Bs

pq((0,1])
and to give a wavelet characterisation of the periodic Besov space. To achieve this, we next
introduce periodic wavelets.

Periodised Wavelets on the Unit Circle

One can periodise a wavelet basis of L2(R) to construct a basis on L2((0,1]). This allows us
to characterise spaces of smooth periodic functions on (0,1] by their wavelet expansions.
We note that in all that follows one may replace (0,1] by the unit circle T, isomorphic to
(0,1] when addition is modulo 1, or by (a,b] when considering functions that are b − a
periodic.

For φ,ψ an S-regular wavelet basis of L2(R) in the sense of Definition 4.2.14, let Vj be the
multiresolution ladder from Definition 4.2.1 associated to φ. Denote by V∞

j the completion
of Vj for the weak topology on L∞ generated by all integrals against L1-functions. Then one
shows by standard arguments that f ∈ V∞

0 ⇐⇒ ∑
k ckφ(·− k) for some {ck} ∈ �∞, and one

still has

f ∈ V∞
0 ⇐⇒ f (2j·) ∈ V∞

j .
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Let Pj be the subspace of V∞
j consisting of 1-periodic functions. Then P0 consists only of

the constant functions. Indeed, any f ∈ P0 is of the form

f =
∑
k∈Z

ckφ(·− k)

where, for any k ∈ Z,

ck =
∫
R

f (x)φ(x− k)dx =
∫
R

f (y)φ(y)dy = const,

and
∑

kφ(x−k)= 1 (recall that
∫
φ= 1,

∫
K(x,y)dy= 1). If j> 0, then, again by periodicity,

for any f ∈ Pj,

f =
∑
k∈Z

ckφ(2
jx− k), ck = 2j

∫
R

f (x)φ(2jx− k)dx = ck+2j ,

so f is determined by 2j-many coefficients ck. Conclude that Pj has dimension 2j. Moreover
∪jPj is dense in the space Cper((0,1]) for the uniform norm: for f ∈ Cper((0,1]), by the
preceding arguments, the projection Kj( f ) = ∑

k〈 f ,φjk〉φjk is seen to belong to Pj, and
it converges to f uniformly on (0,1], proved just as Proposition 4.1.3 with supremum
restricted to x ∈ (0,1]. Since Cper(0,1]) is dense in L2((0,1]), we deduce that the nested
sequence (Pj : j = 0,1, . . . ) forms a multiresolution analysis of L2((0,1]) that is comparable
to those of L2(R) encountered so far.

To construct a wavelet basis for ∪j≥0Pj, note that the periodisations

φ
(per)
j ≡

∑
k∈Z

2j/2φ(2j(·− k)) (4.122)

are contained in Pj. Clearly,

φ(per) ≡ φ(per)
0 =

∑
k∈Z
φ(·− k)= 1

is a basis of P0. For j> 0, likewise,{
φ
(per)
jm = φ(per)

j (·− 2−jm) : 0 ≤ m< 2j,m ∈ Z
}

forms an ortho-normal basis of Pj for the L2((0,1]) inner product. Indeed, since these
functions are all in Pj and 2j = dim(Pj)-many, it suffices to prove that the φ(per)

jm are
ortho-normal in L2((0,1]): changing variables from (k,�) to (k,r) via r = �− k and then
t = 2j(x− k) for each k, we have

〈φ(per)
jm ,φ(per)

jm′ 〉 = 2j
∑
k,�

∫ 1

0
φ(2jx− 2jk−m)φ(2jx− 2j�−m′)dx

= 2j
∑

r

∑
k

∫ 1

0
φ(2j(x− k)−m)φ(2j(x− k)− 2jr−m′)dx

=
∑

r

∫
R

φ(t−m)φ(t− 2jr−m′)dt.
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By ortho-normality of the unperiodised wavelets, these integrals are all zero except for
m = m′ and r = 0 (recall that 0 ≤ m,m′ < 2j), in which case they equal ‖φ(per)

jm ‖2
2 = 1. The

change in order of summation is justified by the finiteness of ‖∑ |φ(·− k)|‖∞.
Now, if Qj = Pj+1 .Pj and

ψ
(per)
j ≡

∑
k∈Z

2j/2ψ(2j(·− k)), (4.123)

then one proceeds as earlier to show that the family{
ψ
(per)
jm =ψ(per)

j (·− 2−jm) : 0 ≤ m< 2j,m ∈ Z
}

forms an ortho-normal basis of Qj for the L2((0,1]) inner product. Using the same arguments
as after Definition 4.2.1, we can then decompose

L2((0,1])= P0 ⊕
( ∞⊕

l=0

Ql

)
= Pj ⊕

⎛⎝ ∞⊕
l=j

Ql

⎞⎠
so that {

1,ψ(per)
lm =ψ(per)

l (·− 2−lm) : 0 ≤ m< 2l,m ∈ Z, l ∈N∪{0}
}

(4.124)

forms an ortho-normal basis of L2((0,1]). We can thus expand any f ∈ L2((0,1]) into its
orthogonal wavelet series

f = 〈 f ,1〉+
∞∑
l=0

2l−1∑
m=0

〈 f ,ψ(per)
lm 〉 ψ(per)

lm (4.125)

=
2j−1∑
m=0

〈 f ,φ(per)
jm 〉φ(per)

jm +
∞∑
l=j

2l−1∑
m=0

〈 f ,ψ(per)
lm 〉 ψ(per)

lm

with convergence holding at least in L2. We now investigate the general convergence
properties of the partial sums

Kj,per( f )(x)≡
2j−1∑
m=0

〈 f ,φ(per)
jm 〉φ(per)

jm (x), x ∈ (0,1], (4.126)

of this wavelet series. We recall the spaces Cm((0,1]) and Sobolev spaces Hk
p from the

beginning of this chapter.

Proposition 4.3.24 Let φ be the scaling function of an S-regular wavelet basis of L2(R), and
let φ(per)

jm , j ≥ 0,m = 0, . . . ,2j − 1, be the associated periodised basis functions in L2((0,1]).
For f ∈ L1((0,1]), let Kj,per( f ) be the projection (4.126).

(a) If f is in Cper((0,1]), then, as j →∞,

Kj,per( f )→ f uniformly on (0,1].

If, moreover, for some m∈N, m< S, f ∈Cm((0,1])with all derivatives Dα, f ,0<α≤m
periodic, then for every j ≥ 0 and some finite constant C = C(φ),

‖Kj,per( f )− f ‖L∞((0,1]) ≤ C‖ f ‖Cm((0,1])2−jm.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.005
http:/www.cambridge.org/core


356 Function Spaces and Approximation Theory

(b) If f ∈ Lp((0,1]),1 ≤ p<∞, then, as j →∞,

Kj,per( f )→ f in Lp((0,1]).
If, moreover, f ∈ Hk

p with Dα f ,0 ≤ α < k periodic, for some k ∈N, k< S, then

‖Kj,per( f )− f ‖Lp((0,1]) ≤ C‖ f ‖Hk
p((0,1])2

−jk.

Proof Identifying f with its 1-periodic extension to R and denoting by Kj the standard
projection operator onto Vj ⊂ L2(R) spanned by the (nonperiodised) φjk, the key observation
is that

Kj,per( f )(x)= Kj( f )(x), x ∈ (0,1], (4.127)

in view of the identities

Kj( f )(x)= 2j
∑
k∈Z
φ(2jx− k)

∫
R

f (t)φ(2jt− k)dt

= 2j
2j−1∑
m=0

∑
�∈Z
φ(2jx− 2jl−m)

∫
R

f (t− �)φ(2jt− 2j�−m)dt

= 2j
2j−1∑
m=0

∫
R

f (v)φ(2jv−m)dv ·
∑
�∈Z
φ(2j(x− l)−m)

= 2j/2
2j−1∑
m=0

∑
l∈Z

∫ −l+1

−l
f (v+ l)φ(2jv−m)dv ·φper

jm (x)

= 2j/2
2j−1∑
m=0

∑
l∈Z

∫ 1

0
f (z)φ(2jz− 2jl−m)dv ·φper

jm (x)

=
2j−1∑
m=0

〈φper
jm , f 〉φper

jm (x)= Kj,per( f )(x),

where we have used 1-periodicity of f , the substitutions t − � = v,v + l = z, and φ ∈
∩qLq(R),

∑
k |φ(· − k)| ∈ L∞(R). The first claims in (a) and (b) now follow from the same

proof as that of Proposition 4.1.3 (in fact, Proposition 4.1.1), with the Lp-norms, 1≤ p≤∞,
in the proof restricted to (0,1] (and noting that the translation uh can be restricted to u in
a compact set by the moment condition on K). Moreover, since any f from part a), when
periodically extended to R, belongs to Cm(R) ⊂ Bm

∞∞(R) with the same norm, we have,
from Proposition 4.3.8,

‖Kj,per( f )− f ‖L∞((0,1]) ≤ ‖Kj( f )− f ‖∞ ≤ C′‖ f ‖Bm∞∞(R)2
−jm ≤ C‖ f ‖Cm((0,1])2−jm.

Part (b) follows likewise, as in the proof of Proposition 4.1.5, using that the Lp-norms
considered at the end of the proof can be restricted to (0,1] (and noting again that the
translation tuh in Dm f (x + tuh) can be restricted to u in a compact set by the moment
condition on the projection kernel K).
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4.3 Besov Spaces 357

The preceding proposition implies decay estimates for wavelet coefficients of functions
f satisfying the preceding approximation bounds. To see this, we note that one can establish
an analogue of Proposition 4.2.8 in the periodic setting. Since

‖ψper
lm ‖1 ≤ 2l/2

∫ 1

0

∑
k

|ψ(2l(x− k)−m)|dx = 2l/2
∑

k

∫ −k+1

−k
|ψ(2lu−m)|du = 2−l/2‖ψ‖1,

one proves as in Proposition 4.2.8 that, for every l ≥ 0,

‖〈 f ,ψper
l· 〉‖p � 2l(1/p−1/2)

∥∥∥∥∥∑
m

〈 f ,ψper
lm 〉ψper

lm

∥∥∥∥∥
p

(4.128)

� 2l(1/p−1/2)(‖Kl+1,per( f )− f ‖p +‖Kl,per( f )− f ‖p).

Remark 4.3.25 (Comparison to classical Fourier series) If we use band-limited wavelets
φ,ψ from Theorem 4.2.9 in the preceding construction, we see from the Poisson summation
formula (4.12) that the Fourier coefficients of ψ(per)

lm vanish for all k large enough; more
precisely,

〈ψ(per)
lm ,ek〉 = 0 whenever |k| /∈ [2l/3,2l(2π/3)], (4.129)

so the ψlm are again band limited in the (discrete) Fourier domain. In other words, such
periodised wavelets consist of finitely many (but growing in l) linear combinations of
elements of the standard Fourier basis. Thus, remarkably, having replaced the standard
trigonometric polynomials at frequencies l> 1 by suitable finite linear combinations of them
has made the series in (4.125) converge uniformly for any f ∈ Cper((0,1]), whereas Fourier
series fail for ‘almost all’ elements of Cper((0,1]) (see Exercise 4.1.2). The approximation
properties of Fourier series are investigated further in Proposition 4.3.29.

Wavelet Characterisation of Periodic Besov Spaces

If φ,ψ ∈ CS(R) generate an S-regular wavelet basis of L2, and if ψ(per)
lm are the associated

periodised wavelets constructed earlier, then for 1 ≤ p ≤ ∞,1 ≤ q ≤ ∞,0 < s < S (with
possibly S =∞ if one uses Meyer wavelets), we define periodic Besov spaces

Bs,per
pq ((0,1])≡

{
{ f ∈ Lp((0,1]) : ‖ f ‖B

s,per
pq
<∞}, 1 ≤ p<∞

{ f ∈ Cper((0,1]) : ‖ f ‖B
s,per
pq
<∞}, p =∞ (4.130)

with wavelet-sequence norm given by

‖ f ‖B
s,per
pq ((0,1])

≡

⎧⎪⎨⎪⎩|〈 f ,1〉|+
(∑∞

l=0 2ql(s+(1/2)−(1/p))
(∑2l−1

m=0 |〈 f ,ψ(per)
lm 〉|p

)q/p
)1/q

, 0< q<∞
|〈 f ,1〉|+ supl≥0 2l(s+(1/2)−(1/p))

(∑2l−1
m=0 |〈 f ,ψ(per)

lm 〉|p
)1/p

q =∞.

(4.131)

When p =∞, the �p-sequence norms in this display have to be replaced by the supremum
norm of �∞.

In the following theorem we show that the preceding wavelet definition coincides with
the definition of Bs

pq((0,1]) from (4.77) adapted to the periodic situation (discussed at the
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358 Function Spaces and Approximation Theory

beginning of this section) and with the approximation-theoretic definition of Bs,V
pq ((0,1])

from (4.120).

Theorem 4.3.26 Let s> 0,p,q ∈ [1,∞]. Then the spaces

Bs
pq((0,1]), Bs,V

pq ((0,1]) and Bs,per
pq ((0,1])

coincide, and their norms are all pairwise equivalent.

Proof The proof is similar to Theorem 4.3.2 but needs some modifications because the
dilation x �→ 2lx, l ≥ 0, has no convenient representation modulo 1. The following ‘Fourier
multiplier’ lemma will be useful to deal with this. It implies in particular the classical
Bernstein inequality ((4.133); cf. also Lemma 4.3.4) on the circle. All Lp-norms are over
(0,1] unless explicitly indicated otherwise.

Lemma 4.3.27 Let f ∈ Vt be a trigonometric polynomial of degree at most t ∈ N, let m :
R→ C be infinitely differentiable and let � ∈ S(R) such that � = 1 on [−1,1] and zero
outside of [−2,2]. We then have, for every 1 ≤ p ≤∞,∥∥∥∥∥∥

∑
k∈Z:|k|≤t

〈 f ,ek〉m(k)ek

∥∥∥∥∥∥
p

≤ c
∥∥F−1[m] ∗F−1[�(·/t)]∥∥

L1(R)
‖ f ‖p, (4.132)

where c > 0 is a universal constant, and F−1 denotes the usual inverse Fourier transform
on R. In particular, for any n ∈N, Dn the differential operator and every f ∈ Vt, we have

‖Dn f ‖p ≤ Ctn‖ f ‖p, (4.133)

where C = C(n) > 0 is a fixed constant.

Remark 4.3.28 The proof in fact only requires that m is regular enough so that its Fourier
inverse and its convolution with F−1[�] are defined and regular enough that the operations
in the following proof are justified.

Proof The function �(·/t) is supported in [−2t,2t] and identically 1 on [−t, t]. Define the
function

M(u)= m(u)�(u/t), u ∈R,

which is in C∞(R) with support in [−2t,2t] and coincides with m(u) on [−t, t]. Then F−1M
defines a continuous function on R for which Fourier inversion F(F−1M)(k)= M(k) holds
pointwise. For ck = 〈 f ,ek〉, we need to estimate the Lp((0,1])-norm of∑

|k|≤t

ckm(k)ek =
∑
|k|≤t

ckM(k)ek =
∑
|k|≤t

ckF(F−1M)(k)ek

=
∑
|k|≤t

∫
R

(F−1M)(x)e−ikxckekdx

= 2π
∑
|k|≤t

∫
R

(F−1M)(2πy)cke
2π i(·−y)kdy

= 2π
∫
R

(F−1M)(2πy) f (·− y)dy,
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4.3 Besov Spaces 359

where we have used Fubini’s theorem twice. Now, applying the Lp((0,1])-norm to this
identity, using Minkowski’s inequality for integrals and the Cauchy-Schwarz inequality, we
obtain, for positive constants C,C′,∥∥∥∥∥∥

∑
|k|≤t

ckm(k)ek

∥∥∥∥∥∥
p

≤ C‖ f ‖p

∫
R

|(F−1M)(y)|dy.

The first inequality establishes the first claim of the lemma because F−1M = F−1m ∗
F−1[�(·/t)]. The second inequality also follows because we have for for m(u) = (2π iu)n

that

F−1m∗F−1[�(·/t)] = tnDn[(F−1�)(t·)]
and because F−1� ∈ L1.

Now, to prove the theorem, we take functions φ̂, ψ̂ generating a Littlewood-Paley
decomposition as in (4.24) and define

u0(x)=
∑
k∈Z

〈 f ,ek〉φ̂(k)ek(x), ul(x)=
∑
k∈Z

〈 f ,ek〉ψ̂(k/2l)ek(x), x ∈ (0,1],

so that

f = lim
j→∞

∑
k∈Z

〈 f ,ek〉φ̂(k/2j)ek(x)= lim
j→∞

∑
l≤j

ul.

Since φ ∈ S ,φ(0) = 1 and supj ‖2jϕ(2j·)‖L1(R) <∞ for any ϕ ∈ L1(R), we deduce from
Lemma 4.3.27 and the dominated convergence theorem that the last series converges in Lp

whenever f ∈ Lp. The proof of the implication (c) ⇒ (a) in Proposition 4.3.5 combined with
first part of Lemma 4.3.27 applied to

m = ψ̂(·/2l)

(ei·/2l − 1)r
, F−1m = 2lm̃r(2

l·), m̃r ∈ S ,

gives

f ∈ Bs
pq((0,1])⇒‖ul‖p ≤ cl2

−ls, {cl} ∈ �q.

Since ul ∈ Vc2l for some c, we deduce further from the second claim of Lemma 4.3.27 that

‖DNul‖p ≤ C′2lN‖ul‖p ≤ c′l2
l(N−s), {c′l} ∈ �q.

We have thus proved an (0,1]-analogue of the key decomposition in Proposition 4.3.5,
part (b), which characterises Bs

pq((0,1]) by the decay of ‖ul‖p as l → ∞, noting that
the converse implication (b) ⇒ (c) from that proposition follows just as well given
Lemma 4.3.27. The rest of the proof of this theorem is now the same as for Theorem 4.3.2,
using Proposition 4.3.24 and also (4.128) to compare wavelet sequence norms with
approximation errors. We leave the details as Exercise 4.3.8.
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360 Function Spaces and Approximation Theory

Relationship to Classical Periodic Function Spaces

Using the preceding theorem and (4.128), we see that for these spaces one has the same
imbedding relationships as in Section 4.3 if all spaces involved are replaced by their periodic
counterparts. In particular,

Bs,per
pq ((0,1])⊂ Cper((0,1]) whenever s> 1/p or s = 1/p,q = 1, (4.134)

arguing as before Proposition 4.3.9. We also note that since the support of the functions
involved is now bounded,

Bs,per
pq ((0,1])⊆ Bs,per

p′q ((0,1]),
for any p ≥ p′,q ∈ [1,∞]. Also from Proposition 4.3.24, we deduce that

Hm,per
p ((0,1])≡ Hm

p ((0,1])∩{Dα f periodic ∀0 ≤ α <m} ⊂ Bm,per
p∞ ((0,1]), m ∈N, (4.135)

as well as

Cs,per((0,1])≡ Cs((0,1]))∩{Dα f periodic ∀0 ≤ α ≤ [s]} ⊆ Bs,per
∞∞((0,1]), s> 0. (4.136)

One shows further, as in Section 4.3.3, that the last set inclusion can be replaced by an
equality if s /∈ N. It also follows directly from the definition of Bs,V

pq ((0,1]) that the classical
periodic Sobolev spaces

Hs ≡
{

f ∈ L2((0,1]) :
∑
l∈Z
(1+|l|)2s|〈 f ,el〉|2 <∞

}
, s> 0,

for the trigonometric basis {el} are equal to Bs
22((0,1]). We finally remark that the duality

theory for Besov spaces with s ≤ 0 from Section 4.3.2 can be developed for the periodic
spaces in exactly the same way, replacing tempered distributions by the space D∗ of periodic
Schwartz distributions with only notational changes. In particular, we can define general
Besov spaces

Bs,per
pq ((0,1])≡ { f ∈D∗ : ‖ f ‖B

s,per
pq
<∞}, s ∈R,p,q ∈ [1,∞], (4.137)

with norms as in (4.131) with the duality 〈 f , ·〉 replaced by the action T f (·) of Schwartz
distributions.

Approximation Properties of Classical Fourier Series in Besov Spaces

The preceding wavelet techniques give a powerful tool to approximate f ∈ Lp by its
periodised wavelet series. As indicated in Remark 4.3.25, the Meyer wavelet partial
sums are trigonometric polynomials in Vc2l ,c > 0, which uniformly approximate any
continuous function f : (0,1] → R, thus outperforming the standard L2-projection onto
the trigonometric basis of Vc2l which need not converge uniformly for continuous f (see
Exercise 4.1.2). A deeper reason behind this fact is that the L1-norm of the Dirichlet
projection kernel Dn from (4.18) diverges as n →∞; in fact, one can show that

‖Dn‖1 � logn (4.138)

as n→∞ (see Exercise 4.3.9). From this we can deduce that the approximation properties of
Fourier partial sums in periodic Bs

pq spaces are off the optimal rate by at most a logarithmic
term.
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4.3 Besov Spaces 361

Proposition 4.3.29 Let s> 0,p ∈ [1,∞] and f ∈ Bs
p∞((0,1]). For ek = e2π ik(·), define

Sn( f )= Dn ∗ f =
∑
|k|≤n

〈ek, f 〉ek

to be the nth Fourier partial sum of f . Then, for every n ∈ N, there exists a constant c
independent of n such that

‖Sn( f )− f ‖p ≤ cn−s logn.

Proof From the definition of Bs,V
p∞ = Bs

p∞ there exists fn ∈ Vn such that

‖ fn − f ‖p ≤ c′n−s,

for some c′ > 0. Then Sn( fn)= fn, and so, since ‖Sn(h)‖p ≤ ‖Dn‖1‖h‖p for any h ∈ Lp, we
obtain

‖Sn( f )− f ‖p ≤ ‖Sn( f − fn)‖p +‖ fn − f ‖p � logn‖ fn − f ‖p,

implying the result.

The classical way to deal with the suboptimal approximation properties of Fourier
series is to consider Fejér sums Fn ∗ f (recall Exercise 4.1.3), for which the Fourier
series converges uniformly and in any Lp. Note, however, that Fejér sums have other
approximation-theoretic shortcomings when compared to periodised wavelets: they do not
in general optimally approximate functions of higher smoothness than 1, they do not give
rise to an ortho-normal basis, and they do not characterise general Besov spaces by the decay
of their approximation errors. In contrast, if one replaces Sn( f ) by the wavelet projection
Kj( f ) onto the Meyer basis, then (for p 
= 2) we have a uniform improvement on Sn( f )
simply by removing the logn term.

4.3.5 Boundary-Corrected Wavelet Bases∗

The main problem in defining Besov spaces on a subset of the real line is how to measure
regularity of functions at the boundary points. Clearly, any function of compact support in
R can be viewed as a function defined on the whole space, but this gives possibly excessive
attention to irregularities of the function at the boundaries of the support set. For periodic
functions, one can proceed as in the preceding section. However, it is natural to say that the
function x1[0,1] is very regular on [0,1], whereas an expansion in periodic wavelets (or in a
basis for L2(R)) will give coefficients pertaining to the right edge point that reflect a step
discontinuity. In this subsection we describe a construction of a wavelet basis of L2([0,1])
that allows us to measure the regularity at the boundary points in a correct way even for
nonperiodic functions. We rigorously present the main ideas of the construction but refer to
the notes at the end of this chapter for references where one can find complete numerical
details.

For N = 1, we can use the Haar basis directly to approximate functions up to regularity
1 on [0,1]. For smoother basis functions, we need a separate construction. Let N ≥ 2,
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362 Function Spaces and Approximation Theory

and let φ,ψ be the Nth Daubechies scaling function and wavelet, respectively, from
Theorem 4.2.10. Note that

∫
R

K(v,v+ u)uldu = δ0l, for l = 0, . . . ,N− 1,v ∈R, implies that∫
R

K(x,y)yldy =
∑

k

〈φk,(·)l〉φk(x)= xl ∀x.

In other words, all polynomials of degree less than or equal to N−1 are generated by the φk

in the sense that any such polynomial can be exactly reconstructed by linear combinations
of the φk. The main idea now is to first retain all the scaling functions supported in the
interior of [0,1] and then to add ad hoc edge functions so that the resulting basis generates
polynomials of degree ≤N−1 on [0,1]. One then constructs wavelets ψ that are orthogonal
in L2([0,1]) to the basis functions and thus also to all polynomials of degree ≤ N − 1,
which can be used to describe regularity properties of functions by the decay of the wavelet
coefficients.

It is convenient to first construct such a basis of L2([0,∞)); taking ‘mirror images’, this
then also solves the problem on [0,1]. The Daubechies wavelet ψ = ψ(N) is supported in
[−N+ 1,N], and we translate the scaling function φ = φ(N) by −N+ 1 to be supported in
this interval as well. For notational convenience, we still denote, in this subsection, the
translated scaling function by φ (it generates the same multiresolution analysis). As φ,ψ
are continuous, we necessarily have φ(−N+ 1)= φ(N)=ψ(−N+ 1)=ψ(N)= 0, and the
translates φk = φ(· − k), for k ≥ N− 1, are compactly supported in [0,∞). Considering an
example to start with, to reproduce constants on [0,∞), one can define

φ0(x)= 1−
∞∑

k=N−1

φ(x− k).

Since
∑

k∈Zφ(x− k)= 1 (recall that
∫
φ = ∫

K(x,y)dy = 1), we see that, for 0 ≤ x<∞,

φ0(x)=
N−2∑

k=−∞
φ(x− k)=

N−2∑
k=−N+1

φ(x− k), (4.139)

so φ0 itself has compact support and, as a finite sum of φk with k< N− 1, is orthogonal to
all φk,k ≥ N− 1. By construction, the functions φ0,φk,k ≥ N− 1 generate the constants on
[0,∞).

To construct projection kernels that reproduce polynomials up to a given degree without
leaving the multiresolution framework requires a little more care.

Proposition 4.3.30 For N ≥ 2, let φ = φ(N) be the Nth Daubechies scaling functions
translated such that its support is in [−N+ 1,N]. For k = 0,1, . . . ,N− 1, define

φ̃
(k)
(x)=

2N−2∑
n=k

(
n

k

)
φ(x+ n−N+ 1), x ≥ 0.

Then the φ̃
(k)

are linearly independent, supported in [0,2N − 1 − k] and orthogonal in
L2([0,∞)) to the φm,m ≥ N. The family{

φ̃
(k)

,φm : k = 0, . . . ,N− 1,m ≥ N
}

generates all polynomials on [0,1] up to degree N− 1.
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Proof The support property of φ̃
(k)

is immediate from the definitions, and since the support

sets are strictly nested, the linear independence also follows. Since φ̃
(k)

consists of a finite

sum of φm, m< N, orthogonality to any φm,m ≥ N follows as well (noting that
∫∞

0 φ̃
(k)
φm =∫

R
φ̃
(k)
φm for those m).

We next show that this basis reproduces polynomials up to order N − 1. Note that
(n

k

)
is, as a function of n, a polynomial of degree k, and as is easy to see, these polynomials
(k= 0,1, . . . ,N−1) can be triangularly transformed into the basic polynomials 1,n, . . . ,nN−1.
Therefore, the linear span of the functions

{φ̃(k),φm : k = 0, . . . ,N− 1,m ≥ N}
contains all polynomials of degree ≤ N− 1 if

{φ̄(k),φm : k = 0, . . . ,N− 1,m ≥ N}
does, where

φ̄
(k) =

2N−2∑
k=0

nkφ(x+ n−N+ 1), k = 0, . . . ,N− 1. (4.140)

As in the proof of Proposition 4.2.6, using the Poisson summation formula and that
φ̂(2πk) = δ0k (cf. the last step of the proof of Theorem 4.2.10), we see that, for any
k = 0, . . . ,N− 1, ∑

n∈Z
(x− n)kφ(x− n)=

∫
R

xkφ(x)≡ Ck, (4.141)

where we note that C0 = 1. Combined with (4.140) and the binomial theorem, this gives

pk(x)≡
∑
n∈Z

nkφ(x− n−N+ 1)=
∑
m∈Z

[x−N+ 1− (x−m)]kφ(x−m)

=
k∑

l=0

(
k

l

)
(−1)l(x−N+ 1)k−lCl.

Thus, pk is a degree k polynomial with leading term C0xk = xk – conclude that the {pk :
k = 0, . . . ,N− 1} generate all polynomials of degree less than or equal to N− 1. Each pk is

represented in the basis {φ̃(k),φm : k = 0, . . . ,N− 1,m ≥ N} as

pk(x)= (−1)kφ̃
(k)
(x)+

∞∑
n=1

nkφ(x− n−N+ 1),

the last sum being a finite linear combination of φm due to the compact support of φ.
Conclude that this basis indeed generates all polynomials up to degree N− 1.

We note that the {φ̃(k) : k= 0, . . . ,N−1} constructed in the preceding proposition, despite
being orthogonal to the φm, m ≥ N, are not orthonormal among themselves. Since they are
linearly independent, we can apply a Gram-Schmidt procedure to ortho-normalise them. If

we start the process at φ̃
(N−1)

and proceed downwards to k = 0, we can obtain ortho-normal
functions φle f t

k ,k= 0, . . . ,N−1, with support contained in [0,N+k]. Summarising, the family{
φleft

k ,φm : k = 0, . . . ,N− 1,m ≥ N
}
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is an ortho-normal system in L2([0,∞)) and generates all polynomials of degree less than
or equal to N− 1.

If we are interested in a similar system in L2([0,1]), we first use the preceding
construction with φ replaced by 2J/2φ(2J(·)) everywhere, where J = J(N) is such that
2J ≥ 2N. This ensures that the boundaries do not interact in the sense that the φleft

Jk are
then supported away from 1 (more precisely, in [0,(2N − 1)/2J]). We then repeat the
preceding procedure on (−∞,1] (or on (−∞,0] and then shift everything by 1) to construct
ortho-normal edge basis functions {φright

Jk ,k =−N, . . . ,−1} near the endpoint 1, supported in
[1− (2N−1)/2J,1]. This gives in total 2J−2N standard Daubechies wavelets φJm supported
in the interior of [0,1] and 2N edge basis functions φleft

Jk ,φright
Jk which together reproduce

polynomials up to degree N− 1 on [0,1]. In particular, the family{
φleft

Jk ,φright
Jk′ ,φJm : k = 0, . . .N− 1,k′ = −1, · · ·−N,m = N, . . . ,2J −N− 1

}
, (4.142)

which we denote henceforth by {
φbc

Jk : k = 0, . . . ,2J−1
}

,

forms an ortho-normal system in L2([0,1]) whose linear span contains all polynomials on
[0,1] up to degree N− 1.

We now turn to the construction of corresponding wavelet functions, restricting attention
first to [0,∞). Define

ψ̃
(k) =√

2φleft
k (2·)−

N−1∑
m=0

〈√2φleft
k (2·),φleft

0,m〉φleft
0,m, k = 0, . . . ,N− 1, (4.143)

which are orthogonal to all the ψm = ψ(· −m),m ≥ N, and which are supported in [0,N+
k]. These can be transformed, after some simple but technical computations, including a
Gram-Schmidt ortho-normalisation step, into the ortho-normal system

{ψ left
k ,ψm : k = 0, . . . ,N− 1,m ≥ N}

of L2([0,∞)), where theψ left
k are the ortho-normal boundary-correction wavelets. Repeating

this process symmetrically, starting with dilated wavelets ψJk = 2J/2ψ(2J·), 2J ≥ N, we
obtain an ortho-normal system{

ψ left
Jk ,ψ right

Jk′ ,ψJm : k = 0, . . .N− 1,k′ = −1, · · ·−N,m = N, . . . ,2J −N− 1
}

(4.144)

in L2([0,1]). For j ≥ J, we now define

ψ left
jk = 2(j−J)/2ψ left

Jk (2
j−J·),ψ right

jk = 2(j−J)/2ψ
right
Jk (2j−J·).

One then shows, again by simple but technical manipulations, that the family{
φleft

Jk ,φright
Jk′ ,φJm : k = 0, . . .N− 1,k′ = −N, · · ·− 1,m = N, . . . ,2J −N− 1

}
⋃{

ψ left
lk ,ψ right

lk′ ,ψlm : k = 0, . . .N− 1,k′ = −N, · · ·− 1,m = N, . . . ,2l −N− 1, l = J,J+ 1, . . .
}

≡ {
φbc

Jk ,ψbc
lm : k = 0, . . . ,2J−1,m = 0, . . . ,2l−1, l = J,J+ 1, . . .

}
(4.145)

forms an ortho-normal system in L2([0,1]). This system is immediately seen to form an
actual basis of L2([0,1]) because already the interior standard wavelets {φJm,ψlk} are dense
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4.3 Besov Spaces 365

L2([0,1]) (noting that the support of the ψlm closest to the boundaries equals [2−l,2−lN] or
[1− 2−lN,1− 2−l] and hence approaches the boundary points as l → ∞). Therefore, any
f ∈ L2 can be expanded into its wavelet series

f =
2J−1∑
k=0

〈φbc
Jk , f 〉φbc

Jk +
∞∑
l=J

2l−1∑
k=0

〈ψbc
lk , f 〉ψbc

lk , (4.146)

with convergence holding at least in L2. In fact, as we show now, the series converges
uniformly on [0,1] for f ∈ C([0,1]), and more regular f ∈ Cs([0,1]) will give rise to faster
decay of the |〈 f ,ψbc

lk 〉|.
To see this, note that since the φbc

Jk reproduce polynomials of degree up to N − 1, we
necessarily must have ∫ 1

0
x�ψbc

lk (x)dx = 0 ∀�= 0, . . . ,N− 1, ∀l,k, (4.147)

as the ψbc
lk are orthogonal in L2([0,1]) to all the φbc

JK (which, in turn, generate the x�). One
thus shows for f ∈ Cs([0,1]),0< s ≤ N, that

max
k

|〈 f ,ψbc
lk 〉| ≤ c‖ f ‖Cs([0,1])2−l(s+1/2). (4.148)

The last estimate is immediate for interior wavelets, arguing as before (4.117), and follows
for the boundary wavelets as well: for instance, at the 0-boundary and assuming s = N for
notational simplicity, using the support and dilation properties of ψ left

lk , (4.147) and a Taylor
expansion, we have, for some 0< ζ < 1,∣∣∣∣∫ 1

0
ψ left

lk (x) f (x)dx

∣∣∣∣= ∣∣∣∣∫ 1

0
ψ left

lk (x)( f (x)− f (0))dx

∣∣∣∣
=
∣∣∣∣∫ 1

0
ψ left

lk (x)
1

s!D
s f (ζx)xs

∣∣∣∣
≤ C‖ f ‖Cs([0,1])2−l(s+1/2)

∫ 2−J(N+k)

0
|ψ left

Jk (u)||u|sdu

≤ C(s,J,N)‖ f ‖Cs([0,1])2−l(s+1/2).

For f ∈ C([0,1]), these arguments imply that∣∣∣∣∫ ψ left
lk (x) f (x)dx

∣∣∣∣≤ C(J,N)2−l/2 sup
|x|≤2−l

| f (x)− f (0)| ≤ ε2−l/2

for l large enough. Combined with a similar estimate for the coefficients involving ψ right
lk ,

using uniform convergence of the standard wavelet series in the interior of [0,1] and noting
that the number of boundary-correction wavelets stays the same at all levels l, we conclude
that the partial sums of the wavelet series in (4.146) converge uniformly whenever f ∈
C([0,1]). Similar results can be proved in Lp when considering Sobolev-type smoothness
conditions f ∈ Hm

p ([0,1]).
Motivated by these observations, we can define general Besov spaces on [0,1] that will

reflect Sobolev-Hölder-type smoothness conditions on [0,1] through the decay of their
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366 Function Spaces and Approximation Theory

wavelet coefficients. For 1 ≤ p ≤ ∞,1 ≤ q ≤ ∞,0 < s < S, take a boundary-corrected
Daubechies wavelet basis of regularity S and such that φ,ψ ∈ CS([0,1]), and define

Bs,W
pq ([0,1])≡

{{ f ∈ Lp([0,1]) : ‖ f ‖Bs,W
pq
<∞}, 1 ≤ p<∞

{ f ∈ C([0,1]) : ‖ f ‖Bs,W
pq
<∞}, p =∞,

(4.149)

with wavelet-sequence norm, for |s|< S, given by

‖ f ‖Bs,W
pq ([0,1])

≡

⎧⎪⎨⎪⎩
(∑2J−1

k=0 |〈 f ,φbc
Jk 〉|p

)1/p +
(∑∞

l=J 2ql(s+1/2−1/p)
(∑2l−1

m=0 |〈 f ,ψbc
lm〉|p

)q/p
)1/q

, q<∞(∑2J−1
k=0 |〈 f ,φbc

Jk 〉|p
)1/p + supl≥J 2l(s+1/2−1/p)

(∑2l−1
m=0 |〈 f ,ψbc

lm〉|p
)1/p

q =∞,

where in case p =∞ the �p-sequence norms have to be replaced by the maximum norms
‖ · ‖∞. One then shows, as in previous sections, that the Besov spaces Bs

pq([0,1]) defined
in terms of moduli of continuity in (4.77) coincide with the space Bs,W

pq ([0,1]) defined here,
with equivalent norms. In particular, using (4.147) and Proposition 4.2.8 (in fact, a simple
modification thereof for the boundary-corrected wavelet basis), one shows, by estimating
directly the size of ‖〈 f ,ψbc

l· 〉‖p as earlier, that

Bs,W
pq ([0,1])⊂ C([0,1]), for s> 1/p or s = 1/p,q = 1, (4.150)

that
Hm

p ([0,1])⊂ Bm,W
p∞ ([0,1]) ∀m ∈N, (4.151)

and that
Cs([0,1])⊆ Bs,W

∞∞([0,1]) ∀s> 0. (4.152)

Again, in the last display we have in fact equality when s /∈ N. As in the periodic case,
the duality theory for Besov spaces with s ≤ 0 from Section 4.3.2 can be developed for
the spaces on [0,1] as well, with only formal changes. We also define general-order Besov
spaces

Bs
pq([0,1])≡

⎧⎨⎩ f =
2J−1∑
k=0

akφ
bc
Jk +

∞∑
l=J

2l−1∑
k=0

clkψ
bc
lk : ‖ f ‖Bs,W

pq ([0,1]) <∞
⎫⎬⎭ ,

s ∈R,p,q ∈ [1,∞], (4.153)

consisting of all wavelet series from (4.146) whose coefficients give rise to finite Besov
norms ‖ · ‖Bs,W

pq ([0,1]). The elements of Bs
pq([0,1]) for s < 0 may be interpreted as Schwartz

distributions f ∈ S∗ whose support is contained in [0,1] (i.e., f (ϕ) = 0 for all compactly
supported ϕ ∈ C∞([0,1]c)) plus a fixed finite linear combination of edge functions.

4.3.6 Besov Spaces on Subsets of Rd

We consider next the situation where the functions f whose regularity one wishes to measure
are defined on a general Euclidean space Rd or a subset thereof. We denote the Euclidean
norm of an element x of Rd by |x|. The standard definitions from the beginning of this
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4.3 Besov Spaces 367

chapter, such as those of Lp-spaces, obviously generalise to the multivariate case with
obvious notation. If α = (α1, . . . ,αd),αi ∈ N∪ {0}, is a multi-index of length |α| =∑d

j=1αj

(noting the slight abuse of the | · | notation), then xα = xα1
1 . . .x

αd
d whenever x ∈Rd, and

Dα = ∂ |α|

∂xα1
1 . . . ∂x

αd
d

is the mixed partial weak differential operator of order |α|. If f : Rd → R is classically
differentiable at x, then we set Dα f = f (α) equal to the classical mixed partial derivative.
We define

Hm
p (R

d)

=
{

f ∈ Lp(Rd) : Dα f ∈ Lp(Rd) ∀|α| ≤ m : ‖ f ‖Hm
p (Rd) ≡ ‖ f ‖p +

∑
|α|=m

‖Dα f ‖p <∞
}

,

Cm(Rd)

=
{

f ∈ Cu(R
d) : f (α) ∈ Cu(R

d) ∀|α| ≤ m : ‖ f ‖Cm(Rd) ≡ ‖ f ‖∞+
∑
|α|=m

‖ f (α)‖∞ <∞
}

.

As in (4.111), the latter spaces can be generalised directly to s /∈N with integer part [s]

Cs(Rd)=
{

f ∈ Cu(R
d) : ‖ f ‖Cs(Rd) ≡ ‖ f ‖C[s](Rd)+

∑
|α|=[s]

sup
x
=y,x,y∈Rd

|Dα f (x)−Dα f (y)|
|x− y|s−[s]

}
.

Again, we shall occasionally write Hm
p (R

d)= Hm
p ,Cs(Rd)= Cs.

These spaces measure the regularity of the functions f in an isotropic way, since the same
regularity degree m is assumed to hold for all coordinate directions in Rd. We shall restrict
ourselves to the isotropic case in what follows, as the theory then only requires mostly
straightforward adaptation from the univariate case. The main ideas for the anisotropic case
are, in principle, also similar but require approximation schemes with coordinate-dependent
bandwidths/resolution levels, which result in a somewhat cumbersome notation.

Approximation by Multivariate Kernel-Type Operators

We first extend the basic kernel-based approximation schemes from Section 4.1 to the
multivariate case. Consider

f �→ Kh( f )=
∫
Rd

Kh(·,y) f (y)dy = 1

hd

∫
Rd

K
( ·

h
,
y

h

)
f (y)dy, h> 0, (4.154)

where K : Rd × Rd → R and where x/h = (x1/h, . . . ,xd/h) for any scalar h 
= 0. These
correspond to multivariate approximate identities.

Proposition 4.3.31 Let f : Rd → R be a measurable function, and let Kh as in (4.154)
satisfy

∫
Rd supv∈Rd |K(v,v− u)|du<∞,

∫
Rd K(x,y)dy = 1 ∀x ∈Rd.

(i) If f is bounded on Rd and continuous at x ∈Rd, then Kh( f )(x)→ f (x) as h → 0.
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368 Function Spaces and Approximation Theory

(ii) If f is bounded and uniformly continuous on Rd, then ‖Kh( f )− f ‖∞ → 0 as h → 0.
(iii) If f ∈ Lp(Rd) for some 1 ≤ p<∞, then ‖Kh( f )− f ‖p → 0 as h → 0.

The proof is the same as that for Proposition 4.1.3 with elementary modifications
pertaining to the multivariate case.

Condition 4.3.32 Let K be a measurable function K(x,y) :Rd×Rd →R. For N∈N, assume
that

(M): cN(K)≡
∫
Rd supv∈Rd |K(v,v− u)||u|Ndu<∞, and

(P): For every v ∈Rd and multiindex α such that |α| = 1, . . . ,N− 1,∫
Rd

K(v,v+ u)du = 1 and
∫
Rd

K(v,v+ u)uα = 0.

The proof of the following proposition is then analogous to that for Proposition 4.1.5
using Taylor’s theorem for functions of several variables.

Proposition 4.3.33 Let K be a kernel that satisfies Condition 4.3.32 for some N ∈ N∪ {0},
and let Kh( f ) be as in (4.154). We then have, for c a constant depending only on m≤N,K,

(i) f ∈ Hm
p (R

d),1 ≤ p<∞⇒‖Kh( f )− f ‖p ≤ c‖Dm f ‖phm, and
(ii) f ∈ Cm(Rd)⇒‖Kh( f )− f ‖∞ ≤ c‖ f (m)‖∞hm.

This result immediately applies, for instance, to product kernels K(x)=∏d
i=1 k(xi), where

k is a kernel satisfying Condition 4.1.4.

Multivariate Tensor Product Wavelet Bases of L2(Rd)

With the case d = 1 already established, one can easily construct tensor product wavelet
bases of L2(Rd) that generate a multiresolution analysis of that space. If φ is a scaling
function of an S-regular wavelet basis of L2(R), then the function

�(x)= φ(x1) . . .φ(xd), x = (x1, . . . ,xd),

obviously satisfies∫
Rd
�(x)dx =

d∏
i=1

∫
R

φ(x)dx = 1,
∑
k∈Zd

�(x− k)=
d∏

i=1

∑
ki∈Z
φ(x− ki)= 1. (4.155)

The translates �k,k ∈ Zd, are ortho-normal, and if we set

K(x,y)=
∑
k∈Zd

�(x− k)�(y− k),

then, for every v ∈Rd and multi-index α such that |α| = 1, . . . ,S− 1,∫
Rd

K(x,y)dy = 1 and
∫
Rd

K(v,v+ u)uα = 0. (4.156)

Conclude that the family {�k ≡ �(· − k) : k ∈ Zd} constitutes an ortho-normal system in
L2(Rd) that reproduces polynomials up to degree S − 1. The corresponding wavelets are
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4.3 Besov Spaces 369

defined as follows: for I equal to the set of 2d − 1 sequences ι = (ι1, . . . , ιd) of zeros and
ones, excluding ι= 0, we define

�ι(x)=ψι1(x1) . . .ψ
ιd(xd), �ιlk = 2ld/2�ι(2lx− k), l ∈N∪{0}, k ∈ Zd, (4.157)

where ψ0 = φ,ψ1 =ψ . If we define by Vj the linear span of the translates

�jk = 2jd/2�(2jx− k),k ∈ Zd,

and by

Wj = Vj .Vj−1,

then one sees easily that the {
�ιlk : ι ∈ I ,k ∈ Zd, l ∈N∪{0}} (4.158)

form an ortho-normal basis of Wj. For example, when d = 2, we can write

Vj = Vj ⊗Vj = (Vj−1 ⊕Wj−1)⊗ (Vj−1 ⊕Wj−1)

= Vj−1 ⊕
(
(Wj−1 ⊗Vj−1)⊕ (Vj−1 ⊗Wj−1)⊕ (Wj−1 ⊗Wj−1)

)
≡ Vj−1 ⊕Wj−1,

and the wavelets spanning W0 are the translates of the three functions

ψ(x1)φ(x2), φ(x1)ψ(x2), ψ(x1)ψ(x2).

Moreover, the Vj are nested, and they are also dense in L2(Rd) because the L2-projections

Kj( f )≡
∫
Rd

∑
k∈Zd

�jk(y) f (y)dy �jk (4.159)

of any f ∈ L2 onto Vj converge to f in L2 in view of Proposition 4.3.31 with h = 2−j and
(4.156). We thus can decompose

L2(Rd)= V0 ⊕
( ∞⊕

l=0

Wl

)
= Vj ⊕

⎛⎝ ∞⊕
l=j

Wl

⎞⎠ , (4.160)

and any f ∈ L2(Rd) can be decomposed into its wavelet series

f =
∑
k∈Zd

〈 f ,�k〉�k +
∞∑
l=0

∑
k∈Zd,ι∈I

〈�ιlk, f 〉�ιlk (4.161)

=
∑
k∈Zd

〈 f ,�jk〉�jk +
∞∑
l=j

∑
k∈Zd,ι∈I

〈�ιlk, f 〉�ιlk. (4.162)

The series converges in fact uniformly on Rd whenever f ∈ Cu(Rd), using again
Proposition 4.3.31 and (4.156). But more is true: by (4.156), the wavelet projection kernel
K(x,y) of this tensor product wavelet basis satisfies the conditions of Proposition 4.3.33
with h = 2−j, and we can therefore approximate arbitrary f ∈ Cm(Rd) or f ∈ Hm

p (R
d) by

Kj( f ) at precision 2−jm whenever m ≤ S. As with univariate wavelets, the decay of the
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370 Function Spaces and Approximation Theory

wavelet coefficients for a suitably regular wavelet basis in fact characterises containment of
a function in a Besov space on Rd. For 1≤ p≤∞,1≤ q≤∞,0< s< S and a tensor product
wavelet basis based on S-regular φ,ψ ∈ CS([0,1]), we define

Bs,W
pq (R

d)≡
{{ f ∈ Lp(Rd) : ‖ f ‖Bs,W

pq
<∞}, 1 ≤ p<∞

{ f ∈ Cu(Rd) : ‖ f ‖Bs,W
pq
<∞}, p =∞,

(4.163)

with wavelet-sequence norm given, for s ∈R, by

‖ f ‖Bs,W
pq (Rd)

≡
⎧⎨⎩
(∑

k∈Zd〈 f ,�k〉|p
)1/p +

(∑∞
l=0 2ql(s+d/2−d/p)

(∑
k∈Zd,ι∈I |〈 f ,�ιlk〉|p

)q/p
)1/q

, q<∞(∑
k∈Zd |〈 f ,�k〉|p

)1/p + supl≥0 2l(s+d/2−d/p)
(∑

k∈Zd,ι∈I |〈 f ,�ιlk〉|p
)1/p

q =∞,

where in case p =∞ the �p-sequence norms have to be replaced by the supremum norms
‖ · ‖∞. One can then show, just as in the univariate case, that a Besov space Bs

pq(R
d) defined

in terms of multivariate moduli of continuity (similar to (4.77)) coincides with Bs,W
pq (R

d)

defined here with equivalent norms. We also have the Sobolev imbeddings

Bs,W
pq (R

d)⊂ Cu(R
d), if s> d/p or s = d/p,q = 1, (4.164)

and
Hm

p (R
d)⊂ Bm,W

p∞ (R
d), Cm(Rd)⊂ Bm,W

∞∞(R
d) ∀m ∈N, (4.165)

and the multidimensional identities

Cs(Rd)= Bs,W
∞∞(R

d), s /∈N, Hm
2 (R

d)= Bm,W
22 (R

d), m ∈N.

Since we only consider isotropic function spaces, the proofs of these claims need only formal
modifications compared to the univariate case, as we can treat each axis of Rd individually
in the tensor product basis. We thus leave the details to the reader.

Besov Spaces on [0,1]d
Just as in the case of Rd, if we start with a wavelet basis {φk,ψlk} of L2([0,1]), such as
the periodic (φk = 1,ψlk = ψper

lk ) or boundary-corrected (φk = φbc
Jk ,ψlk = ψbc

lk ) ones from the
preceding section, we obtain a tensor product wavelet basis {�k,�ιlk} in L2([0,1]d), where
ι ∈ I , |I| = 2d − 1, and at the lth level, there are now O(2jd) wavelets ψιlk indexed by k ∈
K(l). Any such basis is complete in L2([0,1]d) because the functions { f1(x1) · · · fd(xd) : fi ∈
L2([0,1])} are dense in L2([0,1]d).

We then can define Besov spaces via wavelet norms as usual:

Bs,W
pq ([0,1]d)≡

{{ f ∈ Lp([0,1]d) : ‖ f ‖Bs,W
pq ([0,1]d) <∞}, 1 ≤ p<∞

{ f ∈ Cu([0,1]d) : ‖ f ‖Bs,W
pq ([0,1]d) <∞}, p =∞,

(4.166)

with wavelet-sequence norm given, for s ∈R, by

‖ f ‖Bs,W
pq ([0,1]d)

≡
⎧⎨⎩
(∑

k〈 f ,�k〉|p
)1/p +

(∑
l 2

ql(s+d/2−d/p)
(∑

k∈K(l),ι∈I |〈 f ,�ιlk〉|p
)q/p

)1/q
, q<∞(∑

k |〈 f ,�k〉|p
)1/p + supl 2

l(s+d/2−d/p)
(∑

k∈K(l),ι∈I |〈 f ,�ιlk〉|p
)1/p

, q =∞,
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4.3 Besov Spaces 371

where in case p =∞ the �p-sequence norms have to be replaced by the maximum norms
‖ · ‖∞. If the wavelets used in the definition are the periodic ones from (4.130), we
shall indicate this by writing (0,1]d instead of [0,1]d in the preceding definition. In this
case, the periodic n-torus analogues Cs,per((0,1]d),Hm,per

p ((0,1]d) of the isotropic spaces
Cs(Rd),Hm

p (R
d) from earlier satisfy

Cs((0,1]d)⊂ Bs,W
∞∞((0,1]d), Hm

p ((0,1]d)⊂ Bm,W
p∞ ((0,1]d), (4.167)

with identity when s /∈N. Likewise, Hm
2 ((0,1]d)= Bm,W

22 ((0,1]d), and

Bs,W
pq ((0,1]d)⊂ Cper((0,1]d) if s> d/p or s = d/p,q = 1. (4.168)

The proofs of these facts proceed as in preceding subsections.
We note that the spaces Cs,per((0,1]d),Hm,per

p ((0,1]d) of differentiable functions can be
naturally defined on the n-torus due to periodicity of the functions involved. When
considering nonperiodic boundary-corrected wavelets, one can define Bs,W

pq just as earlier,
but the spaces Cs([0,1]d) for s ≥ 1 and d> 1 need some interpretation as it is not clear how
to define the derivative of a function f on [0,1]d at the boundary of the unit cube. One
may assume D f to exist in the interior of [0,1]d, and the interior tensor product Daubechies
wavelets will then have the desired decay behaviour for such functions, arguing as in the
preceding subsection. Another possibility is to avoid derivatives altogether, and define
Besov spaces only by higher multivariate moduli of smoothness, as in (4.77), which can be
shown to be equivalent to the Besov space generated by boundary-corrected tensor product
wavelets.

Besov Spaces on General Domains �⊂Rd

We finally consider the situation where we wish to measure the regularity of functions
defined on general domains �⊂Rd. Several approaches can be taken here.

The definition of a Besov space Bs
pq(�) by integrated moduli of continuity (cf. (4.77),

generalised to the multivariate situation in a natural way) is perhaps the most intuitive one.
To relate this definition to spaces of differentiable functions, one needs to establish some
geometric properties of � to define what differentiation means. As soon as some geometric
properties of � are available, it may seem, in principle, preferable to construct directly
basis functions for L2(�) to approximate functions on �. For instance, if � is a compact
Riemannian manifold or a manifold with some boundary conditions, it is natural to take
the eigenfunctions of a Laplace-Beltrami operator as a starting point of general wavelet
based on � replacing the tools from commutative Fourier analysis from the preceding
section by appropriate (usually noncommutative) tools from geometric analysis. This in
itself constitutes a separate field of mathematics that we do not introduce here, and we refer
to the notes at the end of this chapter for some references.

If no geometric structure of � is available, or if one wishes a practical definition that
avoids geometric considerations, one may define a Besov space Bs

pq(�) simply as the
restrictions g|� of all elements g ∈ Bs

pq(R
d) to the domain �. The space

Bs
pq(�)=

{
f :�→R, f = g|� on �, g ∈ Bs

pq(R
d)
}

(4.169)

with natural quotient norm

inf{‖g‖Bs
pq(Rd) : g ∈ Bs

pq(R
d),g|�= f } (4.170)
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is a natural way to measure smoothness on a domain of �: it amounts to saying that the
functions f ∈ Bs

pq(�) can be extended to functions on Rd of the same regularity degree. If
� is bounded, we can take g to be of bounded support in the preceding definition so that the
Besov space consists of restrictions to � of functions supported in a fixed compact subset
of Rd. Moreover, as soon as � has sufficiently smooth boundaries, this definition can be
shown to coincide with intrinsic definitions that arise from considering integrated moduli of
continuity. We do not pursue this further here but discuss references in the notes at the end
of this chapter.

4.3.7 Metric Entropy Estimates

Recall that for K a (relatively) compact subset of a metric space X = (X,d), its metric
entropy is

H(K,d,ε)= logN(K,d,ε),

where N(K,d,ε) denotes the minimal number of closed d-balls of radius ≤ ε, and with
centres in K, required to cover K. We note the simple properties that if (X,d) is a normed
linear space, then, for any scalar λ 
= 0,

H(λK,d,ε)= H(K,d,ε/|λ|) (4.171)

and, for

T : (X,‖ · ‖X)→ (Y,‖ · ‖Y)

a continuous linear map between two normed spaces X,Y of operator norm ‖T‖,

H(T(K),‖ · ‖Y,ε)≤ H(K,‖ · ‖X,ε/‖T‖,), (4.172)

properties we shall use repeatedly later.
As such, entropy is a quantitative way of measuring the degree of compactness (on the

log scale) of a subset of a metric space. In this section we establish bounds for the metric
entropy of balls in Besov spaces defined over [0,1] when viewed as subsets of X=Lq([0,1]).
By the relationships of Besov spaces to classical function spaces, this gives entropy bounds
for these spaces as well. Generalisations to Besov spaces defined on subsets of R or Rd will
be discussed too.

Our proofs proceed by using wavelet theory to reduce the problem to a finite-dimensional
one. We therefore start with some entropy estimates for subsets of finite-dimensional spaces,
which are of independent interest.

Entropy of �p-Balls in �q-Norms

We start with the following standard estimate of the entropy of a ball in the
finite-dimensional space:

�n
p = (Rn,‖ · ‖�np), ‖x‖p

�np
=

n∑
i=1

|xi|p, 1 ≤ p ≤∞.

We denote the ball of radius r in �n
p by bn

p(r), and write bn
p ≡ bn

p(1) for the unit ball.
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Proposition 4.3.34 Let 1 ≤ p ≤∞. Then

n log
( r

2ε

)
≤ H(bn

p(r),‖ · ‖�np ,ε)≤ n log

(
3r

ε

)
∀ 0< ε < r. (4.173)

Proof We only have to prove r= 1 in view of (4.171). If vol denotes the Euclidean volume
of any measurable subset K of �n

p = Rn, then vol(x0 + λK) = |λ|n vol(K). Given ε, let
y1, . . . ,yM(ε) be a maximal set of points in bn

p such that mini
=j ‖yi − yj‖�np > ε. By maximality,
the balls of radius ≤ ε centred at the yi cover bn

p. Comparing their Euclidean volumes, we
see that

vol(bn
p)≤ vol(bn

p)ε
nM(ε).

Also, balls with the same centres yi and radius ε/2 are disjoint and contained in bn
p(3/2), so

vol(bn
p)(ε/2)

nM(ε)≤ vol(bn
p)(3/2)

n,

which implies that (1/ε)n ≤ M(ε) ≤ 3n(1/ε)n. Now the result follows from M(2ε) ≤ N(bn
p,

‖ · ‖�np ,ε)≤ M(ε), after taking logarithms.

This result in fact does not depend on p at all; as the proof shows, it just estimates the
covering number of the unit ball of an arbitrary finite-dimensional normed space. A more
delicate situation arises when the �q-norm on Rn is different from the �p-norm describing
the unit ball. For this situation, the following result will be useful:

Proposition 4.3.35 Let 1≤ p< q≤∞, 1/t= 1/p−1/q. Then, for some constant C=C(p,q)
and every 0< ε < 1,

H(bn
p,‖ · ‖�nq ,ε)≤

{
Cε−t log(2nεt), if ε ≥ n−1/t

Cn log(2/(nεt)), if ε ≤ n−1/t.
(4.174)

Proof Consider first q =∞, so t = p. For the given ε, let k ∈ N be such that (k+ 1)−1 <

ε ≤ k−1. Consider all the vectors z = (z1, . . . ,zn) ∈ bn
p whose entries are of the form

zi = v/k, for some v = 0,±1, . . . ,±k. The �∞-balls of radius ε centred at these vectors
cover bn

p, and the number N(ε,p,n) of such vectors that lie in bn
p does not exceed the

number of nonnegative integer solutions (v1, . . . ,vn) of the inequality
∑n

i=1 |vi|p ≤ kp. Basic
combinatorial arguments, including the standard inequality m!> (m/e)m, yield that

N(ε,p,n)≤
(

2e(n+ kp)

kp

)kp

.

Now, if ε ≥ n−1/t = n−1/p, we have (2ε)−p ≤ kp ≤ ε−p ≤ n, so

H(bn
p,‖ · ‖�n∞ ,ε)≤ c logN(ε,p,n)≤ Cε−p log(2nεp). (4.175)

For ε = n−1/p, this gives H(bn
p,‖ · ‖�n∞ ,n−1/p) ≤ C′n. Now any set A ⊂ �n

∞ satisfies, for

1 ≤ λ≤ [λ]+ 1 = λ̄, any ε′ > 0,

H(A,‖ · ‖�n∞ ,ε′/λ)≤ H(A,‖ · ‖�n∞ ,ε′/λ̄)≤ log(λ̄
n
)+H(A,‖ · ‖�n∞ ,ε′)

≤ n log(2λ)+H(A,‖ · ‖�n∞ ,ε′);
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hence, when ε ≤ n−1/p = ε′,λ= ε−1n−1/p, we deduce

H(bn
p,‖ · ‖�n∞ ,ε)≤ n log(2/(εn1/p))+C′n ≤ C′′n(log(2/(εn1/p)), (4.176)

which, combined with (4.175), proves the proposition for q =∞.
When p< q, consider any η-covering {xi} of bn

p by N balls in the �n
∞-metric with centres

in bp
n. For x ∈ bn

p and xi such that ‖x− xi‖∞ ≤ η, we have

‖x− xi‖q ≤ ‖x− xi‖1−p/q
∞ ‖x− xi‖p/q

p ≤ η1−p/q2p/q ≤ 2η1−p/q.

Setting η= εq/(p−q), we see that

H(bn
p,‖ · ‖�nq ,2ε)≤ H(bn

p,‖ · ‖�n∞ ,εq/(q−p))= H(bn
p,‖ · ‖�n∞ ,εt/p),

completing the proof by using the result for q =∞ just established.

A General Entropy Bound for Classes of Smooth Functions

The main result of this subsection is the following bound on the entropy of Besov balls. It
implies the same bound for many of the common classical function spaces, as we discuss
later. We can restrict the second Besov index to ∞ in view of Bs

pr ⊂ Bs
p∞ for every r.

Theorem 4.3.36 Let 1 ≤ p,q ≤ ∞, and assume that s > max(1/p − 1/q,0). Let B ≡
B(s,p,M) be the norm-ball of radius M in either Bs,W

p∞([0,1]) or Bs,per
p∞ ((0,1]). Then B is

relatively compact in Lq([0,1]) and satisfies

H(B,Lq([0,1]),ε)≤ K

(
M

ε

)1/s

∀ε > 0, (4.177)

where the constant K depends only on s,p,q.

Remark 4.3.37 One may show that this bound cannot be improved as a function of ε. The
result implies the remarkable fact that the degree of compactness of a ball in Bs

pq([0,1]) in
Lq is the same for all permitted values of p,q. For example (see the following corollary), an
s-Sobolev ball with s> 1/2 has, up to constants, the same entropy in L∞ as an s-Hölder ball.

Proof In this proof, all spaces are defined over [0,1], and we omit to mention it in the
notation. We set M = 1 in view of (4.171), and since Bs

p∞ ⊂ Bs
q∞ whenever p ≥ q, we

can restrict to p ≤ q. Under the maintained hypotheses on s,p,q, we have Bs
pq ⊂ Lq (as in

Proposition 4.3.9), so B is a bounded subset of Lq. It hence suffices to prove (4.177) for
ε small enough. Also, we may replace in the following arguments ε by cε for any fixed
constant c> 0 at the expense of increasing the constant K in (4.177).

The first step is the reduction to sequence space. Taking φ,ψ generating an S-regular,
S > s, periodic or boundary-corrected wavelet basis of L2 from Section 4.3.4 or 4.3.5, we
can expand any f ∈ B as

f =
∑

l≥J−1

2l−1∑
k=0

〈 f ,ψlk〉ψlk,

with the convention that ψJ−1,k = φk – here J = 0 in the periodic case and J ≥ 2N in the
boundary-corrected case. We note that Proposition 4.2.8 holds for the wavelet coefficient
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sequence norms in �2l

p as well – for the periodised wavelets, we recall (4.128) – and follows
likewise for the boundary-corrected wavelets because the number of boundary-correction
wavelets is constant in l. Moreover, we notice that f ∈ B implies, by definition of the
wavelet norm on the Besov space,

2l(s+1/2−1/p)‖〈 f ,ψl·〉‖p ≤ 1 ⇐⇒ 2l(s+1/2−1/p){〈 f ,ψl·〉} ∈ b2l

p , (4.178)

where we recall that bn
p is the unit ball of �n

p. Combining these observations, we thus may
estimate the Lq-distance of any two f ,g ∈ B by

‖ f − g‖q ≤
∑

l

∥∥∥∥∥∥
2l−1∑
k=0

〈 f − g,ψlk〉ψlk

∥∥∥∥∥∥
q

�
∑

l

2l(1/2−1/q)‖〈 f − g,ψl·〉‖q

=
∑

l

2l(−s+1/p−1/q)2l(s+1/2−1/p)‖〈 f − g,ψl·〉‖q. (4.179)

If we set

ε′l = εl2
l(s−1/p+1/q),

this means that any sequence of ε′l-coverings of b2l

p in �q-norm will induce an ε =∑
l εl-covering of B in Lq norm or, in compact notation,

H(B,Lq,ε)≤
∑

l

H(b2l

p ,�2l

q ,ε′l). (4.180)

Let now ε > 0 be given, and define

l0 =
[

1

s
log2

1

ε

]
(4.181)

and

εl = 2−sl0−A|l−l0|, (4.182)

for A a positive constant to be chosen. Since∑
l

εl ≤ c2−sl0 ≤ c′ε,

any such sequence of ε′l-coverings will give rise to a radius ε covering of B in Lq-distance.
It thus remains to estimate the right-hand side of (4.180) for this choice of εl.

Case p = q. Choose A = 1. We see from (4.178) that the tail of the series (4.179) is of order∑
l≥l0

2−ls ≤ c(s)2−l0s ≤ c(s)′ε.

This implies that in (4.180) we can restrict the sum to l ≤ l0, since any ε-covering of the
partial sums also covers the full series (with ε increased by a constant factor). Now, to sum
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the terms l ≤ l0, we use Proposition 4.3.34 to the effect that H(bn
p,‖ · ‖�np ,δ) � n log(1/δ);

hence, ∑
l≤l0

H(b2l

p ,‖ · ‖
�2

l
p

,ε′l)�
∑
l≤l0

2l log
1

εl2ls

= (s+ 1)
∑
l≤l0

2l(l0 − l)

= (s+ 1)2l0
∑
l≤l0

2l−l0(l0 − l)

� 2l0 � (1/ε)1/s ,

completing the proof of this case.

Case p< q. Let 1/t ≡ 1/p− 1/q, and choose 0< A< s− t−1, possible by our assumptions
on s,p,q. Note that ε′l = εl2l(s−t−1), so

log2(2
l(ε′l)

t)= t(s(l− l0)−A|l− l0|). (4.183)

For l ≤ l0, this equals t(s + A)(l− l0) ≤ 0; in particular, the quantity inside the logarithm
must be less than or equal to 1, so the second estimate from (4.174) applies. Thus, as in the
preceding step, ∑

l≤l0

H(b2l

p ,‖ · ‖
�2

l
q

,ε′l)�
∑
l≤l0

2l log
1

2l(ε′l)t

� t(s+A)
∑
l≤l0

2l(l0 − l)

≤ c2l0 � (1/ε)1/s .

In the range l> l0, the first bound from (4.174) applies. Since the right-hand side in (4.183)
becomes

t(s(l− l0)−A|l− l0|)= t(s−A)(l− l0),

for l> l0, we obtain ∑
l>l0

H(b2l

p ,‖ · ‖
�2

l
q

,ε′l)�
∑
l>l0

(ε′l)
−t(l− l0)

�
∑
l>l0

2l2(At−st)(l−l0)(l− l0)

� 2l0

∞∑
j=0

2j2(At−st)jj

� 2l0 � (1/ε)1/s ,

since 1− st+At< 0 by our choice of A. This completes the proof.

This proof generalises without difficulty to the multivariate setting if the Besov space
Bs

pq([0,1]d) is defined as in (4.166). Noting that the dimension of the spaces spanned by
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the ψιlk is then of order 2ld instead of 2l, and from formal adaptations of the proof of
Theorem 4.3.36, we obtain that the norm ball B ≡ B(s,p,d,M) of Bs

p∞([0,1]d) of radius
M satisfies, for s>max(d/p− d/q,0),

H(B,Lq([0,1]d),εl)≤ K

(
M

ε

)d/s

∀ε > 0, (4.184)

where the constant K depends only on s,p,q,d.
The generalisation of Theorem 4.3.36 to Besov spaces defined on unbounded subsets of

Rd, such as R or Rd itself, is more difficult. The reason is that compactness in Lq(R) is
not driven only by smoothness of the functions in a given class but also by their decay at
infinity. For instance, the unit ball of Bs

∞∞(R) is not compact in L∞ for any s. This means
that Lq-entropy estimates for Besov-type function classes will need some additional uniform
decay conditions at ±∞ on the functions considered, or alternatively, one needs to weaken
the Lq-norms by re-weighting them by a fixed function that vanishes at ±∞. We do not
pursue this further but refer to the notes at the end of this chapter for relevant references.

The preceding estimate for Besov classes of functions implies immediately estimates
for balls in Sobolev-Hölder-type spaces on [0,1], retrieving, in particular, Exercise 3.6.17.
Note that when q =∞, this gives rise to similar L2-bracketing metric entropy bounds from
Chapter 3 because supremum-norm coverings automatically induce bracketing coverings of
L2(P)-size no larger than in sup-norm.

Corollary 4.3.38 Let q ∈ [1,∞], and let Bs be the unit ball of either
(a) Hs,per

2 ((0,1]),Hs
2([0,1]), for s∈N,s>max(0,1/2−1/q), or of (b) Cs,per((0,1]),Cs([0,1])

for s> 0. Then

H(Bs,L
q([0,1]),ε)≤ K

(
M

ε

)1/s

∀ε > 0, (4.185)

where the constant K depends only on s,q.

A similar result holds for periodic Sobolev-Hölder spaces on the d-dimensional unit
cube using (4.184). Again, extensions to function spaces defined on unbounded sets need
qualitatively stronger assumptions (see the notes to at the end of this chapter).

Exercises

4.3.1 (Discrete convolution inequality.) Let c = {cl} ∈ �q, and let c′ = {c′l} ∈ �1. Define

(c∗ c′)k =
∑

l

clck−l.

Prove that c∗ c′ ∈ �q and

‖c∗ c′‖q ≤ ‖c′‖1‖c‖q.

In particular, {c′l} = {2−ls} ∈ �1 for any s > 0, so ‖c ∗ c′‖q ≤ C‖c‖q for some constant C that
depends only on s.

4.3.2 Show that an equivalent norm on Bs
pq(R) is obtained if the integral/supremum over t in (4.78)

is restricted to (0,1) and also if ωr is replaced by ωk for any k> r. Hint: Prove first the auxiliary
inequalities

ωr( f , t,p)≤ 2r−kωk( f , t), ωr( f ,λt,p)≤ (λ+ 1)rωr( f , t,p),

for λ > 0, and use ωr( f , t,p)≤ 2r‖ f ‖p.
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4.3.3 Show that an equivalent norm on Bs
pq(R) is obtained by replacing ωr( f , t,p) by ω1(D[s] f , t,p)

in (4.78). Hint: Use (4.74).
4.3.4 (Multiplication algebras.) Let f ,g ∈ Bs

pq(A), where A ⊂ Rd, and assume that s,p,q are such
that Bs

pq ⊂ L∞ (e.g., for A=R whenever s> 1/p or s= 1/p,q= 1 in view of Proposition 4.3.9
and for other A by the corresponding Sobolev imbeddings obtained in this section). Show that
the pointwise product

h(x)= f (x)g(x), x ∈ A,

satisfies h ∈ Bs
pq(A). When A is a bounded interval, show that f ∈ Bs

pq(A) and infx∈A | f (x)| ≥
ζ > 0 imply that 1/ f ∈ Bs

pq(A). Hint: Use the modulus of continuity definition of Bs
pq(A) and

that all functions involved are bounded.
4.3.5 Show that Proposition 4.3.15 still holds true when G is replaced by a ball in the space BV(R)

or by

G(M)=
{

g right-continuous : lim
x→−∞g(x)= 0,‖g‖∞+ |Dg|(R)≤ M

}
, M> 0.

Hint: Write g(x)= ∫
R

1(−∞,x](t)dDg(t). Show next that any ball in H1
1(R) is contained in G(M)

for some M. Next, generalise Proposition 4.3.15 to hold for G equal to a ball in Hm
1 ,m ∈ N,

with approximation error 2−j(m+s).
4.3.6 Let f̃ ∈BV(R). Show that f̃ is almost everywhere equal to a function f for which the quantity

in (4.107) is finite and that, for almost every x,y,

f (x)− f (y)=
∫ x

y
dD f (u).

4.3.7 (Separability.) Recall that a Banach space is called separable if it contains a countable dense
subset. Let A equal either [0,1] or R. Show that the spaces Bs

pq(A) are separable for their norm
whenever max(p,q)<∞. Show, moreover, that Bs∞q([0,1]) is separable for any 1≤ q<∞ but
that Bs∞∞([0,1]) is not separable. Finally, show that Bs∞q(R) is not separable for any q. Hint:
Use the wavelet characterisations of these spaces to reduce the problem to sequence space.

4.3.8 Complete the proof of Theorem 4.3.26, proceeding as in Theorem 4.3.2. Hint: Establish
analogues of the conditions of Proposition 4.3.5 for the periodised Meyer wavelet series.

4.3.9 Let Dn be the Dirichlet kernel on (0,1]. Prove the inequalities (4.138); that is, find constants
0< c< C<∞ such that

c logn ≤
∫ 1

0
|Dn(x)|dx ≤ C logn

holds for every n ∈N. Hint: For the lower bound, use the representation (4.18). For the upper
bound, show first that |Dn(x)| ≤ Cmin(n, |x|−1) for some C > 0, and split the integral into
[0,1/n], [1/n,1].

4.3.10 Prove (4.108) when p= 2. Hint: Since B1/2
21 (R)⊂Cu(R)∩L2, it suffices, by approximation, to

prove the imbedding for compactly supported continuous functions f ∈ B1/2
21 . Then write

∑
i

( f (xi+1)− f (xi))
2 =

∑
i

( f (xi+1)− f (xi))
2

xi+1 − xi
(xi+1 − xi),

and use Riemann integrability of f as well as the modulus of smoothness definition of the
Besov norm.
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4.4 Gaussian and Empirical Processes in Besov Spaces

In this section we use the techniques from this chapter to study the connection between cer-
tain Gaussian and empirical processes and the Besov spaces Bs

pq([0,1]),s ∈ R. Throughout
this section we let {ψlk} be an S-regular, S sufficiently large wavelet basis of L2([0,1]), for
instance, the periodised basis or the boundary-corrected basis from Sections 4.3.4 and 4.3.5,
so that it generates all the Besov spaces Bs

pq([0,1]), |s|< S, considered. We adopt again the
convention that the scaling functions φk equal the ‘first’ wavelets ψJ−1,k, where J = 0 in the
periodic case and J∈N large enough in the boundary-corrected case, and we recall that there
are 2l wavelets ψlk at level l ≥ 0.

4.4.1 Random Gaussian Wavelet Series in Besov Spaces

Consider the Gaussian white noise or isonormal Gaussian process on L2([0,1]), that is, the
mean zero Gaussian process given by

W(g)∼ N(0,‖g‖2
2), EW(g)W(g′)= 〈g,g′〉, g,g′ ∈ L2([0,1]). (4.186)

This process generates an infinite sequence of standard Gaussian random variables glk =
W(ψlk)∼ N(0,1), where {ψlk} can be any ortho-normal basis of L2. The process W can be
viewed as a generalised function (or element of S∗) simply by considering the action of the
random wavelet series ∑

l≥J−1

∑
k

glkψlk

on test functions. We can then ask whether W defines a random variable in some Bs
pq, a

question that can be reduced to checking convergence of the Besov sequence norms of (glk).
A similar question can be asked for the Brownian bridge process

G(g)∼ N

(
0,

∥∥∥∥g−
∫ 1

0
g

∥∥∥∥2

2

)
, EG(g)G(g′)= 〈g,g′〉−

∫ 1

0
g
∫ 1

0
g′,

g,g′ ∈ L2([0,1]), (4.187)

which satisfies G(c) = 0 for any constant c but otherwise has the same distribution as W
because all the ψlk have integral

∫ 1
0 ψlk = 0, l ≥ J. The proofs for both processes thus are

effectively the same.
We first consider the simplest case, where p= q<∞ in the Besov indices. The following

result is then immediate:

Proposition 4.4.1 The white noise process W and the Brownian bridge process G define
tight Gaussian Borel random variables in B−s

pp ([0,1]) for any s> 1/2 and 1 ≤ p<∞.

Proof For ep = E|g11|p, we have, from Fubini’s theorem, that

E‖W‖p

B−s
pp
=
∑

l

2pl(−s+1/2−1/p)
∑

k

E|glk|p = ep

∑
l

2pl(1/2−s) <∞,

so W ∈ B−s
pp almost surely, measurable for the cylindrical σ -algebra. Since B−s

pp is separable
(Exercise 4.3.7) and complete, W is Borel measurable and the result follows from the
Oxtoby-Ulam theorem (Proposition 2.1.4). The Brownian bridge case is the same.
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This proof leaves some space for improvement if one considers logarithmic Besov spaces,
defined as

Bs,δ
pp ≡

{
f : ‖ f ‖p

Bs,δ
pp
≡
∑

l

2pl(s+1/2−1/p)max(l,1)pδ
∑

k

|〈ψlk, f 〉|p <∞
}

, δ,s ∈R. (4.188)

Note that Bs,0
pp = Bs

pp, but otherwise we can decrease or increase the regularity of the
functional space on the logarithmic scale. By the same proof as in the preceding proposition,
we obtain

Proposition 4.4.2 The white noise process W and the Brownian bridge process G define
tight Gaussian Borel random variables in B−1/2,−δ

pp ([0,1]) for any 1 ≤ p<∞,δ > 1/p.

A way to say that W has exact smoothness −1/2 can be obtained from setting the q-index
equal to ∞.

Theorem 4.4.3 For any 1 ≤ p<∞, the random variables ‖W‖
B−1/2

p∞ ([0,1]) and ‖G‖
B−1/2

p∞ ([0,1])
are finite almost surely.

Proof For every M large enough and ep = E|g11|p, from a union bound and Chebyshev’s
inequality,

Pr
(
‖W‖

B−1/2
p∞ >M

)
= Pr

(
sup

l
2−l

∑
k

|glk|p >Mp

)

≤
∑

l

Pr

(
2−l

∑
k

(|glk|p − ep) >Mp − ep

)

≤ 1

(Mp − ep)2

∑
l

2−le2p,

so for M large enough, we deduce

Pr(‖W‖
B−1/2

p∞ <∞) > 0.

The result now follows from the 0-1 law for Gaussian measures (Corollary 2.1.14)
and because the Besov norm as a countable supremum of finite-dimensional �p-norms
is measurable for the cylindrical σ -algebra C. The Brownian bridge case is again the
same.

Note that by the Borell-Sudakov-Tsirelson inequality (see Exercise 2.1.12) the random
variables

‖W‖
B−1/2

p∞ ([0,1]), ‖G‖
B−1/2

p∞ ([0,1])

are actually sub-Gaussian. However, unlike in the case max(p,q) <∞ in Theorem 4.4.3,
we cannot infer that W,G are tight random variables in B−1/2

p∞ because these spaces are
nonseparable (Exercise 4.3.7). In fact, W,G are not tight in these spaces (see Exercise 4.4.3).

In the case p=∞, we consider certain weighting schemes to obtain sharp results. Define,
for w = (wl),wl ≥ 1, a weighting sequence

Bs,w
∞∞([0,1])≡

{
f : ‖ f ‖Bs,w∞∞ ≡ sup

l
2l(s+1/2)w−1

l max
k

|〈ψlk, f 〉|<∞
}

, s ∈R. (4.189)
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The preceding spaces can be defined for q ∈ [1,∞) too, and a version of the following
theorem holds for such q and suitable w as well (with obvious modifications of the proof).

Theorem 4.4.4 (a) For ω= (ωl)= (
√

l), we have

Pr
(
‖W‖

B−1/2,ω∞∞ ([0,1]) <∞
)
= 1.

(b) For any w such that (wl/
√

l) ↑ ∞ as l → ∞, the white noise process W defines a
tight Gaussian Borel random variable in the closed subspace B−1/2,w

∞∞,0 of B−1/2,w
∞∞ consisting of

coefficient sequences satisfying

lim
l→∞

w−1
l max

k
|〈 f ,ψlk〉| = 0.

(c) The preceding statements remain true if W is replaced by G.

Proof Since there are 2l standard Gaussians glk at the lth level, we have from Lemma 2.3.4

Emax
k

|glk| ≤ C
√

l,

for some universal constant C. To prove (a), we have from a union bound and the
Borell-Sudakov-Tsirelson inequality (Theorem 2.5.8), for M large enough and some
universal constant c> 0,

Pr
(
‖W‖

B−1/2,ω∞∞ >M
)
= Pr

(
sup

l
l−1/2 max

k
|glk|>M

)
≤
∑

l

Pr

(
max

k
|glk|−Emax

k
|glk|>

√
lM−Emax

k
|glk|

)
≤ 2

∑
l

exp
{−c(M−C)2l

}
,

so (a) follows from the 0-1 law for Gaussian measures as in the proof of the preceding
theorem. The claim (b) follows from the preceding estimate, which implies the desired decay
estimate for |〈W,ψlk〉|, and the fact that B−1/2,−1/2

∞∞,0 (w) is a separable space (isomorphic to c0).
The proof of (c) is identical to the preceding one.

Just as before, the random variable ‖W‖
B−1/2,ω∞∞ is actually sub-Gaussian in view of the

Borell-Sudakov-Tsirelson inequality, but W in (a) does not define a tight Gaussian measure
on B−1/2,ω

∞∞ (see Exercise 4.4.3 and the notes at the end of this chapter).

4.4.2 Donsker Properties of Balls in Besov Spaces

For P a probability measure on A and B a subset of a Besov space Bs
pq(A), one may

ask whether B is P-pre-Gaussian or even P-Donsker in the sense of Definitions 3.7.26
and 3.7.29, similar to results in Corollary 3.7.49 and Example 3.7.57 for classes of
p-variation and bounded Lipschitz functions. We investigate this question in this subsection
for the case A= [0,1], and the case A=R is discussed in the notes at the end of this chapter.
Certain Besov balls will be shown to be P-pre-Gaussian but not P-Donsker, displaying a gap
between the uniform central limit theorem

√
n(Pn −P)→d GP and the existence of the limit

‘experiment’ GP.
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Besov Balls with s> 1/2

The metric entropy bound Theorem 4.3.36 and the uniform entropy central limit theorem
(CLT) from Theorem 3.7.37 imply the following result:

Theorem 4.4.5 Let 1 ≤ p,q ≤∞, and assume that s > max(1/p,1/2). Then any bounded
subset B of Bs

pq([0,1]) is a uniform Donsker class. In particular, bounded subsets of Sobolev
spaces Hs([0,1]) and Hölder spaces Cs([0,1]) are P-Donsker for s> 1/2 and any P.

Proof For any ε > 0, Theorem 4.3.36 gives an ε-covering of B in the uniform norm. Since

‖ f − g‖L2(Q) ≤ ‖ f − g‖∞,

this induces an ε-covering of B of the same cardinality in the L2(Q)-norm for any probability
measure Q on [0,1]. Since ∫ a

0
(1/ε)1/2sdε <∞,

for any a whenever s> 1/2, the result follows from Theorem 3.7.37.

To be precise, we note that since we require s> 1/p, we can and do view B as a family
of continuous functions in the preceding theorem (possible by the Sobolev imbedding).

This result implies in particular that B is P-pre-Gaussian for any P. If it is known that P
has a bounded density on [0,1], then we can strengthen the preceding result in terms of the
P-pre-Gaussian property when p ∈ [1,2).

Proposition 4.4.6 If P has a bounded Lebesgue density on [0,1], then any bounded subset
B of Bs

pq([0,1]) for 1 ≤ p,q ≤∞ and s> 1/2 is P-pre-Gaussian.

Proof This follows from Theorem 2.3.7 combined with Theorem 4.3.36, which gives an
L2 covering and then for P with bounded density also an L2(P) covering of log-cardinality
(1/ε)1/s for the class B. The L2(P)-entropy is thus integrable at zero whenever s> 1/2.

In the preceding theorem, B need not in general consist of continuous functions, and to
be precise, we note that subsets of Bs

pq are then only equivalence classes [ f ] of functions f .
The result holds either for B consisting of arbitrary selections from each equivalence class or
for the Gaussian process [ f ] �→ GP( f ), which is a version of the same process because the
covariance function of GP is constant on each equivalence class for P possessing a Lebesgue
density.

An interesting gap between Theorem 4.4.5 and Proposition 4.4.6 arises when 1 ≤
p < 2 and P indeed has a bounded density, as Theorem 4.4.5 then requires s > 1/p,
whereas Proposition 4.4.6 only needs s > 1/2. This gap is real and provides examples for
P-pre-Gaussian classes of functions that are not P-Donsker, as we show in the following
proposition for the representative case p= 1,q=∞ (the cases 1≤ p< 2,1/2< s≤ 1/p,q> 1
are proved in a similar way using Exercise 4.4.2).

Proposition 4.4.7 Suppose that P has a bounded Lebesgue density on [0,1], and let 1/2<
s ≤ 1. The unit ball B of Bs

1∞([0,1]) is P-pre-Gaussian but not P-Donsker.
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Remark 4.4.8 Again, Bs
1∞ does, for s ≤ 1, consist of not necessarily continuous functions

and hence has to be viewed as a space Lebesgue-equivalence class of functions. Empirical
processes are not defined on equivalence classes of functions but on functions. The set of
all a.e. modifications of a fixed (e.g., the constant) function can easily be shown not to be
P-Donsker, so to avoid triviality, the preceding statement should be understood as holding
for B equal to any class of functions constructed from selecting one element f from each
equivalence class [ f ] in the unit ball of Bs

1∞([0,1]), which is what we now prove.

Proof We already know that B is P-pre-Gaussian; hence, it remains to prove that it is
not P-Donsker. The idea is to show that B contains a fixed unbounded function and then
also arbitrary rational translates of it, leading to an almost everywhere unbounded envelope
which contradicts the P-Donsker property for absolutely continuous P.

We give the construction of an unbounded function explicitly here for s< 1 (the limiting
case s= 1 is left as Exercise 4.4.2). Take J large enough and a 1-regular Daubechies wavelet
ψ translated by a suitable integer such that for every l ≥ J the dilated function ψ(2l·) is
supported in [1/4,3/4], which is possible by Theorem 4.2.10. Since the support is interior
to [0,1], the Besov norms of ψ(2l·) on A = R coincide with those on A = [0,1]. For J̄ ∈ N
and ε = 1− s, define

�J̄ =
∑
J≤l≤J̄

2lεψ(2l·),

which is a bounded and continuous function for every fixed J̄. Since
∫ 1

0 |ψ(2l·)|dx =
2−l‖ψ‖1 ≤ 2−l, we have ‖�J̄‖1 ≤ C for some fixed constant C. Moreover, by the wavelet
definition of the Besov norm, we have ‖�J̄‖Bs

1∞ = 1, for all J̄ ∈ N. Since L∞ ⊂ B0
∞∞, we

have, for some c> 0,

‖�J̄‖∞ ≥ c‖�J̄‖B0∞∞ = sup
l∈[J,J̄]

2lε .

Conclude that by continuity for any given U, there exists J̄ large enough and x0 ∈ [1/4,3/4]
such that |�J̄(x)| > U for all x in a neighborhood of x0. For z ∈ (0,1/4), any translate
�J̄(· − z) is supported in [0,1] and contained in the unit ball of Bs

1∞: indeed, the Bs,V
1∞-norm

is unchanged since F [ f (· − z)] = e−izu f̂ (u), and by Theorem 4.3.2, the wavelet norm thus
can increase by at most a universal constant (by which, if it exceeds 1, we can renormalise).
Now let {zi : i = 1,2, . . .} be an enumeration of the rationals in (0,1/4), and set

�i,J̄ =�J̄(·− zi),

which are all contained in the unit ball of Bs
1∞([0,1]) and unbounded near x0 + zi ∈ (0,1).

We can modify each of these function on a set Ni of Lebesgue measure zero to accommodate
the selection from each equivalence class (cf. Remark 4.4.8), and N = ∪iNi is still a set of
zero Lebesgue measure. For x ∈ (x0,x0 + 1/4) \N arbitrary, we can find, by density of the
rationals, zi such that (x− zi) is near x0. Thus,

sup
f ∈B

| f (x)| ≥ sup
i
|�i,J̄(x)| = sup

i
|�J̄(x− zi)|>U.
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Since U was arbitrary, we conclude that necessarily sup f ∈B | f (x)|=∞ for every x∈ (x0,x0+
1/4) \N. Since sup f ∈B

∣∣∫ f dP
∣∣≤ C‖dP‖∞, we have

sup
f ∈B

| f (x)−P f | =∞

for Lebesgue and then also P almost every x ∈ [x0,x0 + 1/4], so B cannot be P-Donsker in
view of Exercise 3.7.23.

Donsker Properties for Critical Values of s

We start with the following result:

Proposition 4.4.9 Bounded subsets of B1/p
p1 (A),1 ≤ p< 2, are uniform Donsker classes for

A any interval in (possibly equal to) R.

Proof The result follows from the imbedding (4.108) and since p-variation balls are
uniform Donsker for p< 2 (see Corollary 3.7.49).

As soon as q is increased above 1, balls in B1/p
pq ,p <∞, contain unbounded functions

(Exercise 4.4.2) and thus by the same proof as in Proposition 4.4.7 can be shown not to
form P-Donsker classes. We note that for s < 1/2, none of the Besov classes are even
P-pre-Gaussian for, for example, P equal to the uniform distribution, since ‖GP‖B = ∞
almost surely, arguing as in Section 4.4.1 and using duality arguments.

The critical boundary s= 1/p can be analysed more closely. Let us investigate this in the
Hilbert space case p = q = 2: balls in B1/2,δ

22 ([0,1]) defined in (4.188) can be shown to be
P-Donsker if (and only if) δ > 1/2. Proofs of this fact for arbitrary P can be given using the
explicit Hilbert space structure of these spaces (see Exercise 3.7.24 and also the notes at the
end of this chapter). When P has a bounded density, a simple direct proof of this fact can be
given using the wavelet techniques from this chapter.

Theorem 4.4.10 For δ > 1/2, any bounded subset B of B1/2,δ
22 ([0,1]) consists of uniformly

bounded continuous functions and is P-Donsker for any P with bounded Lebesgue density
on [0,1].
Proof Without loss of generality, we can set B equal to the unit ball of B1/2,δ

22 . The uniform
boundedness and continuity of elements of B follow from

‖ f ‖∞ � ‖ f ‖B0∞1
=
∑

l

2l/2 max
k

|〈 f ,ψlk〉|

≤
√∑

l

l−2δ

(∑
l

2ll2δ
∑

k

|〈 f ,ψlk〉|2
)1/2

= C‖ f ‖
B1/2,δ

22

in view of the Cauchy-Schwarz inequality and the fact that uniform limits of continuous
functions are continuous.

By the same arguments as in Proposition 4.3.12, we have the Hilbert space duality(
B1/2,δ

22

)∗ = B−1/2,−δ
22 .
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Moreover, one shows easily from the definitions that (Bs,δ
22 )

∗ is isometric to the subspace
of �∞(B) consisting of (pre-)linear mappings from B to R, equipped with the supremum
norm. The proof of Proposition 4.4.2 and the fact that P has a bounded density imply that
GP exists as a tight random variable in B−1/2,−δ

22 for every δ > 1/2 and that, in turn, B is
P-pre-Gaussian. Moreover, since B is uniformly bounded,

sup
f ∈B

∣∣∣∣∫ f (dPn − dP)

∣∣∣∣<∞,

so
√

n(Pn −P) also defines a random variable in B−1/2,−δ
22 . To prove that B is P-Donsker, it

thus suffices to prove that

νn ≡√
n(Pn −P)→d GP in B−1/2,−δ

22 .

For J to be chosen later, let VJ be the space spanned by wavelets up to resolution level J,
and let πVJ denote the projection operator onto VJ. Further, let β be the bounded Lipschitz
metric for weak convergence in B−1/2,−δ

22 (cf. Proposition 3.7.24). Writing L(X) for the law
of a random variable X, it suffices to show that β(L(νn),L(GP))→ 0 as n →∞ to prove
the theorem. We have

β(L(νn),L(GP))≤ β(L(νn),L(νn) ◦π−1
VJ
)+β(L(νn) ◦π−1

VJ
,

L(GP) ◦π−1
VJ
)+β(L(GP),L(GP) ◦π−1

VJ
).

Let ε > 0 be given. The second term is less than ε/3 for every J fixed and n large enough
because

πVJ(
√

n(Pn −P))→d πVJ(GP) in VJ

by the multivariate CLT. For the first term, note that by Fubini, independence,
ortho-normality, definition of the bounded Lipschitz metric and the variance bound

nE〈Pn −P,ψlk〉2 = VarP(ψlk)≤ ‖p‖∞,

we can find, for every ε > 0, some J large enough such that

β(L(νn),L(νn) ◦π−1
VJ
)≤ E‖√n(id−πVJ)(Pn −P)‖2

B−1/2,−δ
22

=
∑
l>J

2−ll−2δ
2l−1∑
k=0

nE〈Pn −P,ψlk〉2

≤ ‖p‖∞
∑
l>J

l−2δ < ε/3.

For the third Gaussian term, the same bound holds true, replacing the variance bound before
the preceding display by EGP(ψlk)

2 ≤ ‖p‖∞, completing the proof.

The duality argument in this proof derives convergence in �∞(G) for G a unit ball of a
Besov space Bs

pq from convergence in B−s
p′q′ and also can be used for other Besov spaces as

long as the duality relationship (4.96) is satisfied.
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Exercises

4.4.1 Show that the identity mapping Bs,δ∞∞ →Bs,δ′∞∞ for any δ < δ′ used in Theorem 4.4.4 is a compact
operator. Hint: Show that any bounded sequence in the domain space is a Cauchy sequence in
the image space.

4.4.2 Show that for any x the space B1/p
pq ,q> 1,p<∞, contains a function unbounded at x.

4.4.3 Show that the white noise process W does not define a tight Gaussian random variable in the
spaces B−1/2

2∞ ,B−1/2,ω
∞∞ ,ω = (√l). Hint: Show first that if W were tight, it would concentrate on

the completion of its RKHS �2, which consists of all sequences{
(xlk) : lim

l
2−l

∑
k

|xlk|2 = 0

}
,

{
(xlk) : lim

l
l−1/2 max

k
|xlk| = 0

}
,

respectively, and then use standard properties of i.i.d. glk ∼ N(0,1) sequences to show that W
does not concentrate on these spaces.

4.5 Notes

Section 4.1 All topics in this section consist of classical material. Good references for the background
in real analysis are, for example, Folland (1999) and Dudley (2002). Chapters 8 and 9 in Folland
(1999) can be particularly recommended for the basic Fourier analysis reviewed here, as well as for
historical references on that subject. There are manifold other reference works that can be consulted
as well.

Trigonometric series have been studied extensively in the last two centuries, a classical reference
is the reprint Zygmund (2002) of the first two editions (1935, 1968). The Haar basis was introduced
in Haar (1910), and the Shannon sampling theorem is due to Shannon (1949). The main ideas of a
Littlewood-Paley decomposition first occurred in Littlewood and Paley (1931, 1936), who used it to
characterise the spaces Lp((0,1]),1< p<∞, by different means than Fourier series (which fail when
p 
= 2).

Section 4.2 Wavelet theory is by now a vast independent subject at the intersection of applied
mathematics and harmonic analysis, and there is no space to review its history here. In particular,
it should be emphasised that this chapter only attempts to develop some of the by now classical ideas
from first principles, with a focus on what is statistically relevant, and does by no means reflect the
wide range of activities until today in the field of wavelet theory.

Key contributions in the early days of wavelet theory are the construction of compactly supported
wavelets by Daubechies (1988), the rigorous treatment by Mallat (1989) of the multiresolution
analysis approach first formulated by Y. Meyer in the mid-1980s, and the landmark monographs
by Meyer (1992) and Daubechies (1992) on the subject. The current exposition draws heavily from
these references, as well as from the presentation in Härdle et al. (1998). Wavelets usually cannot be
expressed in closed analytical form because they are defined as Fourier transforms of possibly quite
intricate functions, but efficient algorithms for their computation exist; we refer to Daubechies (1992)
for a treatment of these topics.

Section 4.3 The systematic study of function spaces is a subject on its own, and a comprehensive
monograph on many aspects of the theory is Triebel (1983). The field developed progressively in the
early twentieth century, with a focus on the Lebesgue Lp-spaces, the spaces Cm of continuous and
differentiable functions and spaces of functions of bounded variation. The study of Sobolev spaces
Hm

2 and of their fruitful interactions with functional analysis was initiated in the 1930s by Sobolev
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(1935, 1938). Zygmund’s (1945) seminal study of function spaces, where derivatives are replaced by
higher-order differences, led to the study of spaces of generalised Lp-moduli of smoothness by Besov
(1959, 1961), who introduced the classical definition of Besov spaces. Both Sobolev and Besov
spaces were initially (and still are) of interest in the study of regularity questions concerning solutions
of elliptic partial differential equations. Several important techniques originated in the work of Hardy
and Littlewood (see, e.g., Hardy, Littlewood and Polya (1967)).

The unifying Littlewood-Paley theory approach to Besov spaces is due to Petree (1976) and
Triebel (1983), see also Bergh and Löfström (1976). We refer to these references for more on Fourier
multiplier theory and for a treatment of interpolation theory that is omitted here. The wavelet approach
to Besov spaces is inspired by the main ideas of Littlewood-Paley theory and is rigorously developed
in Meyer (1992) and Frazier, Jawerth and Weiss (1991).

The connection between Besov spaces and approximation theory is intimate; we refer to the
extensive monographs by DeVore and Lorentz (1993), Lorentz, Golitschek and Makovoz (1996) and
also Härdle et al. (1998), which inspired our treatment of the wavelet aspect. Approximation theory
often uses piecewise polynomials to approximate functions – for dyadic piecewise polynomials, the
usual B-spline bases are ‘almost’ wavelet bases (up to a Gram-Schmidt ortho-normalisation step).
Piecewise polynomials are particularly useful to deal with functions defined on closed intervals.
The boundary-corrected wavelets introduced in Cohen, Daubechies and Vial (1993) provide a
multiresolution alternative to spline methods on intervals. For approximation in weak metrics, wavelet
approximation schemes are most powerful through the duality theory for Bs

pq. For convolution kernels,
analogues of Proposition 4.3.14 for s,r /∈ N and general p,q also can be proved by using Fourier
multipliers techniques; see Giné and Nickl (2008, lemma 12).

The approximation-theoretic perspective is particularly interesting for metric entropy arguments
and for the related problem of studying the spectral distributions of eigenvalues of compact operators:
the classical papers by Kolmogorov and Tihomirov (1959) and Birman and Solomjak (1967) contain
Corollary 4.3.38, part (b), and Theorem 4.3.36, respectively. For general results in Bs

pq(R
d), we refer

to the monograph by Edmunds and Triebel (1996) – many authors often study entropy numbers
rather than metric entropy, these are related by an inverse relationship to each other. See chapter
15 in Lorentz, Golitschek and Makovoz (1996) for references and results with a focus on metric
entropy bounds rather than entropy numbers; see also Nickl and Pötscher (2007) for the multivariate
case.

Exhaustive references for further relationships between classical function spaces and Besov spaces,
including the issue of the definition of Cs for integer s as well as Fourier analytical characterisations
of Sobolev spaces for p 
= 2, are Triebel (1983) and DeVore and Lorentz (1993). The relationships
between the Vp spaces of functions of bounded p-variation and Besov spaces are further investigated
in Bourdaud, de Cristoforis and Sickel (2006), who use interpolation-theoretic ideas from Peetre
(1976). A different, more classical approach to p-variation spaces is Dudley and Norvaisa (2011).
Recent references for Besov spaces that are defined on general geometric objects (such as manifolds or
Dirichlet spaces) are Geller and Pesenson (2011) and Coulhon, Kerkyacharian and Petrushev (2012).
Results for when Besov spaces on domains that are defined by restriction coincide with intrinsic
definitions can be found in Triebel (1983).

Section 4.4 The results on regularity of white noise processes in negative-order Besov spaces are
related to results about the regularity properties of trajectories of Brownian motion, which are in
some sense ‘integrated versions’ of the results here. See Ciesielski, Kerkyacharian and Roynette
(1992) as well as Meyer, Sellan and Taqqu (1999). The process W in B−1/2,ω

∞∞ for ω = (√l) is an
example of a Gaussian random variable in a Banach space that is not tight (Exercise 4.4.3). The
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388 Function Spaces and Approximation Theory

cylindrically defined law of W is in fact a ‘degenerate’ Gaussian measure that does (assuming the
continuum hypothesis) not admit an extension to a Borel measure on B−1/2,ω

∞∞ (see definition 3.6.2 and
proposition 3.11.5 in Bogachev (1998)) and has further unusual properties: W has a ‘hole’, that is,
‖W‖M(ω) ∈ [c,∞) almost surely (see Ciesielski, Kerkyacharian and Roynette (1992)), and depending
on finer properties of the sequence ω, the distribution of ‖W‖M may not be absolutely continuous,
and its absolutely continuous part may have infinitely many modes; see Hoffmann-Jorgensen, Shepp
and Dudley (1979).

Balls in Hölder and Sobolev spaces were among the first examples of classes of functions for which

the P-Donsker property was established; see Strassen and Dudley (1969), Giné (1975) and Marcus

(1985). The results for general Besov spaces in this section are based on Nickl (2006) and Nickl and

Pötscher (2007), who also deal with the more general case of Besov spaces on R or even Rd, where

moment conditions on P need to be added whenever the Besov index p exceeds 2. The observation that

certain balls in Besov spaces are P-pre-Gaussian but not P-Donsker (Proposition 4.4.7) is due to Nickl

(2006). Marcus (1985) showed that balls in Sobolev spaces Bs
22(R

d) are P-Donsker for every P on Rd

if and only if s> d/2, by using the theory of Hilbert-Schmidt imbeddings (see also Exercise 3.7.24).

This also provides another proof of Theorem 4.4.10 (not treated in Marcus (1985)) but does not

generalise to the non-Hilbertian setting of Besov spaces Bs
pq where either p or q is different from 2.
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5

Linear Nonparametric Estimators

In this chapter we consider the classical linear estimators of densities and functions observed
under white noise: they are some of the simplest nonparametric estimators and constitute the
building blocks for more complex estimators and other statistical procedures such as tests
and confidence intervals. For densities, these are the convolution kernel density estimators
and the projection-based density estimators, particularly those based on projections of
the empirical measure over the subspaces of wavelet multiresolution analyses of L2(R)
or L2([0,1]). For functions observed under white noise, we look at projections of the
observation Y f over the subspaces of multiresolution analyses of L2([0,1]).

In the first section we derive upper bounds for the moments and tail probabilities of
‖ fn − f ‖p, 1 ≤ p ≤ ∞, where fn is a linear estimator of f , and apply them to obtain
asymptotic convergence rates almost surely and in probability. The rates are optimal in the
minimax sense (see Chapter 6) but slower than 1/

√
n and depend on the smoothness of f

through the bias. In the second section we look at the approximation of f by fn in norms
weaker than the supremum norm or the Lp-norms, such as multiscale sequence spaces (or
negative-order Besov spaces) and norms defined by the supremum of

∫
g( fn − f ) taken

over g in special subsets of the unit balls {‖g‖p ≤M}, such as the indicators of half-lines (the
distribution function), Sobolev balls and bounded variation balls: in these cases, slightly
increasing the order of the kernel or the wavelet basis produces estimators of f that attain
the optimal rates both in Lp-norms and in these weaker norms. Finally, in the third section we
consider the additional topics of contaminated observations, concretely deconvolution, and
estimation of nonlinear functionals of a density such as

∫
f 2 and, more generally, integrals∫

φ( f (x),x) f (x)dx for smooth functions φ.
Linear estimators have been widely studied, maybe as some of the simplest examples of

nonparametric estimation, and there is a wealth of important results about them, impossible
to summarise in a book chapter. Far from being exhaustive, the choice of topics here is in
part dictated by the statistical developments in subsequent chapters.

5.1 Kernel and Projection-Type Estimators

Given i.i.d. random variables X,Xi, 1 ≤ i ≤ n, n ∈N, with law of density f on R, and given
a convolution kernel K that we take to be a bounded integrable function which integrates to
1 and a bandwidth or resolution parameter h = hn, the corresponding estimator of f is

fn(x)= Pn ∗Kh(x)= 1

n

n∑
i=1

Kh(x−Xi)= 1

nh

n∑
i=1

K

(
x−Xi

h

)
, (5.1)
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390 Linear Nonparametric Estimators

and clearly, E fn(x) = EKh(x − X) = ∫
Kh(x − y) f (y)dy = Kh ∗ f (x), which, under quite

general conditions (depending on properties of K and the smoothness of f ), approximates
f pointwise and in different Lp-norms as hn → 0 (see Section 4.1.2, the definition in (4.14)
and Proposition 4.1.1). We call these convolution kernel density estimators.

Another kind of estimator based on sampling from f is the projection-type estimators.
If K(x,y) is the kernel of an orthogonal projection onto a subspace V of L2(R) or, more
generally, L2(A), A ⊆ R, if f is a density on R (or on A), and if Xi are i.i.d. with law of
density f as earlier, the corresponding projection estimator is defined as

fn(x)=
∫

K(x,y)dPn(y)= 1

n

n∑
i=1

K(x,Xi).

Note that E fn(x) =
∫

K(x,y) f (y)dy = πV( f ). See (4.16) and (4.17). We are mostly
interested, for A = R, in the special case when V = Vj is one of the nested subspaces
in a multiresolution analysis of R (Definition 4.2.1) admitting an S-regular wavelet basis
{φk,ψ�k : k ∈ Z,� ≥ 0}, where φ is a scaling function and ψ the corresponding wavelet
function (Definition 4.2.14). We take the resolution j = jn → ∞, so Kjn( f )→ f (as in
Proposition 4.1.3). Then the kernel of the projection onto Vj is defined by any of the two
expressions in (4.29)

Kj(x,y)= 2jK(2jx,2jy), or Kj(x,y)=K(x,y)+
j−1∑
�=0

∑
k∈Z
ψ�k(x)ψ�k(y), j= 0,1, . . . , (5.2)

where

K(x,y)= K0(x,y)=
∑
k∈Z
φ(x− k)φ(y− k).

(We may equally take Kj(x,y) = KJ(x,y)+∑j−1
�=J

∑
k∈Zψ�k(x)ψ�k(y), for J < j.) The two

expressions of Kj in (5.2) are obviously a.s. equal, and they are pointwise equal, for instance,
if φ and ψ define the Haar basis (S= 1) or if φ and ψ are uniformly continuous. Under these
assumptions and with this notation, the wavelet density estimators fn of f are defined as

fn(x)=
∫

Kjn(x,y)dPn(y)= 1

n

n∑
i=1

Kjn(x,Xi). (5.3)

It is convenient to note that fn ∈ Vjn . This follows because (i) the partial sums of the series
defining Kj(x,x0) for every fixed x0 are in Vj and (ii) this series is Cauchy in L2 by part (b)
of Definition 4.2.14.

If f is defined on [0,1] or (0,1], then we may take instead of Kjn in (5.3) the projection
kernels corresponding to boundary-corrected Nth Daubechies wavelets in Section 4.3.5 or
to periodized wavelets (see (4.126)) with respective projection kernels

Kj,bc(x,y)=
2j−1∑
k=0

φbc
jk (x)φ

bc
jk (y), Kj,per(x,y)=

2j−1∑
k=0

φ
per
jk (x)φ

per
jk (y), (5.4)

and fn is then defined as in (5.3) but using these kernels instead.
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5.1 Kernel and Projection-Type Estimators 391

Given f ∈ L2([0,1]), suppose that f is observed under white noise; that is, we observe

dY f ≡ dY(n)f (t)= f (t)dt+ σ√
n

dW(t), t ∈ [0,1], (5.5)

totally or partially, as in (1.5) or equivalently (1.8). Then the estimator fn of f is defined as
the orthogonal projection of Y f onto Vjn for some resolution jn depending on n; that is,

fn(x)=
∫ 1

0
Kjn,bc(x,y)dY(n)f (y)=

∫ 1

0
Kjn,bc(x,y) f (y)dy+ σ√

n

∫ 1

0
Kjn,bc(x,y)dW(y). (5.6)

Writing gjk =
∫
φbc

jk (y)dW(y) but just gk if no confusion may arise, this estimator becomes

fn(x)= Kjn,bc( f )+ σ√
n

2jn−1∑
k=0

gkφ
bc
jnk(x), gk i.i.d. N(0,1), (5.7)

or, equivalently, writing g̃jk =
∫
ψbc

jk (y)dW(y), which are also i.i.d. N(0,1),

fn(x)= Kjn,bc( f )+ σ√
n

⎡⎣2J−1∑
k=0

gJkφ
bc
Jk (x)+

jn−1∑
l=J

2l−1∑
k=0

g̃lkψ
bc
lk (x)

⎤⎦ . (5.8)

If A = (0,1] or f (0)= f (1), Kjn,bc can be replaced by Kjn,per and φbc
jk , ψbc

jk by φper
jk , ψper

jk .
This section first develops moment bounds and exponential bounds (concentration and

deviation inequalities) for the deviations of these estimators from their means and from
the true f , measured in the Lp-norms, 1 ≤ p ≤ ∞, with application to the almost-sure
asymptotics of these deviations. We also present the asymptotic distribution of the uniform
deviations ‖ fn −E fn‖∞ (suitably centred and normalised).

5.1.1 Moment Bounds

The convolution and projection kernels to be used throughout this section will satisfy the
following conditions:

For conciseness, in what follows, under Condition 5.1.1(a), we take hn = 2−jn and write
Kj = Kjn for Khn .

Condition 5.1.1 Let A =R,A = [0,1] or A = (0,1]. The sequence of operators

Kj(x,y)= 2jK(2jx,2jy), x,y ∈ A, j ≥ 0,

is called an admissible approximating sequence if it satisfies one of the following
conditions:

(a) (Convolution kernel case, A = R): K(x,y) = K(x − y), where K ∈ L1(A) ∩ L∞(A)
integrates to 1 and is of bounded p-variation for some finite p ≥ 1 and right (or left)
continuous.

(b) (Multiresolution projection case, A =R):

K(x,y)=
∑
k∈Z
φ(x− k)φ(y− k),
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392 Linear Nonparametric Estimators

with Kj as earlier or Kj(x,y) = K(x,y)+∑j−1
�=0

∑
kψ�k(x)ψ�k(y), where φ,ψ ∈ L1(R)∩

L∞(R) define an S-regular wavelet basis, have bounded p variation for some p ≥ 1 and
are uniformly continuous, or define the Haar basis.

(c) (Multiresolution case, A = [0,1]): Kj,bc(x,y) is the projection kernel at resolution j of a
boundary corrected wavelet basis, defined in Chapter 4.

(d) (Multiresolution case, A = (0,1]): Kj,per(x,y) is the projection kernel at resolution j
of the periodisation of a scaling function satisfying condition (b); see (4.126) and
(4.127).

See Lemma 3.6.11 and the text immediately preceding it and Proposition 3.6.12 for
the definition and metric entropy properties of functions of bounded p-variation and
Proposition 4.3.21 and thereafter for their relationship to Besov spaces. It is also convenient
to recall two very useful properties of S-regular wavelet bases, namely, that both functions∑

k |φ(·− k)| and
∑

k |ψ(·− k)| are bounded and that there exists a nonnegative measurable
function � ∈ L1(R)∩ L∞(R) such that |K(x,y)| ≤ �(|x− y|), for all x,y ∈ R; that is, K is
dominated by a bounded and integrable convolution kernel �.

Some of the properties of the scaling function and the projection kernels from Condi-
tion 5.1.1(b) translate into similar properties under Conditions 5.1.1(c) and (d), and we will
point them out as needed. For instance, for periodised wavelets as in Conditions 5.1.1(d),
recall that φper

jm (x) = 2j/2
∑

k∈Zφ(2
jx − 2jk − m) (see just after (4.122)), and set Cjm(x) :=∑

k∈Z |φ(2jx− 2jk−m)|, m = 0, . . . ,2j − 1. Then, since
∥∥∑

k∈Z |φ(x− k)|∥∥∞ =: κ <∞ for
the scaling functions satisfying Condition 5.1.1(b), we have

2−j/2

∥∥∥∥∥∥
2j−1∑
m=0

|φper
jm (x)|

∥∥∥∥∥∥
∞

≤
∥∥∥∥ 2j−1∑

m=0

Cjm

∥∥∥∥
∞
= κ <∞, (5.9)

and for each m, with the changes of variables y = x− k, k ∈ Z, and then z = 2jy−m,∫ 1

0
Cjm(x)dx =

∫ 1

0

∑
k∈Z

|φ(2j(x− k)−m)|dx

=
∑
k∈Z

∫ k+1

k
|φ(2jy−m)|dy

=
∫
R

|φ(2jy−m)|dy = ‖φ‖12
−j. (5.10)

Under Condition 5.1.1(c), that is, for boundary-corrected wavelets based on the Nth
Daubechies scaling and wavelet functions, the level j multiresolution subspace Vj also has
dimension 2j, but it consists of three orthogonal components, the linear spans of the N
left-edge ortho-normal functions φbc

jk (x) = φleft
jk (x) = 2j/2φleft

k (2
jx), k = 0, . . . ,N− 1, and the

right-edge ortho-normal functions φbc
jk (x)= 2j/2φ

right
k (2jx), k = 2j −N, . . . ,2j − 1, where φleft

k

and φright
k are as smooth as φ, bounded and of bounded support, and the linear span of the

2j − 2N interior functions φbc
jk = φj,k(x)= 2j/2φ(2jx− k), k = N, . . . ,2j −N− 1 ((4.145)). To

keep a similar notation, set Djm(x)= 2−j/2φbc
jm(2

jx), m = 0, . . . ,2j − 1. Then, since N is fixed
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5.1 Kernel and Projection-Type Estimators 393

and these functions have compact support and are bounded, we have, just as earlier,∥∥∥∥ 2j−1∑
m=0

Djm

∥∥∥∥
∞
=: κ ′ <∞ and

∫ 1

0
Djm(x)dx = c2−j, (5.11)

where c and κ ′ are constants that depend only on φ.
We consider first-moment bounds for the estimator (5.6) of a function observed in the

presence of additive white noise: as usual, the Gaussian case provides a benchmark for the
types of results to be obtained in the sampling case and is easier to handle.

Proposition 5.1.2 Assume Condition 5.1.1(c) or (d) and that f ∈ L2([0,1]) (with f (0) =
f (1) under Condition 5.1.1(d)), and let Y f be as in (5.5). Let Kj denote either Kj,bc and

then 2j ≥ 2N or Kj,per. Let fn(x) =
∫ 1

0 Kj(x,y)dY f (y). Then there exists C(φ,p) <∞ such
that

E‖ fn −E fn‖p = E

∥∥∥∥ σ√n

∫
Kj(·, t)dW(t)

∥∥∥∥
p

≤ C(φ,p)σ
√

2j/n, (5.12)

for 1 ≤ p<∞, and
E‖ fn −E fn‖∞ ≤ C(φ,∞)σ√2j(j+ 1)/n, (5.13)

for all n and j (2j > 2N in the case of boundary-corrected wavelets).

Proof For concreteness we take the kernel based on periodised wavelets, but the proof
for boundary corrected Daubechies scaling functions is just the same. The case 1 ≤ p ≤ 2
reduces to p = 2 for which we have, using (5.7), (5.9) and (5.10),

(n/σ 2)E‖ fn −E fn‖2
2 =

∫ 1

0
E

⎛⎝2j−1∑
m=0

gmφ
per
jm (t)

⎞⎠2

dt

≤ 2j

∫ 1

0

2j−1∑
m=0

C2
jm(t)dt

≤ 2jκ

2j−1∑
m=0

∫ 1

0
Cjm(t)dt ≤ 2jκ‖φ‖1.

For 2 < p <∞ we also use Hoffmann-Jørgensen’s inequality (Theorem 3.1.22 with T a
singleton set and q = 2) to obtain

(
√

n/σ)E‖ fn −E fn‖p ≤
⎛⎝∫ 1

0
E

∣∣∣∣ 2j−1∑
m=0

gmφ
per
jm (t)

∣∣∣∣pdt

⎞⎠1/p

�

⎛⎝∫ 1

0

( 2j−1∑
m=0

2jC2
jm(t)

)p/2

dt

⎞⎠1/p

+
(∫ 1

0
Emax

m
(|gm|2j/2Cjm(t))

pdt

)1/p

� 2j/2

∫ 1

0

2j−1∑
m=0

Cjm(t)dt+ 2j/2

⎛⎝2j−1∑
m=0

∫ 1

0
E|gm|pCp

jm(t)dt

⎞⎠1/p

� 2j/2,
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394 Linear Nonparametric Estimators

where the implicit multiplicative constants depend only on p and on φ through κ and ‖φ‖1.
For (5.13), just note that, by (2.35),

E

∥∥∥∥ 2j−1∑
m=0

gmφ
per
jm

∥∥∥∥
∞
≤ 2j/2

∥∥∥∥ 2j−1∑
m=0

Cjm

∥∥∥∥
∞

E

(
max

0≤m≤2j−1
|gm|

)
≤ κ2j/2

√
2log2j+1.

This proof gives in fact a bound for the pth moment of ‖ fn−E fn‖p. We may ask whether
these bounds are best possible up to constants (see Exercises 5.1.5 and 5.1.6).

With some more work, we will now obtain the same estimates, up to constants, for density
estimators based on sampling. The following lemma will help for 1≤ p< 2 as a replacement
to Young’s inequalities. Given a measure ν on R, we use the notations L1(ν)= L1(R,B,ν)
and ‖ f ‖L1(ν) =

∫
R
| f |dν.

Lemma 5.1.3 Let 0< r< 1, t ≥ 0. If f and k are two nonnegative functions on R such that
f ,k ∈ L1(μs+t/r) for some s > (1− r)/r, where dμs+t/r(x) = (1+ |x|)s+t/rdx, then, for any
0< b<∞,

sup
h∈(0,b]

∫
(kh ∗ f )r(y)(1+|y|)tdy ≤ C

(‖ f ‖L1(μs+t/r)
‖k‖L1(μs+t/r)

)r
,

where C = (2(1− r)/(sr− (1− r)))1−r(1∨ b)sr+t.

Proof Let u = sr/(1− r), and note that v(y) := (1+|y|)−u is integrable. Then, by Jensen’s
inequality with respect to the probability measure v(y)dy/‖v‖1, we have∫

(kh ∗ f )r(y)(1+|y|)tdy =
∫

v(y)−1(kh ∗ f )r(y)(1+|y|)tv(y)dy

≤ ‖v‖1−r
1

(∫
(1+|y|)s+t/r(kh ∗ f )(y)dy

)r

.

Since (1+ |u+ v|) ≤ (1+ |u|)(1+ |v|) and 1+ |hu| ≤ (1∨ h)(1+ |u|), for h > 0, we also
have∫

(1+|y|)s+t/r(kh ∗ f )(y)dy ≤
∫ ∫

(1+|y− x|)s+t/r(1+|x|)s+t/rkh(y− x) f (x)dxdy

= ‖ f ‖L1(μs+t/r)

∫
(1+|v|)s+t/rh−1k(v/h)dv

≤ (1∨ hs+t/r)‖ f ‖L1(μs+t/r)‖k‖L1(μs+t/r).

The Lemma follows from these inequalities.

The case p = ∞ also may benefit from a few remarks before the proof of the main
theorem.

Remark 5.1.4 For p = ∞, the variable of interest is ‖(Pn − P)(Kj(x, ·))‖∞. Under
Condition 5.1.1(a), this variable takes the form

h‖(Pn −P)(Kh(x, ·))‖∞ = sup
x∈R

∣∣∣∣(Pn −P)

(
K

(
x−·

h

))∣∣∣∣ .
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5.1 Kernel and Projection-Type Estimators 395

If K is a bounded function of bounded p-variation for some p ≥ 1, then, by Proposi-
tion 3.6.12, the collection of functions K = {K((x−·)/h) : x ∈R,h> 0} is of VC type; in
fact, for all 0 < ε ≤ v1/p

p (K) and w > 6 (w > 3 if K is right or left continuous), there exists
Aw,p <∞ such that

N(K,L2(Q),εv1/p(K))≤ (Aw,p/ε)
(p∨2)w,

for all Borel probability measures Q on R. Then we can apply the moment bounds,
for example, from Corollary 3.5.8. Now let us consider the same variables under
Condition 5.1.1(b). Since for S-regular wavelets κ := ∥∥∑

k |φ(x− k)|∥∥∞ <∞, we have

‖2−j(Pn −P)(Kj(x, ·))‖∞ =
∥∥∥∥∥∑

k

φ(2jx− k)(Pn −P)(φ(2j ·−k))

∥∥∥∥∥
∞

≤ κ sup
k
|(Pn −P)(φ(2j ·−k))|, (5.14)

and the same comment as for convolution kernels applies if the scaling function φ is of finite
p-variation, p ≥ 1; see Proposition 3.6.12. This holds as well under Condition 5.1.1(c),
although, strictly speaking, under Conditions 5.1.1(c) and (d), the variables ‖2−j(Pn −
P)(Kj(x, ·))‖∞ can be estimated without resorting to empirical process theory, just by means
of Bernstein’s inequality.

Theorem 5.1.5 Let f be a density in Lp(A), assume any of Conditions 5.1.1(a), (b), (c) or
(d) for K and let fn(x) =

∫
Kj(x,y)dPn(y), as defined in (5.3). For 1 ≤ p < 2 in the cases

Conditions 5.1.1(a) and (b), assume further that f , K2 and �2 integrate 1+ |t|s for some
s> (2− p)/p. Then, for 1 ≤ p<∞, there exist constants Lp, depending on p, K or � and
f , such that, for all j ≥ 0 if p ≤ 2 and for all j such that 2j < n if p> 2,

E‖ fn −E fn‖p ≤ Lp

√
2j/n. (5.15)

If p =∞ and f is bounded, there exists a constant L∞ depending on K and f in the case of
Condition 5.1.1(a) and on φ,� and f in the other cases such that for all j satisfying 2jj< n,
we have

E‖ fn −E fn‖∞ ≤ L∞
√

2j(j+ 1)/n. (5.16)

Remark 5.1.6 The proof of Theorem 5.1.5 will produce the following upper bounds for
the constants Lp in (5.15) and (5.16): under Conditions 5.1.1(a) and (b), setting � = K in
case (a),

Lp ≤
(

2(2− p)

sp− (2− p)

)1/p−1/2

‖�2‖1/2
L1(μs)

‖ f ‖1/2
L1(μs)

for 1 ≤ p< 2,

Lp ≤ (p− 1)1+1/p24+3/p‖�‖2‖ f ‖1/2
p/2 + (p− 1)1+1/p21−2/p‖�‖p for 2< p<∞,

Lp ≤ ‖�‖2 for p = 2 and L∞ ≤ C(1∨‖ f ‖∞)1/2 if p =∞, where C is a numerical constant
depending only on K in case (a) and on φ and � in case (b). Under Conditions 5.1.1(c) and
(d), these bounds are C(φ)(1∨‖ f ‖p/2)

1/2 for p<∞ and C(1∨‖ f ‖∞)1/2 for p =∞, where
the constants C(φ) depend only on φ.

Proof Let � = K in the convolution case and � equal to the majorising kernel for the
wavelet projection kernel K in the multiresolution case.
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Case 1: 1 ≤ p < 2 under Conditions 5.1.1(a) and (b). Cauchy-Schwarz’s inequality gives,
for j ≥ 0,

E

∥∥∥∥∥
n∑

i=1

(
Kj(·,Xi)−EKj(·,X)

)∥∥∥∥∥
p

≤
(∫

E

∣∣∣∣∣
n∑

i=1

(
Kj(t,Xi)−EKj(t,X)

)∣∣∣∣∣
p

dt

)1/p

≤
(∫ (

E

(
n∑

i=1

(
Kj(t,Xi)−EKj(t,X)

))2)p/2

dt

)1/p

≤ ∥∥n1/2(EK2
j (·,X))1/2

∥∥
p

≤ ∥∥n1/2(E�2
j (·−X))1/2

∥∥
p

= (n2j)1/2
(∫

((�2)j ∗ f )p/2(t)dt

)1/p

.

Since p/2 ≤ 1, we cannot use Young’s inequality, but since both f and �2 belong to L1(μs)

for some s> (2− p)/p, it follows from Lemma 5.1.3 that the (1/p)th power of this integral
is dominated by C1/p(‖ f ‖L1(μs)‖�2‖L1(μs))

1/2, where C is as in the lemma. This proves the
proposition for p< 2 under Conditions 5.1.1(a) and (b).

Case 2: p > 2 under Conditions 5.1.1(a) and (b). Hoffmann-Jørgensen’s inequality
(Theorem 3.1.22) allows us to write

E

∥∥∥∥∥
n∑

i=1

(
Kj(·,Xi)−EKj(·,X)

)∥∥∥∥∥
p

≤
(∫

E

∣∣∣∣∣
n∑

i=1

(
Kj(t,Xi)−EKj(t,X)

)∣∣∣∣∣
p

dt

)1/p

≤ (p− 1)1+1/p21+2/p

(∫ (
23+1/p

(
nEK2

j (t,X)
)1/2

+
(

Emax
i≤n

|Kj(t,Xi)|p
)1/p

)p

dt

)1/p

≤ (p− 1)1+1/p21+2/p

(
23+1/p

(∫ (
nEK2

j (t,X)
)p/2

dt

)1/p

+
(∫

Emax
i≤n

|Kj(t,Xi)|pdt

)1/p
)

≤ (p− 1)1+1/p24+3/p

(∫
(n2j)p/2((�2)j ∗ f )p/2(t)dt

)1/p

+ (p− 1)1+1/p21+2/p

(∫
n2j(p−1)((�p)j ∗ f )(t)

)
dt.

We have, by Young’s inequality, that[∫
((�2)j ∗ f )p/2(t)dt

]2/p

≤ ‖ f ‖p/2‖(�2)j‖1 = ‖ f ‖p/2‖�‖2
2 <∞,
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since f ∈ Lp and � ∈ L2. Thus, the first summand in the preceding integral is of the right
order. Since

∫
((�p)j ∗ f )(t)dt= ∫

�p(u)du, the second term in the preceding integral raised
to the power 1/p is of the order n1/p2j(p−1)/p, which, for 2j < n, is dominated by (n2j)1/2,
again the right bound. Case 2 under Conditions 5.1.1(a) and (b) is thus proved.

Case 3: p = 2, Conditions 5.1.1(a) and (b). Same as case 2, with simplifications because
Hoffmann-Jørgensen’s inequality is not needed.

Case 4: p =∞, Conditions 5.1.1(a) and (b). By Remark 5.1.4 under Condition 5.1.1(a), the
class of functions {2−jKj(x, ·) : j ∈ N, x ∈ A} is of VC type; that is, its L2-covering numbers
satisfy the uniform in Q bounds in that remark, and we can apply Corollary 3.5.8 since, by
continuity, ‖ fn − E fn‖∞ is in fact a countable supremum in all cases (Exercise 5.1.3); we
take F = u = v1/p

p (K)∨‖K‖∞ and EK2((x−X)/h)= h
∫

K2(−z) f (x+ hz)dz ≤ ‖ f ‖∞‖K‖2
2h,

and the bound given by this corollary is

E‖ fn −E fn‖∞ ≤ C(
√

2j(j+ 1)/n+ 2j(j+ 1)/n)≤ C
√

2j(j+ 1)/n,

since n > 2jj, where C = C(K)‖ f ∨ 1‖1/2
∞ . Under Condition 5.1.1(b), if φ is of bounded

p-variation, we use (5.14) and Corollary 3.5.8 on the class of translations and dilations of φ
with F = u = v1/p

p (φ)∨φ∞ and Eφ2(2jX− k)≤ 2−j‖ f ‖∞ to obtain a similar bound.

Case 5: 1 ≤ p<∞, Conditions 5.1.1(c) and (d). By the computations in cases 1 and 2, we
only need to show that ‖n1/2(EK2

j,per(·,X))1/2‖p is of the order of (n2j)1/2 and that, moreover,
for p> 2, the quantity (∫ 1

0
E max

1≤i≤n
|Kj,per(t,Xi)|pd(t)

)1/p

is of the same order and the same for Kj,bc. Using (5.9) and (5.10) and the ortho-normality
of the functions φper

jm , m = 0 . . . ,2j−1, w.r.t. Lebesgue measure on [0,1], and letting q be the
conjugate of p, we have, for 1 ≤ p ≤ 2,

‖n1/2(EK2
j,per(·,X))1/2‖p

p ≤ np/2

⎛⎝∫ 1

0
E

⎛⎝2j−1∑
m=0

φ
per
jm (X)φ

per
j,m (x)

⎞⎠2

dx

⎞⎠p/2

= np/2

⎛⎝∫ 1

0

2j−1∑
m=0

E(φper
jm (X))

2dx

⎞⎠p/2

≤ np/22jp/2

⎛⎝∫ 1

0

2j−1∑
m=0

C2
jm(x) f (x)dx

⎞⎠p/2

≤ np/22jp/2κp,

which is what we wanted for this quantity for 1 < p ≤ 2. For p > 2, recall that,
as a typical application of the Fubini-Tonelli theorem and Hölder’s inequality, if
T f (x) = ∫ 1

0 Q(x,y) f (y)dy and f ∈ Lp/2([0,1]), then ‖T f ‖p/2 ≤ C‖ f ‖p/2, where C =∥∥∥∫ 1
0 |Q(x,y)|dy

∥∥∥
∞
∨
∥∥∥∫ 1

0 |Q(x,y)|dx
∥∥∥
∞

. Applying this observation with Q = K2
j,per, we have,
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by ortho-normality in L2([0,1]) of the functions φper
jm ,

∥∥n1/2(EK2
j,per(·,X))1/2

∥∥2

p
= n

[∫ 1

0

(∫ 1

0
K2

j,per(x,y) f (y)dy

)p/2

dx

]2/p

≤ n‖ f ‖p/2 sup
x∈(0,1]

2j−1∑
m=0

(φ
per
jm (x))

2

≤ κ2‖ f ‖p/2n2j

as desired. Still, for p> 2, respectively, by hypothesis and a simple computation, we have

n ≤ np/22j(1−p/2) and
∫ 1

0
EK2

j,per(y,X)dy =
∫ 1

0

2j−1∑
m=0

(φ
per
jm (y))

2 f (y)dy ≤ 2jκ2

and, by (5.9),

‖Kj,per‖∞ ≤ 2j

∥∥∥∥∥∥
2j−1∑
m=0

Cjm

∥∥∥∥∥∥
∞

max
m

‖Cjm‖∞ ≤ κ22j.

Hence, we have ∫ 1

0
E max

1≤i≤n
|Kj,per(t,Xi)|pdt ≤ n‖Kj,per‖p−2

∞

∫ 1

0
EK2

j,per(t,X)dt

≤ np/22j(1−p/2)(κ22j)p−22jκ2

= κ2(p−1)np/22jp/2,

which is also of the desired order.
The proof for boundary-corrected wavelets is not different, just using (5.11) instead of

(5.9) and (5.10).

Case 6: p = ∞, Conditions 5.1.1(c) and (d). As in the preceding case, it suffices to
consider the theorem for periodised wavelets. By (5.9),

E‖ fn −E fn‖∞ = E

∥∥∥∥∥∥
2j−1∑
m=0

φ
per
jm (·)(Pn −P)(φper

jm )

∥∥∥∥∥∥
∞

≤
∥∥∥∥∥∥

2j−1∑
m=0

φ
per
jm

∥∥∥∥∥∥
∞

E max
0≤m<2j

|(Pn −P)(φper
jm )|

≤ κ2jE max
0≤m<2j

|(Pn −P)(Cjm)|.

We apply Bernstein’s inequality in expectation form, (3.202) in Lemma 3.5.12, which, since
by (5.9) and (5.10)

‖Cjm‖∞ ≤ κ and EC2
jm(X)≤ κECjm(X)≤ κ‖ f ‖∞‖φ‖12

−j,
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gives

nE max
0≤m<2j

|(Pn −P)(Cjm)| ≤
√

2nκ‖ f ‖∞‖φ‖12−j log(2j+1)+ κ
3

log(2j+1).

Collecting terms and using that 2jj< n, we thus obtain

E‖ fn −E fn‖∞ ≤
[
2κ3/2‖φ‖1/2

1 ‖ f ‖1/2
∞ + κ

2

4

]√
2jj

n
.

Note that the proof of this theorem provides concrete reasonable expressions for the
numerical factors C depending on K, φ or � in the definition of Lp in Remark 5.1.6. This
result can be combined with approximation bounds for Kj( f )− f . If we use, for instance,
an S-regular wavelet basis (as in Definition 4.2.14, or in (4.124) or (4.145)) with S> s, then,
for f ∈ Bs

p∞(A), we have the bound (cf. Proposition 4.3.8)

‖Kj( f )− f ‖p ≤ c‖ f ‖Bs
p∞(A)2

−js, 1 ≤ p ≤∞.

For fn(j,x) = Pn(Kj(x, ·)) with Kj as in Condition 5.1.1, and under the conditions of
Theorem 5.1.5, this leads to the bound

E‖ fn − f ‖p ≤ Lp

√
2j

n
+ c‖ f ‖Bs

p∞(A)2
−js, 1 ≤ p<∞. (5.17)

This holds as well for fn − f in the Gaussian noise model case with the numerical constants
from Proposition 5.1.2. If B is a bound for ‖ f ‖Bs

p∞(A), we can balance the antagonistic terms
in (5.17) by choosing

2jn = (cB/Lp)
2/(2s+1)n1/(2s+1), (5.18)

giving a rate of convergence for fn to f in Lp-risk. For p = ∞, similar remarks apply,
replacing n by n/ logn in the definition of 2jn . Moreover, this remark applies as well to
convolution kernel estimators, with the order of the kernel playing the role of the regularity
of the basis. We say that a convolution kernel K is of order S if it satisfies Condition 4.1.4;
that is, if ∫

R

|K(u)||u|Sdu<∞ and
∫
R

K(u)ukdu = δ0k, k = 0, . . . ,S− 1.

Proposition 4.3.8 clearly applies to these kernels, and the bound (5.17) follows as well for
convolution kernel estimators based on these kernels, with A = R. Thus, for both the white
noise and the sampling case, we obtain the following rates:

Proposition 5.1.7 Let fn be a wavelet projection estimator based on an S-regular wavelet
basis, S> s, or a convolution kernel density estimator based on a kernel of order S, and let
jn be such that 2jn � (cB/Lp)

2/(2s+1)n1/(2s+1). Then, for 1 ≤ p<∞, if f ∈ Bs
p∞(A),

sup
f :‖ f ‖Bs

p∞(A)≤B
E‖ fn(jn)− f ‖p ≤ 2L2s/(2s+1)

p (cB)1/(2s+1)n−s/(2s+1), 1 ≤ p<∞, (5.19)

and if the convolution kernel in one case or the scaling function in the other is, of bounded
r-variation for some r ≥ 1, if f ∈ Bs

∞∞(A) and if 2jn � (cB/Lp)
2/(2s+1)(n/ logn)1/(2s+1), then

sup
f :‖ f ‖Bs∞∞(A)≤B

E‖ fn(jn)− f ‖∞ ≤ 2L2s/(2s+1)
∞ (cB)1/(2s+1)(n/ logn)−s/(2s+1), (5.20)
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where Lp is as in Theorem 5.1.5. Bounds of the same order hold as well for function
estimation under additive white noise, when the periodised or boundary-corrected wavelets
are S-regular (and, for p =∞, of bounded r-variation).

The constants Lp,c are often known or can be estimated (cf. Remark 5.1.6). The constants
s,B are usually unknown and cannot be estimated, leading to an adaptation problem that will
be the subject of Chapter 8. For the moment, we note that one can simply replace B by a fixed
constant, say, 1, in the definition of 2jn , producing the same rate of convergence n−s/(2s+1)

for the estimators if s is known. We shall show in Chapter 6 that this rate is minimax optimal
for any given s.

Empirical Wavelet Coefficients

Theorem 5.1.5 also applies to moment bounds for the deviation from their expectations of
the empirical wavelet coefficients, that is, the wavelet coefficients of the wavelet projection
estimator fn of a density f . We will illustrate this under the assumption that the scaling
function φ and wavelet function ψ satisfy Condition 5.1.1(b). Recall that the projection
Kj( f ) has two expressions (see (4.29)):

Kj( f )(x)=
∑
k∈Z

〈φjk, f 〉φjk(x)=
∑
k∈Z

〈φk, f 〉φk(x)+
j−1∑
�=0

∑
k∈Z

〈ψ�k, f 〉ψ�k(x),

where φk = φ0k, and that, by (5.3), if j = jn, then

fn(x)= Pn(Kj(x, ·)=
∑
k∈Z

Pn(φjk)φjk(x)=
∑
k∈Z

Pn(φk)φk(x)+
j−1∑
�=0

∑
k∈Z

Pn(ψ�k)ψ�k(x).

To ease notation, define

αjk( f )= 〈φjk, f 〉 = Eφjk(X), βjk( f )= 〈ψjk, f 〉 = Eψjk(X), j ≥ 0, k ∈ Z, (5.21)

where the distribution of X has density f , and for the same values of k and j,

α̂jk = Pn(φjk), β̂jk = Pn(ψjk). (5.22)

If no confusion may arise, we write αjk, βjk for αjk( f ) and βjk( f ). Also, we write αk and α̂k

for α0k and α̂0k.
Since by the comments following (5.2), Kj+1(x,y)−Kj(x,y)=∑

r∈Zψjr(x)ψjr(y), for all
x and y, if we set h(x) :=∑

r(β̂jr −βjr)ψjr(x), we have, on the one hand,

h(x)= (Pn −P)(Kj+1(x, ·)−Kj(x, ·))
and, on the other, by ortho-normality of the ψjk functions

β̂jk −βjk =
∫ ∑

r

(β̂jr −βjr)ψjr(x)ψjk(x)dx =
∫

h(x)ψjk(x)dx.

To justify these identities, note that {βjr : r ∈ Z} ⊂ �1(Z) and {ψjr(y) : r ∈ Z} ⊂ �1(Z), for all
y, since

∑
r |ψ(x− r)| ∈ L1(R)∩L∞(R). Therefore,

sup
k
|β̂jk −βjk| ≤ ‖h‖∞ sup

k
‖ψjk‖1 ≤ 2−j/2‖ψ‖1

∥∥(Pn −P)(Kj+1 −Kj)
∥∥
∞ . (5.23)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.006
http:/www.cambridge.org/core
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Likewise,

sup
k
|α̂jk −αjk| ≤ 2−j/2‖φ‖1

∥∥(Pn −P)(Kj)
∥∥
∞ . (5.24)

These observations apply as well to the empirical wavelet coefficients under Condi-
tions 5.1.1(c) and (d). Then a direct application of Theorem 5.1.5 gives the following:

Proposition 5.1.8 With the notation and assumptions of Theorem 5.1.5, assuming further
that ‖ f ‖∞ <∞ and 2jj < n, the empirical wavelet coefficients α̂jk, β̂jk defined by (5.22),
under Conditions 5.1.1(b), (c) or (d), satisfy

Esup
k
|α̂jk −αjk| ≤ ‖φ‖1L∞

√
j/n, Esup

k
|β̂jk −βjk| ≤ 2‖φ‖1L∞

√
j/n. (5.25)

Derivatives of Densities

We briefly consider here linear estimators of the derivatives of a density, which are
interesting because they appear as part of different statistics such as, for example, the Fisher
information of a location parameter. The methods to obtain inequalities for their estimators
do not differ from the ones just developed for density estimators; hence, to avoid repetition,
we will only indicate how to obtain analogues of Theorem 5.1.5 and Proposition 5.1.7,
leaving to the reader the development of exponential and higher-moment inequalities.

Let K and f be, respectively, a convolution kernel and a density on R, both in Cm(R).
Then, by integration by parts, we have

Kh ∗ f (m)(x)= 1

hm+1

∫
R

K(m)
(

x− y

h

)
f (y)dy = 1

hm
(K(m))h ∗ f (x). (5.26)

Thus, since Kh ∗ f (m) is a good approximation of f (m), it makes sense to estimate f (m) by
the plug-in estimator of the expression on the right-hand side of this identity, namely,

f (m)n (x)= 1

hm+1

n∑
i=1

K(m)
(

x−Xi

h

)
, (5.27)

where Xi are i.i.d. samples from f , and h= hn → 0 as n→∞. The notation f (m)n is adequate
because clearly the mth derivative of the kernel density estimator fn = Pn ∗ Kh coincides
with the statistic defined by (5.27). Then the proofs of cases 1, 2 and 4 in Theorem 5.1.5
give the following:

Proposition 5.1.9 Let K and f be, respectively, a convolution kernel and a density on R,
both in Cm(R), and assume that K(m) and f integrate (1+ |t|)s for some s > (2− p)/p for
1 ≤ p< 2, that K(m) is of finite r-variation for some r ≥ 1 for p =∞, that h> 1/n if p> 2
and that h/ logh−1 > 1/n for p =∞. Then

E‖ f (m)n −E f (m)n ‖p ≤ Lp/
√

nh2m+1, for 1 ≤ p<∞,

and

E‖ f (m)n −E f (m)n ‖∞ ≤ L∞
√

log(h−1)/(nh2m+1), for p =∞,

where Lp is as in Theorem 5.1.5 with � replaced by |K(m)|.
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Now, by (5.26), E f (m)n = Kh ∗ f (m), and by Proposition 4.3.19, ‖ f (m)‖Bs
pq ≤ ‖ f ‖Bs+m

pq
, so,

by Proposition 4.3.8,

‖E f (m)n − f (m)‖p ≤ c‖ f (m)‖Bs
pqh

s ≤ c‖ f ‖Bs+m
pq

hs.

Hence, we obtain the following analogue of Proposition 5.1.7:

Proposition 5.1.10 Under the same hypotheses as in Corollary 5.1.9, if K is a kernel of
order S, s+m< S and h−1 � (cB/Lp)

2/(2(s+m)+1)n1/(2(s+m)+1), then for 1 ≤ p<∞,

sup
f :‖ f ‖

Bs+m
p∞ (R)

≤B
E‖ f (m)n − f (m)‖p ≤ 2L2s/(2(s+m)+1)

p (cB)(2m+1)/(2(s+m)+1)n−s/(2(s+m)+1),

and if h−1 � (cB/Lp)
2/(2(s+m)+1)(n/(logn)1/(2(s+m)+1) and K has bounded r-variation for some

r ≥ 1, then

sup
f :‖ f ‖

Bs+m∞∞(R)≤B
E‖ f (m)n − f (m)‖p ≤ 2L2s/(2(s+m)+1)

∞ (cB)(2m+1)/(2(s+m)+1)(n/ logn)−s/(2(s+m)+1).

Likewise, one can obtain exponential bounds and higher-moment bounds for ‖ f (m)n −
E f (m)n ‖p in complete analogy with the results given in Theorems 5.1.13 and 5.1.15 for fn.
This is left to the reader.

Next, we consider wavelet projection estimation of derivatives of densities. Let K(x,y)=∑
kφ(x− k)φ(y− k) be the orthogonal projection onto V0 associated to a scaling function

φ ∈ Cm(R) such that φ and its first m derivatives φ(r), r ≤ m, are rapidly decaying at
±∞ (meaning that |x|k|φ(r)(x)| → 0 as |x| → ∞ for 0 ≤ r ≤ m and all k ∈ N). Then not
only the series

∑
kφ(x− k)φ(y− k) converges uniformly in x and y, but this series can be

differentiated term by term m times with respect to x (or y), again by uniform convergence.
Let f ∈ Cm(R) be a probability density, and observe that, by integration by parts,

Kj( f (m))=
∑

k

〈φjk, f (m)〉φjk = (−1)m
∑

k

〈φ(m)jk , f 〉φjk.

Then, as in the convolution case, it makes sense to estimate f (m) by the plug-in estimator

fn,m(y)= (−1)m
∑

k

(Pn(φ
(m)
jk ))φjk(y), y ∈R, (5.28)

where Pn is as usual the empirical measure based on n i.i.d. samples Xi from f , and where
j = jn →∞. Note that, by the preceding observation,

E fn,m = Kj( f (m))

(since
∑

k |φ(m)jk (x)| is integrable and f is bounded, so we can integrate term by term in
(5.28)). Consider the asymmetric kernel

K̄(x,y)= (−1)m
∑

k

φ(m)(x− k)φ(x− k).

For every R > 0 there exists C̃R <∞ such that |φ(k)(x)| ≤ C̃R/(1 + |x|R), k = 0,1, . . . ,m.
Then we may proceed as in the proof of Lemma 4.2.5 and Exercise 4.2.1 to conclude that
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for each R> 0 there is CR > 0 such that K̄(x,y)≤ CR/(1+|x− y|R), x,y ∈R. Thus, we have
that

K̄(x,y)≤�(x− y)

for a convolution kernel� which is even, nonincreasing on [0,∞), bounded, integrable and
such that

∫
�(x)(1 + |x|t)dx <∞, for all t ≤ R − 2, where R > 2 can be chosen at will.

Finally, note that

n∑
i=1

|K̄j(Xi,y)| = 2j(m+1)
n∑

i=1

|K(2jXi,2
jy)| ≤ 2j(m+1)

n∑
i=1

�(2j(Xi − y)).

At this point it is clear that we can proceed as in the proof of Theorem 5.1.5 if we choose R
large enough in the definition of � so that the integrals in the proofs of cases 1, 2 and 4 for
this � are finite and conclude the following:

Proposition 5.1.11 Let φ ∈ Cm(R) be an MRA scaling function such that φ and its first
m derivatives φ(r), r ≤ m, are rapidly decaying at ±∞. Let f ∈ C(m)(R) be a probability
density, and let fn,m be the estimator of f (m) defined by (5.28) and based on φ. Then,
assuming 2j < n if p> 2, we have

E‖ fn,m −E fn,m‖p ≤ Lp

√
2(2m+1)j/n, 1 ≤ p<∞,

and if, moreover, 2jj< n and φ(m) is of finite p-variation for some p ≥ 1, then also

E‖ fn,m −E fn,m‖∞ ≤ L∞
√

2(2m+1)jj/n,

where the constants Lp are as in Theorem 5.1.5, cases 1, 2 and 4 (with a different majorising
convolution kernel �).

Now assume in addition that φ determines an S-regular wavelet basis, that f ∈ Bs+m
p∞ (R)

and that s + m < S. Then, since f (m) ∈ Bs
p∞(R) by Proposition 4.3.19, Proposition 4.3.8

gives

‖E fn,m − f (m)‖p = ‖Kj( f (m))− f (m)‖p ≤ C‖ f (m)‖Bs
p∞2−js ≤ C̄‖ f ‖Bs+m

p∞ 2−js.

Combined with the preceding proposition, this bound yields a result for E‖ fn,m − f (m)‖p

completely analogous to the one in Proposition 5.1.10 for kernel estimators, in fact, the very
same bounds.

Several Dimensions

Density estimation in several dimensions under smoothness restrictions that are homoge-
neous across different coordinates is only formally different from dimension 1. Basically,
all the preceding results on the Lp-norms of fn − E fn and fn − f work with a slight
change: 2j changes to 2dj in the bounds for E‖ fn −E fn‖p because Kj(x,y)= 2djK(x/d,y/d),
x,y ∈ Rd, both in the convolution case K(x,y) = K(x − y) and in the wavelet projection
case K(x,y) =∑

k∈Zd�(x− k)�(y− k), �(x1, . . . ,xd) = φ(x1) · · ·φ(xd) (see Section 4.3.6).
The proofs for p = ∞ require metric entropy computations, but these are also analogous
to the case d = 1, particularly if we also take, in the convolution case, K(x) = �(|x|), �
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a real function of bounded p-variation, or K(x) = K(x1) · · ·K(xd), K : R �→ R of bounded
p-variation. For instance, in the product case, for example, for d = 2, the inequality∥∥φ(λ1 ·−k1)φ(λ2 ·−k2)−φ(λ′1 ·−k′1)φ(λ

′
2 ·−k′2)

∥∥
L2(Q)

≤ ‖φ‖∞
2∑

i=1

∥∥φ(λi ·−ki)−φ(λ′i ·−k′i)
∥∥

L2(Q)

allows estimation of the L2(Q) covering numbers for the collection of translations and
dilations of�(x1,x2) in terms of the known covering numbers of translations and dilations of
functions of bounded p-variation in dimension 1, and the same is true for any finite dmension
d. In the case K(x)=�(|x|), we see that the subgraphs of the functions x �→�(|x− y|/h),
y ∈ Rd and h> 0, for � strictly increasing, are the positivity sets of the finite-dimensional
space of functions of x and t generated by x2

i , xi, 1 and (�−1(t))2, hence with good uniform
entropy bounds (see Propositions 3.6.12 and 3.6.6).

However, in several dimensions we still have ‖Kj( f ) − f ‖p ≤ c‖ f ‖Bs
p∞(Rd)2

−js if K
is of order S or if φ is S-regular for S > s by the analogue in several dimensions
of Proposition 4.3.8. Hence, the analogues in several dimensions of the bounds in
Proposition 5.1.7 are, for 2jn � (cB/Lp)

2/(2s+d)n1/(2s+d),

sup
f :‖ f ‖

Bs
p∞(Rd)

≤B
E‖ fn(jn)− f ‖p ≤ 2L2s/(2s+d)

p (cB)d/(2s+d)n−s/(2s+d), 1 ≤ p<∞,

and, for jn such that 2jn = (cB/Lp)
2/(2s+1)(n/ logn)1/(2s+1),

sup
f :‖ f ‖

Bs∞∞(Rd)
≤B

E‖ fn(jn)− f ‖∞ ≤ 2L2s/(2s+d)
∞ (cB)d/(2s+1)(n/ logn)−s/(2s+d).

The same comment applies to multivariate function estimation under Gaussian noise. In
this case, the process W is the iso-normal Gaussian process on L2((0,1]d), defined as in
(4.186) with [0,1] and Lebesgue measure replaced by (0,1]d (or [0,1]d) and multivariate
Lebesgue measure, so, in particular,

∫
(0,1]d g(y)dW(y) := W(g) is N(0,‖g‖2

2), and the
statistical model is

dY f ≡ dY(n)f (y)= f (y)dy+σdW(y)/
√

n, y ∈ [0,1]d,
(see (1.10)). With the notation k = (k1, . . . ,kd) ∈ Zd, x = (x1, . . . ,xd) ∈ (0,1]d, we take
�j,k(x) = ∏d

i=1φjki(xi) for φjki = φper
jki

or φjki = φbc
jki

, as in Section 4.3.6, and j = jn → ∞
and define

Kj(x,y)=
∑

k∈Zd:0≤ki≤2j−1

�j,k(x)�j,k(y).

Then f is estimated by

fn(x)=
∫
(0,1]d

Kj(x,y)dY(n)f (y)= Kj( f )+ σ√
n

W(Kj(x, ·)).

With these definitions, the comments in the preceding two paragraphs for multidimensional
density estimators apply verbatim to this estimator of f .
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5.1.2 Exponential Inequalities, Higher Moments and Almost-Sure Limit Theorems

The results in the preceding subsection are useful, in particular, to help obtain exponential
inequalities for ‖ fn − E fn‖p, 1 ≤ p ≤ ∞. These, in turn, produce bounds for higher
moments. In the white noise case, with, for example, boundary-corrected wavelets, the
centred estimator of f ,

fn −E fn = 1√
n

∫ 1

0
Kj(·, t)σdW(t)= σ√

n

⎡⎣2J−1∑
k=0

gJkφ
bc
Jk +

j−1∑
l=J

2l−1∑
k=0

g̃lkψ
bc
lk

⎤⎦ ,

is an Lp-valued centred Gaussian random variable, 1 ≤ p ≤∞, where j = jn depends on n.
We first consider 1 ≤ p ≤ 2, and in this case we apply Gaussian concentration for Lipschitz
functions. To this end, observe that if h1, . . . ,hm are ortho-normal functions in L2([0,1],λ),
λ being Lebesgue measure, then the function F(x1, . . . ,xm)=

∥∥∑m
i=1 xihi

∥∥
p

is Lipschitz with
constant 1, that is,

|F(x)−F(y)| ≤
∥∥∥∥∥

m∑
i=1

(xi − yi)hi

∥∥∥∥∥
p

≤
∥∥∥∥∥

m∑
i=1

(xi − yi)hi

∥∥∥∥∥
2

≤ |x− y|,

where | · | denotes Euclidean norm. This applies to m = 2 · 2J + 2J+1 + 2J+2 + ·· · + 2j−1 =
2j and to the ortho-normal system {φbc

Jk , . . . ,ψbc
j−1k} in the expression for fn − E fn. Then

the concentration inequality for the standard Gaussian variable and Lipschitz functions in
Euclidean space, (2.69) in Theorem 2.5.7, shows that, for 1 ≤ p ≤ 2,

Pr
{‖ fn −E fn‖p ≥ E‖ fn −E fn‖p +σ t/

√
n
}≤ e−t2/2. (5.29)

Case 2 < p ≤ ∞ is less direct. For p <∞, if Bq
0 is a countable subset of the unit ball of

Lq([0,1]), q conjugate of p, such that ‖u‖p = supv∈B
q
0

∫ 1
0 u(x)v(x)dx, then

‖ fn −E fn‖p = σ√
n

sup
v∈B

q
0

⎡⎣2J−1∑
k=0

gJk

∫ 1

0
φbc

Jk (x)v(x)dx+
j−1∑
l=J

2l−1∑
k=0

g̃lk

∫ 1

0
ψbc

lk (x)v(x)dx

⎤⎦ .

(Recall that such a set Bq
0 exists by separability of Lp and the Hahn-Banach theorem.) Hence,

in the language of processes, we may consider fn −E fn as the Gaussian process indexed by
Bq

0, h �→ 〈 fn −E fn,h〉 for p<∞. For p =∞, we think of fn −E fn as the Gaussian process
indexed by [0,1], t �→ fn(t)−E fn(t), which is separable by continuity of the functions φjk,
ψlk. In either case, we apply the Borell-Sudakov-Tsirelson inequality (2.70). To this end,
we need to estimate the parameter σ in that inequality, which here we denote as τ to avoid
confusion. For p<∞, we have

τ 2 := σ
2

n
sup
v∈B

q
0

⎡⎣2J−1∑
k=0

〈φbc
Jk ,v〉2 +

j−1∑
l=J

2l−1∑
k=0

〈ψbc
lk ,v〉2

⎤⎦ .

Since Lq embeds continuously into the Besov space B0
q∞ by the analogue for [0,1] of

Proposition 4.3.11, it follows from the boundary-corrected characterisation of Besov spaces

on [0,1] (Section 4.3.5) that
∑2J−1

k=0 |〈φbc
Jk ,v〉|q ≤ Dq

p and
∑2l−1

k=0 |〈ψbc
lk ,v〉|q ≤ Dq

p2
−lq(1/2−1/q),
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where Dp denotes the norm of the embedding of Lq into B0
q∞. Then, using that

(∑ |ai|2
)1/2 ≤(∑ |ai|q

)1/q
for 1 ≤ q ≤ 2, we obtain

τ 2 ≤ C2
pσ

22
j
(
1− 2

p

)
n

, 2< p<∞,

where C2
p is easy to compute and contains as factors Dq

p and the quantity 22/q−1/(21−q/2 −
1)2/q (which tends to infinity as q → 2). For p =∞, using the expression (5.8) for fn, the
bound (5.11) gives

τ 2 := σ
2

n

∥∥∥∥∥∥
2j−1∑
k=0

(φbc
jk )

2

∥∥∥∥∥∥
∞

= κ ′2 σ
22j

n
.

Similar estimates hold for function estimators based on periodised wavelets (see (5.10) and
note that Besov spaces on [0,1] admit characterisations in terms of both boundary-corrected
and periodised wavelets). Then the abovementioned Borell-Sudakov-Tsirelson inequality
(2.70) yields the exponential inequality for ‖ fn−E fn‖p, p> 2, in the following proposition,
whereas inequality (5.29) yields the part of the inequality corresponding to 1 ≤ p ≤ 2.

In this proposition, we let Cp denote the quantity just described for p> 2, but Cp = 1 for
1 ≤ p ≤ 2 and C∞ = κ ′ in the boundary-corrected case and similarly in the periodic case.

Proposition 5.1.12 Assume Condition 5.1.1(c) or (d) and that f ∈ Lp([0,1]), 1 ≤ p ≤ ∞
(with f (0)= f (1) under Condition 5.1.1(d)). Let Kj denote either Kj,bc and then 2j ≥ 2N or
Kj,per as in Proposition 5.1.2. Let fn =

∫
Kj(·, t)dY(n)f (t). Then, for all x> 0 and 1 ≤ p ≤∞,

Pr
{
‖ fn −E fn‖p ≥ E‖ fn −E fn‖p +

√
2C2

pσ
22j(1−2/(p∨2))x/n

}
≤ e−x. (5.30)

In particular, by Proposition 5.1.2,

Pr
{
‖ fn −E fn‖p ≥ C(φ,p)σ

√
2j/n+

√
2c2

pσ
22j(1−2/(p∨2))x/n

}
≤ e−x, (5.31)

for p<∞ and with E‖ fn −E fn‖∞ replaced by C(φ,∞)σ√2j(j+ 1)/n for p =∞.

In general, we will only be interested in the upper tail of the concentration of ‖ fn − f ‖p

about its expectation: for the lower-tail estimate to be practical, we would need lower bounds
for E‖ fn − f ‖p, which we are not considering.

As in the preceding subsection, the Gaussian noise case provides a model for the
sampling case, which is again more complicated. In this case, we apply Talagrand’s
inequality, Bousquet version, Theorem 3.3.9, instead of the Borel-Sudakov-Tsirelson
Gaussian concentration inequality. For p = ∞, we will apply this theorem to the class of
functions K=Kj = {Kj(x, ·)−Kj( f )(x) : x ∈ A}, whereas for 1 ≤ p<∞, the relevant class
of functions is, with Bq

0 as earlier

K=Kj =
{

x �→
∫

A
g(t)Kj(t,x)dt−

∫
A

g(t)Kj( f )(t)dt : g ∈ Bq
0

}
.

Then n‖ fn − E fn‖p = supH∈K
∣∣∑n

i=1 H(Xi)
∣∣ =: Sn. Besides ESn, which is upper bounded

in Theorem 5.1.5, the parameters to be estimated (bounded from above) for Talagrand’s
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inequality are σ 2 = supH∈K Eh2(X) and U = supH∈K ‖H‖∞. Let us consider first density
estimation under Conditions 5.1.1(a) and (b), and as earlier, let us set � = K under Con-
dition 5.1.1(a), and let � be the dominating convolution kernel under Condition 5.1.1(b).
Then, for 1 ≤ p<∞, given g ∈ Bq

0,

‖Kj(g)‖∞ ≤ ‖�j ∗ |g|‖∞ ≤ ‖�j‖p‖g‖q = ‖�‖p2
j(1−1/p),

whereas for p =∞, 2j�(2j(x− y))≤ ‖�‖∞2j, so we can take

U = 2‖�‖p2
j(1−1/p) (5.32)

in Theorem 3.3.9. Regarding σ 2, we have, for 1 ≤ p<∞,

E(�j ∗ g)2(X)≤ ‖ f ‖p‖�j ∗ g‖2
2q ≤ ‖ f ‖p‖g‖2

q‖�j‖2
2p/(1+p) ≤ ‖ f ‖p‖�‖2

2p/(1+p)2
j(1−1/p),

where we use first Hölder’s and then Young’s inequalities (Young’s inequality: ‖u ∗ v‖t ≤
‖u‖p‖v‖q, for 1 + 1/t = 1/p + 1/q, 0 ≤ t,p,q ≤ ∞). And for p = ∞, E�j(x,X)2 ≤
‖ f ‖∞‖�‖2

22
j. Thus, we may take, for 1 ≤ p ≤∞,

σ 2 = ‖ f ‖p‖�‖2
2p/(1+p)2

j(1−1/p). (5.33)

This estimate can be refined if f is bounded: for 1≤ p< 2, since f ∈ L∞∩L1 ⊂ Lq/(q−2) for
q conjugate of p, by Hölder’s inequality,

E(�j ∗ g)2(X)≤ ‖�j ∗ g‖2
q‖ f ‖q/(q−2) ≤ ‖�‖2

1‖ f ‖q/(q−2),

whereas for 2 ≤ p<∞, again by Hölder’s and Young’s inequalities,

E(�j ∗ g)2(X)≤ ‖ f ‖∞‖�j ∗ g‖2
2 ≤ ‖ f ‖∞‖�‖2

2p/(2+p)‖g‖q2
j(1−2/p).

Thus, if ‖ f ‖∞ <∞, we can take

σ 2 = ‖ f ‖∞‖�‖2
2p/(2+p)2

j(1−2/(p∨2)). (5.34)

See Exercises 5.1.1 and 5.1.2 for similar estimates of U and σ 2 in the cases of periodic
and boundary-corrected wavelets on the unit interval.

Inequality (3.101) in Theorem 3.3.9, with v= nσ 2+2UnE‖ fn−E fn‖p, 1≤ p≤∞, states
that

Pr
{
n‖ fn −E fn‖p ≥ nE‖ fn −E fn‖p +

√
2vx+Ux/3

}
≤ e−x, (5.35)

and we can simplify it somewhat using the standard inequalities
√

a+ b≤√
a+√

b,
√

ab≤
(a+ b)/2, a,b ≥ 0. Thus,

Pr

{
n‖ fn −E fn‖p ≥ 3

2
nE‖ fn −E fn‖p +

√
2nσ 2x+ 7Ux/3

}
≤ e−x. (5.36)

Plugging the estimates (5.32), (5.33) and (5.34) for U and σ into this inequality, we obtain
the following result:

Theorem 5.1.13 Under the hypotheses of Theorem 5.1.5, we have that, for all t > 0 and
1 ≤ p ≤∞,

Pr

{
n‖ fn −E fn‖p ≥ 3

2
nE‖ fn −E fn‖p +

√
C1n‖ f ‖p2j(1−1/p)x+C22

j(1−1/p)x

}
≤ e−x. (5.37)
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and if, moreover, the density f is uniformly bounded,

Pr

{
n‖ fn −E fn‖p ≥ 3

2
nE‖ fn −E fn‖p +

√
C1n‖ f ‖∞2j(1−2/(p∨2))x+C22

j(1−1/p)x

}
≤ e−x,

(5.38)

where, by Theorem 5.1.5, nE‖ fn − E f ‖p ≤ Lp

√
n2j if 1 ≤ p <∞ and nE‖ fn − E f ‖∞ ≤

L∞
√

n2jj, and where the constants C1 and C2 depend only on K (Condition 5.1.1(a)) or �
(Condition 5.1.1(b)) or κ ′ (Condition 5.1.1(c)) or κ (Condition 5.1.1(d)).

The constants Lp are precisely those in Theorem 5.1.5 (Remark 5.1.6). The constants C1

and C2 are, respectively, C1 = 2‖�‖2
2p/(1+p) and C2 = 14‖�‖p/3 under Condition 5.1.1(a) or

Condition 5.1.1(b), and similar expressions can be obtained under Conditions 5.1.1(c) and
(d) (see Exercises 5.1.1 and 5.1.2).

Remark 5.1.14 Besides Talagrand’s inequality, the concentration inequality for bounded
differences, Theorem 3.3.14, also applies to density estimators (as indicated in an example
in Section 3.3.4; see (3.121)), and it actually obtains results that are somewhat better than
those in Theorem 5.1.13 for p = 1. Moreover, the bounded differences theorem allows us to
effortlessly consider not only ‖ fn −E fn‖p but also ‖ fn − f ‖p. Let

g(x1, . . . ,xn)=
∥∥∥∥∥1

n

n∑
i=1

Kj(·,xi)− f (·)
∥∥∥∥∥

p

.

Then

|g(x1, . . . ,xn)− g(x1, . . . ,xi−1,x
′
i,xi+1, . . . ,xn)| ≤ 1

n
‖Kj(·,xi)−Kj(·,x′i)‖p

≤ 2

n
‖�j‖p = 2 · 2j(1−1/p)‖�‖p

n
,

for all xi,x′j, 1 ≤ i, j ≤ n, for 1 ≤ p ≤ ∞. Hence, g has bounded differences with ci = 2 ·
2j(1−1/p)‖�‖p/n, and Theorem 3.3.14 gives, after a change of variables,

Pr
{∣∣‖ fn − f ‖p −E‖ fn − f ‖p

∣∣≥√
2 · 22j(1−1/p)‖�‖2

px/n
}
≤ 2e−x, (5.39)

for all p∈ [1,∞], as well as the same bound with f replaced by E fn. This bound outperforms
the bounds (5.37) and (5.38) for p = 1, but its dependence on jn is worse for other values
of p.

Now we apply the preceding exponential inequalities to obtain bounds for moments
higher than 1 of ‖ fn − E fn‖p (and hence also of ‖ fn − f ‖p). The result is stated only
for density estimators, and it is left as an exercise for function estimation under additive
Gaussian noise – recall from, for example, Exercise 2.1.2 that all the Lp-norms of suprema
of Gaussian processes are equivalent. Combining Exercise 3.3.4 with the bounds (5.32) for
U and (5.33) for σ ((5.34), if ‖ f ‖∞ <∞), we obtain the following result:
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Theorem 5.1.15 Under the hypotheses of Theorem 5.1.5, we have that for all 1 ≤ p ≤∞
and all 1< r<∞, assuming Condition 5.1.1(a) or Condition 5.1.1(b),(

E‖ fn −E fn‖r
p

)1/r ≤ 2E‖ fn −E fn‖p + 1.24 · 31/rr1/2‖ f ‖1/2
p ‖�‖2p/(1+p)

√
2j(1−1/p)/n

+ 4.26 · 91/rr‖�‖p2
j(1−1/p)/n, (5.40)

where we may replace ‖ f ‖1/2
p ‖�‖2p/(1+p)

√
2j(1−1/p)/n by ‖ f ‖1/2

∞ ‖�‖2p/(2+p)

√
2j(1−2/(p∨2))/n

in the second summand if ‖ f ‖∞<∞. Bounds of the same order but different constants hold
under Conditions 5.1.1(c) and (d).

We could have used Hoffmann-Jørgensen’s inequality (Theorem 3.1.22) directly on
Theorem 5.1.5, but Exercise 3.3.4 produces better constants. Note that as a consequence
of this theorem, assuming 2j < n if p> 2 (2jj< n for p =∞), the bound for E‖ fn −E fn‖p

prescribed by Theorem 5.1.5 does hold as well for the rth moments perhaps with different
numerical factors: the last two terms on the right-hand side of inequality (5.40) are of smaller
order than

√
2j/n under this assumption.

Remark 5.1.16 We should also point out that the results in this subsection apply to produce
higher-moment bounds and exponential inequalities for empirical wavelet coefficients just
by combining Theorems 5.1.13 and 5.1.15 with inequalities (5.24) and (5.23) in complete
analogy with Proposition 5.1.8.

A second, very important application of the moment and exponential bounds in this
section obtains upper bounds on the asymptotic order of ‖ fn − E fn‖p, 1 ≤ p ≤ ∞, both
a.s. and in probability. Consider sample-based density estimation under the hypotheses of
Theorem 5.1.13. Regarding the L1-norm, here is what Remark 5.1.14 (inequality (5.39))
gives for ‖ fn − f ‖1 (as well as for ‖ fn −E fn‖1, which we omit in this proposition):

Proposition 5.1.17 For any density f ,

(a) ‖ fn − f ‖1 − E‖ fn − f ‖1 = Opr(1/
√

n); in particular, if
√

nE‖ fn − f ‖1 → ∞, then
‖ fn − f ‖1/E‖ fn − f ‖1 → 1 in probability, and

(b) limsupn

√
n/logn|‖ fn− f ‖1−E‖ fn− f ‖1|≤

√
2‖�‖1; in particular, limn→∞ |‖ fn − f ‖1

/E‖ fn − f ‖1 − 1| = 0 a.s. if
√

n/ lognE‖ fn − f ‖1 →∞.

Here is another simple consequence of Theorem 5.1.13, in fact, of inequality (5.35) and
Theorem 5.1.5, for the a.s. rate of convergence of ‖ fn −E fn‖p, 1 ≤ p<∞, whose proof is
also immediate:

Proposition 5.1.18 If under the hypotheses of Theorem 5.1.5, with f not necessarily
bounded, we have n2−jn →∞ and jn/ log logn →∞, then there exists Cp ≤ Lp such that

limsup
n→∞

√
n

2jn
‖ fn −E fn‖p = Cp a.s., 1 ≤ p<∞.

Regarding the proof of this proposition (that of the preceding proposition is similar but
easier), note that the best upper bounds we can come up with for the orders of the three
summands on the right-hand side of the probability expression in inequality (5.37) are,
respectively, after dividing by n and disregarding constants, as follows: (2jn/n)1/2 for the
first, [(1+√

2jn/n)2jn(1−1/p)x/n]1/2 for the second and 2jn(1−1/p)x/n for the third. Thus, if we
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take xn = 2jn/(2p), we have both the first term dominating and the series
∑

e−xn converging.
This allows application of the Borel-Cantelli lemma and the 0-1 law to reach the conclusion.
Also, note that automatically the rate obtained in this proposition is as good as the bound for
the expected value of ‖ fn −E fn‖p and hence not improvable in general.

The case p = ∞ is slightly more complicated: inequality (5.37) offers too narrow a
choice for x if we still want the last two summands on the right-hand side of the probability
expression in this inequality of smaller order than the first summand. The problem is solved
by ‘blocking’ as in the typical proofs of the law of the iterated logarithm.

Let jn ↗∞ be a sequence of nonnegative integers satisfying the following conditions:

n

jn2jn
→∞,

jn
log logn

→∞, sup
n≥n0

(j2n − jn)≤ τ , (5.41)

for some τ ≥ 1 and some n0 <∞.

Proposition 5.1.19 Assume that either of Conditions 5.1.1(a), (b), (c) or (d) holds, let {jn}
be a sequence of integers satisfying (5.41), let f be a bounded density on R and let fn be
the corresponding density estimator (defined by (5.1) or (5.3) with projection kernels as in
(5.2) or (5.4)). Then we have

limsup
n→∞

√
n

jn2jn
‖ fn −E fn‖∞ = C a.s., (5.42)

where C2 ≤ M22τ‖ f ‖∞ for a constant M that depends only on K or �.

Proof Assume Condition 5.1.1(a) or Condition 5.1.1(b). Let nk = 2k, and to unify notation,
denote K(x,y)= K(x− y) under Condition 5.1.1(a). We have, for any s> 0,

Pr

{
max

nk−1<n≤nk
sup
y∈R

√
1

n2−jn jn

∣∣∣∣∣
n∑

i=1

(
K(2jny,2jnXi)−EK(2jny,2jnX)

)∣∣∣∣∣> s

}

≤ Pr

⎧⎪⎨⎪⎩ max
nk−1<n≤nk

sup
y∈R

jnk−1<j≤jnk

∣∣∣∣∣
n∑

i=1

(
K(2jy,2jXi)−EK(2jy,2jX)

)∣∣∣∣∣> s

√
nk−1jnk

2jnk

⎫⎪⎬⎪⎭ , (5.43)

where j ∈ N. To estimate this probability, we apply Talagrand’s inequality (3.101) for
maxima of suprema of partial sums to the classes of functions

Fk = {K(2jy,2j(·))−P(K(2jy,2j(·))) : y ∈R, jnk−1 < j ≤ jnk},
which, by (5.32) and (5.33), have constant envelope and weak variance, respectively,
bounded by U = 2‖�‖∞ and σ 2 = ‖ f ‖∞‖�‖2

22
−j and satisfy

E sup
y∈R

jnk−1<j≤jnk

∣∣∣∣∣
nk∑

i=1

(
K(2jy,2jXi)−EK(2jy,2jX)

)∣∣∣∣∣≤ L(�)‖ f ‖1/2
∞
√

nk2
−jnk−1 jnk−1
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for nk large enough by Remark 5.1.4 and Corollary 3.5.8 as in Theorem 5.1.5. Hence,
Talagrand’s inequality, simplified as in (5.36), gives

Pr

{
max

nk−1<n≤nk
sup
y∈R

jnk−1<j≤jnk

∣∣∣∣∣
n∑

i=1

(
K(2jy,2jXi)−EK(2jy,2jX)

)∣∣∣∣∣
×> 3

2
L(φ)‖ f ‖∞

√
nk2

−jnk−1 jnk−1 +
√

2nk‖�‖2
22

−jnk−1 xk + 14‖�‖∞2−jnk−1 xk/3

}
≤ e−xk .

Setting xk = jnk−1 , which satisfies
∑

e−xk <∞, and comparing with (5.43), we see that for
s = M2τ/2‖ f ‖1/2

∞ for some M depending only on �, the Borel-Cantelli lemma gives

Pr

{
max

nk−1<n≤nk
sup
y∈R

√
1

n2−jn jn

∣∣∣∣∣
n∑

i=1

(
K(2jny,2jnXi)−EK(2jny,2jnX)

)∣∣∣∣∣> s i.o.

}
= 0.

Then the 0-1 law gives the proposition under Conditions 5.1.1(a) and (b). The proof under
Conditions 5.1.1(c) and (d) is similar and is omitted.

Propositions 5.1.18 and 5.1.19 also hold in dimension d, with the only difference that the
factor 2jn in the norming is replaced by 2jnd. These propositions also admit analogues for the
estimators (5.7) of functions under additive white noise (see Exercise 5.1.7).

Proposition 5.1.19 can be made much more precise, both in one and in several
dimensions, at the price of considerable work. See the notes and complements at the end
of this chapter.

Combining inequality (5.37) with the lower tail in Talagrand’s inequality, Theo-
rem 3.3.10, we also may obtain an upper bound on the rate of a.s. and in probability
convergence to zero of ‖ fn −E fn‖p −E‖ fn −E fn‖p (see Exercise 5.1.9).

5.1.3 A Distributional Limit Theorem for Uniform Deviations*

Uniform deviations of fn from f are easy to visualize and lead to ‘confidence bands’ for
a density f , as in Proposition 6.4.3. In this respect, the result in this section, showing
that the limiting distribution of ‖ fn − f ‖∞ suitably centred and normalised is the double
exponential extreme-value distribution, is theoretically quite interesting (however, its
usefulness in practise is hampered by slow speed of convergence). The proof requires use
of the famous Komlós-Major-Tusnadý (KMT) approximation of the empirical process by
Brownian bridges, a subject that is not developed in this book, as well as limit theorems for
the distributions of maxima of stationary and not necessarily stationary Gaussian processes
(see Section 2.7). Here is the statement of the KMT theorem.

Theorem 5.1.20 (Komlós-Major-Tusnadý approximation theorem) There exists a
probability space with a sequence {ξi} of i.i.d. uniform on [0,1] random variables and a
sequence of Brownian motions Wn defined on it such that setting

αn(t)= 1√
n

n∑
i=1

(δξi[0, t]− t)
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and W◦
n(t)= Wn(t)− tWn(1), then

Pr

{
‖αn −W◦

n‖[0,1] >
x+C logn√

n

}
≤ e−θx, 0 ≤ x<∞, n ∈N, (5.44)

for some universal finite, positive constants C,  , θ .

This theorem, combined with the limit theorems for suprema of Gaussian processes
in Section 2.7, produces distributional limit theorems for ‖ fn − E fn‖∞ in some cases.
A large part of this section consists of showing how to use Theorem 5.1.20 to reduce
weak convergence of the laws of ‖ fn − E fn‖∞ (properly centred and normalised) to weak
convergence of certain Gaussian processes. First, we state some conditions.

Our densities will belong to the class of functions

D =D(α,D,δ,A,L)

=
{

f : R→R,
∫
R

f = 1, f ≥ 0 on R, f ≥ δ on A,‖ f ‖∞ ≤ L,‖ f ‖Cα(A) ≤ D

}
, (5.45)

where A = [F1,F2], F1 < 0< 1< F2 and α, δ are nonnegative. We assume without loss of
generality that [−δ,1+ δ] ⊆ A by decreasing δ if necessary. Recall the definition of Cα(A)
from Section 4.3.3. To avoid triviality, we shall only consider combinations of α,D,δ,A,L
such that D is nonempty.

We let K :R2 �→R be a measurable function satisfying the following properties, of which
the first three have appeared earlier in the text and whose verification will be discussed in
some concrete examples later.

(K1) K is symmetric in its arguments and bounded, and for all s ∈ R, K(s, t) is right or
left continuous in t for every s ∈R,
(K2) supt ‖K(t, ·)‖v := ‖K‖V <∞, where ‖ · ‖v denotes the total variation norm on R,
K(t,−∞)= 0 for all t,
(K3) There is a bounded, nonincreasing, exponentially decaying function � : R+ ∪
{0} �→R+ ∪ {0} such that

|K(x,y)| ≤�(|x− y|),
(K4) For all λ ≥ 1, the covering numbers N(λ[F1,F2],d,ε) of the intervals [λF1,λF2]
for the pseudo-distance d(s, t)= (∫

R
(K(t,u)−K(s,u))2du

)1/2
admit the bounds

N(λ[F1,F2],d,ε)≤ A′λv2

εv1
,

for some A′,vi <∞ independent of ε,λ, and these bounds are valid for all positive ε
not exceeding the d diameter of [λF1,λF2], and
(K5) There exist Ā, v̄ finite such that if K= {

K(2jt,2j(·)) : t ∈R, j ∈N∪{0}}, and if Q
is the set of Borel probability measures on R, then

sup
Q∈Q

N(K,L2(Q),ε)≤
(

Ā

ε

)v̄

, (5.46)

for 0< ε ≤ ‖K‖∞.
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Let I = [0,1] (we could as well consider [a,b], with −∞< a< b<∞, with only formal
changes). Given a real sequence jn →∞, define on I the Gaussian processes

Yn(t)= 2jn/2

∫
R

K(2jn t,2jn s)dW(s)=
∫
R

K(2jn t,u)dW(u), (5.47)

where dW is a standard white noise. It will often be convenient to rewrite Yn(t) as Yn(t) =
Y(2jn t), where

Y(t)=
∫ ∞

−∞
K(t,s)dW(s). (5.48)

Note also that condition (K4) ensures that the processes Yn are sample continuous: for u,v∈ I,

d2
n(u,v) := E(Yn(u)−Yn(v))

2 =
∫
R

(K(2jnu,s)−K(2jnv,s))2ds ≤ d2(2jnu,2jnv), (5.49)

so N(I,dn,ε) ≤ N(2jn I,d,ε), and it follows from condition (K4) that the square root of the
metric entropy of I with respect to the distance dn is integrable at zero; hence the claim is an
immediate consequence of Dudley’s theorem, Theorem 2.3.7. In particular, if we still denote
a sample continuous version of Yn by Yn, the norms ‖Yn‖I = supt∈I |Yn(t)| are proper random
variables.

Now let
Fn =∪ f ∈DF f

n , F f
n = {K(2jn t,2jn ·)/√ f (t) : t ∈ I}. (5.50)

Given f ∈D, let Xi be i.i.d. with law dP f (t) := f (t)dt, and let, as usual,

ν f
n = 1√

n

n∑
i=1

(δXi −P f )

be the empirical process based on the sequence Xi. Note that by the properties of K and f ,
the supremum in ‖ν f

n ‖F f
n

is countable and hence measurable.
Our first goal is to prove the following proposition, which reduces our problem on

empirical processes to a problem about Gaussian processes. For the remainder of this
section, Pr f will denote the product probability PN

f , but the symbol Pr will denote
the probability measure determining the laws of all relevant other random variables
(such as Yn and random variables constructed in the Gaussian coupling in the proof of
Proposition 5.1.21).

Proposition 5.1.21 Let I = [0,1], let K be a function satisfying conditions (K1)–(K5) and
let jn →∞ as n →∞. Let {An} and {Bn} be numerical sequences such that An →∞ and

An = o

( √
n

2jn/2 logn
∧ 2jn/2 ∧ 2αjn

√
jn

)
, (5.51)

for some 0 < α < 1. Assume that there exists a random variable Z with continuous
distribution such that

lim
n→∞Pr{An(‖Yn‖I −Bn)≤ x} = Pr{Z ≤ x}, x ∈R, (5.52)

where the processes Yn are defined by (5.47). Let D(α,D,δ,A,L) be as in (5.45) for the given
α, A = [F1,F2] ⊃ I, and δ, D and L, such that D is not empty. Define, for each f ∈D, F f

n
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as in (5.50), and further let ν f
n , n ∈N, be the empirical processes based on the variables Xi.

Then, for all x ∈R,

lim
n→∞ sup

f ∈D

∣∣∣Pr f

{
An(2

jn/2‖ν f
n ‖F f

n
−Bn)≤ x

}
−Pr{Z ≤ x}

∣∣∣= 0. (5.53)

Proof Step 1: Define new random variables X̃i = F−1
f (ξi), where F−1

f is the left continuous
generalised inverse of the distribution function F f of f , right continuous at zero. For every
f ∈D, the variables X̃i are i.i.d. with law P f , and we denote by ν̃ f

n the associated empirical
process. By (K2) and f ≥ δ on I, the functions in Fn have total variation norm not exceeding
‖K‖V/

√
δ, and since F−1

f is monotone, it follows that the same bound on the total variation
norm (for functions on [0,1]) holds for all the functions in the classes

F̃ f

n = {h ◦F−1
f : h ∈F f

n }, f ∈D, n ∈N.

Moreover, if g is nonincreasing on [0,1] with g(0)= 1 and g(1)= 0, then g is the pointwise
nondecreasing limit – and, by dominated convergence, also the limit in L2([0,1]) – of convex
combinations of indicators I[0,t], 0 ≤ t ≤ 1. Thus, by (K2), both αn and Wn extend from sets

I[0,t] to functions in F̃ f

n by linearity and continuity (see Theorem 3.7.28), and so does W◦
n.

We conclude that, for all f ∈D,

‖αn −W◦
n‖F̃ f

n
≤ ‖K‖Vδ

−1/2‖αn −W◦
n‖[0,1],

and, writing G◦
n, f (g) = W◦

n(g ◦ F−1
f ) for g ∈ F f

n , that E(G◦
n, f (g)G

◦
n, f (ḡ)) = P f (gḡ) −

(P f g)(P f ḡ); that is, G◦
n, f is a (sample continuous) version of the P f -Brownian bridge. Since,

furthermore,

αn(g ◦F−1
f )= ν̃ f

n (g)

by construction, (5.44) gives

sup
f ∈D

Pr

{
‖ν̃ f

n −G◦
n, f ‖F f

n
>

‖K‖Vδ
−1/2(x+C logn)√

n

}
= sup

f ∈D
Pr

{
‖αn −W◦

n‖F̃ f
n
>

‖K‖Vδ
−1/2(x+C logn)√

n

}
≤ Pr

{
‖αn −W◦

n‖[0,1] >
x+C logn√

n

}
≤ e−θx,

for all x≥ 0 and n∈N. Taking x= (C′ −C) logn for some C′ >C in this inequality, we have

sup
f ∈D

Pr

{
An2

jn/2‖ν̃ f
n −G◦

n, f ‖F f
n
>

‖K‖Vδ
−1/2C′An logn√

n2−jn

}
≤  

n(C′−C)θ
. (5.54)

In particular, if

An = o

( √
n

2jn/2 logn

)
, (5.55)

then (5.54) implies that there exists a sequence ε′′n → 0 such that

lim
n

sup
f ∈D

Pr
{
An2

jn/2‖ν̃ f
n −G◦

n, f ‖F f
n
≥ ε′′n

}
= 0. (5.56)
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Consider next the processes Gn, f (g) = Wn(g ◦F−1
f ), g ∈ F f

n , which are sample continuous
versions of the P f -Brownian motion WP f because

E(Wn(g ◦F−1
f )Wn(ḡ ◦F−1

f ))=
∫ 1

0
g ◦F−1

f (x)ḡ ◦F−1
f (x)dx =

∫
R

g(y)ḡ(y) f (y)dy.

Since W◦
n(g ◦F−1)= Wn(g ◦F−1)−

(∫ 1
0 g ◦F−1(t)dt

)
Wn(1) and since, by (K3),

sup
g∈F f

n

∣∣∣∣∫ 1

0
g ◦F−1(t)dt

∣∣∣∣= sup
g∈F f

n

|P f g| ≤ δ−1/2‖�‖12
−jn , (5.57)

it follows that if
An = o(2jn/2), (5.58)

then we can replace G◦
n by Gn in (5.56); that is, there exists ε′n → 0 such that

lim
n

sup
f ∈D

Pr
{
An2

jn/2‖ν̃ f
n −Gn, f ‖F f

n
≥ ε′n

}
= 0. (5.59)

(Note that by Theorem 3.7.28, for all n and f , the process WP f (g), g ∈ F f
n , is sample

continuous (hence sample bounded).)

Step 2: To compare Gn, f on F f
n with Yn, we must couple in the right way sample continuous

versions of both processes. Since the functions in F f
n are parametrised by t∈ I, we will write

(in slight abuse of notation) Gn, f (t), t ∈ I, for Gn(gt), gt(·)=K(2jn t,2jn ·)/√ f (t) ∈F f
n . First,

we observe that the process

W
(
K(2jn t,2jn ·)√ f (·)/ f (t)

)
, t ∈ I,

where W is Brownian motion acting on functions as described in step 1, is a version of Gn, f

(both processes have the same covariance). Next, we observe that for λ Lebesgue measure,
the isonormal process of L2(R,λ), g �→ ∫

R
g dW = W(g), restricted to the set Gn defined by

Gn =
{
2jn/2K(2jn t,2jn ·),K(2jn t,2jn ·)√ f (·)/ f (t) : t ∈ I

}
,

admits a version with bounded uniformly continuous sample paths (for the L2(R,λ)
distance): this follows from the entropy bounds (K4) and (K5) and the metric entropy
theorem for Gaussian processes, Theorem 2.3.7. We call G̃n, f (t) and Ỹn(t) the restrictions
of this process to the sets {K(2jn t,2jn ·)√ f (·)/ f (t) : t ∈ I} and {2jn/2K(2jn t,2jn ·) : t ∈ I},
respectively. They are versions of Gn, f and Yn, respectively, and, as we see next, we can
control the supremum norm of their difference. Set

Zn, f (t)= 2jn/2G̃n(t)− Ỹn(t)= 2jn/2

∫
R

K(2jn t,2jn s)

(√
f (s)

f (t)
− 1

)
dW(s), t ∈ I.

We have, for u,v ∈ I,

dZn, f (u,v) := (
E(Zn, f (u)−Zn, f (v))

2
)1/2

≤ δ−1/2‖K(2jnu, ·))−K(2jnv, ·))‖L2(P f )+ dn(u,v),
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where dn(u,v)= d(2jnu,2jnv) (cf. (5.49)), and using (K4) and (K5), the covering numbers of
I for this distance are bounded by

N(I,dZn, f ,ε)≤ N(K,L2(P f ),δ
1/2ε/2)N(2jn I,d,ε/2)≤ B2v3jn/εv4 , (5.60)

for every (small) ε > 0 and constants B, v3,v4 independent of n and f . Since if f ∈D then
‖ f ‖∞ ≤ L and its α-Hölder constant on [−δ,1+ δ] is at most D, we have, for t ∈ I,(√

f (t− 2−jnu)−√
f (t)

)2 ≤ LI(|u|> δ2jn)+ 4−1δ−1D22−2αjnu2αI(|u| ≤ δ2jn),

and we obtain, for all t ∈ I,

E(Zn, f (t))
2 = 2jn

∫
R

K2(2jn t,2jn s)

(√
f (s)

f (t)
− 1

)2

ds

≤ 2jnδ−1

∫
R

K2(2jn t,2jn s)
(√

f (s)−√
f (t)

)2
ds

≤ δ−1

∫
R

�2(u)
(√

f (t− 2−jnu)−√
f (t)

)2
du

≤ δ−1L‖�‖1�(δ2
jn)+ 4−1δ−2D22−2αjn

∫
R

�2(u)u2αdu ≤ D2
12

−2αjn , (5.61)

where D1 is a constant that does not depend on n or f . That is, the diameter of I for the
L2-distance induced by the process Zn, f is at most 2D12−αjn . Hence, the metric entropy
bound in Theorem 2.3.7, (5.60) and (5.61) give

Esup
t∈I

∣∣∣2jn/2G̃n, f (t)− Ỹn(t)
∣∣∣ <∼ D12

−αjn +
∫ D12−αjn

0

√
log

B2v3jn

εv4
dε

<∼
√

jn2
−αjn ,

with unspecified multiplicative constants independent of f ∈ D and n. Thus, if, besides
(5.55) and (5.58), the sequence {An} satisfies

An = o
(
2αjn/

√
jn
)

(hence, if {An} satisfies (5.51)), then there exists εn → 0 such that

lim
n→∞ sup

f ∈D
Pr
{
An‖2jn/2G̃n, f − Ỹn‖I ≥ εn

}
= 0. (5.62)

Step 3: We finally combine the bounds obtained. Clearly, ‖G̃n, f ‖I has the same probability
law as ‖Gn, f ‖F f

n
, and likewise, ‖Ỹn‖I has the same law as ‖Yn‖I. Therefore, under the

hypotheses of the proposition, we have, for all f ∈D and xn → x, x ∈R,

[Pr{An(‖Yn‖I −Bn)≤ xn − εn}−Pr{Z ≤ x}]− sup
f ∈D

Pr
{
An

∥∥∥2jn/2G̃n, f − Ỹn

∥∥∥
I
> εn

}
≤ Pr

{
An

(
2jn/2‖Gn, f ‖F f

n
−Bn

)
≤ xn

}
−Pr{Z ≤ x}

≤ [Pr{An(‖Yn‖I −Bn)≤ xn + εn}−Pr{Z ≤ x}]+ sup
f ∈D

Pr
{
An

∥∥∥2jn/2G̃n, f − Ỹn

∥∥∥
I
> εn

}
.
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The left- and rightmost sides of this inequality do not depend on f ∈D and tend to zero by
(5.52), the continuity of the probability law of Z and (5.62). Thus, we have

lim
n→∞ sup

f ∈F f
n

∣∣∣Pr
{
An

(
2jn/2‖Gn, f ‖F f

n
−Bn

)
≤ xn

}
−Pr{Z ≤ x}

∣∣∣= 0, (5.63)

for any sequence xn → x, any x ∈ R. Similarly, since the random variables ‖ν̃ f
n ‖F f

n
and

‖ν f
n ‖F f

n
have the same law, we have, for any x ∈R,[

Pr{An(2
jn/2‖Gn, f ‖F f

n
−Bn)≤ x− ε′n}−Pr{Z ≤ x}

]
− sup

f ∈D
Pr
{
An2

jn/2‖ν̃ f
n − G̃n, f ‖F f

n
> ε′n

}
≤ Pr f

{
An

(
2jn/2‖ν f

n ‖F f
n
−Bn

)
≤ x

}
−Pr{Z ≤ x}

≤
[
Pr{An(2

jn/2‖Gn, f ‖F f
n
−Bn)≤ x+ ε′n}−Pr{Z ≤ x}

]
+ sup

f ∈D
Pr
{
An2

jn/2‖ν̃ f
n − G̃n, f ‖F f

n
> ε′n

}
,

which, by (5.59) and (5.63) with xn = x± ε′n, gives (5.53).

Condition (K3) is used only in the preceding equation (5.57) and in (5.61); therefore, it
can be relaxed to there is � measurable, bounded and satisfying that, for some y0 and η > 0
and all y> y0, supx≥y�(x)≤ y−1−η such that |K(x,y)| is dominated by �(|x− y|).

Here is the first example of application of Proposition 5.1.21. The projection kernel
corresponding to the Haar wavelet is

K(x,y)=
∑
k∈Z

I[0,1)(x− k)I[0,1)(y− k)= I([x] = [y]). (5.64)

It obviously satisfies conditions (K1)–(K3) (‖K(t, ·)‖v = 2, �(|u|)= I(|u| ≤ 1)). Moreover,
d2(x,y)= ∫

R
(K(x,u)−K(y,u))2du = 0 if [x] = [y] and 2 otherwise, so

N(λ[F1,F2],d,ε)≤ N(λ[F1,F2],d,0)≤ λ(F2 −F1)+ 2 ≤ 2λ(F2 −F1 + 2)

ε
,

for 0< ε < 2 (note that 2 is an upper bound for the d-diameter of any set of real numbers),
so (K4) holds. (K5) follows because K = {I[k/2j,(k=1)/2j) : k ∈ Z, j ≥ 0} consists of indicators
of a VC class of sets (see Theorem 3.6.9).

Thus, Proposition 5.1.21 applies, and we are led to consider the process (see (5.48))

Y(t)=
∑
k∈Z

I(t ∈ [k,k+ 1))
∫ k+1

k
dW(s)=

∑
k∈Z

I(t ∈ [k,k+ 1))gk,

where gk are i.i.d. N(0,1), and therefore, taking I = [0,1],
sup

0≤t≤1
|Yn(t)| = sup

0≤u≤2jn

|Y(u)| = max
0≤k≤2jn

|gk|.

Now Theorem 2.7.1 gives

Pr

{
An

(
sup

0≤t≤1
|Yn(t)|−Bn

)
≤ x

}
→ e−e−x

, for all x ∈R,

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.006
http:/www.cambridge.org/core


418 Linear Nonparametric Estimators

where An = A(jn), Bn = B(jn), and

A(l)= [2(log2)l]1/2, B(l)= A(l)− log l+ log(π log2)

2A(l)
. (5.65)

Combining this with Proposition 5.1.21, we have, recalling the set D from (5.45), the
following:

Proposition 5.1.22 Let D = D(α,D,δ,A,L), for some 0 < α ≤ 1, 0 < D <∞ and where
δ,A are admissible. If jn →∞ as n→∞ satisfies jn2jn = o(n/(logn)2), and if fn := fn(·, jn)
is the Haar wavelet estimator from (5.3) with φ = 1[0,1), then

sup
f ∈D

∣∣∣∣∣Pr f

{
An

(√
n2−jn

∥∥∥∥ fn −E fn√
f

∥∥∥∥
[0,1]

−Bn

)
≤ x

}
− e−e−x

∣∣∣∣∣→ 0, for all x ∈R,

as n →∞, where An and Bn are as before (5.65).

As a second example, we consider (convolution) kernel density estimators. If K is a
real-valued function with bounded support, symmetric and Lipschitz continuous, then the
kernel K(x,y) :=K(x−y) satisfies conditions (K1)–(K4) with�=K and d(s, t) proportional
to |s − t|, and note that (K5) holds as well by Remark 5.1.4. (These are not the only
convolution kernels satisfying (K1)–(K5); for instance, the Gaussian kernel also satisfies
theses conditions.)

Assume now that K is bounded, symmetric, supported by [−1,1] and twice continuously
differentiable on R. Writing Yn(t)= Y(2jn t) with Y as in (5.48), we have

sup
t∈[0,1]

|Yn(t)| = sup
0≤t≤2jn

|Y(t)|.

In this case, Y(t)= ∫
R

K(t− s)dW(s) is a stationary Gaussian process with covariance

r(t) := E(Y(t)Y(0))=
∫
R

K(t+ u)K(u)du = ‖K‖2
2 −Ct2 + o(t2),

where C =−2−1
∫
R

K(u)K′′(u)du> 0 (by integration by parts), and r(t)= 0 for |t|> 2. Set

Ỹ = Y/‖K‖2 and C̃ = C/‖K‖2
2. We apply Theorem 2.7.9: with

B(l)=√
2(log2)l+ log

√
2C̃− logπ√
2(log2)l

, (5.66)

we have

lim
n→∞Pr

{√
2(log2)jn

(
sup

0≤t≤2jn

|Y(t)|/‖K‖2 −B(jn)

)
≤ x

}
→ e−e−x

, x ∈R,

which, combined with Proposition 5.1.21, yields the following proposition:

Proposition 5.1.23 If K : R �→ R is bounded, symmetric, supported by [−1,1] and twice
continuously differentiable, D and jn are as in Proposition 5.1.22, B(l) is as in (5.66) and if
fn := fn(y, jn) is the kernel estimator from (5.3), then, as n →∞, for all x ∈R

sup
f ∈D

∣∣∣∣∣Pr f

{√
2(log2)jn

(√
n2−jn

∥∥∥∥ fn −E fn

‖K‖2
√

f

∥∥∥∥
[0,1]

−B(jn)

)
≤ x

}
− e−e−x

∣∣∣∣∣→ 0.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.006
http:/www.cambridge.org/core
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Wavelet projection density estimators based on Daubechies, band-limited or spline
wavelets satisfy limit theorems similar to these, but the proofs require extreme-value theory
for nonstationary processes, such as in Theorem 2.8.3, and will not be treated here. See the
notes at the end of this chapter for references.

Exercises

5.1.1 Let Kj,per be as defined in (5.4) for a scaling function φ satisfying Condition 5.1.1(b). Prove that
for q conjugate to p,

(a) For all x ∈ [0,1], ∫ 1
0 |Kj,per(x,y)|dy ≤ κ‖φ‖1 ≤ κ2 where κ := ‖∑k |φ(·− k)|‖∞;

(b) For all x ∈ [0,1], p ≥ 1,
(∫ 1

0 |Kj,per(x,y)|pdy
)1/p ≤ κ22j(1−1/p);

(c) For 1 ≤ p<∞ and ‖g‖q ≤ 1, ‖Kj,per(g)‖∞ ≤ supx ‖Kj,per(x, ·)‖p ≤ κ22j(1−1/p);
(d) ‖Kj,per‖∞ ≤ κ22j and EK2

j,per(x,X)≤ ‖ f ‖∞κ22j;
(e) For ‖g‖q ≤ 1, E(Kj,per(g)(X))2 ≤ ‖ f ‖p‖Kj,per(g)‖2

2q ≤ Cp‖ f ‖p supx ‖Kj,per(x, ·)‖2
2p/(1+p)

≤ Cp‖ f ‖pκ
42j(1−1/p), where Cp depends only on p;

(f) For ‖g‖q ≤ 1 and p > 2, E(Kj,per(g)(X))2 ≤ ‖ f ‖∞‖Kj,per(g)‖2
2 ≤ C̄p‖ f ‖∞‖K‖2

2p/(2+p) ≤
C̄p‖ f ‖∞κ42j(1−2/p), where C̄p depends only on p;

(g) For ‖g‖q ≤ 1 and p ≤ 2,

E(Kj,per(g)(X))
2 ≤ ‖ f ‖p/(2−p)‖Kj(g)‖2

q ≤ ‖ f ‖p/(2−p)‖Kj,per(x, ·)‖2
1 ≤ ‖ f ‖p/(2−p)κ

2‖φ‖2
1.

Hints: For (a), note that

∫ 1

0
|Kj,per(x,y)|dy ≤ 2j

∫ ∞

−∞

2j−1∑
m=0

|φ(2jy−m)|
∑
�

|φ(2j(x− �)−m)|dy ≤ ‖φ‖1κ .

For (b), note that, by (a),(∫ 1

0
|Kj,per(x,y)|pdy

)1/p

≤ ‖Kj,per‖1−1/p
∞ (‖φ‖1κ)

1/p ≤ 2j(1−1/p)κ2−1/p.

For most of the rest, what is needed is a generalisation of Young’s inequality for operators
Tg = ∫ 1

0 K(x,y)g(y)dy: if
∫ |K(x,y)|dy ≤ C and

∫ |K(x,y)|dx ≤ C a.e., then ‖Tg‖p ≤ C‖g‖p, for
1≤ p≤∞; also, for 1< p< r<∞ and 1+1/r= 1/p+1/q, if ‖K(x, ·)‖q ≤C and ‖K(·,y)‖q ≤C
a.e., then ‖Tg‖r ≤ BpC‖g‖p, where Bp is an absolute constant depending only on p. See Folland
(1999), Theorems 6.18, 6.36.

5.1.2 Prove an analogue of Exercise 5.1.1 for Kj,bc assuming that φ is a Daubechies scaling function.

Hint: one may deal separately with Kle f t
j,bc , Kright

j,bc and K̃j,bc, exploiting the facts that K̃j,bc is
dominated by a convolution kernel and that the other two kernels involve only finitely many
sums (N if φ is the Daubechies Nth scaling function).

5.1.3 Under Condition 5.1.1, prove that ‖ fn − E fn‖∞ = maxx∈L | fn(x) − E fn(x)|, where L is a
countable subset of R. Hints: If K is a right-continuous kernel, then the function fn(x)−E fn(x)
is also right continuous (note that K is bounded), and we can take L = Q. If φ is as in
Condition 5.1.1(b), since φ has finite p-variation, φ is continuous except perhaps on a countable
set D of A (as it is the composition of a Hölder continuous with a nondecreasing function, see
Lemma 3.6.11); use this and the fact that φ has bounded support to argue that one can take L to
be the union of {2jy− k : y ∈ D,k ∈ Z} and Q. The remaining two cases are similar.
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420 Linear Nonparametric Estimators

5.1.4 Use Remark 5.1.14 to show that |‖ fn − f ‖1 −E‖ fn − f ‖1| = Opr(1/
√

n) and that, for all
densities, the estimators fn considered in Theorem 5.1.13 satisfy

limsup
n→∞

√
n

2logn
|‖ fn − f ‖1 −E‖ fn − f ‖1| ≤ ‖�‖1.

5.1.5 The expectation bounds in Theorem 5.1.5 cannot in general be improved except perhaps for the
multiplicative constant Lp because, as mentioned earlier, they lead to unimprovable minimax
rates. In some instances, one can directly obtain lower bounds on the expected value of ‖ fn −
E fn‖p of the same order as the upper bounds. One such instance occurs with the convolution
estimator based on K = I[−1/2,1/2] when the density f (x) is bounded from below on an interval.
(a) Prove this for p = ∞ by using the metric entropy lower bound in Theorem 3.5.11 after
randomising (i.e., replacing nhn( fn −E fn) by

∑n
i=1 εiK((x−Xi)/hn)). (b) To obtain the lower

bound for 1 ≤ p<∞, use the Minkowski inequality for integrals to bound E‖ fn −E fn‖p from
below by

(nhn)
−1

[∫
f (x)>δ

(
E

∣∣∣∣∣
n∑

i=1

(I[x−hn/2,x+hn/2](Xi)−Pr(|x−X1| ≤ hn/2)}
∣∣∣∣∣
)p

dx

]1/p

.

Then argue that by normal approximation and uniform integrability, supnpn(1−pn)>M |E|Zn|/√
npn(1− pn) −E|g|| → 0 as M → ∞, where g is N(0,1) and Zn is Bin(n,pn) This shows

there exist constants C > 0, M <∞, δ > 0 such that if nhn(1 − hn) > M and hn < δ, then
E‖ fn −E fn‖p ≥ C(nhn)

−1/2.
5.1.6 The expectation bound in Proposition 5.1.2 for p =∞ cannot in general be improved. Show

that for the Haar basis of [0,1],

E

∥∥∥∥∥∥
2j−1∑
k=0

gk2
j/2I[k/2j ,(k+1)/2j](x)

∥∥∥∥∥∥∞ ≥ c
√

2jj.

5.1.7 Prove analogues of Propositions 5.1.18 and 5.1.19 for the estimators of a function observed
under additive white noise. When considering the supremum norm, it is convenient to take the
alternate definition of the projection kernel; for example, for the boundary corrected wavelets,

Kj,bc(x,y)=
2J−1∑
k=0

φJk(x)φJk(y)+
j−1∑
�=J

2�−1∑
k=0

ψbc
�k (x)ψ

bc
�k (y),

since then, for jn increasing, the processes

σ√
n
( fn −E fn)=

2J−1∑
k=0

gJkφJk +
j−1∑
�=J

2�−1∑
k=0

g̃�kψ
bc
�k ,

where the g variables are all independent standard normal and are, in fact, partial sums
of independent random processes to which P. Lévy’s inequality applies. This allows us to
essentially proceed as in the proof of Proposition 5.1.19.

5.1.8 Again, on Proposition 5.1.2, use the fact that the Lp-norms of Banach-valued Gaussian
random variables are equivalent and that there exist c2,d2 finite and positive such that c12−j ≤∑2j−1

k=0 (φ
bc
jk (x))

2 ≤ c22−j, for all x ∈ [0,1], to show that for all 1 ≤ p <∞ there exists Dp > 0

such that E
∥∥∥∑2j−1

k=0 gkφ
bc
jk (·)

∥∥∥
p
≥ Dp2j/2.

5.1.9 Combining inequality (5.35) with the lower tail in Talagrand’s inequality, Theorem 3.3.10, we
obtain that for some 0< C<∞,

Pr
{∣∣‖ fn −E fn‖p −E‖ fn −E fn‖p

∣∣> C(
√

vx/n2 +Ux/n
)
} ≤ 2e−x.
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5.2 Weak and Multiscale Metrics 421

Use this inequality to show that assuming that 2jn < n and ‖ f ‖∞ < ∞ if p > 1, then
‖ fn −E fn‖p −E‖ fn −E fn‖p = Opr(1/

√
n) for 1 ≤ p ≤ 2, and ‖ fn −E fn‖p −E‖ fn −E fn‖p =

Opr(
√

2j(1−2/p)/n) for p> 2. Deduce analogous results by assuming that ‖ f ‖p <∞ instead of
f bounded. Deduce also upper bounds for almost-sure rates. Show also that the same rates hold
in the white noise case.

5.2 Weak and Multiscale Metrics

Whereas a probability density can only be estimated at a rate slower than n−1/2 (depending
on its smoothness), the distribution function can be estimated by the empirical distribution
function at the rate n−1/2. If { fn} is a sequence of convolution kernel or wavelet linear
estimators that approximate f at the best rate in Lp for some 1 ≤ p ≤ ∞, it is shown in
this section that the empirical distribution function corresponding to fn also approaches
the true F at the optimal rate n−1/2, provided that we take the kernel K or the wavelet
basis just of a slightly higher order than needed for only the Lp approximation. This
is a consequence of an exponential inequality measuring the closeness of the empirical
distribution function and the distribution function of fn and constitutes an example of a
‘plug in’ property: fn approximates f at the best rates simultaneously in the Lp metric
and in a weaker metric. The weaker metrics considered in this section go far beyond the
metric defining the supremum of a difference between distribution functions of a density,
‖F fn − F f ‖∞ = supx

∣∣∫ I(−∞,x]( fn − f )
∣∣, to include the supremum of

∫
g( fn − f ) with g

running over bounded subsets of several important Banach spaces of functions such as
Sobolev spaces, bounded variation spaces and, more generally, some Besov spaces.

5.2.1 Smoothed Empirical Processes

Both in the density estimation case and in the case of function estimation under additive
white noise, the rate of approximation of f by fn given by Proposition 5.1.7, assuming that
f has degree of smoothness s and K is the kernel projection of an S-regular wavelet basis
with s < S, is n−s/(2s+1) in the Lp norms, p <∞, and is (n/ logn)−s/(2s+1) in the supremum
norm and, as we will see in Chapter 6, these rates cannot be improved (in the sense that
they are minimax). Although fn does not approximate f at the usual finite-dimensional
rate n−1/2 in L2 loss, the question arises as to whether the approximation rate is n−1/2 in
weaker norms of interest. Typical weaker norms of interest are the supremum over bounded
subsets of L2([0,1]) or L2(R) much smaller than the unit ball, usually consisting of smooth
functions or of functions of bounded variation (the latter including I(−∞,u] for all u, thus
being distribution functions based on fn).

When an estimator fn of f is minimax in quadratic or supremum norm loss and is
also optimal in its action on a class of functions H ⊂ L2, then we say that it has the
plug-in property with respect to the class of functions H. We show in this subsection that
convolution kernel and wavelet projection density estimators satisfy the plug-in property
not only for H= {I(−∞,t] : t ∈R} but also for many other classes of functions. Although this
property holds even for certain classes of functions that are not P-Donsker (see the notes at
the end of this chapter), we will only consider Donsker classes. For a P-Donsker class H,
since by the empirical central limit theorem

√
n(Pn −P)→L GP in �∞(H), it will suffice to
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422 Linear Nonparametric Estimators

show supg∈F
∣∣∫ g fn −Pn(g)

∣∣ = oP(n1/2) to obtain rates for these weak metrics of the order
n−1/2. In addition, and related to this problem, we will also obtain an exponential bound for
‖F fn −Fn‖∞, where F fn is the distribution function corresponding to the measure of density
fn, whereas Fn is the empirical distribution function, that is, the distribution function of the
empirical measure Pn.

The Donsker classes to be considered are bounded subsets of the space BV(A) of bounded
variation functions and bounded subsets of smooth functions, concretely, of the Sobolev
spaces Hs

2(A)= Bs
22(A), for s> 1/2. We will use the notation

Hs
2,M(A)= { f ∈ Cu(A) : ‖ f ‖Hs

2(A)
≤ M},

where we recall the Sobolev imbedding, Proposition 4.3.9, and where A is either of R, [0,1]
or (0,1]. In the case of functions of bounded variation, for A = R, recall that each function
f is almost surely f (x)= f (−∞+)+ ν(−∞,x], where ν = D f is a finite signed measure
on R (see (4.106) and Exercise 4.3.6), and in the case of A = [0,1], f (x)= ν[0,x], where ν
is a finite signed measure on [0,1] (with f (0)= f (1) in the periodic case). Then we set

BVM(R) := { f (x)= f (−∞+)+ ν(−∞,x],x ∈R : |ν|(R)≤ M}
and similarly define BVM([0,1]) and BVM((0,1]).

Here is what we obtain for the estimation of functions under Gaussian white noise for
these two classes of sets:

Proposition 5.2.1 Let Kjn be projection kernels associated to boundary-corrected or
periodised wavelet bases of regularity S> s. Let f ∈ Bs

∞∞ for some s≥ 0. Let j= jn be such
that 2−jn(s+1)n1/2 → 0. Let Y f (x), x ∈ [0,1], be as in (5.5), and let fn(y)=

∫ 1
0 Kjn(x,y)dY f (x)

be the estimator of f at resolution jn. Set also dQn(x) = fn(x)dx, dQ(x) = f (x)dx and
W(g) = ∫ 1

0 g(x)dW(x) for g square integrable. Then W|BVM admits a sample continuous
version, and

√
n(Qn −Q)→L σW, in �∞(BVM),

for any M > 0, where BVM = BVM([0,1]) (with the obvious modification in the periodic
case). Also, W|Hs

2,M
for s> 1/2 admits a sample continuous version, and

√
n(Qn −Q)→L σW, in �∞(Hs

2,M),

for any M> 0.

Proof We may assume that σ = 1. To prove this proposition, we will look at the two terms
in the decomposition

√
n
∫ 1

0
gd(Qn −Q)=√

n
∫ 1

0
(Kj( f )− f )g+W(Kj(g)),

where we write j for jn. Consider first the space BV. By Example 3.6.14, monotone
nondecreasing functions on [0,1] taking values on [0,1] are in the pointwise closure of
the convex hull of the set of functions I(x,1] and I[x,1], x ∈ [0,1]; hence, the collection of
functions BVM([0,1]) is in M times the pointwise closure of the symmetric convex hull
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5.2 Weak and Multiscale Metrics 423

of these indicators. Therefore, a version of Proposition 4.3.15 for boundary-corrected or
periodised wavelets applies to the effect that

sup
g∈BVM

∣∣∣∣∫ 1

0
(Kj( f )− f )g

∣∣∣∣≤ CM‖ f ‖s
B∞∞2−j(s+1) = o(n−1/2). (5.67)

Regarding the second term, since E(W(Kj(g1)) − W(Kj(g2)))
2 = ∫ 1

0 (Kj(g1 − g2))
2 ≤

‖g1 − g2‖2
2, Dudley’s metric entropy bound (Theorem 2.3.7) and the entropy estimate in

Corollary 3.7.50 show that

sup
j

E sup
g1,g2∈BVM:‖g1−g2‖2≤δ

|W(Kj(g1))−W(Kj(g2))|→ 0

as δ→ 0. Also, the finite-dimensional distributions of the processes W(Kj(g)) converge to

those of W(g) = ∫ 1
0 gdW because the projections πj onto Vj converge to the identity in L2.

We then conclude by Theorem 3.7.23 that
√

nW(Kj(·))→ W(·), in �∞(BVM). (5.68)

The result for BVM follows from (5.67) and (5.68). The proof for Sobolev spaces is exactly
the same, except that we now invoke the bound in Proposition 4.3.14 (concretely, the remark
after it) and the metric entropy estimates in Corollary 4.3.38.

Smoothing the Empirical Measure by Convolution Kernels

Density estimators may be considered as smoothed versions of the empirical measure, that
is, random probability measures with densities that approximate the true probability P. As
in previous sections, we consider both convolution kernel density estimators and wavelet
projection estimators. The classes of functions F for which we will prove the plug-in
property will be Sobolev classes of functions and classes of functions of bounded variation
as described earlier, and we will use a different method on each.

Let Pn be the empirical measure corresponding to i.i.d. observations from a probability
measure P on R (as usual, coordinate functions). Convolution kernel density estimators have
the form Pn ∗μn, where μn is the signed measure with density Khn(y)= h−1

n K(y/hn), hn → 0
(and nhn →∞). Note that if dμn(y)= Khn(y)dy, then

(a) μn(R)=
∫

K(y)dy = 1,
(b) For all f bounded and continuous,

∫
f dμn → f (0) as n →∞ and

(c) For all a> 0, μn([−a,a]c)→ 0 as n →∞.

We call a sequence of signed measures {μn} satisfying conditions (a) and (b) an approximate
identity for convolution, and we say that an approximate identity is proper if it also satisfies
condition (c).

Let F be a P-Donsker class of measurable functions. Since for any finite signed measure
Q (random or not)

(Q∗μn)( f )=
∫ ∫

f (x+ y)dQ(x)dμn(y)=
∫
( f ∗ μ̄n)(x)dQ(x),

where μ̄n(A) :=μn(−A) for all Borel sets A, and where it is assumed that f (x+·)∈ L1(|μn|)
(here and elsewhere |μn| denotes the total variation measure of μn) and that | f | ∗ |μ̄n|
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424 Linear Nonparametric Estimators

is |Q|-integrable, a first natural step to establish that (Pn ∗ μn)( f ) approximates P( f )
uniformly in F at the rate 1/

√
n will be to prove the following proposition. We say that

a class F of functions is translation invariant if f (·− y) ∈F , for all f ∈F and y ∈R.

Proposition 5.2.2 Let F be a translation-invariant P-Donsker class of functions on R, and
let M be a collection of signed Borel measures of finite variation such that supμ∈M |μ|(R)
<∞. Assume that for all f ∈F and μ ∈M, the functions

y �→ f (x+ y), f or all x ∈R, and y �→ ‖ f (·+ y)‖L2(P)

are in L1(|μ|). Then the class of functions

F̃ := { f ∗μ : f ∈F ,μ ∈M}
is P-Donsker.

Proof Proposition 3.7.34 as extended by Exercise 3.7.14 shows that if a class of functions
F is P-Donsker, then so is the closure in L2(P) of its convex hull for the topology τ = τ1∨τ2,
where τ1 is the topology of pointwise convergence and τ2 is the topology of L2(P). Hence,
it suffices to show that for each f ∈ F and μ ∈ M, every neighbourhood of f ∗ μ for
the τ -topology has a nonvoid intersection with |μ|(R) times the symmetric convex hull of
F f = { f (· − y) : y ∈ R}. By definition of the neighbourhood base for τ , it suffices to prove
this only for any set of the form

Ax1,...,xr,ε =
{
g ∈ L2(P) : ‖ f ∗μ− g‖L2(P) < ε, | f ∗μ(xi)− g(xi)|< ε,1 ≤ i ≤ r

}
,

where r<∞, xi ∈R and ε > 0. Define

Q = P+ δx1 +·· ·+ δxr

and note that the hypotheses of Exercise 5.2.1 are satisfied by Q, μ ∈M and f ∈ F . The
conclusion of that exercise is that |μ|(R) times the symmetric convex hull of F f intersects
any neighbourhood Bε of f ∗μ for the L2(Q)-(pseudo)norm

Bε = {g ∈ L2(P) : ‖ f ∗μ− g‖L2(Q) < ε}, 0< ε <∞.

But, obviously, Bε ⊆ Ax1,...,xr,ε, which proves the proposition.

Now, if we wish to take advantage of the fact that F is P-Donsker, we should compare
our process of interest

√
n(Pn∗μn−P)with

√
n(Pn−P), and for this, it is natural to consider

the following decomposition:

Pn ∗μn −Pn = (Pn −P)∗μn − (Pn −P)+ (P∗μn −P). (5.69)

This decomposition and the preceding lemma will reduce proving convergence in law in
�∞(F) of the uncentred smoothed empirical process

√
n(Pn ∗μn −P) to the P-bridge GP to

the verification of two manageable limits as follows:

Proposition 5.2.3 Let F be a translation-invariant P-Donsker class of real-valued
functions on R, and let {μn}∞n=1 be an approximate convolution identity such that μn(R)= 1

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.006
http:/www.cambridge.org/core


5.2 Weak and Multiscale Metrics 425

for every n. Further, assume that for every n, F ⊆ L1(|μn|) and
∫
R
‖ f (·−y)‖L2(P)d |μn| (y) <

∞, for all f ∈F . Then the conditions

sup
f ∈F

E

(∫
R

( f (X+ y)− f (X))dμn(y)

)2

→n→∞ 0 (5.70)

and

sup
f ∈F

√
n

∣∣∣∣E∫
R

( f (X+ y)− f (X))dμn(y)

∣∣∣∣→n→∞ 0 (5.71)

imply that
√

n‖Pn ∗μn −Pn‖F converges to zero in outer probability and that
√

n(Pn ∗μn −P)→L GP, in �∞(F). (5.72)

Proof Since (P∗μn−P)( f )=E
∫
( f (X+ y)− f (X))dμn(y), condition (5.71) implies that

‖P∗μn −P‖F = o(1/
√

n),

which takes care of the last summand in the decomposition (5.69). For the remaining part of
that decomposition, note that

((Pn −P)∗μn − (Pn −P))( f )= (Pn − P)(μ̄n ∗ f − f ),

where μ̄n(A) = μn(−A), A a Borel set. Now F is P-Donsker by hypothesis, and {μ̄n ∗ f :
f ∈ F ,n ∈ N} is also P-Donsker by Proposition 5.2.2; therefore, the class of functions
∪n{μ̄n ∗ f − f : f ∈ F} is P-Donsker as well by Corollary 3.7.35 (this is a subclass of
{ f ∗ μ̄n +g : f ,g∈F ,n ∈N}). Thus, since by condition (5.70), sup f ∈F P(μ̄n ∗ f − f )2 → 0,
it follows that

sup
f ∈F

|(Pn −P)(μ̄n ∗ f − f )| = oP(1/
√

n)

by the asymptotic equi-continuity condition (see Theorem 3.7.23), proving the first
conclusion of the proposition. Combining the last two estimates with (5.69) gives that
‖√n(Pn ∗μn−P)−√

n(Pn−P)‖F → 0 in outer probability. Now the result follows because
F is a P-Donsker class (use Exercise 3.7.25).

Note that the limit in (5.71) ensures that the ‘bias’ part of the discrepancy between the
smoothed empirical measure Pn ∗μn and the empirical measure proper, Pn, tends to zero,
whereas the limit in (5.70) does the same for the ‘variance’ part of this discrepancy.

As will become apparent later in Remark 5.2.6, it is convenient to extend the definition
of kernel of order t to noninteger values. We restrict to symmetric kernels.

Definition 5.2.4 A kernel K : R → R of order r > 0 is a Lebesgue integrable function,
symmetric around the origin, such that∫

R

K(y)dy = 1,
∫
R

yjK(y)dy = 0, for j = 1, . . . ,{r}, and
∫
R

|y|r|K(y)|dy<∞,

where {r} is the largest integer strictly smaller than r.

Then, given such a kernel and a sequence hn → 0, hn > 0, we take dμn(x)= Khn(x)dx as
our approximate identity.
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By Exercise 3.7.24, any bounded subset of a Sobolev space Hs
2(R)with s> 1/2 consisting

of continuous functions is universal Donsker because Hs
2(R) is a Hilbert space and its

imbedding into C(R) is continuous (by Proposition 4.3.9 as Hs
2(R)= Bs

22(R)). In particular,
the sets Hs

2,M(R) defined in the introduction to this section are P-Donsker for all M > 0,
all s > 1/2 and all Borel probability measures P on R. The following theorem shows that
under quite general conditions the central limit theorem uniform over Hs

2,M(R) holds for√
n(PK

n −P), where

dPK
n (x)= d(Pn ∗Khn)(x), x ∈R.

Recall Proposition 4.1.6 for the existence of such kernels.

Theorem 5.2.5 Let f0 be a probability density in Ht
2(R) for some t ≥ 0, let Pn be the

empirical measure corresponding to i.i.d. samples from P, let K be a symmetric kernel
of order r = t + s − k for some s > 1/2 and 0 ≤ k < t + s and let fn = Pn ∗ Khn be the
corresponding kernel density estimators of f , where the window widths hn > 0 are such
that ht+s−k

n n1/2 → 0. Then the P-bridge GP indexed by Hs
2,M(R) admits a sample continuous

version, and
√

n(PK
n −P)→L GP, in �∞(Hs

2,M(R)),

for all M<∞.

Proof We apply Proposition 5.2.3. The class F := Hs
2,M(R) is clearly translation invariant

and is P-Donsker, as indicated in the preceding paragraph. Also, by continuity of the
Sobolev imbedding, F is uniformly bounded. Set dμn(x)= Khn(x)dx. Since K is integrable
and F is bounded, we have both F ⊂ L1(|μn|) and

∫ ‖ f (·− y)‖L2(P)d|μn|(y) <∞. To prove
(5.70), we first note that Hs

2 ⊂ Cα(R) for some α > 0 (actually, for all α < s − 1/2): If
α < (s− 1/2)∧ 1, we have, for f ∈F with the Sobolev norm ‖〈u〉s f̂ ‖2 (see before (4.115),
and recall the notation 〈t〉s = (1+|t|2)s/2),

1

|h|α | f (x+ h)− f (x)| = 1√
2π

∣∣∣∣∫ |ht|−α(e−iht − 1)|t|αe−ixt f̂ (t)dt

∣∣∣∣
≤ 2√

2π

∣∣∣∣∫ |t|α f̂ (t)dt

∣∣∣∣= 2√
2π

∣∣∣∣∫ |t|α(〈t〉s)−1〈t〉s f̂ (t)dt

∣∣∣∣
≤ 2√

2π

(∫ |t|α
(1+|t|2)s dt

)1/2

‖ f ‖Hs
2
.

Now, by Minkowski’s inequality for integrals, we have

sup
f ∈F

(
E

(∫
R

( f (X+ y)− f (X))dμn(y)

)2
)1/2

≤ sup
f ∈F

∫
|y|≤δ

(
E( f (X+ y)− f (X))2

)1/2
d|μn|(y) (5.73)

+ sup
f ∈F

∫
|y|>δ

(
E( f (X+ y)− f (X))2

)1/2
d|μn|(y)= (I)n,δ+ (II)n,δ.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.006
http:/www.cambridge.org/core


5.2 Weak and Multiscale Metrics 427

By the preceding observation, there is c<∞ such that, for all f ∈F ,

(I)n,δ ≤ c
∫
|y|≤δ

|y|αd|μn|(y)≤ cδα sup
n
‖μn‖v → 0, as δ→ 0,

uniformly in n. However, since the imbedding of Hs
2 into L2 is also continuous and f0 is

uniformly bounded, supy sup f ∈F P( f (· + y))2 ≤ c‖ f0‖∞ = D <∞, and
∫
|y|>δ |Khn(y)|dy =∫ δ/hn

−δ/hn
|K(y)|dy → 0 as n →∞, for all δ > 0, we have

lim
n
(II)n,δ ≤ lim

n
2D|μn|{|y|> δ} = 0,

for all δ > 0. The variance condition (5.70) in Proposition 5.2.3 is thus proved. Next, we
prove the bias condition (5.71). Recall that by Lemma 4.3.16 for p = q = 2,

E
∫
( f (X+ y)− f (X))dμn(y)=

∫
(Khn ∗ f − f ) f0 =

∫
K(t)( f̄ ∗ f0(hnt)− f̄ ∗ f0(0)))dt,

(5.74)
where f̄ (x)= f (−x). If s and t are integers, Lemma 4.3.18 gives that for all f ∈F , f ∗ f0 ∈
Cs+t(R), and

sup
f ∈F

‖ f ∗ f0‖Cs+t(R) ≤ 2π‖ f ‖Hs
2(R)

‖ f0‖Ht
2(R)

,

and this is also true for s, t > 0 not necessarily integers (proved, e.g., as in the proof of
Theorem 5.3.2, where α = s = t). Thus, we can apply Taylor development in (5.74) and use
the fact that the kernel K is of order r = s+ t− k. Then, if t+ s− k 
∈N, we obtain∣∣∣∣E∫ ( f (X+ y)− f (X))dμn(y)

∣∣∣∣
= h[t+s−k]

n

[t+ s− k]!
∣∣∣∣∫ K(u)u[t+s−k][D[t+s−k]( f̄ ∗ f0)(ζhnu)−D[t+s−k]( f̄ ∗ f0)(0)]du

∣∣∣∣ ,
for some 0≤ ζ ≤ 1, and since f̄ ∗ f0 ∈Cs+t ⊂Cs+t−k, we have that D[t+s−k]( f̄ ∗ f0)] is Hölder
continuous of order at least α= t+ s−k−[t+ s−k], with uniformly bounded Cα norm. We
conclude that sup f ∈F |E∫ ( f (X+ y)− f (X))dμn(y)| ≤ Cht+s−k

n . Likewise, if t+ s− k is an
integer, then∣∣∣∣E∫ ( f (X+ y)− f (X))dμn(y)

∣∣∣∣≤ 1

(t+ s− k)!h
t+s−k
n ‖Dt+s−k( f̄ ∗ f0)‖∞

∫
|K(u)|u|t+s−kdu.

In either case, the assumption on hn yields
√

nsup f ∈F |E∫ ( f (X+ y)− f (X))dμn(y)| → 0.
Now the theorem follows from Proposition 5.2.3.

Remark 5.2.6 For f0 ∈ Bt
2∞, t > 0, and K of order S > t, taking hn � n−1/(2t+1) gives

the optimal rate n−t/(2t+1) for the estimation of f by fn in L2-norm (Proposition 5.1.7).
Theorem 5.2.5 gives in this case that for

∫
f fn to also estimate

∫
f f0 uniformly in f in

the unit ball of Hs
2(R) at the optimal rate of n−1/2, we just need to take K of order S> t+1/2

(choose k< s−1/2). That is, the increase of 1/2 in the order of K yields the plug-in property
for fn with respect to Sobolev balls.
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Proposition 5.2.3 also applies to bounded subsets of BV(R); however, we will deduce the
central limit theorem for

√
n( fn − f )(x)dx over such classes from an exponential inequality

for the discrepancy between the distribution function of Pn ∗ μn and Pn, because of its
independent interest.

Let Fn(x)=
∫ x
−∞ dPn(u), x ∈R, be the empirical distribution function, and let

FK
n (h)(x)=

∫ x

−∞
Pn ∗Kh(u)du, x ∈R,

be the distribution function of the kernel density estimator Pn ∗Kh with h= hn → 0. We have
the following theorem, where BVM(R) is defined in the introduction to this section:

Theorem 5.2.7 Suppose that P has a density f0 with respect to Lebesgue measure. Assume
that f0 is bounded, in which case we set t = 0 in what follows, or that f0 ∈ Ct(R) for some
t> 0. Let e−1 ≥ h := hn → 0 as n →∞ satisfy h> logn/n, and let K be a kernel of order
r= t+1−k for some 0≤ k< t+1. Then there exist finite positive constants L :=L(‖ f0‖∞,K)
and  0 :=  0(‖ f0‖Ct ,K) ≥ 1 such that, for all λ ≥  0 max(

√
h log(1/h),

√
nht+1−k) and

n> 1,
Pr
(√

n‖FK
n (h)−Fn‖∞ > λ

)≤ 2exp
{−Lmin

(
h−1λ2,

√
nλ
)}

. (5.75)

As a consequence, for all n> e,

Pr
(√

n‖PK
n −Pn‖BVM(R) > 2Mλ

)≤ 2exp
{−Lmin

(
h−1λ2,

√
nλ
)}

.

Proof Note first that FK
n (h)(x)−Fn(x) is a random variable for each x ∈ R, and hence, so

is ‖FK
n (h)−Fn‖∞, since, by right continuity, this is in fact a supremum over a countable set.

We will also use this observation when we apply Talagrand’s inequality later.
We set F = {1(−∞,x] : x ∈R} throughout the proof and note that Pn1(−∞,x] = Fn(x) as well

as (Pn ∗Kh)1(−∞,x] = FK
n (x). We will still use the decomposition (5.69), now with dμn(x)=

Kh(x)dx. For the deterministic bias P∗Kh−P, we have by Lemma 4.3.16 that, for any given
f ∈F with f̄ (x)= f (−x),

(P∗Kh −P) f =
∫
R

K(u)[ f0 ∗ f̄ (hu)− f0 ∗ f̄ (0)]du.

First, if t = 0, we have for every x ∈R and u ≥ 0 that, for f = I(−∞,x],

| f0 ∗ f̄ (hu)− f0 ∗ f̄ (0)| =
∣∣∣∣∫

R

1(x,x+hu](y) f0(y)dy

∣∣∣∣≤ (hu)r
hu‖ f0‖∞ ∧ 1

(hu)r
.

Hence, since for a> 0 and r = 1− k ≤ 1 (a∧ 1)/ar ≤ 1, it follows that

|(P∗Kh −P) f | ≤ h1−k‖ f0‖r
∞

∫
|K(u)||u|1−kdu,

and likewise for u< 0. More generally, if t> 0, the distribution function F of f0 is contained
in Ct+1(R), so by a standard Taylor expansion as in the preceding proof and since the kernel
is of order r = t+ 1− k, it follows that

sup
x∈R

|(P∗Kh −P)1(−∞,x]| =
∣∣∣∣∫

R

K(u)[F(x− uh)−F(x)]du

∣∣∣∣≤ dht+1−k, (5.76)

for some constant d depending only on ‖ f0‖Ct and
∫
R
|K(u)||u|t+1−kdu.
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5.2 Weak and Multiscale Metrics 429

For the remaining part of the decomposition (5.69), observe that, using the symmetry of
the kernel,

(Pn ∗Kh −P∗Kh −Pn +P) f = (Pn −P)(Kh ∗ f − f ),

for f ∈F . Consequently,

Pr
(√

n‖FK
n (h)−Fn‖∞ > λ

)≤ Pr

(
√

n sup
f ∈F

|(Pn −P)(Kh ∗ f − f )|> λ− d
√

nht+1−k

)

≤ Pr

(
n sup

f ∈F
|(Pn −P)(Kh ∗ f − f )|>

√
nλ

2

)
, (5.77)

by assumption on λ, and we will apply Talagrand’s inequality (3.101) in Theorem 3.3.9 to
the class

F̃ = {Kh ∗ f − f −P(Kh ∗ f − f ) : f ∈F}
to bound the last probability. For this, we need the following facts:

(a) First, we note that the class of functions {Kh ∗ f − f : f ∈F} is uniformly bounded by
2‖K‖1, and hence, F̃ has envelope U = 4‖K‖1.

(b) Also,
sup
f ∈F

‖Kh ∗ f − f ‖L2(P) ≤ Ch1/2 =: σ , (5.78)

for C = ‖p0‖1/2
∞
∫
R
|u|1/2|K(u)|, since

E( f (X+ y)− f (X))2 = E| f (X+ y)− f (X)| =
∫ ∞

−∞
1[x−y,x)(u) f0(u)dx ≤ ‖ f0‖∞y

if y> 0 and similarly if y< 0, and therefore, using Minkowski’s inequality for integrals,(
E

(∫
R

( f (X+ y)− f (X))Kh(y)dy

)2
)1/2

≤
∫
R

(
E( f (X+ y)− f (X))2

)1/2 |Kh(y)|dy

≤ ‖ f0‖1/2
∞

∫
R

|y|1/2|Kh(y)|dy

= ‖ f0‖1/2
∞ h1/2

∫
R

|u|1/2|K(u)|. (5.79)

(c) Moreover, we will need the expectation bound

nE sup
f ∈F

|(Pn −P)(Kh ∗ f − f )| ≤ d′
√

nh log(1/h), (5.80)

for some constant 0 < d′ <∞ depending only on ‖ f0‖∞ and K, which is proved as
follows. For each h > 0, the class {Kh ∗ 1(−∞,x] : x ∈ R} is just {FK((x−·)/h) : x ∈ R},
where FK(t)= ∫ t

−∞ K(s)ds, since

Kh ∗ 1(−∞,x](u)= h−1

∫ x

−∞
K

(
y− u

h

)
dy =

∫ (x−u)/h

−∞
K(t)dt = FK

(
x− u

h

)
,
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and FK is of bounded variation since it is the distribution function of a finite signed
measure. Similarly, {1(−∞,x](t) : x∈R}= {1(−∞,0](t−x) : x∈R}, so {Kh∗1(−∞,x]−1(−∞,x] :
x ∈R} is contained in the set of all translates of the function FK(·/h)−1(−∞,0](·), which
is of bounded variation, and Proposition 3.6.12 hence gives an L2(Q) metric entropy
bound for the class {Kh ∗ f − f : f ∈ F} independent of h and Q and of the order
of a constant times logε−1. This entropy bound and the bounds from (a) and (b) now
allow us to apply the expectation bound (3.184) in Corollary 3.5.8, yielding (5.80), since
nh ≥ logn> logh−1.

Finally, we apply Talagrand’s inequality (see (3.101)), with

x = Lmin
(√

nλ,h−1λ2
)

and σ , U as in (a) and (b) to expression (5.77). In the notation of (3.101), we have

(i) ESn = nEsup f ∈F |(Pn −P)(Kh ∗ f − f )| ≤ d′
√

nh log(1/h)≤√
nλ/6 by (5.80) and the

assumption on λ;
(ii) vn = 2UESn + nσ 2 ≤ C2nh+ 8‖K‖1d′

√
nh log(1/h) ≤ C′nh for some constant C′ since

h ≥ (logn/n), and hence,√
2vnx ≤

√
2C′nhLmin

(√
nλ,h−1λ2

)≤√
2C′L

√
nλ≤

√
nλ

6
,

for L small enough.
(iii) Furthermore,

Ux/3 ≤ (4/3)‖K‖1Lmin
(√

nλ,h−1λ2
)≤ √

nλ

6
.

Summarising, the sum of the terms in (i)–(iii) is smaller than (
√

nλ/2) if L is chosen
suitably small, and we obtain from (3.101) for the given choice of x that

Pr

(
n sup

f ∈F
|(Pn −P)(Kh ∗ f − f )|>

√
nλ

2

)
≤ 2exp {−x} ,

which implies the theorem for distribution functions.
Let us now consider BVM(R) with M = 1 without loss of generality. We recall that by

Jordan’s decomposition, every function f of variation bounded by 1 that is 0 at −∞ is the
difference of two nondecreasing functions whose sum does not exceed 1 and that are 0 at
−∞ (the positive and negative variations of f ) and that nondecreasing functions on R taking
values on [0,1] are in the pointwise closure of the convex hull of the class G = {I(x,∞), I[x,∞) :
x ∈ R} (see Example 3.6.14). Hence, BV1 ⊂ co(G), and therefore, ‖PK

n − Pn‖BV1 = ‖PK
n −

Pn‖G . Since with probability 1, Pn has only atoms of size 1/n, we also have, almost surely,
that

√
n‖PK

n −Pn‖G ≤√
n‖FK

n −Fn‖∞+ 1/
√

n ≤√
n‖FK

n −Fn‖∞+λ.
The exponential inequality for BVM now follows from (5.75) together with these
observations.

The preceding inequalities may be used to transfer several properties about the empirical
process

√
n(Pn − P) to the smoothed empirical process

√
n(Pn ∗ Khn − P), such as
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5.2 Weak and Multiscale Metrics 431

a Dvoretzky-Kiefer-type inequality, or the central limit theorem, or the law of the
iterated logarithm, or the Komlós-Major-Tusńady almost-sure approximation by Gaussian
processes. We only record the central limit theorem.

Theorem 5.2.8 Let f0 and K be as in the preceding theorem, and let hn be such that
ht+1−k

n n1/2 → 0. Then the restriction of the P-bridge GP to BVM admits a sample continuous
version, and √

n(Pn ∗Khn −P)→L GP, in �∞(BVM),

for all 0<M<∞; in particular,√
n(FK

n (hn)−FP)→L GP, in �∞(R).

Proof Since BV1 ⊂ coG and G is P-Donsker, so is BV1 (and BVM for all M) by
Proposition 3.7.34 (or rather Exercise 3.7.14). Now the result follows immediately from
the convergence in law in �∞(BVM) of the empirical process

√
n(Pn − P) together with

Theorem 5.2.7 (see, e.g., Exercise 3.7.25).

As a consequence of this theorem and in analogy with Remark 5.2.6, when f0 ∈ Ct(R)
and hn � n−1/(2t+1), if we take the kernel of any order r> t+ 1/2, then the kernel estimator
achieves optimal rates of convergence simultaneously in squared error loss (and in any Lp

loss, 1 ≤ p ≤∞) and in its action over bounded variation classes.

Smoothing the Empirical Measure by Wavelet Projections

Next, we consider the plug-in property for wavelet projection density estimators. P, f0,
Pn and Fn are as in the preceding section, and we set fn(x) = Pn(Kj(·,x)), x ∈ R, to be
the wavelet projection estimator of f0, where, for each j, Kj is the projection kernel onto
the space Vj corresponding to a wavelet basis {φk,ψj,k} of regularity index S > 0. We also
define

dPW
n (x)= fn(x)dx = Pn(Kj(·,x))dx and FW

n (x) :=
∫ x

−∞
Pn(Kj(·,y))dy, x ∈R,

where j = jn → ∞; that is, PW
n is the probability measure of density fn, and FW

n is its
cumulative distribution function. We prove the following theorem only for Daubechies
wavelets, the reason being that in this case several classes of functions related to the
projection kernel are of VC type (see Exercise 5.2.3):

Theorem 5.2.9 With the notation from the preceding paragraph, assume that the density
f0 is a bounded function – in which case we set t = 0 – or that f0 ∈ Ct(R) for some t,
0< t< S+ 1. Let j satisfy 2−j > (logn)/n. Assume also that the wavelet density projection
estimators fn of f0, and hence PW

n and FW
n , are defined via Daubechies wavelets of regularity

S> s. Then there exist finite positive constants L := L(‖ f0‖∞,K) and 0 := 0(‖ f0‖Ct ,K)≥
1 such that, for all n> 1 and λ≥ 0 max(

√
j2−j,

√
n2−j(t+1)), we have

Pr
(√

n‖FW
n −Fn‖∞ > λ

)≤ 2exp
{−Lmin(2jλ2,

√
nλ)

}
and therefore also

Pr
(√

n‖PW
n −Pn‖BVM(R) > 2Mλ

)≤ 2exp
{−Lmin(2jλ2,

√
nλ)

}
,

for all n> 1 and M> 0.
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432 Linear Nonparametric Estimators

Proof Set F = {1(−∞,s] : s ∈ R}, and note the following analogue of the decomposition
(5.69):

(PW
n −Pn)( f )= (Pn −P)(Kj( f )− f )+ (P(Kj)−P)( f ), (5.81)

where we use the symbol P(Kj) both for the function and for the finite signed measure that
has it as density. Since Ct(R) ⊂ Bt

∞∞(R), Proposition 4.3.14 and the remark after it gives
sup f ∈F |(P(Kj)− P)( f )| ≤ C‖ f0‖Bt∞∞2−j(t+1) for t > 0, and the proof of this proposition
gives the bound C‖ f ‖∞2−j for t = 0 because ‖〈 f0,ψ�·〉‖∞ ≤ ‖ f0‖∞‖ψ‖12−�/2. Hence,

sup
f ∈F

|(P(Kj)−P)( f )| ≤ C‖ f0‖Ct2−j(t+1), t ≥ 0.

The decomposition (5.81) then yields

Pr
(√

n‖FW
n −Fn‖∞ > λ

)≤ Pr

(
√

n sup
f ∈F

|(Pn −P)(Kj( f )− f )|> λ−C
√

n2−j(t+1)

)

≤ Pr

(
n sup

f ∈F
|(Pn −P)(Kj( f )− f )|>

√
nλ

2

)
by assumption on λ (if we take  0 ≥ 2C). As in the preceding proof, we apply Talagrand’s
inequality (3.101) to the class

F̃ = {Kj( f )− f −P(Kj( f )− f ) : f ∈F},
and for this we need to compute U, σ and ESn. (Notice that the supremum over f ∈ F is
in fact over a countable set by right continuity of the functions f , so Talagrand’s inequality
can be applied.)

(a) First, we note that the class of functions {Kj( f )− f : f ∈F} is uniformly bounded by
‖∑k |φ(· − k)|‖∞‖φ‖1 + 1 = κ‖φ‖∞ + 1 <∞, and hence, F̃ has constant envelope
U = c‖φ‖1.

(b) Second,
sup
f ∈F

‖Kj( f )− f ‖L2(P) ≤ c′2−j/2 =: σ ,

for some finite positive c′, since

E( f (X+ u)− f (X))2 ≤ E| f (X+ u)− f (X)| =
∫

1[s−u,s)(x) f0(x)dx ≤ ‖ f0‖∞u,

if u> 0 and, similarly, if u< 0, and hence, using Minkowski’s inequality for integrals
and the majorisation of K by �, we obtain

‖Kj( f )− f ‖L2(P) =
(

E

(∫
( f (X+ u)− f (X))Kj(X,u+X)du

)2
)1/2

≤
∫ (

E( f (X+ u)− f (X))2
)1/2

2j�(2ju)du

≤ ‖ f0‖1/2
∞

∫
|u|1/2 2j�(2ju)du

= 2−j/2‖ f0‖1/2
∞

∫
|v|1/2�(v)dv.
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5.2 Weak and Multiscale Metrics 433

(c) Finally, consider Sn = ‖n(Pn − P)(Kj f − f )‖F . By Exercise 5.2.3, the classes of
functions {Kj( f ) : f ∈ F} are of VC type with constants A and v in the metric entropy
bound independent of j, hence, since the class F is also VC, the same is true for the
classes of functions {Kj( f )− f : f ∈ F}. Then, by (a) and (b), the expectation bound
in Corollary 3.5.8 gives ESn ≤ C̃[√n2−jj+ j] ≤ C

√
n2−jj for a constant C that depends

only on φ and � and where the last inequality follows from the hypothesis on jn.

The bounds in (a), (b) and (c) are just as in Theorem 5.2.7 with h replaced by 2−j; hence,
an application of Talagrand’s inequality as in the preceding theorem concludes the proof of
the exponential inequality for the cdf. The inequality for BVM follows exactly as in the proof
of the same theorem.

As a consequence, and in complete analogy with the convolution kernel case, we thus
have the following plug-in property for the wavelet projection estimator.

Theorem 5.2.10 Let φ,ψ and f0 satisfy the conditions of Theorem 5.2.9 for some t≥ 0, and
let jn satisfy 2−jn ≥ (logn)/n for all n and

√
n2−jn(t+1)→ 0 as n→∞. If F is the distribution

function of P, then
√

n(FW
n −F)→L GP, in �∞(R),

where GP(x)=GP(I(−∞,x]) is a sample continuous version of the P-bridge. Moreover, GP|BVM

also admits a version with continuous sample paths, and
√

n(PW
n −P)→L GP, in �∞(BVM),

for all M<∞.

Next, we prove an analogue of Theorem 5.2.5 for wavelet density estimators. The
following proof does not require the scaling or the wavelet functions to have bounded
support. More general plug-in results are available; see the notes at the end of this chapter
and the remark following this theorem.

Theorem 5.2.11 Let s> 1/2, and let F =Hs
2,M(R) be the set of continuous functions whose

Sobolev norm is bounded by M<∞. Let f0 be a probability density in Ĥt
2(R) for some t≥ 0,

let Pn be the empirical measure corresponding to i.i.d. samples from dP(x) = f0(x)dx, let
Kj be the projection kernel onto Vj for an S-regular wavelet basis {φk,ψ�k}, S > t+ s and
let fn(x)= Pn(Khn(·,x)) be the corresponding kernel density estimators of f and dPW

n (x)=
fn(x)dx, n∈N. Assume that the resolutions j= jn →∞ satisfy 2−jn(t+s)n1/2 → 0. Then, GP|F
is sample continuous, and

√
n(PW

n −P)→L GP, in �∞(F).

Proof Assume without loss of generality that M = 1. We start with the decomposition
(5.81). For the bias part, we have, by Proposition 4.3.14 and the inequality following its
proof, that

‖P(Kjn)−P)‖F = sup
f ∈F

∣∣∣∣∫ (Kjn( f0)− f0)( f )

∣∣∣∣≤ C‖ f0‖H̃
s
2
2−jn(s+t) = o(1/

√
n)

by the assumption on jn.
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434 Linear Nonparametric Estimators

For the random term, just note that, by definition, Kj is a contraction in the Bs,W
22 -norm

of Bs
22 = Hs

2; hence, ∪j{Kj( f )− f : f ∈ F} is a bounded subset of Hs
2, and therefore, since

s> 1/2, it is a P-Donsker class for all P (as observed just before Theorem 5.2.5). Hence, in
order to prove that

‖Pn −P‖F̃ jn
= oP(1/

√
n),

where F̃ jn = {Kjn( f )− f : f ∈ F}, it suffices to show that sup f ∈Fjn
P f 2 → 0. But this

follows because, using that bounded subsets of Hs
2 are uniformly bounded by the Sobolev

imbedding and that Kjn( f )→ f in L2, we have, for some c<∞,

sup
f ∈F

E(Kjn( f )− f )2 ≤ c
∫

|Kjn( f )− f | f0 ≤ c‖Kjn( f )− f ‖2‖ f0‖2 → 0.

Hence, combining these estimates with the decomposition (5.81), we obtain that√
n‖PW

n − Pn‖F → 0 in probability. Since F is P-Donsker, the theorem follows from
Exercise 3.7.25.

Remark 5.2.12 The results in Section 4.4 about the Donsker property for Besov balls on
[0,1] (particularly Theorem 4.4.5) can be combined with the bias estimates provided by
Proposition 4.3.14 (in particular, by the display following the proof of this proposition)
exactly as in the preceding proof to give if f0 ∈ Bt

p,q([0,1])∪ Lp([0,1]) for some t > 0 and
F = { f ∈ C([0,1]) : ‖ f ‖Bs

p′q′ ([0,1]) ≤ M}, where 1 < p,p′,q,q′ <∞, 1/p+ 1/q = 1, 1/p′ +
1/q′ = 1 and s > max(1/p′,1/2), then GP|F is sample continuous, and moreover, if the
resolutions jn →∞ satisfy 2−jn(t+s)n1/2 → 0, then also

√
n(PW

n −P)→L GP, in �∞(F),
for any Borel probabilty measure P on [0,1]. Here PW

n is the measure with density equal
to the wavelet projection estimator of f0 when boundary-corrected wavelets or periodised
wavelets satisfying Condition 5.1.1(c) or Condition 5.1.1(d) are used.

Finally, we should remark that all the results in this subsection admit extensions to
dimension d with only formal changes.

5.2.2 Multiscale Spaces

We have seen in Section 4.4 how the white noise W and empirical process
√

n(Pn − P)
induce (asymptotically) tight random variables in certain negative-order Besov spaces.
Using the wavelet characterisation of these spaces, these results are in fact equivalent to
tightness results in certain multiscale spaces, where 1/

√
n-consistent estimation of statistical

parameters is possible. This gives an alternative approach to the analysis of nonparametric
procedures where the bias-variance decomposition is done in the frequency domain and will
be particularly interesting in the construction of confidence sets in Chapter 6.

For monotone increasing weighting sequences w = (wl),wl ≥ 1, l ∈ N, we define
multiscale sequence spaces of the following type:

M≡M(w)≡
{

x = {xlk} : ‖x‖M(w) ≡ sup
l

maxk |xlk|
wl

<∞
}

. (5.82)
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5.2 Weak and Multiscale Metrics 435

The space M(w) is a nonseparable Banach space (it is isomorphic to �∞). A separable
closed subspace (isomorphic to c0) is obtained by defining

M0 =M0(w)=
{

x ∈M(w) : lim
l→∞

max
k

|xlk|
wl

= 0

}
, (5.83)

consisting of those (weighted) sequences in M(w) whose l-limit vanishes at infinity.
We notice that wl ≥ 1 implies ‖x‖M ≤ ‖x‖�2 , so M always contains �2. For suitable

divergent weighting sequences (wl), these spaces actually contain objects that are much less
regular than �2-sequences.

Gaussian White Noise in Multiscale Spaces

The following results parallel those from Theorem 4.4.4:

Definition 5.2.13 We call a sequence (wl) admissible if wl/
√

l ↑∞ as l →∞.

Proposition 5.2.14 For {ψlk} a periodic or boundary-corrected wavelet basis of L2([0,1])
from Sections 4.3.4 and 4.3.5, let W = (∫ ψlkdW : l,k) = (glk),glk ∼ N(0,1) be a Gaussian
white noise. For ω= (ωl)=

√
l, we have

E‖W‖M(ω) <∞. (5.84)

If w = (wl) is admissible, then W defines a tight Gaussian Borel probability measure in the
space M0(w).

Proof The proof is the same as that for Theorem 4.4.4, using also Theorem 2.1.20 a).

We note that an assumption such as admissibility of w is necessary if we want to show that
W is tight inM(w) (see Exercise 4.4.3 in and the notes at the end of Chapter 4). In particular,
it is impossible to converge weakly towards W in M(ω) because weak convergence of
probability measures on a complete metric space implies tightness of the limit distribution.

For f ∈ L2, a trajectory in the white noise model gives rise to a tight Gaussian shift
experiment

Y(n) = f + 1√
n
W (5.85)

in M0(w), for any admissible (wl), in view of Proposition 5.2.14. Then
√

n(Y(n)− f )=W, in M0, (5.86)

so Y(n) is a 1/
√

n-consistent estimator of f in M0.

Smoothed Empirical Processes in Multiscale Spaces

Consider next the situation where we observe X1, . . . ,Xn i.i.d. from P with density f on
[0,1]. For {ψlk} a periodic or boundary corrected wavelet basis of L2([0,1]) from Chapter 4,
a natural estimate of 〈 f ,ψlk〉 is given by

Pnψlk :=
∫ 1

0
ψlkdPn = 1

n

n∑
i=1

ψlk(Xi).
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436 Linear Nonparametric Estimators

From the results in Chapter 3, we expect
√

n(Pn − P)(ψlk) to be approximately equal to a
P-Brownian bridge GP, which defines an element of a multiscale space by the action

GP(ψlk)∼ N(0,‖ψlk −EPψlk(X)‖2
2,P), k, l, (5.87)

and we have the following result:

Proposition 5.2.15 Proposition 5.2.14 holds true for the P-Brownian bridge GP replacing
W whenever P has a bounded density on [0,1].
Proof The proof is exactly the same, using the standard bounds Var(GP(ψlk)) ≤ ‖dP‖∞
and Emaxk |GP(ψlk)| ≤ C

√
l‖dP‖∞, where dP denotes the density of P, and where C is a

universal constant.

We note again that admissibility of the weighting sequence w is necessary to obtain
tightness and hence also for any sequence of random variables to converge weakly
towards GP.

Any P with bounded density has coefficients 〈 f ,ψlk〉 ∈ �2 ⊂M0(w). We would like to
formulate a statement such as

√
n(Pn −P)→d GP in M0, paralleling (5.86) in the Gaussian

white noise setting. The fluctuations of
√

n(Pn−P)(ψlk) are indeed at most of order
√

l for l
such that 2l ≤ n but for high frequencies can lie in the Poissonian regime of order 2l/2l/

√
n.

Thus, Pn will not define an element of M0 for every admissible w. In our setting, we can
consider only frequencies up to levels 2l ≤ n, so let us introduce an appropriate ‘projection’
of the empirical measure Pn onto Vj associated to the sample

Pn(j)=
{

Pnψlk, if l ≤ j

0, if l> j,

which obviously defines a tight random element in M0, and the following theorem shows
that the smoothed empirical measure Pn(j) estimates P efficiently in M0 if j = jn is chosen
appropriately:

Theorem 5.2.16 Suppose that P has density f in Cγ ([0,1]) for some γ ≥ 0. Let jn be such
that

2−jn(γ+1/2)w−1
jn

= o(1/
√

n),
2jn jn

n
= O(1).

Then we have
√

n(Pn(jn)−P)→d GP, in M0(w),

as n →∞ for any w that is admissible.

Proof For J to be chosen later, let VJ be the subspace of M(w) consisting of the scales
l ≤ J, and let πVJ( f ) = P(J) be the projection of P onto VJ. We have, by definition of the
Hölder space,

‖P−P(jn)‖M0 = sup
l>jn

w−1
l max

k
|〈 f ,ψlk〉|� w−1

jn
2−jn(γ+1/2) = o(1/

√
n), (5.88)

so this term is negligible in the limit distribution. Writing
√

n(Pn(jn)−P(jn))= νn
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5.2 Weak and Multiscale Metrics 437

and L(X) for the law of a random variable X, it suffices to show that β(L(νn),L(GP))→ 0,
where we denote by β the bounded Lipschitz distance dBL between probability measures on
the complete separable metric space M0, which, we recall, metrises weak convergence (see
(3.254) and the paragraph preceding this definition). We have

β(L(νn),L(GP))≤ β(L(νn),L(νn) ◦π−1
VJ
)+β(L(νn) ◦π−1

VJ
,L(GP) ◦π−1

VJ
)

+β(L(GP),L(GP) ◦π−1
VJ
). (5.89)

Let ε > 0 be given. The second term is less than ε/3 for every J fixed and n large enough by
the multivariate central limit theorem applied to

1√
n

n∑
i=1

(ψlk(Xi)−Eψlk(X)), k, l ≤ J,

noting that eventually jn > J. For the first term, we have

β(L(νn),L(νn) ◦π−1
VJ
)≤ E‖√n(πVj −πVJ)(Pn −P)‖M(w)

≤
[

max
J<l≤j

√
l

wl

]
Emax

J<l≤j
l−1/2 max

k
|〈√n(Pn −P),ψlk〉|.

Thus, for J large enough, this term can be made smaller than ε/3 if we can show that the
expectation is bounded by a fixed constant. For M a large enough constant, this expectation
is bounded above by M plus∫ ∞

M
P

(
max
J≤l≤j

l−1/2 max
k

|〈√n(Pn −P),ψlk〉|> u

)
du

≤
∑

J≤l≤j,k

∫ ∞

M
P
(
|〈√n(Pn −P),ψlk〉|>

√
lu
)

du

≤
∑
J≤l≤j

2l

∫ ∞

M
e−Cludu � e−C′JM,

where the third inequality follows from an application of Bernstein’s inequality (see
Chapter 3) together with the bounds Pψ2

lk ≤ ‖ f ‖∞ and
√

l‖ψlk‖∞ ≤ √
l2l/2 = O(

√
n), for

l ≤ jn, using the assumption on jn. For the third Gaussian term, we argue similarly using the
arguments from the proof of Theorem 4.4.4.

Exercises

5.2.1 Let Q be a finite positive Borel measure on R, let μ be a Borel signed measure of finite variation
on R and let f : R �→ R be a Borel measurable function. Assume that (a) f (· + y) ∈ L2(Q) for
all y ∈ R, (b) f (x + ·) ∈ L1(|μ|) for all x ∈ R and (c) the function y �→ ‖ f (· + y)‖L2(Q) is in
L1(|μ|). Prove that the function

h(x) :=
∫

f (x+ y)dμ(y)

is in the L2(Q)-closure of |μ|(R) times the symmetric convex hull of F f := { f (· + y) : y ∈
R}. Hint: By separability there exists a countable set {yk} ∈ R such that the set of functions
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438 Linear Nonparametric Estimators

{ f (·+ yk)} is dense in F f for the L2-norm. Given ε > 0, let ε′ = ε/2‖μ‖ define the measurable
partition {Ak}∞k=1 of R: A1 = {y ∈ R : ‖ f (· + y)− f (· + y1)‖L2(Q) < ε

′} and, recursively, for all

k ∈N, Ak = (∪k−1
j=1 Aj)

c ∩{y ∈R : ‖ f (·+ y)− f (·+ yk)‖L2(Q) < ε
′}. By Minkowski for integrals,∥∥∥∥∫ f (·+ y)dμ(y)−

r∑
k=1

f (·+ yk)μ(Ak)

∥∥∥∥
L2(Q)

≤
r∑

k=1

∫
‖ f (x+ y)− f (x+ yk)‖L2(Q)IAk(y)d|μ|(y)+

∫
∪∞k=r+1Ak

‖ f (x+ y)‖L2(Q)d|μ|(y)

≤ ε′‖μ‖+
∫
∪∞k=r+1Ak

‖ f (x+ y)‖L2(Q)d|μ|(y),

which proves the statement by letting r →∞.
5.2.2 Theorem 5.2.7 does not hold for discrete probability measures P. Concretely, let P be a

probability measure such that P{x0} = a > 0 for some x0 ∈ R. If K ∈ L1(R) and hn → 0
as n → ∞. Prove that limn Pr{‖FK

n (h) − Fn‖∞ > a/3} = 1; in particular, the sequence√
n‖FK

n (h)− Fn‖∞ is not stochastically bounded. Hint: Observe that the continuity of P ∗Kh

implies that ‖P∗Kh−P‖F ≥ a/2, where F = {I(−∞,t] : t∈R}. Then proceed by analogy to parts
of the proof of Theorem 5.2.7 to show that

√
nE‖(Pn−P)(Kh ∗ f − f )‖F =O(1), and conclude

from decomposition (5.69) that
√

n‖FK
n (h)−Fn‖∞ ≥√

na/2−OP(1).
5.2.3 Let φ : R→ R be of bounded p-variation for some 1 ≤ p <∞ and with support contained in

(B1,B2] for some −∞< B1 < B2 <∞, and let

Fφ =
{∑

k∈Z
φ(2jy− k)dyφ(2j(·)− k) : y ∈R, j ∈N

}

and

Dφ,j =
{∑

k∈Z
2j

∫ t

−∞
φ(2jy− k)φ(2j(·)− k) : t ∈R

}
, j ∈N∪{0}.

Prove that these classes of functions are of VC type (uniformly in j for Dφ,j); concretely, if G is
either Fφ or Dφ,j, for any j, then for all Borel probability measures Q on R,

sup
Q

N(G,L2(Q),ε)≤
(

A

ε

)v

, 0< ε < A,

for A,v positive and finite constants depending only on φ. In particular, by Theorem 4.2.10, part
(e), this applies to Daubechies scaling and wavelet functions. Hint: Proposition 3.6.12 applies
to the class M of dilations and translations of φ, giving for its covering numbers a uniform in
Q bound as earlier. Now, for y, j fixed, the sum

∑
k∈Zφ(2

jy− k)φ(2j(·)− k) consists of at most
[B2 −B1]+ 1 summands, each of which has the form

φ(2jy− k)φ(2j(·)− k)= cj,y,kφ(2
j(·)− k),

where k is a fixed integer satisfying 2jy−B2 ≤ k< 2jy−B1, and where |cj,y,k| ≤ ‖φ‖∞. A simple
computation on covering numbers then shows that if a class M has a bound on L2(Q)-covering
numbers of the form (A/ε)v, then so does (for possibly different A, v) any class Fφ consisting of
linear combinations of a fixed number of elements of M with coefficients bounded in absolute
value by a fixed constant, proving the statement for Fφ . For Dφ,j, by the support assumption on
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φ, we have, for every fixed t,∑
k∈Z

2j

∫ t

−∞
φ(2jy− k)dy φ(2j(·)− k)= c

∑
k≤2jt−B2

φ(2j(·)− k)

+
∑

2jt−B2<k≤2j t−B1

cj,t,kφ(2
j(·)− k),

where c = ∫∞
−∞φ(y)dy and |cj,t,k| ≤ ‖φ‖1. The class of functions⎧⎨⎩ ∑

2j t−B2<k<2j t−B1

cj,t,kφ(2
j(·)− k) : t ∈R

⎫⎬⎭
satisfies the bound on covering numbers with A,v independent of j by the argument in the first
part of the hint. Each function in the class⎧⎨⎩c

∑
k≤2jt−B2

φ(2j(·)− k) : t ∈R

⎫⎬⎭
is the difference of two functions, one in each of the classes⎧⎨⎩c

∑
k≤2jt−B2

φ+(2j(·)− k) : t ∈R

⎫⎬⎭ and

⎧⎨⎩c
∑

k≤2jt−B2

φ−(2j(·)− k) : t ∈R

⎫⎬⎭ ,

where φ = φ+ − φ− and φ+,φ− ≥ 0. But these classes are linearly ordered, so their subgraphs
are ordered by inclusion and therefore are VC subgraphs of index 1. Now a simple computation
on covering numbers gives the bound for Dφ,j.

5.2.4 Let f0 satisfy the hypotheses of Theorem 5.2.7 for some t ≥ 0, and suppose that its support is
contained in (−1,1). Let K be a symmetric kernel of order r = t+ 1− k for some 0< k< 1/2,
and let hn be such that ht+1−k

n n−1/2 → 0, e.g., hn = n−1/(2t+1). Show that if F = {α−1|x|αI[−1,1] :
0 < α <∞}, then

√
n(Pk

n − P)→L GP in �∞(F). That is, fn is minimax in Lp loss, and the
empirical moments and absolute moments based on fn converge simultaneously to those of
f0(x)dx at the rate 1/

√
n. Show also that ‖PK

n −P‖BL = OP(1/
√

n).

5.3 Some Further Topics

The minimax paradigm extends far beyond the basic function estimation problems
introduced earlier. In this section we discuss two further topics that arise naturally in the
field. In the first subsection we look at functionals of a density consisting of integrals
of smooth functions, starting with the integral of the square of a density. In the second
subsection we consider the very natural problem of estimating a density or a signal from
contaminated observations, concretely, from observations Xi + εi that contain additive i.i.d.
errors εi. Just as in previous sections in this chapter, we obtain upper bounds and/or limit
theorems. As in previous sections, the important subject of optimality can be treated with
the tools of Chapter 6 (see the notes at the end of the chapter).

5.3.1 Estimation of Functionals

Even when a statistical parameter space F is infinite dimensional often one is interested
only in a one-dimensional aspect of it. Such situations can be conveniently modeled as
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functionals

� : F → X,

where X is the range space of the functional: typically, X = R or Rn or some other function
space. The most natural approach to estimating �( f ) is perhaps based on �( f̂n), where f̂n

is a nonparametric estimator for f , but this need not always be optimal. This is illustrated
here with some nonlinear integral functionals such as

∫
f 2 or

∫
φ( f (x),x) f 2(x)dx, where φ

enjoys some smoothness.

Estimation of ‖ f ‖2
2 under Gaussian White Noise

Consider an observation in the white noise model (5.5), and suppose that the goal is to
estimate ‖ f ‖2

2. If

fn(j)(x)=
2J−1∑
k=0

(∫ 1

0
φJkdY

)
φJk +

j−1∑
l=J

2l−1∑
k=0

(∫ 1

0
ψlkdY

)
ψlk(x)

=
∑

J−1≤l<j,k

(∫ 1

0
ψlkdY

)
ψlk(x), x ∈ [0,1],

denotes the projection of the observation dY onto a wavelet subspace Vj and where, for
ease of notation, we recall the notational convention of replacing φJk by ψJ−1k introduced in
(4.32), we can use as our estimate for ‖ f ‖2

2 the statistic

Tn = ‖ fn(j)‖2
2 −
σ 22j

n
=
∑
l≤j,k

(∫ 1

0
ψlk(t)dY(t)

)2

− σ
22j

n
. (5.90)

(We omit the lower summation index for l in (5.90) because it depends on the starting VJ

which needs to be some J > 0 for boundary-corrected wavelets but is −1 for periodised
wavelets if we start at l = 0.) We see that the estimation error is

‖ fn(j)‖2
2 −
σ 22j

n
−‖ f ‖2

2 =
2σ√

n

∑
l≤j,k

glk〈 f ,ψlk〉+ σ
2

n

∑
l≤j,k

(g2
lk − 1)+‖Kj( f )− f ‖2

2,

which implies, for

Z = σ√
n

∑
l,k

glk〈 f ,ψlk〉 ∼ N(0,(σ 2/n)‖ f ‖2
2),

that

E|Tn −‖ f ‖2
2 − 2Z| <∼

σ 22j/2

n
+‖Kj( f )− f ‖2

2 +
2σ√

n
‖Kj( f )− f ‖2. (5.91)

From this we obtain the following result:

Proposition 5.3.1 Suppose that f ∈ Br
2∞([0,1]) for some r > 1/4, and let 2jn ∼ n1/(2r+1/2).

Then
√

n(Tn −‖ f ‖2
2)→d N(0,4σ 2‖ f ‖2

2),

as n →∞.
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Proof For such f ∈ Br
2∞, we have ‖Kj( f )− f ‖2

2 =O(2−2jr), which is balanced with 2j/2/n
when 2jn ∼ n1/(2r+1/2). For r> 1/4, we then have 2−2jnr = o(n−1/2), and as a consequence,

E|Tn −‖ f ‖2
2 − 2Z| = o(1/

√
n)⇒√

n(Tn −‖ f ‖2
2)→d 2

√
nZ,

completing the proof.

For r ≤ 1/4, the preceding estimates give a rate of convergence

E|Tn −‖ f ‖2
2| = O(n−2r/(2r+1/2)), (5.92)

which can be shown to be optimal in a minimax sense using methods from Chapter 6.

Estimation of ‖ f ‖2
2 Based on U-Statistics

We now consider the sampling analogue to the problem from the preceding subsection.
Suppose that one wants to estimate

∫
R

f 2(x)dx based on a sample X1, . . . ,Xn from f . A
natural estimator is

Tn(hn) := 2

n(n− 1)hn

∑
1≤i<j≤n

K

(
Xi −Xj

hn

)
, (5.93)

where we take K to be a bounded symmetric kernel such that
∫

K(u)du = 1 as well as∫ |K(u)||u|du<∞ and 0< hn → 0. (Note that Tn(h) equals
∫
(Kh ∗Pn)dPn with the diagonal

terms removed and with a slight renormalisation: roughly, one replaces f by its kernel
density estimator and integration against f (x)dx by integration with respect to the empirical
measure.)

It is convenient to recall U-statistics notation. For a symmetric function of two variables
R(x,y), we write

U(2)n (R)=
2

n(n− 1)

∑
1≤i<j≤n

R(Xi,Xj).

The two Hoeffding projections of R are

π1R(x)= ER(x,X1)−ER(X1,X2),

π2(R)(x,y)= R(x,y)−ER(x,X1)−ER(y,X1)+ER(X1,X2),

which induce the Hoeffding decomposition

U(2)n (R)−ER(X1,X2)= 2U(1)n (π1R)+U(2)n (π2R), (5.94)

where U(1)n (π1R)= n−1
∑n

i=1(π1R)(Xi). Note that, by orthogonality,

E
(
U(1)n (π1R)

)2 = n−1E((π1R)(X1))
2 ≤ n−1E(R(X1,X2)−ER(X1,X2))

2,

E
(
U(2)n (π2R)

)2 = 2

n(n− 1)
E((π2R)(X1,X2))

2 ≤ 2

n(n− 1)
E(R(X1,X2)−ER(X1,X2))

2.

(See the beginning of Section 3.4.3.)
We will also use the notations Hα2,M and L∞

L , respectively, for the ball of radius M of
Hα2 ≡ Bα22(R) and for the ball of radius L of L∞(R).
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442 Linear Nonparametric Estimators

Theorem 5.3.2 Let f ∈ Hα2 (R)∩L∞(R) for some 0< α ≤ 1/2.

(i) We have

sup
f ∈Hα2,M

∣∣∣∣ETn(hn)−
∫
R

f 2(x)dx

∣∣∣∣≤ B(hn) := c1(M)h
2α
n (5.95)

and

sup
f ∈Hα2,M∩L∞L

E

(
Tn(hn)−ETn(hn)− 1

n

n∑
i=1

Yi

)2

≤ c2
2(M)σ

2(hn,n) (5.96)

:= c2
2(M)

(
1

n2hn
∨ Lh2α

n

n

)
,

where Yi = 2
(

f (Xi)−
∫
R

f 2
)
, and where c1(M) and c2(M) are numerical constants

depending only on M and the function K.
(ii) As a consequence, taking hn so that hn ≈ n−2/(4α+1), we have the following:

(a) If 0< α ≤ 1/4, then

Tn(hn)−
∫
R

f (x)2dx = OP(n
−4α/(4α+1)),

(b) If α > 1/4 and if τ 2 =
[∫

R
f 3 − (∫

R
f 2
)2
]
, then

√
n

(
Tn(hn)−

∫
R

f (x)2dx

)
→d Z ∼ N(0,4τ 2).

Proof The bias equals

ETn(hn)−
∫

f 2 =
∫
R

∫
R

Khn(x− y) f (y)dy f (x)dx−
∫
R

f (x) f (x)dx

=
∫
R

∫
R

Khn(x− y) [ f (y)− f (x)] f (x)dydx

=
∫
R

∫
R

K(u) [ f (x− uhn)− f (x)] f (x)dudx

=
∫
R

K(u)

[∫
R

f̄ (uhn − x) f (x)dx−
∫
R

f̄ (0− x) f (x)dx

]
du

=
∫
R

K(u)
[
( f̄ ∗ f )(uhn)− ( f̄ ∗ f )(0)

]
du, (5.97)

where f̄ (x) = f (−x), and where ∗ denotes convolution. As in Lemma 4.3.18 we have for
f ,g ∈ Hα2 ∩L1,0< α ≤ 1/2, for any x ∈R, t 
= 0, using Fourier inversion and (4.115),
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|( f ∗ g)(x+ t)− ( f ∗ g)(x)|
|t|2α ≤ |t|−2α‖F−1F [( f ∗ g)(·+ t)− ( f ∗ g)(·)]‖∞

≤ (2π)−1|t|−2α‖F[( f ∗ g)(·+ t)− ( f ∗ g)(·)]‖1

= (2π)−1|t|−2α

∫
R

∣∣F( f ∗ g)(u)
[
e−iut − 1

]∣∣du

= (2π)−1

∫
R

|F f ||u|α|Fg||u|α |e
−iut − e−i0|
|u|2α|t|2α du

≤ C‖ f ‖Hα2
‖g‖Hα2

,

since e−i(·) is bounded Lipschitz.
To proceed, identity (5.97) now gives, by the conditions on the kernel, that∣∣∣∣ETn(hn)−

∫
f 2

∣∣∣∣≤ c1h
2α
n ,

where c1 = C‖ f ‖Hα2

∫ |K(u)||u|2αdu ≤ CM2
∫ |K(u)||u|2αdu, that is, (5.95).

Next, we show (5.97). Setting

R(u,v) := Khn(u− v),

we can write, in U-statistic notation, Tn(hn)= U(2)n (R) or, if R̃(u,v)= R(u,v)−ER(X1,X2),

Tn(hn)−ETn(hn)= U(2)n (R̃).

Thus, by Hoeffding’s decomposition, it remains to estimate the following statistics (note
that πiR = πiR̃, i = 1,2):

U(2)n (R̃)−
1

n

n∑
i=1

Yi =
(

2U(1)n (π1R)− 1

n

n∑
i=1

Yi

)
+U(2)n (π2R)=: S1 + S2.

First, we have, by Proposition 4.3.8 (note that K is a kernel of order 1> α),

nES2
1 ≤ E

[∫
2Khn(X1 − y) f (y)dy− 2 f (X1)

]2

≤ 4‖ f ‖∞‖Khn ∗ f − f ‖2
2

≤ C‖ f ‖∞‖ f ‖Hα2
h2α

n . (5.98)

Next, since π2 is a projection of L2( f (x)dx), it follows from Young’s inequalities that

ES2
2 ≤

2

n(n− 1)
ER2 = 2

n(n− 1)
E
[
Khn(X1 −X2)

]2

= 2

n(n− 1)

∫
(K2

hn
∗ f )(y) f (y) dy

≤ 2‖ f ‖∞‖K‖2
2

n(n− 1)hn
. (5.99)

Now (5.98) and (5.99) complete the proof of (5.97). The remaining claims in part (ii) follow
by the choice of the bandwidth and in case (a) (and hence α ≤ 1/4) noting that we have
n−1

∑n
i=1 Yi = OP(n−1/2) = OP(n−4α/(4α+1)) and in case (b) from the central limit theorem

(CLT) for the random variables Yi.
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With a view towards estimating
∫
ϕ( f (x),x)dx for differentiable functions ϕ by means

of a limited Taylor development, it is convenient to estimate
∫
ψ(x) f 2

0 (x)dx for ψ bounded.
The estimator

Tψ ,1
n (h) := 1

n(n− 1)h

∑
1≤i
=j≤n

K

(
Xi −Xj

h

)
ψ(Xi)

= 1

n(n− 1)h

∑
i<j≤n

K

(
Xi −Xj

h

)
(ψ(Xi)+ψ(Xj)),

where the identity follows from the symmetry of K, is the analogue of Tn earlier: both
are obtained by deleting the diagonal and re-norming in the expression

∫
ψ(x) fn(x)dPn(x),

where fn is the kernel density estimator and Pn is the empirical measure (Tn corresponds
to ψ ≡ 1). Application of the bias calculations earlier (see (5.97) and the text after it) to
this case only obtains the crucial bound h2α

n if ‖ψ f ‖Hα2
<∞, but this condition essentially

requires ψ to be in a Sobolev space. There is a bias-reduction device that allows us to
obtains this bound under only the boundedness assumption on ψ ; it consists in subtracting
of the original estimator a different one with an overlapping bias, thus cancelling some of it.
Another natural estimator of

∫
ψ f 2 is

∫
ψ f 2

n , where fn is the kernel density estimator of f ,
again with the diagonal deleted and a slight re-norming (the diagonal terms have different
expected values than the other terms in the resulting double sum, and their deletion reduces
bias and helps in computations), explicitly,

Tψ ,2
n (h)= 2

n(n− 1)h

∑
i<j≤n

∫
K

(
x−Xi

h

)
K

(
x−Xj

h

)
ψ(x)dx.

Then we observe that with the usual notation Kh(·)= K(·/h)/h,

ETψ ,1
n (h)=

∫
(Kh ∗ f )ψ f and ETψ ,2

n (h)=
∫
(Kh ∗ f )2ψ .

Therefore,

E

(
2Tψ ,1

n (h)−Tψ ,2
n (h)−

∫
ψ f 2

)
= 2

∫
(Kh ∗ f )ψ f −

∫
(Kh ∗ f )2ψ −

∫
ψ f 2

=−
∫
(Kh ∗ f − f )2ψ , (5.100)

so the absolute value of this expression admits the bound ‖ψ‖∞‖Kh ∗ f − f ‖2
2, of order at

most h2α, if f is in Bα2∞, just as in Theorem 5.3.2. Thus, we define

Tψn (h)= 2Tψ ,1
n (h)−Tψ ,2

n (h) (5.101)

and note that, by the preceding argument and Proposition 4.3.8 (recall that K is a kernel of
order 1), ∣∣∣∣ETψn (h)−

∫
ψ f 2

∣∣∣∣≤ ‖ψ‖∞‖Kh ∗ f − f ‖2
2 ≤ C‖ψ‖∞‖ f ‖2

Bα2∞
h2α,

where C depends only on K and the Besov norm used. Note that the bias bound for this new
estimator does work for 0 < α < 1 (as opposed to 0 < α < 1/2 in the preceding theorem).
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And, although there is not much difference, it seems more natural in this new context to
measure smoothness of f in terms of the Besov scale rather than the Sobolev scale.

We now look at the variance part of this estimator, that is, at Tψn (h)−ETψn (h). We consider
the two terms separately. For Tψ ,1

n , letting

R1(u,v)= 1

2
Kh(u− v)(ψ(u)+ψ(v)),

we have, Tψ ,1
n (h)= 2/(n(n− 1))

∑
1≤i<j≤n R1(Xi,Xj)=: U(2)n (R1), so, with analogous notation

as in the proof of the preceding theorem and with Yi = 2
(
ψ(Xi) f (Xi)−

∫
ψ f 2

)
,

Tψ ,1
n (h)−ETψ ,1

n (h)− 1

n

n∑
i=1

Yi =
(

2U(1)n (π1R1)− 1

n

n∑
i=1

Yi

)
+U(2)n (π2R1)=: S1 + S2.

Then, mimicking the preceding proof,

nES2
1 ≤ E

[∫
Kh(X1 − y)(ψ(y)+ψ(X1)) f (y)dy− 2ψ(X1) f (X1)

]2

≤ 2‖ψ‖2
∞‖ f ‖∞‖Kh ∗ f − f ‖2

2 + 2‖ f ‖∞‖Kh ∗ (ψ f )−ψ f ‖2
2.

This bound is not as small as (5.98), but note that it still converges to zero when h tends to
zero: if K is a kernel integrating to 1, and if g is in L2, Minkowski’s inequality for integrals
gives (∫

(Kh ∗ g− g)2(y)dy

)1/2

=
(∫ (∫

K(u)(g(y− uh)− g(y))du

)2

dy

)1/2

≤
∫

|K(u)|
(∫

(g(y− uh)− g(y))2dy

)1/2

du,

and this tends to zero as h → 0 by Lebesgue’s dominated convergence and by continuity of
translations in L2. We also have

nES2
2 ≤

1

n− 1
E [Kh(X1 −X2)(ψ(X1)+ψ(X2))]

2 ≤ 2‖ψ‖2
∞‖ f ‖∞‖K‖2

2

(n− 1)h

by boundedness of ψ and Young’s inequality, just as in (5.99). For the variance part of Tψ ,2
n ,

we use the U-statistic kernel

R2(u,v)=
∫

Kh(x− u)Kh(x− v)ψ(x)dx,

with Hoeffding projections

π2(R2)=
∫
(Kh(x− u)− (Kh ∗ f )(x))(Kh(x− v)− (Kh ∗ f )(x))ψ(x)dx,

π1(R2)=
∫
(Kh ∗ f )(x)Kh(x− u)ψ(x)dx−ER2(X1,X2).
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If we still denote S1 = 2U(1)n (π1R2)− (1/n)∑n
i=1 Yi and S2 = U(2)n (π2R2), we obtain in this

case the following two bounds. The first bound makes repeated use of Young’s inequality:

n(n− 1)

2
ES2

2 ≤ E

[∫
Kh(x−X1)Kh(x−X2)ψ(x)dx

]2

≤ ‖ψ‖2
∞E

∫ ∫
|Kh(x−X1)||Kh(x−X2)||Kh(y−X1)||Kh(y−X2)|dxdy

= ‖ψ‖2
∞

∫ ∫ ∫ ∫
|Kh(x− u)||Kh(x− v)||Kh(y− u)|

×|Kh(y− v)| f (u) f (v)dudvdxdy

= ‖ψ‖2
∞

∫ ∫
(Kh ∗Kh)

2(v− u) f (u) f (v)dudv

= ‖ψ‖2
∞

∫ ∫
((Kh ∗Kh)

2 ∗ f )(v) f (v)dudv

≤ ‖ψ‖2
∞‖ f ‖∞‖Kh ∗Kh‖2

2

≤ ‖ψ‖2
∞‖ f ‖∞‖Kh‖2

1‖Kh‖2
2 = ‖ψ‖2

∞‖ f ‖∞‖K‖2
1‖K‖2

2/h.

For the second bound, we start with the decomposition

nES2
1 ≤ E

[
2
∫
(Kh ∗ f )(x)Kh(x−X)ψ(x)dx− 2ψ(X) f (X)

]2

≤ 8E

[∫
((Kh ∗ f )(x)Kh(x−X)ψ(x)dx− (Kh ∗ (ψ f ))(X)

]2

+8E [(Kh ∗ (ψ f ))(X)−ψ(X) f (X)]2

The second summand is just∫
(Kh ∗ (ψ f )−ψ f )2 f ≤ ‖ f ‖∞‖Kh ∗ (ψ f )−ψ f ‖2

2,

which tends to zero as h → 0, as observed earlier. As for the first summand, we have, by
Young’s inequality,

E

[∫
(Kh ∗ f )(x)Kh(x−X)ψ(x)dx− (Kh ∗ (ψ f ))(X)

]2

=
∫
(Kh ∗ ((Kh ∗ f )ψ)−Kh ∗ (ψ f ))2 f

≤ ‖ f ‖∞‖Kh‖2
1‖(Kh ∗ f )ψ − fψ‖2

2 ≤ ‖ f ‖∞‖K‖1‖ψ‖2
∞‖Kh ∗ f − f ‖2

2.

Collecting these bounds, noting that ‖Kh ∗ f − f ‖2 is bounded by a constant times ‖ f ‖Hα2
hα

for 0 < α < 1 by Proposition 4.3.8, that ‖Kh ∗ (ψ f )−ψ f ‖2 → 0 as h → 0 for ψ f in L2

and that the random variables {Yi} satisfy the CTL, we obtain the following extension of
Theorem 5.3.2:

Theorem 5.3.3 Let f be a bounded density in Bα2∞(R) for some 0 < α < 1, let K be a
symmetric kernel in L1(R)∩L2(R) integrating to 1 and such that

∫ |K(u)||u|du<∞ and let

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.006
http:/www.cambridge.org/core


5.3 Some Further Topics 447

ψ be a bounded measurable function. Let Xi, i ∈ N, be independent, identically distributed
with law of density f , and let Yi = 2

(
ψ(Xi) f (Xi)−

∫
ψ f 2

)
. Let Tψn (h) be the estimator of∫

R
ψ(x) f 2

0 (x)dx defined by equation (5.101). Then there exists a constant C that depends
only on K (and the Besov norm used) such that, for h> 0 and n ≥ 2,

E

(
Tψn (h)−

∫
R

ψ(x) f 2(x)dx− 1

n

n∑
i=1

Yi

)2

≤ C(K)

[
‖ψ‖∞‖ f ‖∞ 1

n2h
+‖ψ‖∞‖ f ‖∞‖Kh ∗ f − f ‖2

2

n

+‖ f ‖∞‖Kh ∗ (ψ f )−ψ f ‖2
2

n
+‖ψ‖2

∞‖Kh ∗ f − f ‖4
2

]
. (5.102)

Hence, taking hn = n−2/(4α+1), we have

(a) For 0< α ≤ 1/4,

Tψn (hn)−
∫
ψ f 2 = OP(n

−4α/(4α+1)),

(b) For α > 1/4 and τ 2 = Var(Y1),

√
n

(
Tψn (hn)−

∫
ψ f 2

)
→d Z ∼ N(0,τ 2).

The preceding two theorems admit versions for wavelet estimators. With the obvious
changes (including significant simplifications due to ortho-normality), the preceding proof
can be easily modified to show that for f ∈ Bα2∞, 0 < α < 1, and for projection kernels Kj

onto the nested spaces Vj from a multiresolution analysis with a wavelet basis {φk, ψj,k} of
regularity index S> 0, the estimators

TW
n (jn)=

1

n(n− 1)

∑
i
=j≤n

Kjn(Xi,Xj)

satisfy the conclusions of Theorem 5.3.2, and the estimators

TW,ψ
n (jn)= 2

n(n− 1)

∑
k∈Z,�<jn

∑
i
=j≤n

ψ�,k(Xi)ψ�,k(Xj)ψ(Xj) (5.103)

− 1

n(n− 1)

∑
k∈Z,�<jn

∑
k′∈Z,�′≤jn

∑
i<j≤n

ψ�,k(Xi)ψ�′,k′(Xj)

∫
ψ�,kψ�′,k′ψ

satisfy the conclusions of Theorem 5.3.3. Likewise, the densities may be defined on
an interval A ⊂ R instead of R, and the wavelet basis then may be replaced by a
boundary-corrected basis on L2(A) or by a periodised wavelet basis of f (0)= f (1).

Estimation of General Integral Functionals

Let φ(u,x) be a differentiable function of two variables defined on I×R, where I is an open
interval containing the range [a,b] of a bounded density f . The object in this subsection is
to estimate T( f ) := ∫

R
φ( f (x),x) f (x)dx. An important example of a functional of this type

is the Shannon entropy functional, which is considered in Exercise 5.3.4.
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448 Linear Nonparametric Estimators

To this end, we begin by taking a preliminary estimator f̂ of f using only n1 � n/ logn
of the n data and do a Taylor expansion of φ about the point ( f̂ (x),x) for each x. Then,
denoting by φ′1(u,v), φ′′1 (u,v), φ(j)1 (u,v) the partial derivatives of φ with respect to the first
variable and

‖φ(j)1 ‖∞ = sup
u∈I,x∈R

∣∣∣∣∂ jφ

∂uj
(u,v)

∣∣∣∣
and assuming that ‖φ(3)1 ‖∞ <∞, we have

T( f )=
∫
φ( f̂ (x),x)dx+

∫
φ′1( f̂ (x),x)( f − f̂ )(x)dx

+ 1

2

∫
φ′′1 ( f̂ (x),x)( f − f̂ )2(x)dx+�n,

where the remainder �n satisfies |�n| ≤ 1/6‖φ(3)1 ‖∞
∫ | f − f̂ |3. Collecting the terms that are

linear in f , those that are quadratic in f and the remainder, this becomes

T( f )=
∫

G(x)dx+
∫

H(x) f (x)dx+
∫

J(x) f 2(x)dx+�n,

where, writing f̂ for f̂ (·) to ease notation,

G(·)= φ( f̂ , ·)−φ′1( f̂ , ·) f̂ + 1

2
φ′′1 ( f̂ , ·) f̂ 2, (5.104)

H(·)= φ′1( f̂ , ·)− f̂ φ′′1 ( f̂ , ·), (5.105)

J(·)= 1

2
φ′′1 ( f̂ , ·). (5.106)

Now we use the remaining n2 = n − n1 data to estimate
∫

H(x) f (x)dx and
∫

J(x) f (x)dx,
the first by Pn2H and the second by the estimator constructed in the preceding subsection
taking ψ(x)= J(x). We assume that f̂ depends on the first n1 data, X1, . . . ,Xn1 , and that the
estimators of H and J depend on f̂ and the last n2 data. Thus, we define

Tn :=
∫

G(x)dx+ 1

n2

n∑
i=n1+1

H(Xi)+ 2

n2(n2 − 1)

∑
n1<i<j≤n

Khn

(
Xi −Xj

)
(J(Xi)+ J(Xj))

− 2

n2(n2 − 1)h

∑
n1<i<j≤n

∫
Khn (x−Xi)Khn

(
x−Xj

)
J(x)dx, (5.107)

where hn � n−2/(4α+1)
2 , and we assume that f ∈ Bα2∞(R) and that K is a kernel with the same

properties as in Theorem 5.3.3. We could as well use wavelets rather than kernels to define
the second and third parts of the estimator (as at the end of the preceding subsection) and
replace R by an interval, for example, [0,1].

We will only sketch the proof of the following theorem, mainly to illustrate the use
of Theorem 5.3.3 and give a sense of the computations involved. To make for a cleaner
statement, we first list the hypotheses:
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H1: f is a bounded density, 0 ≤ a ≤ f (x)≤ b<∞ for all x ∈ supp( f ), and f ∈ Bα2∞ for
some 1/4< α < 1.

H2: The preliminary estimator f̂ = f̂n of f is constructed from X1, . . . ,Xn1 , where n1 �
n/ logn, such that (a) for any fixed choice of ε, for all x∈ supp( f ),a−ε≤ f̂ (x)≤ b+ε
with probability 1 for all n1 large enough depending on ε; (b) E‖ f − f̂ ‖q → 0 for q =
1,2; hence, E‖ f − f̂ ‖r

q → 0 for any r> 0; and (c) E‖ f − f̂ ‖6
3 ≤ Cn−β1 for some β > 1

and C<∞ independent of n (examples: see Proposition 5.1.7 and Theorem 5.1.15).
H3: The kernel K is as in Theorem 5.3.2.
H4: The function φ(u,x) is a bounded function of two variables defined on I×R, where I

is an open interval containing the interval [a− ε,b+ ε] (hence the range of the density
f and that of the preliminary estimators f̂ for n1 large enough), and it is three times
differentiable with respect to the first variable, with the first three partial derivatives
uniformly bounded on I×R.

Theorem 5.3.4 Assume H1–H4 for a given α ∈ (1/4,1), let T( f ) := ∫
R
φ( f (x),x) f (x)dx

and let Tn be the estimator of T( f ) defined by (5.107) for hn � n2/(4α+1)
2 for n1 and f̂ as

specified in H2 and n2 = n− n1. Then we have
√

n(Tn −T( f ))→d Z ∼ N(0,C( f ,φ)), (5.108)

with convergence of second moments, where

C( f ,φ)=
∫
(φ′1( f (x),x)2 f (x)dx−

(∫
φ′1( f (x),x) f (x)dx

)2

,

with φ′1(u,v)= ∂φ(u,v)/∂u.

Proof (Sketch.) By the central limit theorem for φ′1( f (X),X), it suffices to prove that
√

n
[
Tn −T( f )− (Pn2 −P)(φ′1( f (·), ·)]→ 0

in probability, where Pn2 is the empirical measure based on Xn1+1, . . . ,Xn. Since, as observed
earlier, |�n| ≤ 1/6‖φ(3)1 ‖∞

∫ | f − f̂ |3, it follows from H2 that E�2
n = O(n−β1 ) = o(n−1).

Also, denoting by Pn2 the empirical measure based on the second portion of the sample,
Xn1+1, . . . ,Xn, and integrating first conditionally on the first n1 variables,

nE
[
(Pn2 −P)(φ′1( f̂ , ·)−φ′1( f , ·))

]2 ≤ n

n2
E

[∫
(φ′1( f̂ (x),x)−φ′1( f (x),x))2 f (x)dx

]
<∼ 2‖φ′1‖∞‖φ′′1‖∞‖ f ‖∞E‖ f̂ − f ‖2

2 → 0

by H2 and H4. These three observations show that it suffices to prove that

nE
[
Tn −T( f )− (Pn2 −P)(φ′1( f̂ (·), ·))

]2 → 0. (5.109)

The proof of this limit requires some care: the expression inside the brackets consists of the
sum of

(Pn2 −P)
(
− f̂ φ′′1 ( f̂ , ·)

)
=: L̂−L
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450 Linear Nonparametric Estimators

(where, as earlier, we write f̂ for f̂ (·)) and

Tψn2
( f )−

∫
ψ f 2 =: Q̂−Q,

where Tn2 is based on the n2 variables Xn1+1, . . . ,Xn, and ψ(x) = (1/2)φ′′1 ( f̂ (x),x), and it
turns out that neither of the limits of its three components

lim
n→∞nE(L̂−L)2, lim

n→∞nE(Q̂−Q)2 and lim
n→∞nE((̂L̂−L)(Q̂−Q))

is zero, but they cancel each other. We develop some of the computations but not all.
Let E2 denote conditional expectation given X1, . . . ,Xn1 . Then

nE(L̂−L)2 = nEE2(L̂−L)2

= n

n2
E

[∫
( f̂ φ′′1 ( f̂ , ·))2 f −

(∫
f̂ φ′′1 ( f̂ , ·) f

)2
]

.

Now, n/n2 → 1, the first summand should clearly converge to
∫

f 3(x)φ′′1 ( f (x),x))2dx and

the second to
(∫

f 2(x)φ′′1 ( f (x),x)dx
)2

, so we should have

lim
n→∞nE(L̂−L)2 =

∫
f 3(x)φ′′1 ( f (x),x))2dx−

(∫
f 2(x)φ′′1 ( f (x),x)dx

)2

. (5.110)

We check convergence of the first summand and that of the second follows in a similar way.
Using the hypotheses, we have∣∣∣∣E[∫ ( f̂ φ′′1 ( f̂ , ·))2 f −

∫
f 3(φ′′1 ( f , ·))2

]∣∣∣∣
≤ ‖ f ‖∞E

[∫
| f̂ φ′′1 ( f̂ , ·)+ f φ′′1 ( f , ·)|| f̂ φ′′1 ( f̂ , ·)− f φ′′1 ( f , ·)|

]
≤ 2‖ f ‖∞ max(|a− ε|, |b+ ε|)‖φ′′1‖∞E| f̂ φ′′1 ( f̂ , ·)− f φ′′1 ( f , ·)|
≤ 2‖ f ‖∞ max(|a− ε|, |b+ ε|)|‖φ′′1‖∞(‖ f ‖∞‖φ(3)1 ‖∞+‖φ′′1‖∞)E‖ f̂ − f ‖1 → 0,

as n →∞.
To prove that nE(Q̂−Q)2 has the same limit as nE(L̂−L)2, we will use inequality (5.102)

in Theorem 5.3.3 with ψ(x) = (1/2)φ′′1 ( f̂ (x),x) and hence with Yi = φ′′1 ( f̂ (Xi),Xi) f (Xi)−∫
φ′′1 ( f̂ , ·) f 2. Since ‖ψ‖∞ = ‖φ′′1 ( f̂ , ·)‖∞/2 ≤ ‖φ′′1‖∞/2 < ∞ and ‖ f ‖∞ < ∞, this

inequality implies that there exists a finite constant C independent of n such that

n2E2

⎡⎣(Q̂−Q)− 1√
n2

n∑
i=n1+1

Yi

⎤⎦2

≤ C

[
1

n2h
+‖Kh ∗ f − f ‖2

2 + n2‖Kh ∗ f − f ‖4
2 +‖Kh ∗ ( f φ′′1 ( f̂ , ·))− f φ′′1 ( f̂ , ·)‖2

2

]
,

where h = hn. As in Theorem 5.3.3, the four terms in this bound tend to zero as n →∞, but
since the fourth term is random, we still need to show that its expected value also tends to
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zero. By Young’s inequalities,

E‖Kh ∗ ( f φ′′1 ( f̂ , ·))− f φ′′1 ( f̂ , ·)‖2
2 ≤ E‖Kh ∗ ( f φ′′1 ( f̂ , ·))−Kh ∗ ( f φ′′1 ( f , ·))‖2

2

+‖Kh ∗ ( f φ′′1 ( f , ·))− f φ′′1 ( f , ·)‖2
2 +E‖ f φ′′1 ( f , ·)− f φ′′1 ( f̂ , ·)‖2

2

≤ (1+‖K‖1)E‖ f φ′′1 ( f , ·)− f φ′′1 ( f̂ , ·)‖2
2 +‖Kh ∗ ( f φ′′1 ( f , ·))− f φ′′1 ( f , ·)‖2

2.

The first summand in the last line tends to zero because ‖ f ‖∞<∞, ‖φ(3)1 ‖≤∞ and E‖ f −
f̂ ‖2

2 → 0 and the second because f φ′′1 ( f , ·)) ∈ L2. We thus have proved (recall n2/n → 1)
that

nE

⎡⎣(Q̂−Q)− 1√
n2

n∑
i=n1+1

Yi

⎤⎦2

→ 0.

This and the fact that

lim
n→∞

1

n2
E

⎡⎣ n∑
i=n1+1

Yi

⎤⎦2

= lim
n→∞E

[∫
(φ′′1 ( f̂ , ·))2 f 3 −

(∫
φ′′1 ( f̂ , ·)) f 2

)2
]

=
∫
(φ′′1 ( f , ·))2 f 3 −

(∫
φ′′1 ( f , ·)) f 2

)2

,

which follows by the mean value theorem, boundedness of φ′′′1 and f and because E‖ f̂ −
f ‖2

2 → 0, imply that

lim
n→∞nE(Q̂−Q)2 =

∫
f 3(x)(φ′′1 ( f (x),x))2dx−

(∫
f 2(x)φ′′1 ( f (x),x)dx

)2

. (5.111)

Computations based on Young’s inequality and conditions H1–H4 similar to those for the
limits (5.110) and (5.111) also yield

lim
n→∞2E(L̂−L)(Q̂−Q)=−2

[∫
f 3(x)(φ′′1 ( f (x),x))2dx−

(∫
f 2(x)φ′′1 ( f (x),x)dx

)2
]

,

which, together with (5.110) and (5.111) yields the limit (5.109) and concludes the proof of
the theorem.

Theorem 5.3.4 also holds if the estimator (5.107) is replaced by its wavelet analogue
(obtained from TW,ψ

n2
(5.103) in the same way as (5.107) is obtained from Tψn2

). See
Exercise 5.3.4 for its application to the entropy functional.

5.3.2 Deconvolution

Suppose that we would like to estimate the density of a random variable that cannot
be directly observed. A particularly important model for ‘indirect observations’ is the
deconvolution model, which we consider next. In this model, i.i.d. data Xi are contaminated
by i.i.d. errors εi independent of the variables Xi, and the object is to recover the common
density of the variables Xi from these noisy observations, namely, from

Yi = Xi + εi, 1 ≤ i ≤ n.
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We denote by f the density of the variables Xi, by ϕ the probability law of the i.i.d. variables
εi and by g the density of the variables Yi,

g = f ∗ϕ.

Also, we recall from Chapter 4 the notation F [h] for the Fourier transform of a function
h. Then we have F [g] = (F [ f ])(F [ϕ]), and if F [ϕ] does not vanish on the support of
F [g], we can solve for F [ f ]. We could try to estimate F [g] by dividing the empirical
characteristic function based on {Yi} by F [ϕ] and then apply the inverse Fourier transform;
however, for this to work, we would need the quotient to be in L1(R) or in L2(R), which
is a very vexing hypothesis (we would need to impose not only |F [ϕ]|(x) 
= 0 on all of R
but also 1/F [ϕ] ∈ L1). We should instead try to apply this strategy not directly to g but
to regularisations of g whose Fourier transforms have bounded support. We will do this for
kernel and wavelet projection regularisations as usual. Both the kernels K and the scaling and
wavelet functions φ, ψ will have to be band limited. Meyer-type or band-limited wavelets
are discussed in (4.50) and Theorem 4.2.9, and we refer to Exercise 5.3.5 for the existence
of band-limited convolution kernels.

Let K be a symmetric function in L1(R)∩ L2(R) integrating to 1 (a kernel) and whose
Fourier transform has support contained in [−a,a], let h> 0 and assume that F [ϕ](x) 
= 0,
for all x ∈ R. Assume that the density f is bounded and that F [ f ] ∈ L1(R). Then, by
Plancherel’s theorem, we have, writing τxF(·)= F(·− x),

Kh( f )(x)= Kh ∗ f (x)=
∫
τx(Kh)(y) f (y)dy = 1

2π

∫
F [τx(Kh)](t)F [ f ](t)dt

= 1

2π

∫
e−ixtF [Kh](t)F [g](t)/F [ϕ](t)dt

=
∫

g(y)F−1
(
e−ix·F [Kh]I[−a/h,a/h]/F [ϕ]

)
(y)dy (5.112)

=
∫

g(y)
[
(τx(Kh))∗F−1(I[−a/h,a/h]/F [ϕ])

]
(y)dy

= (g∗K∗
h)(x),

where

K∗
h =

[
Kh ∗F−1

[
I[−a/h,a/h]
F [ϕ]

]]∼
,

with the notation w∼(x)= w(−x). See Exercise 5.3.6 for a detailed justification of the steps
in this computation and to see that ‖K∗

h‖∞ <∞. If Yi are the i.i.d. noisy observations, with
law of density g, and Qn = n−1

∑n
i=1 δYi are the corresponding empirical measures, it is then

natural, in view of (5.112), to estimate the density f by

fn(x)= fn(x,h)= K∗
h ∗Qn(x)= 1

n

n∑
i=1

K∗
h(x−Yi), x ∈R, h> 0, (5.113)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.006
http:/www.cambridge.org/core


5.3 Some Further Topics 453

where h = hn → 0 as n →∞. Undoing some of the steps in (5.112), we see that

K∗
h(x−Yi)= Kh ∗F−1

[
I[−a/h,a/h]/F [ϕ]

]
(Yi − x)

=F−1
[
F [Kh]I[−a/h,a/h]/F [ϕ]

]
(Yi − x)=F−1

[
F [Kh]/F [ϕ]

]
(Yi − x)

= 1

2π

∫
ei(Yi−x)uF [K](hu)

F [ϕ](u) du.

Thus, the estimator (5.113) has the alternative expression

fn(x)= fn(x,h)= 1

2π

∫ ∞

−∞
e−iuxF [K](hu)

F [ϕ](u)
1

n

n∑
i=1

eiuYidu, x ∈R, h> 0. (5.114)

This is the standard deconvolution kernel density estimator.
Next, we define the wavelet deconvolution density estimator. We assume that φ and

ψ are, respectively, the scaling function and the wavelet function of a band-limited
ortho-normal multiresolution wavelet basis satisfying the properties specified in Theo-
rem 4.2.9, in particular, such that

cφ :=
∥∥∥∥∥∑

k∈Z
|φ(·− k)|

∥∥∥∥∥
∞
<∞ and cψ :=

∥∥∥∥∥∑
k∈Z

|ψ(·− k)|
∥∥∥∥∥
∞
<∞. (5.115)

Let Kj(x,y) =∑
kφjk(x)φjk(y), j = 0,1, . . . , be the wavelet projection kernels for the MRA

associated to φ and ψ , where φ0k = φk. Then we have, essentially as in (5.112),

Kj( f )(x)= 2j
∑

k

φ(2jx− k)
∫
φ(2jy− k) f (y)dy

=
∑

k

φ(2jx− k)
1

2π

∫
F [φk(2−jt)F [ f ](t)dt

=
∑

k

φ(2jx− k)
1

2π

∫
F [φk(2−jt)F [g](t)(F [ϕ](t))−1dt

= 2j
∑

k

φ(2jx− k)
∫
φ̃jk(y)g(y)dy =

∫
K∗

j (x,y)g(y)dy, (5.116)

where the nonsymmetric kernel K∗
j is defined as

K∗
j (x,y)= 2j

∑
k

φ(2jx− k)φ̃jk(y),

with

φ̃jk(x)=F−1

[F [φk](2−j·)
2jF [ϕ]

]
(x)= φ0k(2

j·)∗F−1

[
I[−a/h,a/h]
F [ϕ]

]
(x). (5.117)

As earlier, by Young’s inequality, ‖φ̃jk‖∞ <∞ and, consequently, also ‖K∗
j ‖∞ <∞. Then

the wavelet deconvolution density estimator is defined as

fn(x)= fn(x, j)= 1

n

n∑
i=1

K∗
j (x,Yi), x ∈R, j ≥ 0. (5.118)
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For the next result, which is basic for the application of empirical processes to determine
the quality of approximation of fn to f in the supremum norm, we set

δj = inf
t∈[−2ja,2ja]

|F [ϕ](t)|,

where [−a,a] is the support of F [φ] in the wavelet projection case and that of F [K] in
the convolution kernel case. In this last case, we take, as in other instances, h = 2−j and
Kj := K2−j . We also set

Hj = {δjφ̃jk : k ∈ Z}, j ∈N,

in the wavelet projection case and

Hj = {δj2−jK∗
j (x−·) : x ∈R}, j ∈N,

in the convolution kernel case. Note that since |F [ϕ]| ≥ 0 is uniformly continuous, δj is
strictly positive.

Lemma 5.3.5 Let ϕ be probability measure on R such that F [ϕ](x) 
= 0 for all x ∈R. Let K
be an even function in L1(R)∩L2(R) integrating to 1 (a kernel) and whose Fourier transform
has support contained in [−a,a] for some 0< a<∞. Let φ, ψ be, respectively, the scaling
function and the wavelet function of a band-limited ortho-normal multiresolution wavelet
basis satisfying the properties specified in Theorem 4.2.9. Let Hj, j ∈ N, be the collections
of functions defined immediately before the lemma via either K or φ. Then these classes
of functions are uniformly bounded, uniformly in j, and their L2(Q) covering numbers
N
(
Hj,L2(Q),ε

)
satisfy

sup
j

sup
Q

N
(
Hj,L

2(Q),ε
)≤ (

A

ε

)v

, 0< ε ≤ A,

for finite positive constants A, v depending only on K in one case and on φ and ψ in the
other, where the first supremum extends over j∈N and the second extends over all the Borel
probability measures Q on R.

Proof Set

ηj(x)=F−1
[
I[−2ja,2ja]/F [ϕ]

]
(x),

clearly a bounded continuous function. In the convolution kernel case, the functions in Hj

are just translates of the function 2−jδj(Kj ∗ ηj)
∼. This is a bounded function because, by

Young’s inequality and Plancherel’s theorem,

2−jδj‖Kj ∗ηj‖∞ ≤ 2−jδj‖Kj‖2‖ηj‖2 ≤
√

a/π‖K‖2 <∞.

We will show that this function has finite quadratic variation, and the result will follow from
Proposition 3.6.12. Similarly, in the wavelet projection case,

φ̃jk(x)= (φ0k(2
j·)∗ηj)(x)=

∫
φ(2jx− 2jy− k)ηj(y)dy

=
∫

2−j/2φj0(x− y− 2−jk)ηj(y)dy = 2−j/2(φj0 ∗ηj)(x− 2−jk),
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so the functions in Hj are translates of the function 2−j/2φj0 ∗ηj, a function bounded by

2−j/2δj‖φj0 ∗ηj‖∞ ≤√
a/π .

The facts that 2−j/2φj0(x) = φ(2jx) and 2−jKj(x) = K(2jx) and that both functions φ and
K have Fourier transforms with support on [−a,a] allow for a unified treatment of the
remainder of the proof (assume that a ≥ 4π/3 in the wavelet case). We denote by L either
of φ or K, that is, a function in L1 ∩ L2 with Fourier transform supported by [−a,a], and
consider the function Hj = δjL(2j·) ∗ ηj. To prove that this is a function of finite quadratic
variation, we use that the Besov space B1/2

21 (R) is continuously imbedded into the space
V2(R) of functions of bounded 2-variation on R (see (4.108)). The Besov norm admits
the following Littlewood-Paley characterisation (see (4.86), with the functions φ,ψ2−j there
re-labelled here to θ ,γl, respectively, to avoid confusion):

‖h‖
B1/2

21
= ‖h∗ θ‖2 +

∑
�≥0

2�/2‖F−1[γ�F [h]]‖2.

Thus, it suffices to show that ‖Hj‖B1/2
21

is bounded uniformly in j ∈ N. First, we have, using

Plancherel’s theorem,

‖Hj ∗ θ‖2
2 ≤ ‖Hj‖2

2 = δ2
j

∫ 2ja

−2ja

∣∣∣F [L(2j·)/F [ϕ]
∣∣∣2 � ‖L(2j·)‖2

2 � 2−j/2 � 1,

with uniform constants. For the second part of the norm, by Plancherel’s theorem and with
the notation 〈u〉 = (1+ u2)1/2, we have

δj
∑
�

2�/2
∥∥F−1

[
γ�F [L(2j·)∗ηj]

]∥∥
2

= 1√
2π

2−jδj
∑
�

2�/2
∥∥∥γ�F [L](2−j·)I[−2ja,2ja](F [ϕ])−1〈u〉1/2〈u〉−1/2

∥∥∥
2

≤ C2−jδj
∑
�

∥∥∥γ�F [L](2−j·)I[−2ja,2ja](F [ϕ])−1〈u〉1/2
∥∥∥

2

≤ C(a)
∑
�

‖F−1[γ�2−j/2F [L](2−j·)]‖2 ≤ c(a)‖2j/2L(2j·)‖
B1/2

21
.

Note that since the supports of the Meyer wavelet ψ and L are, respectively, contained in
[2π/3,4π/3] and [−a,a], by Plancherel,

〈ψ�k,2j/2L(2j·)〉 = 2(�+j)/2

2π
〈ψ̂(2−�·), L̂(2−j·)〉 = 0,

for � > j+ c with c = log2 a− log2(4π/3). Hence, by the wavelet definition (4.89) of the
Besov norm (with Meyer wavelets), we can use Theorem 4.3.2 to bound ‖2j/2L(2j·)‖

B1/2
21

by

a constant multiple of

‖2j/2L(2j·)‖
B1/2,W

21
=
√∑

k

|〈φ0k,2j/2L(2j·)〉2 +
j+c−1∑
�=0

√∑
k

|〈ψ�k,2j/2L(2j·)〉2.
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The first term is the norm of the orthogonal projection of the function 2j/2L(2j·) onto V0 ⊂L2;
hence, it is dominated by ‖2j/2L(2j·)‖2 = ‖L‖2 <∞. For the second term, we note first that
the change of variables 2jx = u and the boundedness condition (5.115) give∑

k

〈ψ�k,2j/2L(2j·)〉2 =
∑

k

(
2�/22j/2

∫
ψ(2�x− k)L(2jx)dx

)2

=
∑

k

(
2�/22−j/2

∫
ψ(2�−ju− k)L(u)du

)2

≤ 2�−jcψ‖L‖1 sup
k

∣∣∣∣∫ ψ(2�−ju− k)L(u)du

∣∣∣∣
≤ C̃(ψ ,L)2�−j,

for some C̃(ψ ,L) depending only on these two functions, where in the last inequality we use
that ψ is bounded and L is integrable. Hence,

j+c−1∑
�=0

√∑
k

〈ψ�k,2j/2L(2j·)〉2 ≤ C̃(ψ ,L)2−j/2
j+c−1∑
�=0

2�/2 ≤ C(ψ ,L),

for some constant C depending only on ψ and L. This shows that the functions in both
definitions of Hj are uniformly bounded and have uniformly bounded quadratic variation.
Then Proposition 3.6.12 proves the lemma.

This lemma together with the moment bound for empirical processes in Corollary 3.5.8
or Talagrand’s exponential inequality in Theorem 3.3.9 immediately give moment and
exponential bounds for the uniform deviation of fn from its mean, in complete analogy
with the bounds in Theorems 5.1.5 and 5.1.15 and Proposition 5.1.13 for the linear kernel
and wavelet density estimators.

Theorem 5.3.6 Under the same assumptions as in Lemma 5.3.5 and with the same notation,
if f is a bounded density on R and fn(x, j) are the deconvolution density estimators defined
by (5.113) with h = 2−j or by (5.118) for j ≥ 0, and if 2jj ≤ Cn for some C<∞, then there
exist constants L′, L′′ depending only on K, p ∈ [1,∞) and C in the convolution kernel case
or on φ, ψ , p and C in the wavelet projection case such that[

E‖ fn(·, j)−E fn(·, j)‖p
∞
]1/p ≤ L′

δj
(‖g‖1/2

∞ ∨ 1)
√

2j(j∨ 1)/n (5.119)

and

Pr

{
‖ fn(·, j)−E fn(·, j)‖∞ ≥ L′′

δj

(
(‖g‖1/2

∞ ∨ 1)
√
(1+ u)2j(j∨ 1)/n+ (1+ u)2j(j∨ 1)/n

)}
≤ e−(1+u)(j∨1), (5.120)

for all u> 0.
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Proof In the convolution case, the supremum in

‖ fn(·, j)−E fn(·, j)‖∞ = 1

n
sup

x

∣∣∣∣∣
n∑

i=1

(K∗
j (Yi − x)−EK∗

j (Y1 − x))

∣∣∣∣∣
is countable because K∗

j (x) is continuous (as it is the value at −x of the convolution of the
integrable function Kj with the continuous function ηj). The same is true in the wavelet
case because, since φ̃jk is bounded and since φ ∈ S(R), the series of continuous functions
defining K∗

j converges uniformly. This observation is needed to apply Talagrand’s inequality,
and moreover, it renders unnecessary the use of outer expectations and probabilities.

In the convolution case, by Lemma 5.3.5, we can apply the moment inequality (3.184)
to the empirical processes indexed by Hj and based, for example, on {Yi}. This requires
evaluation of the two parameters U and σ . In the convolution case, from the preceding
proof, we can take U = √

a/π‖K‖2, for all j (since suph∈Hj
‖h‖∞ ≤ √

a/π‖K‖2), whereas

for σ 2 ≥ suph∈Hj
Eh2(Y), where the distribution of Y has density g, the estimate

Eh2(Y)= δ2
j 2−2j

∫
(K∗

j (x− y))2g(y)dy ≤ δ2
j 2−2j‖g‖∞‖K∗

j ‖2
2

= 1

2π
δ2

j 2−2j‖g‖∞
∫ 2ja

−2ja
|F [Kj]|2|F [ϕ]|−2du

≤ 1

2π
2−2j‖g‖∞

∫
K2(u/2j)du = 1

2π
2−j‖g‖∞‖K‖2

2, (5.121)

valid for all h ∈ Hj, j ∈ N, implies that we can take σ 2 = 2−j‖g‖∞‖K‖2
2/(2π). Now the

bound (5.119) for p = 1 follows from Corollary 3.5.8 because U is constant, σ is of the
order ‖g‖1/2

∞ 2−j/2 and 2jj ≤ n. The bound for p > 1 follows from the one for p = 1 and
Theorem 3.4.1 and the exponential inequality (5.120) from (3.101) in Theorem 3.3.9 (with
x = (1+ u)(j∨ 1)).

In the wavelet case, we note that, by the definitions of fn, φ̃j,k and cφ ,

‖ fn(·, j)−E fn(·, j)‖∞ ≤ cφ2
j sup

k∈Z

∣∣∣∣∣1n
n∑

i=1

(
φ̃jk(Yi)−Eφ̃jk(Y)

)∣∣∣∣∣ .
Now the theorem in this case follows by applying the moment and exponential inequalities
for empirical processes to the classes of functions Hj = {δjφjk : k ∈ Z}, which is possible by
Lemma 5.3.5 as well. The estimation of σ 2 works in complete analogy with the convolution
case and yields the same value for σ up to a constant. Also, in this case, as shown in the
proof of the preceding lemma, U is again a constant independent of j. Hence, the same
moment and exponential bounds hold in the wavelet projection case.

To obtain a rate of approximation of f by fn, it remains to consider the bias. Since by
the computations in (5.112) and (5.116), both in the convolution kernel and in the wavelet
projection cases, we have

f (x)−E fn(x, j)= f (x)−Kj( f )(x), x ∈R, (5.122)

Proposition 4.3.8 applies (just as for linear wavelet estimators). Using this proposition, in
the next theorem we obtain rates of convergence of fn to f in the supremum norm for Hölder
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continuous densities f under typical decay conditions on F [ϕ]. Two cases are considered:
the ‘severely ill-posed’ case, corresponding to exponential rates of decay of F [ϕ], and the
‘moderately ill-posed’ case, where F [ϕ] decays polynomially. Recall the definition of the
order of a convolution kernel, just before Proposition 5.1.7. In the following theorem, fn

refers to the deconvolution kernel and wavelet projection estimators defined, respectively,
by (5.113) (or equivalently by (5.114)) and (5.118).

Theorem 5.3.7 Assume that the band-limited kernel K ∈ L1 ∩ L2 is of order S ≥ 1. In the
wavelet case, assume that φ, ψ are the scaling and wavelet functions defining a band-limited
ortho-normal multiresolution wavelet basis satisfying the properties in Theorem 4.2.9. Let
B(s,L) denote the ball of radius L about the origin in the Besov space Bs

∞∞. Then

(a) If |F [ϕ](t)| ≥ Ce−c0|t|α for all t ∈ R and some C, c0, α positive, and if jn =
α−1 log2(ν logn) for some ν such that c0aαν < 1/2, (where a is such that [−a,a]
contains supp(K̂) or supp(φ̂)), then there exists a constant L′ depending only on s,
L, c0, C, α, ν and K or φ and ψ such that, for all n≥ 2 and all s> 0 in the wavelet case
and s< S in the convolution kernel case,

sup
f ∈B(s,L)

E‖ fn(·, jn)− f (·)‖∞ ≤ L′
(

1

logn

)s/α

.

(b) If |F [ϕ](t)| ≥ C(1+ t2)−w/2 for all t ∈ R and some C, w nonnegative, and if jn is such
that 2jn � (n/ logn)1/(2s+2w+1), then there exists a constant L′′ depending only on s, L,
C, w and K or φ and ψ such that, for all n ≥ 2 and all s > 0 in the wavelet case and
0< s< S in the convolution kernel case,

sup
f ∈B(s,L)

E‖ fn(·, jn)− f (·)‖∞ ≤ L′
(

logn

n

)s/(2s+2w+1)

.

Proof Part (a): The convolution kernel K satisfies Condition 4.1.4 for N= S, and therefore,
in view of (5.122), Proposition 4.3.8 implies that for 0< s< S, under the assumptions in (a),

‖ f (·)−E fn(·, jn)‖∞ ≤ C(K)‖ f ‖Bs∞∞2−jns = C(K)‖ f ‖Bs∞∞

(
1

ν logn

)s/α

.

If K is the wavelet projection kernel associated to φ, then, by Theorem 4.2.9, K satisfies
Condition 4.1.4 for any N ∈ N, which implies, also by Proposition 4.3.8, that this bias
bound holds for every s > 0 when fn is the deconvolution wavelet density estimator of f .
Moreover, Theorem 5.3.6 gives

E‖ fn(·, jn)−E fn(·, jn)‖∞ ≤ L′

C
ec0aα2αjn

(‖g‖∞ ∨ 1)
√

2jn(jn ∨ 1)/n

≤ L′

C
nc0aαν−1/2

√
(ν logn)1/α(1∨α−1 log2(ν logn)= o(n−δ),

for any 0< δ < c0aαν−1/2. Then the conclusion in part (a) of the theorem follows by these
two bounds and the triangle inequality.

Part (b): The proof of part (b) is very similar to that of part (a) and is omitted.
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In the severely ill posed problem and for the supremum norm, this theorem obtains only
logarithmic rates of recovery of f , which may be impractical. This is unfortunate because
the severely ill posed case includes some very common candidates for ϕ, such as the normal
or the stable distributions. It is interesting to observe that if the density f is assumed to be
‘supersmooth’, then these rates become faster than any power of the logarithm, in fact, even
polynomial for choices of φ related to the smoothness of f . We illustrate this phenomenon
in the next proposition (see also Exercise 5.3.9).

For α, s, L positive, the class Aα,s(L) of supersmooth densities is defined as

Aα,s(L)=
{

f : R �→ [0,∞),
∫

f = 1,
∫

|F [ f ](t)|2e2α|t|s ≤ 2πL

}
.

Recall that if φ, ψ are as in Theorem 4.2.9, there exist a, a′ positive such that the support of
F [φ] is contained in [−a,a] and the support of F [ψ] has null intersection with [−a′,a′].

Proposition 5.3.8 For s > 0, α > 0, β ≥ 0, w ≥ 0, L > 0 and b > 0, let f ∈Aα,s(L), and
assume that F [ϕ] satisfies

F [ϕ](t)≥ b(1+ t2)−w/2e−β|t|
r
, t ∈R,

for some r > 0. Assume that β = 0 or r = s. Let φ and ψ be as in Theorem 4.2.9, and let
fn(x, j) be the corresponding deconvolution wavelet density estimator of f . Then there exist
c′,c > 0 depending, respectively, on φ, ψ , α, s and on φ and ψ such that, for all n, j > 0
satisfing 2jj< n,

E‖ fn(·, j)− f ‖∞ ≤ c′
√

Le−α(a
′)s2js

2j(1−s)/2 + c(‖g‖∞ ∨ 1)

δj

√
2jj

n
.

Consequently, taking 2jn = [1/2(α(a′)s +βas) logn]1/s, we have, for n ≥ ee,

E‖ fn(·, jn)− f ‖∞ ≤ C
(logn)(w+1/2)/s(log logn)1/2

nα(a′)s/(2α(a′)s+2βas)
,

where C depends on φ, ψ , α, β, s, w, b and ‖g‖∞.

Proof The second part follows from the first by just replacing jn by its value. The bound
in the first part consists of a bias bound that we obtain later and of the ‘variance’ bound
(5.119).

The bias bound is as follows: by (5.122), Plancherel and the fact that f is supersmooth,
we have

‖E fn(·, j)− f (·)‖∞ = ‖Kj( f )− f ‖∞ ≤ cψ
∑
�≥j

2�/2 sup
k
|β�k( f )|

≤ c′
∑
�≥j

2�/2 sup
k

∫
|F [ψ�k](u)||F [ f ](u)|du
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= c′
∑
�≥j

∫
|F [ψ](2−�u)||F [ f ](u)|du

≤ c′‖ψ‖1

∑
�≥j

∫
[−2�a′,2�a′]c

|F [ f ](u)|eα|u|se−α|u|sdu

≤ c′′‖ψ‖1

√
L
∑
�≥j

(∫ ∞

2�a′
e−2α|u|sdu

)1/2

≤ c′′′
√

L
∑
�≥j

(2�a′)(1−s)/2e−2α(2�a′)s/2 ≤ civ
√

L(2ja′)(1−s)/2e−2α(2ja′)s/2,

where the next to last inequality follows, for example, by L’Hôpital’s rule.

Note that the supremum norm recovery rate of a supersmooth density is, up to logarithmic
terms, of the order n−1/2 in the moderately ill-posed case and slower but still of the order n
to a negative power in the severely ill-posed case.

Next, we look at the size of the MISE of fn. We could as well consider moments other
than 2, that is, ‖ fn − f ‖p for 1 ≤ p<∞, but given the developments in this subsection and
those in Section 5.1.1, this would be repetitive. And for p = 2, again to avoid repetition,
the exponential bound is left as an exercise, and only the moment bound is developed here.
Whereas for supremum norm bounds it is natural to assume the density in Bs

∞∞ (or in the
Hölder spaces Cs ⊆ Bs

∞∞), it is more natural for L2 bounds to assume f in Bs
2∞ (recall that

Bs
2∞ contains the Sobolev-Hilbert space Hs

2).

Theorem 5.3.9 Under the same notation for f , ϕ, g, K, φ, ψ and fn(x, j) and the
assumptions as in Lemma 5.3.5, both for deconvolution kernel and wavelet density
estimators, we have

E‖ fn −E fn‖2
2 ≤ C

2j

δ2
j n

,

where C = 1/2π in the wavelet case and C = ‖K‖2
2/2π in the convolution case. Now let

B(s,L) denote the ball of radius L about the origin in the Besov space Bs
2∞ (s> 0). Then the

following hold:

(a) If |F [ϕ](t)| ≥ Ce−c0|t|α for all t ∈ R and some C, c0, α positive, and if jn =
α−1 log2(ν logn) for some ν such that c0aαν < 1/2, then there exists a constant L′

depending only on s, L, c0, C, α, ν and K or φ and ψ such that, for all n ≥ 2 and
all s> 0 in the wavelet case and s< S in the convolution kernel case,

sup
f ∈B(s,L)

E‖ fn(·, jn)− f (·)‖2
2 ≤ L′

(
1

logn

)2s/α

,

and
(b) If |F [ϕ](t)| ≥ C(1+ t2)−w/2 for all t ∈ R and some C, w nonnegative, and if jn is such

that 2jn � (n/ logn)1/(2s+2w+1), then there exists a constant L′′ depending only on s, L,
C, w and K or φ and ψ such that, for all n ≥ 1 and all s > 0 in the wavelet case and
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0< s< S in the convolution kernel case,

sup
f ∈B(s,L)

E‖ fn(·, jn)− f (·)‖2
2 ≤ L′

(
1

n

)2s/(2s+2w+1)

.

Proof Using (5.121) in the convolution kernel case, we obtain, for the ‘variance part’ of
the mean integrated squared error,

E‖ fn(·, j)−E fn(·, j)‖2
2 =

1

n

∫
E(K∗

j (x−Y)−EK∗
j (x−Y))2dx ≤ 1

n

∫
E(K∗

j (x−Y))2dx

= 1

n

∫ ∫
(K∗

j (x− y))2g(y)dydx = 1

n

∫
(K∗

j (u))
2du

≤ ‖K‖2
2

2π

2j

δ2
j n

,

whereas for the bias part, using the observation (5.122) and the bound in Proposition 4.3.8,
we have, for s< S,

‖ f −E fn‖2 ≤ C(K)‖ f ‖Bs
2∞2−jns.

Combining these two estimates, we obtain the results for deconvolution kernel estimators.
In the wavelet case, the bias inequality holds for all s > 0, again by Proposition 4.3.8

and because the projection kernel in this case is of order S for all S (Theorem 4.2.9). The
variance inequality is similar to the preceding case, and left to the reader.

Note the improvement of the L2 rate over the L∞ rate by a logarithmic factor when the
deconvolution problem is only moderately ill posed, just as for the linear density estimator
in the absence of contamination. The rate of decay of E‖ fn− f ‖2 for supersmooth densities,
as in the case of the supremum norm, also can be made to decay at polynomial rates, even
in the severely ill-posed case (see Exercise 5.3.10).

Exercises

5.3.1 Complete the proof of Theorem 5.3.4. Hint: Decompose Q as 2Q1 −Q2 and likewise for Q̂,
based on the definition of Tψn .

5.3.2 Prove versions of Theorems 5.3.2 and 5.3.3 for the wavelet estimators TW
n and TW,ψ

n defined by
(5.103), including the case of boundary-corrected wavelets on [0,1].

5.3.3 (Continued from Exercise 5.3.2.) Use the estimators from Exercise 5.3.2 to define an estimator
of

∫ 1
0 φ( f (x),x) f (x)dx analogue to Tn in (5.107) satisfying the central limit theorem in

Theorem 5.3.4.
5.3.4 Use the preceding exercise to construct an estimator of the Shannon entropy functional∫ 1

0 f log f for a density f on [0,1] bounded from below by some positive constant and such
that f ∈ Bα2,∞([0,1])∩Br∞,∞([0,1]) for some α ∈ (1/4,1) and some r> 0. Hint: Start with the

Taylor expansion
∫

f log f =− 1
2

∫
f̂ + ∫

log( f̂ ) f + 1
2

∫ f 2

f̂
+�n.

5.3.5 Let �= I[−1/2,1/2]. Then �∗� is the tent function on [−1,1], prove that F−1[�](x)= (sinx)/(πx),
F−1[� ∗ �](x) = (sinx)2/(πx)2 and that therefore dividing the function (sinx)2/(πx)2 by its
L1-norm, we obtain a positive function K(x) that integrates to 1 and whose Fourier transform
has compact support.
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5.3.6 Justify (5.112), and show that the kernel K∗
h is bounded. Hints: (a) The second identity in the

first line follows by Plancherel’s identity; (b) F[g] ∈ L1 ∩L2 (by Young’s inequality and since
‖F[g]‖1 ≤ ‖F[ f ]‖1 because ‖F[ϕ]‖∞ ≤ 1), F[Kh] is bounded and has compact support, and
F[ϕ] being continuous (ϕ is probability density) and nonzero on it is bounded away form zero
on any compact set; hence, both F[g] and e−ix·F[Kh]I[−a/h,a/h]/F[ϕ] are in L1 ∩ L2, which
justifies the identity between the second and third lines; (c) K∗

h is bound by Young’s inequality.
5.3.7 (Uniform fluctuations of the empirical wavelet coefficients in the deconvolution wavelet

density estimator.) Show that the entropy bounds obtained for the classes Hj in Lemma 5.3.5
hold as well for Hj(ψ) = {δjψ̃ jk : k ∈ Z}, where ψ̃�k is defined as φ̃�k in (5.117) with φ
replaced by ψ . Use this and methods from this section to show that if β�k = β�k( f ) and
β̂�k = 2�/2

∑n
i=1 ψ̃�k(Yi)/n, then, under the assumptions of Theorem 5.3.6, we have both(
Esup

k
|β̃�k −β�k|p

)1/p

≤ L
1

δ�

(
(‖g‖∞ ∨ 1)

√
(�∨ 1)/n+ 2�/2(�∨ 1)/n

)
,

for all 1 ≤ p<∞, and

Pr

{
sup

k
|β̃�k −β�k| ≥

D

δ�

(
(‖g‖∞ ∨ 1)

√
((1+ u)�∨ 1)/n+ (1+ u)2�/2(�∨ 1)/n

)}
≤ e−(1+u)(�∨1),

for all u> 0 and for some constants L = L(p,φ,ψ) and D = D(φ,ψ). (One cannot proceed to
prove these inequalities as in Proposition 5.1.8 due to the lack of symmetry of the convolution
‘projection kernel’ in the deconvolution case.)

5.3.8 Complement Theorem 5.3.9 with the corresponding exponential bounds for ‖ fn − E fn‖2 for
deconvolution density estimators.

5.3.9 If r 
= s in Proposition 5.3.8, one still obtains fast rates: if s < r (and β 
= 0), take 2jn �
((3βar)−1 logn)1/r to obtain a rate faster than any negative power of the logarithm for the bias
term and a faster rate for the ‘variance’ term; if s> r, take 2jn � ((2α(a′)s)−1 logn)1/s to obtain
a rate faster than n−τ for any 0< τ < 1/2 for the variance and a faster rate for the bias.

5.3.10 Define K∗
j by its Fourier transform, F[K∗

j ] = I[−2j ,2j]/F[ϕ], and let fn(x, j)=∑n
i=1 K∗

j (x−Yi)/n
as in (5.113) so that E fn(x, j) = K∗

j ∗ g(x) (notation from the section on deconvolution). (a)

Show that if the density f is in Aα,r(L), then ‖E fn(·, j)− f (·)‖2
2 = (1/2π)

∫ 2j

−2j |F[ f ]|2(t)dt ≤
Le−2α2rjn . (b) If |F[ϕ](u) ≥ b(1 + |u|2)−w/2e−β|u|s , u ∈ R, then E‖ fn(·, j) − E fn(·, j)‖2

2 ≤
(‖g‖2∞/n)

∫ 2j

−2j du/|F[ϕ])|2(u) ≤ C(‖g‖2∞/n)22w+s−1e2β2sj
for some C < ∞ depending only

on b, s, w. (c) Use (a) and (b) to obtain, for suitably chosen jn, rates of decay for
E‖ fn(·, j)−E fn(·, j)‖2 slightly better than for E‖ fn(·, j)−E fn(·, j)‖∞ in Proposition 5.3.8 and
in Exercise 5.3.11.

5.3.11 Prove the analogue of Theorem 5.3.9 for the pth moment of the deconvolution wavelet density
estimator. (Use methods from Sections 5.1.1 and 5.3.2.)

5.4 Notes

Section 5.1 Convolution kernel density estimators were introduced by Akaike (1954), Rosenblatt
(1956) and Parzen (1962) and orthogonal projection estimators by Čencov (1962). The moment and
exponential inequalities for Lp-norms of density estimators in Theorems 5.1.5 and 5.1.13 are mostly
taken from Giné and Nickl (2011) and its supplementary material (doi:10.1214/11-AOS924SUPP),
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5.4 Notes 463

with exceptions as follows: the moment inequality in the case 1 ≤ p < 2 for convolutions comes
from Giné and Mason (2007), and the moment and exponential inequalities in the case p = ∞
for convolutions come from Giné and Guillou (2002) and from Giné and Nickl (2009) for wavelet
projection estimators. Lemma 5.1.3 comes from Giné and Mason (2007), and it is based on work
in Devroye (1987, 1992). Devroye (1991) showed that the exponential inequality for bounded
differences produces best possible results for the L1 norm of fn − f , and we base Remark 5.1.14
on his observation. Kerkyacharian and Picard (1992) showed that Besov spaces provide a natural
framework for function estimation in Lp norms (p<∞); see also Chapter 6.

The stability result for the L1-norm of fn − f was proved by Devroye (1991) and Devroye and
Lugosi (2001). Stute (1982, 1984) proved exact a.s. limit theorems for the supremum norm over an
interval ‖ fn − E fn‖[a,b]d in one and several dimensions and for convolution kernel estimators: see
Einmahl and Mason (2000) for a different approach using modern empirical processes. These were
extended to limits for suprema over the whole of Rd by Giné and Guillou (2002) and by Deheuvels
(2000) for d = 1. Giné and Nickl (2009) extended these results to wavelet density estimators. Here is
the exact a.s. limit theorem, in one dimension, both for convolution kernel estimators and for wavelet
projection estimators: write K(x,y) for K(x− y) in the convolution kernel case.

Theorem 5.4.1 Under the assumptions in Proposition 5.1.19 (hence for both wavelet and convolution
estimators) and with the same notation,

lim
n→∞

√
n

2(log2)jn2jn
sup
y∈R

∣∣∣∣∣ fn(y)−E fn(y)(∫
R

K2(2jn y,x)dx
)1/2

∣∣∣∣∣= ‖ f ‖1/2
∞ a.s.

Note that the denominator equals ‖K‖2 in the convolution kernel case and
√∑

kφ
2(2jn y− k) in the

wavelet cases. When the supremum is taken over an interval where f is bounded from below above
zero, then we may replace ‖ f ‖∞ by 1 and have

√
f (y) multiplying in the denominator within the

absolute value. For other weights besides
√

f (y), valid over the whole line, see Giné, Koltchinskii
and Zinn (2004). There are versions of this theorem in the convolution kernel case with a limsup
bound holding uniformly over bandwidths (logn)/n ≤ h ≤ 1; see Einmahl and Mason (2005).

Bickel and Rosenblatt (1973) proved a distributional limit theorem for the supremum norm of
fn − f over an interval similar to Proposition 5.1.23 (under stronger assumptions) – this work was
preceded by Smirnov (1950), who obtained a similar result for a histogram density estimator. Giné
and Nickl (2010) show how the KMT representation together with Theorem 2.8.3 for cyclo-stationary
Gaussian processes implies an analogue for wavelet density estimators, and this approach combined
with technical results in Giné, Günturk and Madych (2011) and Bull (2013) obtains the limit theorem
for wavelet density estimators based on the Battle-Lemarié spline wavelets and on Daubechies
wavelets, respectively. Proposition 5.1.21 is from Giné, Koltchinskii and Sakhanenko (2004) for
convolution kernels and is adapted to wavelet projection kernels in Giné and Nickl (2010). Rio
(1994) extended to several dimensions the Bickel-Rosenblatt result as a consequence of a KMT-type
Gaussian approximation for empirical processes over VC classes. See also the more recent work of
Chernozhukov, Chetverikov and Kato (2014), where approximation of the empirical process by a
Gaussian process is replaced by approximation of the supnorm of one process by the supnorm of the
other, with better rates of approximation. A full proof of the KMT theorem can be found in the second
edition of Dudley (1999) (Dudley (2014)).

For limit theorems for the Lp norm of density estimators with 1 ≤ p <∞ – a topic not treated
here – see Bickel and Rosenblatt (1973), Csörgö and Hórvath (1988), Beirlant and Mason (1995),
Giné, Mason and Zaitsev (2003) and Giné and Madych (2014).
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464 Linear Nonparametric Estimators

Section 5.2 The plug-in property was put forward by Bickel and Ritov (2003), and they also made
the observation that the plug-in property for the distribution function requires a kernel of larger order
than for the minimax rate in L2 loss. The setup of Section 5.2.1 with the distinction between weak
and strong metrics originates in Nickl (2007). Both these papers contain applications to interesting
statistical problems. See Chapter 7 for derivations of such results for maximum likelihood estimators.
Van der Vaart (1994) proved Lemma 5.2.2 and Proposition 5.2.3, whereas the rest of the results given
in this subsection for kernel density estimators come from Giné and Nickl (2008, 2009a). In particular,
the first of these articles shows that any increase of more than 1/2 in the order of the kernel suffices
for the plug-in property with respect to both Sobolev balls for s > 1/2 and bounded variation balls
(thus including distribution functions). The second article contains the exponential inequality for the
discrepancy between PK

n and Pn, which is shown to be sharp. The same inequality for wavelet density
estimators is given in Giné and Nickl (2009), and in fact, the plug-in property for wavelet density esti-
mators over most Besov balls that are P-Donsker is also proved in this article (Section 5.2.1 contains
only part of this result). Giné and Nickl (2008) show as well that under certain conditions on f0 and hn,√

n(PK
n −P) converges in law uniformly over the unit ball of Bs

11, 1/2< s< 1, which is P-pre-Gaussian
but not P-Donsker (see Section 4.4). The proof of this last result uses a variation of Theorem 3.7.52
in combination with sharp Fourier analytical computations. Radulović and Wegkamp (2009) also
consider convergence in law of smoothed empirical processes over P-pre-Gaussian not necessarily
P-Donsker classes. See Yukich (1992) for earlier results on smoothed empirical processes. The results
on smoothed empirical processes on multiscale spaces come from Castillo and Nickl (2014).

Section 5.3 The problem of estimating
∫

f 2 (and even
∫
( f (k))2) has been considered by several

authors, motivated by the fact that these functionals appear in the asymptotic variance of important
statistics and also because they constitute relatively simple examples of nonlinear functionals. Bickel
and Ritov (1988) obtained optimal rates for this problem by means of (a version of) the debiasing
device described above for

∫
ψ f 2. Giné and Nickl (2008a) proved Theorem 5.3.2 showing in

particular that in the case ψ = 1 there is no need for debiasing: carefully using the smoothness of
f ∗ f instead of only that of f , they prove that the bias of the simple estimator (5.93) is already
small enough. Estimation of integrals of smooth functions has been considered by Ibragimov and
Khasminskii (1978), Levit (1978), Ibragimov, Nemirovski and Khasminskii (1987), Donoho and
Nussbaum (1990), Nemirovski (1990, 2000), Birgé and Massart (1995), Laurent (1996), Cai and Low
(2005), Klemela (2006), among others. The exposition above adapts Laurent’s – who works with
orthogonal projection estimators – to kernel estimators.

Deconvolution problems have been extensively studied at least since the 1980’s. See Meister’s
(2009) monograph and Cavalier’s (2008) survey paper on inverse problems. The deconvolution kernel
density estimator studied here comes from Stefanski and Carroll (1990), where it is proven to be
pointwise consistent. The recovery rates in L2 norm for this estimator were obtained by Fan (1991) and
shown to be minimax in Fan (1993), when the density is assumed to belong to a Sobolev space. The
observation that for supersmooth densities the rates are better than logarithmic even in the extremely
ill posed case, that includes the important case when the errors are normal, was made by Pensky and
Vidakovic (1999), by means of deconvolution wavelet density estimators base on Meyer wavelets, and
Butucea and Tsybakov (2008a) constructed kernel estimators also achieving these rates (exercise 6 is
based on their article), which they prove in (2008b) to be optimal even with respect to constants.
The sup norm rates and the key Lemma 5.3.5 were obtained in Lounici and Nickl (2011) with (band
limited) wavelet estimators, and it is shown here how their result extends as well to kernel estimators
(see Ray (2010) for another approach to deconvolution with kernels). The exposition above is close
to the Lounici and Nickl article for the supremum norm and to the Pensky and Vidakovic article for
the MISE.
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5.4 Notes 465

One shows, just as in Chapter 6 for the regular function estimation problems (density estimation
and white noise), that the convergence rates for functional estimation and deconvolution problems
obtained in Propositions/Theorems 5.3.2, 5.3.3, 5.3.7, 5.3.8, 5.3.9 are optimal from a minimax point
of view. The ideas are similar to those in Chapter 6 and full proofs can be found in Birge and Massart
(1995), Laurent (1996), Butucea and Tsybakov (2008ab), Lounici and Nickl (2011). Likewise, using
now classical ideas in semi-parametric statistics (e.g., Chapter 25 in van der Vaart (1998)), one can
show that the limiting covariances obtained in Propositions/Theorems 5.3.1, 5.3.2, 5.3.3 , 5.3.4 are
optimal in the sense that they attain the Cramer-Rao lower bounds for these estimation problems.
See Ibragimov, Nemirovski and Khasminskii (1987), Nemirovski (1990), and also the appendix in
Laurent (1996) for some specific calculations.
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6

The Minimax Paradigm

In this chapter we consider a statistical experiment E whose distribution P f is indexed by
an infinite-dimensional parameter f ∈F . We concentrate on the cases of i.i.d. observations
X1, . . . ,Xn, where P f is equal to the infinite product probability measure PN

f on some product
sample space, or, alternatively, on an observation dY in Gaussian white noise of law PY

f .
In both situations, the goal is to make statistical inference on the unknown function f
generating the observations. We shall analyse this problem under the assumption that f
satisfies a natural nonparametric regularity condition such that it is contained in a Hölder
or Sobolev space. The minimax paradigm provides a coherent setting for the statistical
theory of such nonparametric models – it searches for best possible procedures that have
guaranteed performance for all elements simultaneously in the given parameter space. In
other words, the minimax paradigm takes into account that results about the performance of
a statistical procedure should not depend on the particular true function f but should hold no
matter what f is, as long as f belongs to the model used. Given this (maximal) constraint,
one searches for the statistical procedure with minimal risk – hence the name minimax.
In some sense, the minimax paradigm goes hand in hand with the general nonparametric
‘philosophy’ that statistical procedures should work for ‘many’ f instead of just for a
few specific ones. Following this paradigm, we develop in this chapter a basic theory of
nonparametric inference, naturally dividing our treatment into separate but closely related
sections on nonparametric testing problems, estimation problems and the construction of
nonparametric confidence sets. The proofs rely on the techniques developed in previous
chapters, particularly wavelet theory and concentration inequalities.

6.1 Likelihoods and Information

The complexity of a statistical problem and the information it contains can be measured by
the difficulty to test hypotheses that arise in it. Let us start by illustrating this by a simple
example. For f0, f1 two elements in a parameter space F indexing the laws (P f : f ∈F) of
a statistical experiment E , consider testing the hypothesis

H0 : f = f0 against H1 : f = f1,

based on observations Y from the experiment. Let �(Y) be any such test, that is, a
measurable function of Y that takes values 0 or 1. We adopt the notational convention that
�(Y) = 0 means to accept H0 and �(Y) = 1 means to reject H0. The sum of type 1 and

467

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.007
http:/www.cambridge.org/core


468 The Minimax Paradigm

type 2 errors of such a test is then

E f0�(Y)+E f1(1−�(Y))= P f0(� = 1)+P f1(� = 0).

A trivial upper bound for this sum is 1, corresponding to the case where one takes a test that
always accepts one of the hypotheses or where one flips a coin to accept H0 or not. A good
test should allow us to control the preceding sum at any given level 0 < α < 1. Whether
or not this is possible depends strongly on the nature of the hypotheses. Assume that P f1 is
absolutely continuous with respect to P f0 , or otherwise replace E f1 later by the expectation
Ea

f1
with respect to the absolutely continuous part Pa

f1
of P f1 , and use E f1(1 −�) ≥ Ea

f1
(1−�). We can lower bound the sum of type 1 and type 2 errors, for any η > 0, by

E f0�(Y)+E f1(1−�(Y))= E f0

[
�(Y)+ (1−�(Y))dP f1

dP f0

(Y)

]
≥ (1−η)P f0

(
dP f1

dP f0

(Y)≥ 1−η
)

, (6.1)

where dP f1/dP f0 is the likelihood ratio (Radon-Nikodym derivative) of the probability
measure P f1 with respect to P f0 . Intuitively, a likelihood ratio close to 1 indicates that
observations drawn from P f1 look very much like those drawn from P f0 and that hence
it is difficult to distinguish f0 and f1 based on observations drawn this way. Formally, in
situations where the preceding probability can be made close to 1 for small enough η > 0
we see that no test can ever distinguish between H0 and H1 except at a trivial level α = 1.

Lower bounds for the performance of statistical tests, and more generally for statistical
procedures that imply the existence of certain tests, can be obtained through an application
of the preceding method (and refinements thereof). This motivates a thorough study of
likelihood ratios and their properties.

Consider first the case where i.i.d. random variables X = (X1, . . . ,Xn) are drawn
either from P f1 or P f0 on a measurable space (X ,A), with Pn

f = ⊗i≤nP f denoting the
corresponding product measures on X n. Suppose further that μ is a common-dominating
measure on X , and let μn = ⊗i≤nμ. By the Radon-Nikodym theorem, the likelihood ratio
equals the ratio of the product densities: for x= (x1, . . . ,xn)∈X n, we have, μn-almost surely,

dPn
f1
/dμn

dPn
f0
/dμn

(x)=
∏n

i=1

dP f1

dμ
(xi)∏n

i=1

dP f0

dμ
(xi)

. (6.2)

For Gaussian nonparametric models, the interpretation of such ratios needs some more care,
and we clarify this in the next subsection.

6.1.1 Infinite-Dimensional Gaussian Likelihoods

In this section we develop tools to compute likelihood ratios in the infinite-dimensional
Gaussian models introduced in Chapter 1. This includes, in particular, the construction of
tractable sample spaces on which these models can be realised.
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6.1 Likelihoods and Information 469

The Gaussian White Noise Model

Let, as usual, L2 = L2([0,1]) denote the Hilbert space of square-integrable functions on
[0,1], with inner product 〈·, ·〉. We consider the functional Gaussian white noise model

dY(t)= dY(n)f (t)= f (t)dt+ σ√
n

dW(t), t ∈ [0,1], σ > 0, n ∈N, (6.3)

for different choices of f ∈ L2. This model was already introduced informally in (1.5).
Observing a trajectory dY means that we can observe all integrals

∫
g(t)dY(t) against

L2-functions g or, what is the same, that we observe a realisation of the Gaussian process Y
given by the shift experiment

Y(g)=Y(n)f (g)= 〈 f ,g〉+ σ√
n
W(g), g ∈ L2([0,1]), (6.4)

where W is the standard white noise or the isonormal process on L2([0,1]) (see
Example 2.1.11),

W(g)∼ N(0,‖g‖2
2), EW(g)W(g′)= 〈g,g′〉, g,g′ ∈ L2([0,1]). (6.5)

In the terminology of Section 2.1, both processesY andW define Gaussian random variables
in the ‘path’ space RL2([0,1]), measurable for the cylindrical σ -algebra. For likelihood ratio
computations, this nonseparable space is not convenient. To circumvent this problem, we
now show that we can take the separable Banach space of continuous functions C([0,1])
as the underlying sample space for the model (6.3) and obtain a formula for the likelihood
ratio on C([0,1]). Another approach, which is based on the sequence space isometry of L2,
is discussed at the end of the next subsection.

Let PW be a Wiener measure, that is, the Gaussian Borel probability measure on
C([0,1]) corresponding to the law of a standard Brownian motion (W(x) : x ∈ [0,1]) (see
Exercise 2.3.2 and Example 2.6.7). The covariance metric of W is

ρW(x,y)=√
E|W(x)−W(y)|2 =√|x− y| = ‖1(x,y]‖2.

Hence, if for 0 ≤ x ≤ y ≤ 1 we define the Gaussian variables W̃(1(x,y]) = W(y)−W(x), it
follows that, by independence of the increments of Brownian motion, for any finite number
of disjoint intervals Ii and coefficients ai, we have

E

(∑
i

aiW̃(Ii)

)2

=
∑

i

a2
i |Ii| =

∫ (∑
i

aiIi(x)

)2

dx.

Any g ∈ L2([0,1]) can be approximated in L2, as N → ∞, by linear combinations gN =∑
i≤N ai,N1Ii,N of indicator functions of disjoint intervals Ii,N, and since these gN form a

Cauchy sequence in L2([0,1]), the preceding identity implies that the variables

W̃(gN) :=
∑
i≤N

ai,NW̃(1Ii,N)

form a Cauchy sequence in L2(PW). Thus, by completeness of L2(PW), we can define W̃(g)
to equal the L2(PW)-limit of the Gaussian random variables W̃(gN) (which are independent
of the approximating sequence gN used). Then, by construction, the Gaussian process
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470 The Minimax Paradigm

g �→ W̃(g) defines an isometry between L2([0,1]) and the closed linear span of (W̃(g) :
g ∈ L2) in L2(PW); in other words, just like W, W̃ is a version of the isonormal process
of L2([0,1]). We thus may take C([0,1]) as the sample space underlying (6.5), with PW

determining the law of W. Note that the preceding construction resembles a ‘stochastic
integral’, obtained from taking limits of random integrals of simple functions gN, explaining
the notation W(g)= ∫

gdW.
The arguments from the preceding paragraph work as well for the scaled white noise

process (σ/
√

n)W, whose law is determined by the tight Gaussian Borel probability measure
PW

n,σ on C([0,1]) arising from a scaled Brownian motion (σ/
√

n)W. The process Y from
(6.4), likewise, can be realised in this way as the law of the random variable Y ∈ C([0,1]),
that is,

Y(x)=Y(1[0,x])= F(x)+ σ√
n

W(x), x ∈ [0,1],
with shift equal to the absolutely continuous function

F(x)=
∫ x

0
f (t)dt, x ∈ [0,1].

We denote by PY
f ,n,σ the corresponding Gaussian Borel probability measure on C([0,1]).

Note that PY
0,n,σ = PW

n,σ . The likelihood ratio between the measures PY
f ,n,σ and PY

0,n,σ on the
separable Banach space C([0,1]) can be obtained from the Cameron-Martin Theorem 2.6.13
as follows.

Proposition 6.1.1 Let f ∈ L2. Then PY
f ,n,σ is absolutely continuous with respect to PY

0,n,σ on
C([0,1]), and the likelihood ratio, for Y ∼ PY

0,n,σ , is given by

dPY
f ,n,σ

dPY
0,n,σ

(Y)= exp
{ n

σ 2
Y(n)0 ( f )− n

2σ 2
‖ f ‖2

2

}
. (6.6)

Remark 6.1.2 From the preceding arguments, a draw Y ∼ PY
0,n,σ generates a draw from the

process

Y(n)0 (g)=
σ√
n
W(g), g ∈ L2([0,1]).

Scaling this equation, we see that the distribution of (n/σ 2)Y(n)0 ( f ) coincides, in the
integral notation dW from the standard white noise model (6.3), with the one of
(
√

n/σ)
∫ 1

0 f (t)dW(t). Therefore, the preceding likelihood ratio is often rewritten as

exp

{√
n

σ

∫ 1

0
f (t)dW(t)− n

2σ 2
‖ f ‖2

2

}
,

which is the density of PY
f ,n,σ with respect to Wiener measure PW.

Remark 6.1.3 As in Remark 2.6.14, whenever f ,g ∈ L2, we can obtain a formula for the
likelihood ratios by writing

dPY
f ,n,σ

dPY
g,n,σ

(Y)= dPY
f ,n,σ

dPY
0,n,σ

(Y)
dPY

0,n,σ

dPY
g,n,σ

(Y)

and using (6.6) for each factor.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.007
http:/www.cambridge.org/core
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Proof Note that by definition F is absolutely continuous with F′ = f ∈ L2 and satisfies
F(0)= 0; hence, it is contained in the reproducing kernel Hilbert space of Brownian motion
(see Example 2.6.7). Moreover, as in that example, one shows that the reproducing kernel
Hilbert space of a Brownian motion scaled by (σ/

√
n) is the same as the unscaled one, with

norm ‖ · ‖H of F equal to

‖F‖2
H = n

σ 2

∫ 1

0
(F′(x))2dx = n

σ 2
‖ f ‖2.

The result thus follows from the Cameron-Martin Theorem 2.6.13, with Radon-Nikodym
derivative of PY

f ,n,σ with respect to PY
0,n,σ given by

dPY
f ,n,σ

dPY
0,n,σ

(y)= exp

{
φ−1(F)(y)− ‖F‖2

H

2

}
= exp

{
φ−1(F)(y)− n

2σ 2
‖ f ‖2

2

}
.

As at the beginning of the proof of Theorem 2.6.13, we see that φ−1(F)(Y) is a centred
normal random variable with variance equal to the reproducing kernel Hilbert space norm
‖F‖2

H = (n/σ 2)‖ f ‖2
2 and hence is equal in distribution, under Y ∼ PY

0,n,σ , to

n

σ 2
Y(n)0 ( f )∼ N

(
0,

n

σ 2
‖ f ‖2

2

)
,

so the result follows.

The Gaussian Sequence Space Model

For f ∈L2([0,1]) and {ek : k∈Z} an ortho-normal basis of L2([0,1]), consider an observation
in the Gaussian sequence space model

Yk = 〈 f ,ek〉+ σ√
n

gk, gk ∼i.i.d. N(0,1), k ∈ Z. (6.7)

To study likelihood ratios in this model, we note that by Parseval’s equality

( fk : k ∈ Z)≡ 〈 f ,e·〉 ∈ �2,

but the white noise part (gk : k ∈ Z) of (6.7) does not define an element of �2 because
‖g·‖�2 = ∞ almost surely. Rather, (gk : k ∈ Z) defines a Gaussian product probability
measure

∏
k N(0,1) on RZ, and so does the random vector (Yk : k ∈ Z). Kakutani’s theorem

for Gaussian product measures (Proposition 2.6.16) immediately implies the following
result:

Proposition 6.1.4 Denote by PY
f ,n,σ the product law of the Gaussian vector (Yk : k ∈ Z) on

the cylindrical σ -algebra C of RZ. If ( fk : k ∈ Z) ∈ �2, then PY
f ,n,σ is absolutely continuous

with respect to PY
0,n,σ , and the likelihood ratio, for Y ∼ PY

0,n,σ , is given by

dPY
f ,n,σ

dPY
0,n,σ

(Y)= exp

{
n

σ 2

∑
k∈Z

fkYk − n

2σ 2
‖ f·‖2

�2

}
. (6.8)

Similar to the remark after Proposition 6.1.1, we note that the preceding likelihood ratio
can be written, for (gk : k ∈ Z) a sequence of i.i.d. standard normal random variables, as

exp

{√
n

σ

∑
k∈Z

fkgk − n

2σ 2
‖ f·‖2

�2

}
.
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Note in particular that E[∑k fkgk]2 =∑
k f 2

k <∞ for any ( fk : k ∈ Z) ∈ �2, and hence, the
random Gaussian series

∑
k∈Z fkYk converges almost surely. Moreover, a chain rule formula

as in (6.1.3) holds true as well.
Whereas for many purposes the preceding formula for the likelihood ratios is sufficient,

sometimes it is important to interpret this result in a separable Banach space in which (Yk :
k ∈ Z) can be realised. This can be done using a Hilbert-Schmidt embedding of �2 into a
larger sequence space: for some monotone decreasing strictly positive weighting sequence
{wk : k ∈ Z} ∈ �2, define

�2(w)=
{

x : ‖x‖2
�2(w)

≡
∑

k

x2
kw

2
k <∞

}
,

which is a separable Hilbert space. By Fubini’s theorem,

E‖g·‖2
�2(w)

=
∑

k

Eg2
kw

2
k =

∑
k

w2
k <∞,

so (gk : k ∈Z) is almost surely in �2(w) and hence defines a tight Gaussian Borel probability
measure in this space (using that in separable spaces the cylindrical and Borel σ -algebra
coincide and that Borel probability measures are always tight in such spaces; see Chapter 2).
Note that the covariance operator of (gk : k ∈ Z) defines a Hilbert-Schmidt operator for
the inner product of �2(w) (see Exercise 2.6.14). The Cameron-Martin Theorem 2.6.13
now gives the following, in the same way as in Proposition 6.1.1 and arguing as in
Example 2.6.2:

Proposition 6.1.5 Let ( fk : k∈Z)∈ �2. Let PY
f ,n,σ be the Gaussian Borel probability measure

on �2(w),w ∈ �2, representing the law of

Yk = fk + σ√
n

gk, gk ∼i.i.d. N(0,1), k ∈ Z.

Then PY
f ,n,σ is absolutely continuous with respect to PY

0,n,σ , and the likelihood ratio, for
(Yk : k ∈ Z)∼ PY

0,n,σ , is given by

dPY
f ,n,σ

dPY
0,n,σ

(Y)= exp

{
n

σ 2

∑
k∈Z

fkYk − n

2σ 2
‖ f·‖2

�2

}
. (6.9)

The preceding proof would, unlike that of Proposition 6.1.4, work for any Gaussian
measure and does not use the fact that PY

0,n,σ is a product probability measure.
The preceding two propositions also give another proof for the likelihood ratio formula in

Proposition 6.1.1. Given observations (Yk : k ∈ Z) in (6.7), we can define, for g ∈ L2([0,1]),
the Gaussian random variable Ỹ(g) as the mean square limit of the Gaussian random
variables

Ỹ(gN)=
∑

k:|k|≤N

Yk〈g,ek〉,

so, using Parseval’s identity,

EỸ(g)= lim
N→∞

∑
k

〈 f ,ek〉〈gN,ek〉 = 〈 f ,g〉, Var Ỹ(g)= σ
2

n
lim

N→∞
‖gN‖2

2 =
σ 2

n
‖g‖2

2;
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hence, (Ỹ(g) : g ∈ L2) defines a version of (Y(g) : g ∈ L2). We thus can compute likelihood
ratios in the model (6.7) and transfer the result to the model (6.3) using the sequence space
isometry of L2 with �2. This exactly returns the formula (6.6).

Sample Splitting in the Gaussian White Noise Model

The preceding observations can be particularly useful if one wishes to create two
independent copies of an observation in a white noise model, which can be of interest
to mimick ‘sample splitting’ procedures from the i.i.d. observation model. Given an
observation dY in the model (6.3), take an ortho-normal basis {ek : k ∈ Z} of L2 and the
associated random coefficients (

Yk =
∫ 1

0
ekdY : k ∈ Z

)
.

We can generate i.i.d. Gaussians (g̃k : k ∈ Z) independent of all the gk in

Yk = 〈 f ,ek〉+ σ√
n

gk,

and set
Y′

k = Yk + σ√
n

g̃k, Y′′
k = Yk − σ√

n
g̃k. (6.10)

Then each Y′
k,Y

′′
k is Gaussian with mean EY′

k =EY′′
k = 〈 f ,ek〉 and variance 2σ 2/n. Moreover,

Cov(Y′
k,Y

′′
k)=

σ 2

n
E(gk + g̃k)(gk − g̃k)= 0,

so the Yk,Y′
k are independent. We can now take dY′,dY′′ equal to the laws of∑

k∈Z
ekY

′
k,

∑
k∈Z

ekY
′′
k ,

respectively, defining independent white noise experiments of mean f (t)dt and with σ
increased by a factor of 2.

6.1.2 Basic Information Theory

In lower bounding the likelihood ratio Z ≡ dP f1/dP f0 in (6.1), we may use Markov’s
inequality to see that

P f0

(
dP f1

dP f0

(Y)≥ 1−η
)
≥ 1− E f0 |Z− 1|

η
≥ 1−

√
E f0(Z− 1)2

η
.

If μ is a common dominating measure, the quantities

E f0 |Z− 1| =
∫ ∣∣∣∣dP f1

dμ
− dP f0

dμ

∣∣∣∣dμ≡ ‖dP f1 − dP f0‖1,μ

and

E f0(Z− 1)2 ≡ χ2(P f1 ,P f0)
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are called the L1(μ)- and χ2-distance between P f0 and P f1 , respectively. For many lower
bounds, such as those in Section 6.2, the χ2-distance will be seen to be convenient to work
with. In some other situations, more refined techniques are needed, based on the idea to
estimate (6.1), for P f0 absolutely continuous with respect to P f1 , by

P f0

(
dP f1

dP f0

(Y)≥ 1−η
)
= P f0

(
dP f0

dP f1

(Y)≤ 1

1−η
)

= 1−P f0

(
log

dP f0

dP f1

(Y)≥ log
1

1−η
)

≥ 1− 1

log(1/(1−η))E f0

∣∣∣∣log
dP f0

dP f1

(Y)

∣∣∣∣ (6.11)

using Markov’s inequality. The last term is closely related to the information-theoretic
concept of the Kullback-Leibler ‘distance’ between two probability measures, which we
introduce next.

Total Variation and Kullback-Leibler Distance

Let P,Q be two probability measures on a measurable space (X ,A), and let μ be a common
dominating measure, that is, a measure on (X ,A) such that both P and Q are absolutely
continuous with respect to μ, with densities dP/dμ = p,dQ/dμ = q. For instance, we can
take μ= P+Q. Also, let us write P 3 Q if P is absolutely continuous with respect to Q.

The total variation distance between P and Q equals

‖P−Q‖TV ≡ sup
A∈A

|P(A)−Q(A)|. (6.12)

It is easy (see Exercise 6.1.1) to check that

‖P−Q‖TV = 1

2

∫
X
|p(x)− q(x)|dμ(x)= 1

2
‖p− q‖1,μ. (6.13)

An alternative notion of ‘distance’ between probability measures is the following:

Definition 6.1.6 The Kullback-Leibler distance between P and Q is defined as

K(P,Q)=
⎧⎨⎩
∫
X log

(
dP

dQ
(x)

)
dP(x), if P 3 Q

+∞, elsewhere.

Note that this definition coincides with the one of entropy in Definifion 2.5.1 with f =
dP/dμ because then log

∫
(dP/dμ)dμ= 0. The following inequalities are sometimes known

as Pinsker’s or Kullback-Czisar inequalities.

Proposition 6.1.7 For any probability measures P,Q on a measurable space (X ,A) and μ
a common-dominating measure, we have

(a) ‖P−Q‖TV ≤
√

K(P,Q)/2, and
(b) If P 3 Q, then ∫

pq>0

∣∣∣∣log
p

q

∣∣∣∣pdμ≤ K(P,Q)+√
2K(P,Q).
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Proof (a) Assume that P3Q; otherwise, the result is trivial. If we set h(x)= x logx−x+1
with h(0)= 1, then simple calculus shows that(

4

3
+ 2

3
x

)
h(x)≥ (x− 1)2, x ≥ 0,

and so, using (6.13) and the Cauchy-Schwarz inequality,

‖P−Q‖TV = 1

2

∫
q>0

|(p/q)− 1|q ≤ 1

2

∫
q>0

q

√(
4

3
+ 2p

3q

)
h(p/q)

≤ 1

2

√∫ (
4q

3
+ 2p

3

)√∫
q>0

qh(p/q)

=
√

1

2

∫
pq>0

p log
p

q
=√

K(P,Q)/2.

(b) By Exercise 6.1.2 and part (a), we have∫
pq>0

p

∣∣∣∣log
p

q

∣∣∣∣= ∫
pq>0

p(log(p/q))+ +
∫

pq>0
p(log(p/q))−

= K(P,Q)+ 2
∫

pq>0
p(log(p/q))− ≤ K(P,Q)+ 2‖P−Q‖TV

≤ K(P,Q)+√
2K(P,Q),

completing the proof.

Application to Nonparametric Likelihoods

We now show how the preceding concepts apply to the likelihoods relevant in this book.
If we draw i.i.d. samples X1, . . . ,Xn from law P f as before (6.2), then the Kullback-Leibler
distance between the product measures P f

n ,Pn
g tensorises; that is,

K(Pn
f ,P

n
g)= nK(P f ,Pg). (6.14)

In view of Proposition 6.1.7, we deduce that the total variation distance of the product
measures associated to samples of size n from P f ,Pg can be controlled by

√
n times the

square root of the Kullback-Leibler distance

2‖Pn
f −Pn

g‖TV ≤
√

2nK(P f ,Pg). (6.15)

The L1(μ) distance of Pn
f ,P

n
g can be controlled likewise using (6.13). Intuitively speaking,

samples arising from laws P f ,Pg with small K(P f ,Pg) will contain similar statistical
information. We shall develop tools to control K(P f ,Pg) in various settings later.

In the Gaussian white noise model, the Kullback-Leibler distance has a simple
interpretation: for f ,g ∈ L2, let PY

f ≡ PY
f ,n,σ be the probability measures on C([0,1]) from

Proposition 6.1.1, and denote by EY
f expectation under PY

f . Using Proposition 6.1.1 and
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Remark 2.6.14, we obtain

K(PY
f ,P

Y
g)=

∫
log

dPY
f

dPY
g

(y)dPY
f (y)

= n

σ 2
EY

f Y( f )− n

2σ 2
‖ f ‖2

2 −
n

σ 2
EY

f Y(g)+
n

2σ 2
‖g‖2

2

= n

2σ 2

(‖ f ‖2
2 − 2〈 f ,g〉+‖g‖2

2

)
(6.16)

= n

2σ 2
‖ f − g‖2

2.

The total variation distance can be controlled likewise, using the first Pinsker inequality. We
see that the information-theoretic distance of two white noise experiments equals a constant
multiple of nσ 2 times the squared L2-distance between f and g. Likewise, for PY

f = PY
f ,n,σ

the law of the Gaussian vector (Yk : k ∈ Z), we have

K(PY
f ,P

Y
g)=

n

2σ 2

∑
k

〈 f − g,ek〉2 = n

2σ 2
‖ f − g‖2

2 (6.17)

from Proposition 6.1.4 and the arguments leading to (6.16).

Exercises

6.1.1 Prove (6.13) and, in fact, that ‖P−Q‖TV = 1− ∫
min(p,q)dμ. Hint: For A = {x ∈ X : q(x) ≥

p(x)}, write ∫
|p− q|dμ= 2

∫
A
(q− p)dμ.

6.1.2 Let a− = max(0,−a),a+ = max(0,a). If P 3 Q, prove that∫
log(dP/dQ)−dP ≤ ‖P−Q‖TV

and hence

K(P,Q)=
∫

pq>0
p[log(p/q)]+dμ−

∫
pq>0

p[log(p/q)]−dμ.

6.2 Testing Nonparametric Hypotheses

We start with some definitions and terminology. Consider statistical experiments En giving
rise to observations Y = Y(n) on the measurable space (Yn,An),n ∈ N. The model for the
distribution of Y consists of probability laws P f indexed by f ∈ F (these laws also may,
in principle, depend on n, but we suppress it in the notation unless necessary). A statistical
hypothesis H0 is a subset of the parameter space F . A statistical test for H0 is a function

�n ≡�(Y(n)) : Yn →{0,1}
of the observations that takes value �n = 0 to accept H0 and �n = 1 to reject it.
Mathematically speaking, �n is the indicator function of a measurable subset of Yn. If
we do not specify an alternative hypothesis H1 explicitly, we can always take it to be the
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6.2 Testing Nonparametric Hypotheses 477

complement of H0 in the whole parameter space F . The performance of a test is naturally
measured by the sum of its type 1 and type 2 errors, that is, by the probability of rejecting
H0 when it was true plus the probability of accepting H0 when it was false. If d is a metric
on F , we can ask how well H1 needs to be separated from H0 for good tests to exist.

Definition 6.2.1 Let rn,ρn be sequences of nonnegative real numbers, and let H0 ⊂ F be
a statistical hypothesis. Let d be a metric on F . The sequence (ρn : n ∈ N) is called the
minimax d-separation rate for testing the hypotheses

f ∈ H0 vs. f ∈ H1 = H1(d,rn)=
{

f ∈F , inf
g∈H0

d( f ,g)≥ rn

}
(6.18)

if the following two requirements are met:

(i) For every α > 0 there exists a test �n such that for every n ∈N large enough,

sup
f ∈H0

E f�n + sup
f ∈H1(d,ρn)

E f (1−�n)≤ α. (6.19)

(ii) For any sequence rn = o(ρn), we have

liminf
n

inf
�n

[
sup
f ∈H0

E f�n + sup
f ∈H1(d,rn)

E f (1−�n)

]
> 0, (6.20)

where the infimum extends over all measurable functions �n : Yn →{0,1}.
A few remarks on this definition are in order: it is typically satisfactory to control the type

1 and type 2 errors of a test at any given level α > 0, with the test depending on α. In some
situations, α = αn can be taken to converge to 0; that is, the limit as n →∞ of the left-hand
side of (6.19) equals 0 – in this case we say that the test �n is consistent. Moreover, we
say that the hypotheses H0,H1 from (6.18) are asymptotically indistinguishable if the limit
inferior in (6.20) equals 1. We note that all the following results on the d-separation rate are
in fact nonasymptotic in nature in the sense that the inequalities in (6.19) and (6.20) hold
for every n ∈ N. However, due to possibly large constants involved in the statements, the
separation rate usually has a meaningful interpretation only for sufficiently large n.

Following the approach laid out in Definition 6.2.1, nonparametric testing theory will be
seen to depend on which minimal assumptions on the parameter space F one is wishing to
make, as well as on the choice of the metric d. For a fully nonparametric signal, such as a
completely unknown probability distribution, one can only test for fairly weak aspects of f ,
such as the cumulative distribution function or other integral functionals, corresponding to
‘weak’ separation metrics d. If one is willing to assume further regularity properties of the
signal at hand, such as that it has some derivatives (or, more generally, lies in a Besov ball),
then much finer features of f can be tested, corresponding in a sense to stronger separation
metrics d.

The following basic multiple-testing lower bound will be useful in determining the
separation rates of testing problems as earlier. It generalises the even simpler bound from
(6.1) to multiple alternatives and shows how the complexity of the alternative hypothesis
can be encoded in certain averages of likelihood ratios arising from the statistical model.
Consider a singleton H0: f = f0 and a finite family M ⊂ F of cardinality |M| = M
describing the alternative H1: f ∈ M. Assume that the P fm are all absolutely continuous
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with respect to P f0 , or otherwise replace E fm later by the expectation Ea
fm with respect to the

absolutely continuous part Pa
fm of P fm , and use E fm(1−�) ≥ Ea

fm(1−�). Then we have,
for every η > 0,

E f0�+ sup
f ∈M

E f (1−�)≥ E f0(1{� = 1})+ 1

M

M∑
m=1

E fm(1−�)

≥ E f0(1{� = 1}+ 1{� = 0}Z)≥ (1−η)Pr f0(Z ≥ 1−η), (6.21)

where

Z = 1

M

M∑
m=1

dP fm

dP f0

is an average of likelihood ratios. By Markov’s inequality,

Pr f0(Z ≥ 1−η)≥ 1− E f0 |Z− 1|
η

≥ 1−
√

E f0(Z− 1)2

η
. (6.22)

This lower bound is independent of �, and hence,

inf
�

[
E f0�+ sup

f ∈M
E f (1−�)

]
≥ (1−η)

(
1−

√
E f0(Z− 1)2

η

)
. (6.23)

Before we apply these lower bound techniques, let us introduce some concrete test
procedures.

6.2.1 Construction of Tests for Simple Hypotheses

Simple hypotheses are those where H0 consists of a singleton { f0} subset of F . In this case,
it is typically easy to find a test �n that performs well under H0, and the challenge is to find
tests for which the type 2 errors can be controlled for large sets of alternatives. We discuss
several approaches to this problem in this subsection that are based on a combination of
tools from Chapters 3 and 4, and that will lead to minimax optimal procedures. A completely
different approach to nonparametric testing, based on likelihood methods and the Hellinger
distance, will be discussed in Chapter 7.

Kolmogorov-Smirnov Tests

Suppose that we observe i.i.d. random variables X1, . . . ,Xn from an unknown distribution
function F on Rd and wish to test whether F equals a particular distribution function F0.
This corresponds to the null hypothesis H0 : F = F0, with default alternative hypothesis
H1 : F\{F0}, where F is a subset of the set of all probability distribution functions. If
Fn(t) = (1\n)

∑n
i=1 1(−∞,t](Xi) is the empirical distribution function of the sample, then a

natural test statistic is
Tn = sup

t∈Rd

|Fn(t)−F0(t)|, (6.24)

known as the Kolmogorov-Smirnov statistic for testing

H0 : F = F0 vs. H1 : F 
= F0.
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A natural test is based on rejecting H0 whenever

Tn ≥ zα/
√

n,

where zα is a suitable constant depending on the desired level α of the test. For instance, we
can take zα to be the α-quantile constant of the distribution of supt∈Rd |GF(t)|, where GF is
the F-Brownian bridge (see Section 3.7). In case d = 1, the distribution of ‖GF‖∞ equals,
for every continuous F, the one of maxt∈[0,1] |G(t)|, where G is a standard Brownian bridge,
so zα is a distribution-free quantile constant (see Exercise 6.2.1). The type 1 errors of the test
then satisfy, by Donsker’s theorem, the continuous mapping theorem, and since the random
variable ‖G‖∞ is absolutely continuous (Exercise 2.4.4),

EF0�n = PN
F0
(
√

n‖Fn −F0‖∞ > zα)→ Pr(‖G‖∞ ≥ zα)= α,

as n →∞, so this test has exact asymptotic level α under H0. Alternatively, by choosing zα
such that the tail of the Dvoretzky-Kiefer-Wolfowitz inequality (Exercise 3.3.3) equals α,
one constructs a test that can be seen to have this level for every n ∈N and uniformly in all
distribution functions F0 (see Exercise 6.2.1).

How does this test perform under the alternative H1? For continuous distribution
functions F for which

sup
t∈R

|F(t)−F0(t)| ≥ C/
√

n,

for some constant C, we can bound the type 2 errors by

EF(1−�n)≤ PN
F (‖Fn −F‖∞ ≥ (C− zα)/

√
n)→ Pr(‖G‖∞ ≥ C− zα)≤ β,

whenever C − zα ≥ zβ . Again, the Dvoretzky-Kiefer-Wolfowitz inequality allows for a
nonasymptotic and uniform in F bound on the type 2 errors. In other words, for alternatives
that are sufficiently separated from F0 at the 1/

√
n scale, this test will we able to distinguish

between H0 and H1. Considering the generic case of F0 equal to the uniform distribution, we
will show later that in this generality this simple test procedure cannot be improved in terms
of the separation rate C/

√
n. We will, however, also show that if it is reasonable to assume

more structure on F, then the preceding procedure can be substantially improved.

Plug-in Tests Based on Estimators

The preceding Kolmogorov-Smirnov procedures are simply based on the idea that if we can
estimate an arbitrary F at rate 1/

√
n in supnorm loss by Fn, then we can use this estimator to

construct tests for simple hypotheses H0 : F= F0 that are accurate for alternatives separated
away from F0 by at least the rate 1/

√
n of estimation. If the statistical model satisfies

some nonparametric regularity constraints, such as F0 possessing a density function f0

that is contained in a Sobolev, Hölder or Besov ball, then we can use linear nonparametric
estimators from Chapter 5 in precisely the same way. More generally, suppose that for some
metric space (S,d) that contains the statistical model F we can construct an estimator f̂n

such that
sup
f ∈F

E f d( f̂n, f )≤ rn, (6.25)

where (rn : n ∈ N) is a sequence of nonnegative real numbers (the estimation rate). To test
H0 : f = f0, we define the test statistic

Tn := d( f̂n, f0)
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and, for 0< α < 1, the test
�n = 1{Tn > 2rn/α}. (6.26)

Proposition 6.2.2 Let f0 ∈F and α > 0 be given, and consider testing hypotheses

H0 : f = f0 vs. H1 ⊂F ∩{ f : d( f , f0)≥ crn}, c ≥ 4/α.

Then, for �n given in (6.26), we have, for every n ∈N,

E f0�n + sup
f ∈H1

E f (1−�n)≤ α.

Proof Under the null hypothesis, we have, using Markov’s inequality and (6.25),

E f0�n = PN
f0

(
d( f̂n, f0) > 2rn/α

)
≤ α

2rn
Ed( f̂n, f0)≤ α/2.

Under the alternatives, we have, by the triangle inequality and the same arguments as
earlier,

E f (1−�n)= PN
f

(
d( f̂n, f0)≤ 2rn/α

)
≤ PN

f

(
d( f , f0)− d( f̂n, f )≤ 2rn/α

)
≤ PN

f

(
d( f̂n, f )≥ (c− 2/α)rn

)
≤ α/2,

for c− 2/α ≥ 2/α, completing the proof.

For example, if we consider the white noise or i.i.d. sampling model and take F equal to
a ball in the Besov space Br

∞∞(A), A = [0,1] or A =R, equipped with the supremum norm
metric d, then the separation rate in Proposition 6.2.2 equals

rn �
(

logn

n

)r/(2r+1)

, (6.27)

in view of Proposition 5.1.7. Similarly, ifF consists of a ball in the Besov space Br
p∞,p<∞,

with d( f ,g)= ‖ f − g‖p, we have the separation rate rn � n−r/(2r+1) in Lp-norm.
The preceding test and separation constant c ≥ 4/α can be improved by studying more

exact distributional properties of the estimator f̂n – earlier we only relied on (6.25) and
Markov’s inequality. One can obtain concentration bounds on the type 1 and type 2 errors
simply by using concentration inequalities for Lp-norms of centred linear estimators as in
Chapter 5. In fact, ideally, we would base the preceding test on a tight confidence set
centred at f̂n, and the theory of nonparametric confidence sets provides another approach to
nonparametric testing problems that we shall investigate systematically in Section 6.4.

If we leave the question of tight constants aside, then Proposition 6.2.2 essentially gives
what is possible for plug-in tests in terms of order of magnitude of rn. For several situations,
the so-obtained separation boundaries will be seen to be minimax optimal in the sense
of Definition 6.2.1 (see the next section). But, interestingly, for several other relevant
situations, plug-in tests are not best possible, and more refined techniques are necessary.
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6.2 Testing Nonparametric Hypotheses 481

Tests Based on χ 2-Statistics

If the testing problem involved has some geometric properties expressed, for instance, in
the Hilbert space L2, then one can often take advantage of this. To illustrate this, consider
first an observation in the white noise model (6.3), and suppose that we want to test whether
f = f0 for some fixed function f0 ∈ L2. We recall that we assume that σ is known – if this
is not the case, it may be replaced by a suitable estimate.

Consider a preliminary wavelet estimate of f0 at resolution level j ∈N, that is,

f̂n(x)= fn(j)(x)=
∑
l≤j−1

∑
k

ψlk(x)
∫ 1

0
ψlk(t)dY(t), (6.28)

where {ψlk} is a wavelet basis of L2([0,1]) from Section 4.3.4 or section 4.3.5 (and where
as in (4.32) the scaling functions φk equal, by notational convention, the ψlk at the first
resolution level J0 = J− 1 or J0 =−1 in the periodic case). Then, by Parseval’s identity,

‖ f̂n − f0‖2
2 =

∑
l≤j−1

∑
k

(∫ 1

0
ψlk(t)dY(t)−〈 f0,ψlk〉

)2

+
∑
l≥j

∑
k

〈 f0,ψlk〉2. (6.29)

Under the null hypothesis H0 : f = f0, the first summand equals, for glk ∼i.i.d. N(0,1),

σ 2

n

∑
l≤j−1

∑
k

g2
lk, which has expectation

σ 2

n

∑
l≤j−1

∑
k

1 ≡ σ
22j

n
.

If we can control the second term in (6.29) – equal to the approximation error ‖Kj( f0)− f0‖2
2

of f0 by its wavelet projection Kj( f0)=∑
l≤j,k〈 f0,ψlk〉ψlk – this motivates the test statistic

Tn( f0)=‖ fn(j)−Kj( f0)‖2
2−
σ 22j

n
=
∑
l≤j−1

∑
k

(∫ 1

0
ψlk(t)dY(t)−〈 f0,ψlk〉

)2

− σ
22j

n
(6.30)

to test

H0 : f = f0 vs. H1 : f 
= f0

by

�n = 1{|Tn( f0)| ≥ τn}, τn = σ 2L
2j/2

n
, (6.31)

for a positive constant L to be chosen. The performance of this test is the subject of the
following result.

Proposition 6.2.3 Let α > 0, and consider testing hypotheses

H0 : f = f0 vs. H1 ⊂ {‖ f − f0‖2 ≥ ρn} , ρn ≥ 0,

based on observations dY ∼ PY
f in the white noise model (6.3). Let B(j), j ∈ N, be a

nonincreasing sequence such that

sup
f ∈H1

‖Kj( f − f0)− ( f − f0)‖2
2 ≤ B(j), (6.32)

and for j = jn ∈N, let

ρ2
n = c2 max

(
σ 2L

2jn/2

n
,B(jn)

)
, c> 0. (6.33)
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482 The Minimax Paradigm

Then, for �n from (6.31), there exist L = L(α) and c = c(α,σ) large enough such that, for
all n ∈N,

E f0�n + sup
f ∈H1

E f (1−�n)≤ α.

Proof We set σ = 1 for notational simplicity. Under the null hypothesis, we have, by
Chebyshev’s inequality and independence,

E f0�n = Pr

⎛⎝∣∣∣∣∣∣1n
∑

l≤jn−1

∑
k

(g2
lk − 1)

∣∣∣∣∣∣≥ L
2jn/2

n

⎞⎠≤ Eg4
11

L2
≤ α/2,

for L large enough. For the alternatives, we notice, from Parseval’s identity and the definition
of B(j),ρn, that for c large enough,∣∣∣∣∣∣

∑
l≤jn−1,k

( flk − f0,lk)
2

∣∣∣∣∣∣≥ ‖ f − f0‖2
2 −B(jn)≥ ‖ f − f0‖2

2/2. (6.34)

Writing flk = 〈 f ,ψlk〉, we can hence bound the type 2 errors E f (1 − �n), f ∈ H1, by
definition of ρn and for c large enough by

PY
f

⎛⎝∣∣∣∣∣∣
∑

l≤jn−1

∑
k

( flk − f0,lk + 1√
n

glk)
2 − 1

n
)

∣∣∣∣∣∣< L
2jn/2

n

⎞⎠
≤ Pr

⎛⎝∣∣∣∣∣∣
∑

l≤jn−1,k

( flk − f0,lk)
2

∣∣∣∣∣∣−L
2jn/2

n
<

∣∣∣∣∣∣1n
∑
l≤jn,k

(g2
lk − 1)

∣∣∣∣∣∣+
∣∣∣∣∣∣ 2√

n

∑
l≤jn−1,k

glk( flk − f0,lk)

∣∣∣∣∣∣
⎞⎠

≤ Pr

⎛⎝∣∣∣∣∣∣
∑

l≤jn−1,k

(g2
lk − 1)

∣∣∣∣∣∣> L2jn/2

⎞⎠
+Pr

⎛⎝∣∣∣∣∣∣ 2√
n

∑
l≤jn−1,k

glk( flk − f0,lk)

∣∣∣∣∣∣> 1

4

∑
l≤jn−1,k

( flk − f0,lk)
2

⎞⎠ .

The first term in the last bound is less than α/4, arguing as for H0 (c large enough). Next,
by independence and again Parseval’s identity,

Var

∣∣∣∣∣∣ 2√
n

∑
l≤jn−1,k

glk( flk − f0,lk)

∣∣∣∣∣∣≤ 4‖Kjn( f − f0)‖2
2

n
,

so the last probability is bounded, using Chebyshev’s inequality, (6.34) and the definition of
ρn, by

1

n

c′′

‖Kj( f − f0)‖2
2

≤ 1

c2
×O(1)≤ α/4,

again for c large enough, completing the proof.
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6.2 Testing Nonparametric Hypotheses 483

A tight choice of the constant L can be obtained, for instance, from the χ2-concentration
inequality in Theorem 3.1.9 applied to the probability constituting the type 1 error. Using
this inequality, one can establish nonasymptotic concentration bounds for the type 1 and
type 2 errors in Proposition 6.2.3. We refer to the general Theorem 6.2.14 (with H0 = { f0})
for such results.

The typical bounds for the approximation errors B(j) over Sobolev or Besov balls of
functions imply geometric decay in j. For instance, for f ∈ Br

2∞([0,1]) we know from
Chapter 4 that

‖Kj( f )− f ‖2
2 ≤ C‖ f ‖2

Br
2∞

2−2jr (6.35)

using boundary-corrected or periodic r-regular wavelet bases of L2([0,1]) (see Sections 4.3.4
and 4.3.5). If B is a bound for {‖ f ‖Br

2∞([0,1]) : f ∈ H0 ∪H1}, then we can take

B(j)= 4CB22−2jr, 2jn � B2/(2r+1/2)n1/(2r+1/2)

in the preceding proposition to obtain the separation rate

ρn = c′ max(1,B)1/(4r+1)n−r/(2r+1/2), (6.36)

for some constant c′ = c′(α,σ). We shall see in Theorem 6.2.11 for the specific choice f0 = 0
that this separation rate is optimal for alternatives consisting of a ball in Br

2∞([0,1]). Note
that we need to know r,B in this case to implement the test – adaptation to unknown r,B is
treated in Chapter 8.

Remark 6.2.4 For computational purposes, the test statistic in (6.30) is often based simply
on Haar wavelets {ψlk}. At first sight, this seems to induce the restriction r ≤ 1 on the
alternatives (to guarantee (6.35)), but a lower bound of the form ‖Kj( f )‖2 ≥ Cρn whenever
‖ f ‖2 ≥ ρn also can be shown to hold for general r> 1 (see Exercise 6.2.6).

Tests Based on U-Statistics

We now show how an analogue of Proposition 6.2.3 can be proved in the i.i.d. sampling
model. In the following, the observations X1, . . . ,Xn are assumed to take values in [0,1].
Generalisations to random samples on general Euclidean spaces Rd are possible (see
Exercise 6.2.3). The analogue of f̂n from (6.28) is

f̃ n(x)= fn(j)(x)=
∑
l≤j−1

∑
k

ψlk(x)
∫ 1

0
ψlk(t)dPn(t)= 1

n

n∑
i=1

∑
l≤j−1

∑
k

ψlk(Xi)ψlk(x),

where Pn = (1/n)∑n
i=1 δXi is the empirical measure associated to the sample and where the

ψlk form a wavelet basis of L2([0,1]) just as the one used in (6.28). The squared L2-norm
‖ fn(j)−Kj( f0)‖2

2 can be estimated unbiasedly by the U-statistic

Un( f0)= 2

n(n− 1)

∑
i<i′≤n

∑
l≤j−1

∑
k

(ψlk(Xi)−〈 f0,ψlk〉)(ψlk(Xi′)−〈 f0,ψlk〉) .

See Section 3.4.3 and Chapter 5 for some basic properties of U-statistics – removing the
diagonal (i= i′) terms from the average corresponds to the subtraction of σ 22j/2/n in (6.30),
resulting in a variance reduction. If the densities f involved in the testing problem are all
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484 The Minimax Paradigm

uniformly bounded, we have a complete sampling analogue of the preceding proposition for
the test

�n = 1{|Un( f0)| ≥ τn}, τn = L
2j/2

n
. (6.37)

Proposition 6.2.5 Let α > 0, and for f0 : [0,1] → [0,∞) a bounded probability density
consider testing hypotheses

H0 : f = f0 vs. H1 ⊂ {‖ f − f0‖2 ≥ ρn,‖ f ‖∞ ≤ U} , U> 0, ρn ≥ 0,

based on observations X1, . . . ,Xn ∼i.i.d. f . Let B(j), j ∈N, be a nonincreasing sequence such
that

sup
f ∈H1

‖Kj( f − f0)− ( f − f0)‖2
2 ≤ B(j), (6.38)

and for j = jn ∈N let

ρ2
n = c2 max

(
L

2jn/2

n
,B(jn)

)
, c> 0. (6.39)

Then, for �n from (6.37), there exist L = L(α,U) and c = c(U,α) large enough that, for all
n ∈N,

E f0�n + sup
f ∈H1

E f (1−�n)≤ α.

Proof We assume that w.l.o.g. ‖ f0‖∞ ≤ U. Under the null hypothesis, the factors
ψlk(Xi)− 〈 f0,ψlk〉 of the summands in the U-statistic Un( f0) are all centred, and hence,
using independence and orthonormality of the wavelet basis,

Var f0(Un( f0))≤ 2

n(n− 1)

∫ ⎛⎝ ∑
l≤jn−1

∑
k

ψlk(x)ψlk(y)

⎞⎠2

f0(x) f0(y)dxdy

≤ 2‖ f0‖2
∞

n(n− 1)

∑
l≤jn−1,k

1 ≤ 2jn+1‖ f0‖2
∞

n(n− 1)
,

so, by Chebyshev’s inequality, for L large enough

E f0�n = Pr (|Un( f0)| ≥ τn)≤ Var f0(Un( f0))

L22jn/n2
≤ α/2.

For the alternatives f ∈ H1, we have

(ψlk(Xi)−〈ψlk, f0〉)(ψlk(Xj)−〈ψlk, f0〉)= (ψlk(Xi)−〈ψlk, f 〉)(ψlk(Xj)−〈ψlk, f 〉))
+ (ψlk(Xi)−〈ψlk, f 〉)〈ψlk, f − f0〉+ (ψlk(Xj)−〈ψlk, f 〉)〈ψlk, f − f0〉+ 〈ψlk, f − f0〉2,

so, by the triangle inequality, writing

Ln( f )= 2

n

n∑
i=1

∑
l≤jn−1

∑
k

(ψlk(Xi)−〈ψlk, f 〉)〈ψlk, f − f0〉, (6.40)

we conclude that

|Un( f0)| ≥
∑

l≤jn−1

∑
k

〈ψlk, f − f0〉2 −|Un( f )|− |Ln( f )|

= ‖Kjn( f − f0)‖2
2 −|Un( f )|− |Ln( f )|, (6.41)
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for every f ∈ H1. For c large enough, we have∣∣∣∣∣∣
∑

l≤jn−1,k

( flk − f0,lk)
2

∣∣∣∣∣∣≥ ‖ f − f0‖2
2 −B(jn)≥ ‖ f − f0‖2

2/2. (6.42)

We thus can bound the type 2 errors E f (1−�n), for c large enough and some c′′ > 0, by

PN
f (|Un( f0)|< τn)≤ PN

f (|Un( f )|+ |Ln( f )|> ‖Kj( f − f0)‖2
2 − τn)

≤ PN
f (|Un( f )|>√

2L2jn/2/n)+PN
f (Ln( f ) > ‖Kjn( f − f0)‖2

2/4).

The first term is less than α/4 by the arguments used for H0. By independence, orthogonality
of the ψlk and Parseval’s identity, the linear term has variance

Var f (|Ln( f )|)≤ 4

n

∫ ⎛⎝ ∑
l≤jn−1,k

ψlk(x)〈ψlk, f − f0〉
⎞⎠2

f (x)dx

≤ 4‖ f ‖∞‖Kjn( f − f0)‖2
2

n
, (6.43)

so the last probability can be bounded, using Chebyshev’s inequality and (6.42), by

c′′

n

B

‖Kjn( f − f0)‖2
2

≤ 1

c2
×O(1)≤ α/4,

for c> 0 large enough, completing the proof.

Similar remarks as after Proposition 6.2.3 apply – in particular, we obtain the separation
rate ρn � n−r/(2r+1/2) for alternatives contained in balls of Br

2∞([0,1]) if we choose
2jn � n1/(2r+1/2). This rate will be seen to be optimal in Theorem 6.2.9. To choose
L in sharp dependence of α, we can use the exponential inequality for U-statistics in
Theorem 3.4.8 – this then also yields nonasymptotic concentration bounds on the type 1
and type 2 errors of �n (see Theorem 6.2.17 (with H0 = { f0})).

If no upper bound U for ‖ f ‖∞ is known, we can replace it by a preliminary estimate such
as ‖ fn(j̄n)‖∞ where 2j̄n ∼ (logn)2/n and use that this estimate is consistent for ‖ f ‖∞ (see
Proposition 5.1.7).

Finally, we may use convolution kernels instead of wavelet projections in the preceding
test statistics, but discretisation of the L2-norm on the basis is obviously very convenient,
both for proofs and computationally.

6.2.2 Minimax Testing of Uniformity on [0,1]
We now ask: in which sense are the separation rates obtained for the tests suggested
in the preceding subsection optimal? We investigate this first in the perhaps most basic
nonparametric testing problem, where the null hypothesis is that the unknown density
function is uniform on [0,1] and where the alternatives either consist of all distribution
functions or are constrained to lie in a Hölder or Sobolev ball. Note that any simple testing
problem H0 ={F0} can be reduced to testing for uniformity by transforming the observations
via the quantile transform F−1

0 .
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486 The Minimax Paradigm

Suppose that we are given a sample of n i.i.d. random variables X1, . . . ,Xn on [0,1]
with common distribution function F or probability density function f . All statistical
hypotheses in this subsection are automatically intersected with the set of probability
distribution/density functions. The uniform density is identically 1 on [0,1], with distri-
bution function F(t) = t on [0,1]. Suppose that we wish to test whether the probability
distribution/density that generated the observations indeed is uniform or not; that is, we
want to test

H0 : f = 1 vs. H1 : f 
= 1. (6.44)

Optimality of the Kolmogorov-Smirnov Test for General Alternatives

If Fn(t) = (1/n)
∑n

i=1 1[0,t](Xi) is the empirical distribution function, then the
Kolmogorov-Smirnov test statistic is

Tn = sup
t∈[0,1]

|Fn(t)− t|. (6.45)

As discussed after (6.24), the test �n = 1{Tn > zα/
√

n} has level α under the null hypothesis
and has power against the distribution functions F that are separated in supremum norm
from the null hypothesis by at least a constant multiple of 1/

√
n. The following proposition

shows that for general alternatives of distribution functions, the separation rate C/
√

n cannot
be improved:

Proposition 6.2.6 The minimax separation rate for testing the hypotheses

H0 : F(t)= t∀t ∈ [0,1] vs. H1 : F ∈
{

sup
t∈[0,1]

|F(t)− t| ≥ rn

}
in the sense of Definition 6.2.1 based on observations X1, . . . ,Xn ∼i.i.d. F is equal to

ρn = C√
n

,

where C is a constant that depends only on the desired level α of the test.

Proof The upper bound follows from the reasoning after (6.24) (see also Exercise 6.2.1).
For the lower bound, let f0 = 1 be the uniform density, and let ψ be any bounded
function supported in [0,1] such that ‖ψ‖1 ≤ ‖ψ‖2 = 1 and

∫ 1
0 ψ = 0 – for example,

Daubechies wavelets from Chapter 4, but much simpler examples are constructed easily.
For rn = o(n−1/2), let ψn = rnψ ; then f1 = f0 +ψn is a positive probability density for n
large enough (depending only on ‖ψ‖∞), and its distribution function F1 satisfies

‖F0 −F1‖∞ = rn sup
t

∣∣∣∣∫ t

0
ψ(x)dx

∣∣∣∣= Crn

and hence is contained in H1 for all n large enough. We use the reduction (6.23) with M = 1
and need to control the χ2-distance between P f1 and P f0 . For Z = dP f1/dP f0 , using the
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properties of ψ and 1+ x ≤ ex, we have, by independence,

E f0(Z− 1)2 =
∫
[0,1]n

(
(�n

i=1 f1(xi)− 1)
)2

dx

=
∫
[0,1]n

�n
i=1(1+ rnψ(xi))

2dx− 1

=
(∫

[0,1]
(1+ rnψ(x))

2dx

)n

− 1

= (1+ r2
n)

n − 1 ≤ er2
nn − 1 → 0,

so the result follows from (6.23).

Beyond Kolmogorov-Smirnov: Spiky Lipschitz Alternatives

Proposition 6.2.6 shows that testing problems for distribution functions have a natural
separation boundary of 1/

√
n and that the Kolmogorov-Smirnov test is optimal in this sense.

This is not unexpected – basic information theory shows that perturbations of the uniform
distribution of constant size 1/

√
n cannot be detected by any test, paralleling the separation

boundary in standard finite-dimensional models.
It pays to take a second look at the problem. Separating alternatives on the level of

distribution functions is in some sense restrictive: small departures from f0 = 1 on small
intervals look even smaller after computing a cumulative integral. More abstractly speaking,
the topology, or metric, in which we separate should play a role in our infinite-dimensional
situation. Consider an example: let ψ be the zigzag function such that ψ(0) = ψ(1/2) =
ψ(1) = 0,ψ(1/4) = 1,ψ(3/4) = −1, that is, 0 outside of [0,1] and linear between
0,1/4,1/2,3/4 and 1. Define ψn = εn−1/4ψ(n1/4·) for some ε > 0. We can think of ψn

as of two tiny spikes of size ±εn−1/4 supported in an interval of length n−1/4. Note that ψn

integrates to 0; thus, fψn = 1 +ψn is a probability density with distribution function Fψn

satisfying, for any t ∈ [0,1],

sup
t

∣∣Fψn(t)− t
∣∣= εn−1/4 sup

t

∣∣∣∣∫ t

0
ψ(n1/4x)dx

∣∣∣∣= εn−1/2 sup
t

∣∣∣∣∣
∫ n1/4t

0
ψ(v)dv

∣∣∣∣∣≤ εn−1/2.

Thus, for ε small, Fψn is not contained in the alternatives H1 covered by Proposition 6.2.6.
However, fψn is a Lipschitz function of Lipschitz constant equal to ε for all n, and its

distance to f0 in supremum- and L2-norm is ‖ fψn − 1‖∞ = ‖ψn‖∞ = εn−1/4‖ψ‖∞ and
‖ fψn − 1‖2 = εn−3/8‖ψ‖2, respectively, both of greater magnitude than 1/

√
n. In particular,

the test procedures from Propositions 6.2.2 and 6.2.5 can detect such departures from
uniformity (recalling the remarks after these propositions and noting that Lipschitz functions
are contained in B1

∞∞∩B1
2∞, see Section 4.3.3). The example of ψn illustrates that how large

a spike has to be for it to be detectable depends, in a subtle way, on the separation metric:
for distribution functions, the distance d( f0, fψn) is of order 1/

√
n; in L∞, it is n−1/4; and in

L2, it is n−3/8. We investigate these questions in a general minimax setting in the following
subsections.
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A Minimax Test for Smooth L∞-Separated Alternatives

Motivated by the preceding subsection, we now consider the testing problem (6.44) with
the parameter space constrained to lie in a fixed ball of smooth functions in the Besov
space Br

∞∞([0,1]),r> 0. Recall from the discussion in Section 4.3 that these spaces model
r-Hölderian functions and include Lipschitz balls for r = 1. We want to find the minimax
separation rate in the sense of Definition 6.2.1 for the supremum-norm metric.

Theorem 6.2.7 For any r> 0,B> 1, the minimax separation rate for testing the hypotheses

H0 : f = 1 vs. H1(rn) : f ∈ {‖ f ‖Br∞∞([0,1]) ≤ B,‖ f − 1‖∞ ≥ rn

}
in the sense of Definition 6.2.1 based on observations X1, . . . ,Xn ∼i.i.d. f equals

ρn = C

(
logn

n

)r/(2r+1)

,

where C is a constant that depends only on r,B and on the desired level α of the test.

Remark 6.2.8 The proof implies that the hypotheses H0 and H1 are in fact asymptotically
indistinguishable for any rn = o(ρn) (cf. after Definition 6.2.1).

Proof The upper bound follows from Proposition 6.2.2 and (6.27). To prove the lower
bound, let f0 = 1 on [0,1], and let ψ be a Daubechies wavelet from Theorem 4.2.10
translated by N so that its support is [1,2N]. We assume that the wavelet basis associated to
ψ is sufficiently regular so that it generates the Besov space Br

∞∞(R) from Chapter 4. For
m ∈ Z, j ∈N, we write, as usual,

ψjm = 2j/2ψ(2j(·)−m).

We can choose j ∈ N large enough that ψjm is supported in the interior of [0,1] for every
m= 1, . . . ,M,c02j ≤M< 2j and some c0> 0 depending only on the regularity of the wavelet
basis. Define, for ε > 0, the functions

fm := f0 + ε2−j(r+1/2)ψjm, m = 1, . . . ,M; M= { fm : m = 1, . . . ,M}. (6.46)

Since
∫ 1

0 ψ = 0, we have
∫ 1

0 fm = 1 for every m and also fm > 0 ∀m if ε > 0 is chosen small
enough depending only on ‖ψ‖∞. We have ‖ f0‖Br∞∞([0,1]) = ‖ f0‖∞ = 1 for every r> 0, and
the Besov norm of the perturbation is, in view of the interior support of the ψjm,

‖ε2−j(r+1/2)ψjm‖Br∞∞([0,1]) = ‖ε2−j(r+1/2)ψjm‖Br∞∞(R) ≤ c1ε, m = 1, . . . ,M, (6.47)

for some c1 > 0, by equivalence of the wavelet and the Besov norms (Theorem 4.3.2). For
small enough ε, we thus have, by the triangle inequality, ‖ fm‖Br∞∞([0,1]) ≤ B for every m.
Moreover,

‖ fm − 1‖∞ = ε‖ψ‖∞2−jr.

Summarising, we see that

M⊂ H1

(
ε‖ψ‖∞2−jr

)
,

for every j large enough. Now, for rn = o(ρn), if j∗n is defined such that ρn � 2−j∗nr, we can
find j = jn > j∗n such that

rn ≤ ε‖ψ‖∞2−jnr = o(ρn), (6.48)
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and the so-chosen fm are all contained in H1(rn). Hence, for any test �,

E f0�+ sup
f ∈H1

E f (1−�)≥ E f0�+ sup
f ∈M

E f (1−�),

and in view of Definition 6.2.1, the proof thus will be complete if we show that

liminf
n

inf
�

(
E f0�+ sup

f ∈M
E f (1−�)

)
≥ 1. (6.49)

Using (6.23), it suffices to bound E f0(Z− 1)2 where

Z = 1

M

M∑
m=1

dPn
m

dPn
0

,

with Pn
m the product probability measures induced by a sample of size n from density fm.

Writing

γn = ε2−jn(r+1/2),

using independence, ortho-normality of the ψjm and
∫
ψjm = 0 repeatedly, as well as

(1+ x)≤ ex, we see that

E f0(Z− 1)2 = 1

M2

∫
[0,1]n

(
M∑

m=1

(
n∏

i=1

fm(xi)− 1

))2

dx

= 1

M2

M∑
m=1

∫
[0,1]n

(
n∏

i=1

( fm(xi))− 1

)2

dx

= 1

M2

M∑
m=1

(∫
[0,1]n

n∏
i=1

f 2
m(xi)dx− 1

)

= 1

M2

M∑
m=1

((∫
[0,1]
(1+ γnψjnm(x))

2dx

)n

− 1

)

= 1

M

(
(1+ γ 2

n )
n − 1

)≤ enγ 2
n − 1

M
.

Now, using (6.48) and the definition of ρn, we see nγ 2
jn
= o(logn), so enγ 2

j = o(nκ), for every

κ > 0, whereas M � 2jn ≥ 2j∗n � ρ1/r
n still diverges at a fixed polynomial rate in n. Conclude

that the preceding quantity converges to 0, which proves (6.49) because η was arbitrary.

L2-Separation Conditions

We now investigate what happens if the L∞-norm is replaced by the L2-norm as separation
metric. It is then natural to work with a more general Besov-Sobolev Br

2q constraint on H1

consisting of bounded densities.

Theorem 6.2.9 For any r > 0,B > 1,1 ≤ q ≤∞, the minimax separation rate for testing
the hypotheses

H0 : f = 1 vs. H1(rn) : f ∈
{
max(‖ f ‖∞,‖ f ‖Br

2q([0,1]))≤ B,‖ f − 1‖2 ≥ rn

}
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in the sense of Definition 6.2.1 based on observations X1, . . . ,Xn ∼i.i.d. f is equal to

ρn = C(1\n)r/2r+1/2 ,

where C is a constant that depends only on r,B and on the desired level α of the test.

Remark 6.2.10 The proof implies that the hypotheses H0 and H1 are in fact asymptotically
indistinguishable for any rn = o(ρn) (cf. after Definition 6.2.1).

Proof The upper bound follows from Proposition 6.2.5 using the bias bound (6.35)
combined with Br

2q ⊂ Br
2∞, ‖1‖Br

2q
= 1 and the assumptions on H1 to obtain the desired

separation rate by choosing jn as before (6.36). It remains to prove the lower bound. Let
f0 = 1. As in the proof of Theorem 6.2.7, we take Daubechies wavelets ψjk, j large enough
that are supported in the interior [0,1]. Recall that at the jth level there are c02j, of these
interior wavelets, where c0 < 1 is a fixed positive constant. We denote by Zj, |Zj| = c02j the
index set of those k at level j. For βm = (βmk : k ∈ Zj), any point in the discrete hypercube
{−1,1}|Zj| and ε > 0 a small constant, define functions

fm(x)= f0 + ε2−j(r+1/2)
∑
k∈Zj

βmkψjk(x), m = 1, . . . ,2|Zj| ≡ M.

All the ψjk integrate to 0 on [0,1], and moreover,

‖ fm − f0‖∞ ≤ ε2−jr sup
x∈R

∑
k∈Z

|ψ(2jx− k)| = c(ε,ψ)2−jr,

so, for ε small enough, the fm are all uniformly bounded positive probability densities. The
Besov norm of f0 equals ‖ f0‖2 = 1, and for the fm we have from the wavelet characterisation
of Besov spaces (Section 4.3) and since all the ψjk are supported in the interior of [0,1] that

‖ fm − f0‖2
Br

2q([0,1]) = ‖ fm − f0‖2
Br

2q(R)
= ε222jr2−2j(r+1/2)

∑
k∈Zj

1 = c0ε
2;

hence, by the triangle inequality and for ε small enough, the fm are all contained in a B-ball
of Br

2q([0,1]). Finally,

‖ fm − f0‖2
2 =

∑
l,k

〈 fm,ψlk〉2 ≤ ε22−2jr,

so if rn = o(ρn), then if j∗n is defined such that ρn � 2−j∗nr, we can find jn > j∗n such that

rn ≤ ε2−jnr = o(ρn),

and the so-chosen fm are all contained in H1(rn). Now to prove the lower bound from
Definition 6.2.1, we use (6.23) and have to bound E f0(Z− 1)2 where

Z = 1

M

M∑
m=1

dPn
m

dPn
0

= 1

M

M∑
m=1

n∏
i=1

fm(Xi)≡ 1

M

M∑
m=1

Zm
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is the corresponding likelihood ratio. Now, using
∫

fm− f0 = 0, for all m, independence and
ortho-normality of the ψjk, we see that

E f0[Z2] = 1

M2

∑
m,m′

E f0

n∏
i=1

[ fm fm′(Xi)]

= 1

M2

∑
m,m′

(∫ 1

0
fm(x) fm′(x)dx

)n

= 1

M2

∑
m,m′

(
1+ ε22−jn(2r+1)

∑
k

βmkβm′k

)n

(6.50)

= E[(1+ ε22−jn(2r+1)Yjn)
n],

where Yjn ≡
∑|Zjn |

k=1 Rk, for i.i.d. Rademacher ±1 random variables Rk. Set

γn = ε2n2−jn(2r+1/2),

which, as n →∞, is o(1) by the assumption on jn. Using 1+ x ≤ ex and the expansion

cosh(z)= cos(iz)= 1+ z2

2
+ o(z2), as |z|→ 0,

the quantity in (6.50) can further be bounded by

E[exp(ε2n2−jn(2r+1)Yjn)] = E[exp(γn2
−jn/2Yjn)] = Eexp

⎛⎝γn2
−jn/2

|Zjn |∑
k=1

Rk

⎞⎠
=
(

eγn2−jn/2 + e−γn2−jn/2

2

)|Zjn |

= cosh
(
γn2

−jn/2
)|Zjn |

= (
1+ γ 2

n 2−jn−1(1+ o(1))
)c02jn

≤ exp
(
c0γ

2
n (1+ o(1))/2

)
≤ 1+ δ2,

for any δ > 0. Conclude that, for any δ > 0,

E f0(Z− 1)2 = E f0[Z2]− 1 ≤ δ2

whenever n is large enough, completing the proof.

We remark that in this proof we could have taken jn = j∗n, and the lower bound on the
testing errors still would be true on choosing ε small enough in the last step.

The theorem shows that the L2-separation rates are of a smaller order of magnitude as
those in L∞. The case where one separates in Lp for general 1 ≤ p ≤ ∞ is discussed in
Exercise 6.2.5 and in the notes at the end of this chapter. In particular, decreasing p below 2
does not improve the separation rate further.
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6.2.3 Minimax Signal-Detection Problems in Gaussian White Noise

Consider observing a function f ∈ L2([0,1]) in white noise, that is,

dY(t)= dY(n)f (t)= f (t)dt+ σ√
n

dW(t), t ∈ [0,1], σ > 0, n ∈N,

as in (6.3). A natural problem is to test whether there has been a signal f at all or whether
the observations are just pure white noise. That is, we want to test

H0 : f = 0 vs. H1 : f 
= 0,

which can be considered the white noise model analogue of testing for uniformity of a
sampling density. The situation here is quite similar to, in fact slightly simpler than, the one
in the preceding section. A Kolmogorov-Smirnov type of test is based on

√
n

σ
sup

t∈[0,1]

∣∣∣∣∫ 1

0
dY(t)

∣∣∣∣= √
n

σ
sup

t∈[0,1]
|Y(1[0,t])|.

Under H0, this statistic exactly equals the maximum of a standard Brownian motion. Plug-in
tests based on nonparametric estimators in the white noise model can be used likewise,
and for L2-separation results, we replace the U-statistic arguments by χ2-statistics. We
summarise the results in the following theorem, which shows that the signal detection
problem in white noise is similar to the one of testing for uniformity of a probability density
on [0,1].
Theorem 6.2.11 Consider the signal detection problem based on observations dY ∼ PY

f in
the white noise model (6.3), and let B> 0,1 ≤ q ≤∞. The minimax rates ρn of separation
for testing the following hypotheses in the sense of Definition 6.2.1 are given as follows:

(a) H0: f = 0 vs. H1: f ∈
{
supt∈[0,1]

∣∣∣∫ t
0 f (x)dx

∣∣∣≥ rn

}
⇒ ρn = c√

n ,

where c is a constant that depends on σ and the desired level α of the test.

(b) H0: f = 0 vs. H1: f ∈L2∩{‖ f ‖Br∞∞([0,1]) ≤ B,‖ f ‖∞ ≥ rn

} ⇒ ρn = c
(

logn
n

)(r/2r+1)
,

where c is a constant that depends on r,B,σ and on the desired level α of the test.

(c) H0 : f = 0 vs. H1 : f ∈
{
‖ f ‖Br

2q([0,1]) ≤ B,‖ f ‖2 ≥ rn

}
⇒ ρn = c

(
1
n

)(r/2r+1/2)
,

where c is a constant that depends on r,B,σ and on the desired level α of the test.

Remark 6.2.12 The proof implies that the hypotheses H0 and H1 are in fact asymptotically
indistinguishable for any rn = o(ρn) (cf. after Definition 6.2.1).

Proof We start with proofs of the lower bounds, which are similar to those of
Proposition 6.2.6 and Theorems 6.2.7 and 6.2.9 up to the likelihood ratio calculations.

(a) Assume the separation rate is rn = o(1/
√

n). Take ψn = rnψ as in the proof of
Proposition 6.2.6. We can assume σ = 1 (otherwise renormalise so that ‖ψ‖2 = σ ).
Then

∫ t
0ψn(x)dx = Crn hence ψn ∈ H1. By (6.23) with M = 1 and Proposition 6.1.1

applied with f =ψn so that

nY(n)0 (ψn)=√
nrn

∫ 1

0
ψdW,

∫ 1

0
ψdW ∼ N(0,1),
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we can lower bound, for every η > 0, the relevant infimum in Definition 6.2.1 by
(1− 1/η) times the square root of

EY
0(Z− 1)2 =

∫
R

(
e
√

nrnx−nr2
n/2 − 1

)2 1√
2π

e−x2/2dx− 1

= 1√
2π

e−nr2
n

∫
R

e2
√

nrnxe−x2/2dx− 1 = e−nr2
n+2nr2

n − 1

= enr2
n − 1 → 0

as n → ∞ using standard properties of standard normal random variables, including
EeuX = eu2/2.

(b) Assume that the separation rate is rn = o(ρn). Take functions

fm := ε2−j(r+1/2)ψjm, m = 1, . . . ,M; M= { fm : m = 1, . . . ,M},
as in (6.46) but with f0 = 0, for ε > 0 and jn ∈N chosen as before (6.48), so that fm ∈H1

for every m and such rn. Again, we can take σ = 1 without loss of generality (otherwise
scale ψ such that ‖ψ‖2 = σ ). By (6.23), to prove the lower bound, we need to bound
EPY

0,n,1
(Z− 1)2, where

Z = 1

M

M∑
m=1

dPY
fm,n,1

dPY
0,n,1

= 1

M

M∑
m=1

enY(n)0 ( fm)−n‖ fm‖2
2/2

= 1

M

M∑
m=1

eε
√

n2−jn(r+1/2)gme−ε
2n2−jn(2r+1)/2.

in view of Proposition 6.1.1, with gm ∼i.i.d. N(0,1). Now, writing γ̄ n = ε
√

n2−jn(r+1/2)

and using independence of the gm, Eeug1 = eu2/2, we have

EY
0,n,1(Z− 1)2 = E

(
1

M

M∑
m=1

eγ̄ ngme−γ̄
2
n/2 − 1

)2

= 1

M
E
(
eγ̄ ng1e−γ̄

2
n/2 − 1

)2

= 1

M

(
Ee2γ̄ ng1e−γ̄

2
n − 1

)
= eγ̄

2
n − 1

M
.

The proof is now completed exactly as at the end of the proof of Theorem 6.2.7.
(c) Assume that the separation rate is rn = o(ρn), and for βm = (βmk : k ∈Zj) a point in the

discrete hypercube {−1,1}|Zj|, consider functions

fm(x)= ε2−j(r+1/2)
∑
k∈Zj

βmkψjk(x), m = 1, . . . ,2|Zj| ≡ M,

as in the proof of Theorem 6.2.9 (with f0 = 0). We can set σ = 1 (otherwise renormalise
so that ‖ψ‖2 = σ ). We let j= jn as in the proof of Theorem 6.2.9 so that all these fm are
contained in H1. By (6.23), to prove the lower bound, we need to bound EPY

0,n,1
(Z− 1)2,
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where, in view of Proposition 6.1.1,

Z = 1

M

M∑
m=1

dPY
fm,n,1

dPY
0,n,1

= 1

M

M∑
m=1

enY(n)0 ( fm)−n‖ fm‖2
2/2

= 1

M

M∑
m=1

eε
√

n2−jn(r+1/2)∑
k βmkgke−(nε

22−jn(2r+1)∑
k 1)/2

= 1

M

M∑
m=1

∏
k

[
e
√
γ ′nβmkgke−γ

′
n/2
]

,

for γ ′
n ≡ ε2n2−jn(2r+1). Now, since the gk are i.i.d. and from Eeug1 = eu2/2, we have

E0Z
2 = E

(
1

M

M∑
m=1

∏
k

[
e
√
γ ′nβmkgke−γ

′
n/2
])2

= 1

M2

∑
m,m′

∏
k

Ee
√
γ ′n(βmk+βm′k)gk−γ ′n

= 1

M2

∑
m,m′

∏
k

e
γ ′n
2 (βmk+βm′k)2−γ ′n

= 1

M2

∑
m,m′

eγ
′
n
∑

k βmkβm′k

= E[exp(γ ′
nYjn)],

where Yjn =
∑

k∈Zjn
Rk, with Rk i.i.d. ±1 Rademachers. The proof from now on is the

same as after (6.50), noting that γ ′
n = γn2−jn/2.

We now turn to upper bounds. For (a), we can argue as before Proposition 6.2.6, even
without invoking Donsker’s theorem, using that

EY
0 sup

t∈[0,1]

∣∣∣∣∫ 1

0
dY(t)

∣∣∣∣= (σ/√n)E‖W‖∞ = O(1/
√

n),

where W is a standard Brownian motion. Part (b) follows from Proposition 6.2.2 and
(6.27) after it, and Part (c) follows from Proposition 6.2.3 and the discussion after it
(see (6.35) and (6.36)) using also Br

2q ⊂ Br
2∞.

6.2.4 Composite Testing Problems

In this section we turn to general testing problems where the null hypothesis itself is possibly
composite, that is, consists of more than just one element { f0}. A classical application is as a
goodness-of-fit test designed to test whether a given parametric model {Pθ : θ ∈	},	⊂Rp,
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of probability distributions fits the data or not. But such testing problems are important
beyond this, particularly for multiple testing situations as well as for the adaptive inference
procedures discussed in Chapter 8.

The composite testing theory is more difficult as it depends on the geometry, size and
other properties of H0. One can view such problems as multiple testing problems where we
want to control the type 1 errors for many simple hypotheses { f0} simultaneously. A natural
test statistic is thus obtained from accepting H0 as soon as one of the elements of H0 has been
accepted by a test designed for a simple testing problem, such as the χ2- or U-statistic tests
from Section 6.2.1. Mathematically, this amounts to studying the infimum over all elements
of H0 of the individual test statistics.

For null hypotheses that are not too complex measured via an entropy condition, we
show that such infimum tests give rise to consistent tests. In proving this, we establish
nonasymptotic exponential concentration bounds for the type 1 and type 2 errors for the
relevant tests, which are of independent interest even for the case of a singleton null
hypothesis. We then also show that in specific settings where H0 is a very large set but
with nice geometric properties, tailor-made tests can outperform minimum-H0 tests.

Plug-in Approach

We start again with the Kolmogorov-Smirnov approach. Suppose that we are given a sample
of n i.i.d. random variables X1, . . . ,Xn from law PF on Rd with distribution function F.
Consider a general, possibly composite null hypothesis H0 equal to an arbitrary set F0 of
probability distribution functions on Rd. For Fn the empirical distribution function of the
observations, define the test statistic

Tn = inf
G∈H0

‖Fn −G‖∞, (6.51)

searching for the minimal uniform distance from the ‘observations’ Fn to the null hypothesis
H0. A test for the null hypothesis is given by

�n = 1{Tn ≥ zα/
√

n},
where zα are some α-quantile constants. The type 1 errors of this test satisfy, for F ∈ H0,

EF�n ≤ PN
F

(√
n‖Fn −F‖∞ > zα

)
and hence behave as in the situation of a simple null hypothesis, with corresponding choices
for zα. We can consider separated alternatives

H1 ⊂
{

F : inf
G∈H0

‖F−G‖∞ ≥ C/
√

n

}
,

for which we can, as before Proposition 6.2.6, control the type 2 errors.
This approach works in generality for any model in which a good estimator f̂n is

available, similar to Proposition 6.2.2. Consider a statistical model F contained in some
metric space (S,d) such that we can construct an estimator f̂n for which

sup
f ∈F

E f d( f̂n, f )≤ rn, (6.52)
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where (rn : n ∈ N) is a sequence of nonnegative real numbers (the estimation rate). To test
H0 ⊂F , we define the test statistic

Tn := inf
h∈H0

d( f̂n,h)= d( f̂n,H0)

and, for 0< α < 1, the test
�n = 1{Tn > 2rn/α}. (6.53)

Proposition 6.2.13 Let α > 0 be given, and consider testing hypotheses

H0 ⊂F vs. H1 ⊂F ∩{ f : d( f ,H0)≥ crn}, c ≥ 4/α.

Then, for �n given in (6.53), we have, for every n ∈N,

sup
f ∈H0

E f�n + sup
f ∈H1

E f (1−�n)≤ α.

Proof The proof in exactly the same as Proposition 6.2.2 using the following two
observations: for f ∈ H0, we have Tn ≤ d( f̂n, f ), and for the alternatives, we use
infh∈H0 d( f ,h)≥ crn.

As after Proposition 6.2.2, we obtain the nonparametric estimation rates as separation
rates. We also note that we can obtain exponential concentration bounds for the type 1 and
type 2 errors of the preceding plug-in tests simply by using the concentration inequalities
for centred linear estimators from Chapter 5.

Minimum χ 2 Tests in the White Noise Model

Consider observing a function f ∈ L2([0,1]) in the white noise model (6.3). For an arbitrary
H0 ⊂ L2, consider testing hypotheses

H0 vs. H1 ⊂ { f : ‖ f −H0‖2 ≥ ρn},
where ρn ≥ 0 is a separation sequence. For fn(j) as in (6.30) and

Kj( f )=
∑

l≤j−1,k

ψlk〈 f ,ψlk〉 (6.54)

the wavelet approximation of f at level j ∈ N associated with a wavelet basis {ψlk} of
L2([0,1]), consider the minimum χ2 test statistic

Tn = inf
h∈H0

|Tn(h)| = inf
h∈H0

∣∣∣∣‖ fn(jn)−Kjn(h)‖2
2 −

2jnσ 2

n

∣∣∣∣ (6.55)

and, assuming that the preceding infimum is measurable (see Exercise 6.2.2), the associated
test

�n = 1{Tn ≥ τn}, (6.56)

where τn are some critical values. This test is based on minimising the simple χ2 test from
Proposition 6.2.3 over all points h ∈ H0.

Searching over multiple null hypotheses in the test statistic Tn has some cost that we can
measure by the increments of the noise process on certain classes of functions associated
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with the wavelet basis used in the construction of the test. For m ∈ Z, j ∈ N, f ∈ L2, define
the class of functions

Gj,m(H0, f )=
⎧⎨⎩ ∑

l≤j−1,k

ψlk(·)〈ψlk, f − h〉 : h ∈ H0, ‖Kj( f − h)‖2
2 ≤ 2m+1

⎫⎬⎭ . (6.57)

If W is a standard white noise process acting on L2, and if glk are i.i.d. N(0,1), we have

‖W‖Gj,m(H0, f ) = sup
h∈H0,‖Kj( f −h)‖2

2≤2m+1

∣∣∣∣∣∣
∑

l≤j−1,k

glk( flk − hlk)

∣∣∣∣∣∣ . (6.58)

The following theorem gives a general nonasymptotic concentration bound for the
infimum χ2 test�n on general hypotheses H0 and H1. We shall discuss several consequences
of it after the proof.

Theorem 6.2.14 Let H0 be a bounded subset of L2, and consider testing the hypotheses

H0 vs. H1 ⊂
{

f ∈ L2 : ‖ f −H0‖2 ≥ ρn

}
, ρn ≥ 0,

based on observations dY ∼ PY
f in the white noise model (6.3). Let B(j), j ∈ N, be a

nonincreasing sequence of positive real numbers such that for Kj from (6.54)

sup
f0∈H0, f ∈H1

‖Kj( f − f0)− ( f − f0)‖2
2 ≤ B(j), (6.59)

and for c,L positive constants and jn ∈N,dn ≥ 1 sequences of nonnegative numbers, let

τn = Lσ 2dn
2jn/2

n
, ρ2

n ≥ c2 max

(
Lσ 2dn

2jn/2

n
,B(jn)

)
.

Assume, moreover, that for all n ∈N,

sup
f ∈H1

E‖W‖Gjn ,m(H0, f ) ≤
√

n2m

16
, for all m ∈ Z s.t. 2m ≥ ρ

2
n

2
. (6.60)

Then there exist positive constants L = L(ψ) and c = c(L,σ) such that the test �n from
(6.56) satisfies, for every n ∈N and constants ci, i = 1, . . . ,4 depending only on c,L,σ ,

sup
f ∈H0

E f�n + sup
f ∈H1

E f (1−�n)≤ c1 exp

{
−c2

d2
n

1+ dn2−jn/2

}
+ c3 exp

{−c4nρ
2
n

}
. (6.61)

Proof We set σ 2 = 1 for notational simplicity. We first control the type 1 errors. Then
f ∈ H0, and we see that

E f�n = PY
f

{
inf

h∈H0

|Tn(h)|> τn

}
≤ PY

f {|Tn( f )|> τn} . (6.62)

The last probability equals, for glk i.i.d. N(0,1),

Pr

⎛⎝∣∣∣∣∣∣1n
∑

l≤jn−1

∑
k

(g2
lk − 1)

∣∣∣∣∣∣≥ Ldn
2jn/2

n

⎞⎠≤ Cexp

{
− 1

C

L2d2
n

1+Ldn2−jn/2

}
,

using Theorem 3.1.9 and hence can be absorbed into the first bound in (6.61).
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For the alternatives, let us write flk = 〈 f ,ψlk〉 for f ∈ L2 and h∗ ∈ H0 for a minimiser in
h of the test statistic (see Exercise 6.2.2). We have, from the definition of ρn,B(j) and for c
large enough, uniformly in H1,∣∣∣∣∣∣

∑
l≤jn−1,k

( flk − h∗lk)
2

∣∣∣∣∣∣≥ ‖ f − h∗‖2
2 − 2B(j)≥ 1

2
inf

h∈H0

‖ f − h‖2
2 ≥ ρ2

n/2 (6.63)

and hence can bound E f (1−�n) by

Pr

⎛⎝ inf
h∈H0

∣∣∣∣∣∣
∑

l≤jn−1

∑
k

( flk − hlk + 1√
n

glk)
2 − 1

n
)

∣∣∣∣∣∣≤ τn

⎞⎠
≤ Pr

⎛⎝∣∣∣∣∣∣
∑

l≤jn−1,k

( flk − h∗lk)
2

∣∣∣∣∣∣−Ldn
2jn/2

n
≤
∣∣∣∣∣∣1n

∑
l≤jn−1,k

(g2
lk − 1)

∣∣∣∣∣∣+
∣∣∣∣∣∣ 2√

n

∑
l≤jn−1,k

glk( flk − h∗lk)

∣∣∣∣∣∣
⎞⎠

≤ Pr

⎛⎝∣∣∣∣∣∣
∑

l≤jn−1,k

(g2
lk − 1)

∣∣∣∣∣∣≥ Ldn2
jn/2

⎞⎠
+Pr

⎛⎝∣∣∣∣∣∣ 2√
n

∑
l≤jn−1,k

glk( flk − h∗lk)

∣∣∣∣∣∣> 1

4

∣∣∣∣∣∣
∑

l≤jn−1,k

( flk − h∗lk)
2

∣∣∣∣∣∣
⎞⎠ ,

for c > 0 large enough. The first term is bounded as under H0 and, combined with the H0

bound, gives rise to the first term in the inequality (6.61). The second term needs a more
careful treatment. It can be bounded by

Pr

⎛⎝sup
h∈H0

∣∣∣∑l≤jn−1,k glk( flk − hlk)
∣∣∣

‖Kjn( f − h)‖2
2

>

√
n

8

⎞⎠ . (6.64)

The variances of the numerator in this probability are bounded, using ortho-normality of the
ψlk and independence, by

Var

∣∣∣∣∣∣
∑

l≤jn−1,k

glk( flk − hlk)

∣∣∣∣∣∣≤ ‖Kjn( f − h)‖2
2. (6.65)

Define, for h ∈ H0,

σ 2(h) := ‖Kjn( f − h)‖2
2.

By definition of σ 2, boundedness of H0 in L2 and ‖Kj(g)‖2 ≤ ‖g‖2 ∀g ∈ L2, we can realise
the supremum in the probability in (6.64) as the maximum over all slices

{h ∈ H0 : 2m ≤ σ 2(h)≤ 2m+1},
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for (ρ2
n/2)≤ 2m ≤ C with fixed constant C; more precisely, (6.64) is less than or equal to

Pr

⎧⎨⎩ max
m∈Z:ρ2

n/2≤2m≤C
sup

h∈H0:2m≤σ 2(h)≤2m+1

∣∣∣∑l≤jn−1,k glk( flk − hlk)
∣∣∣

σ 2(h)
>

√
n

8

⎫⎬⎭
≤

∑
m∈Z:ρ2

n/2≤2m≤C

Pr

{
‖W‖Gjn ,m(H0, f ) >

√
n

8
2m

}
≤

∑
m∈Z:ρ2

n/2≤2m≤C

Pr
{‖W‖Gjn ,m(H0, f )−E‖W‖Gjn ,m(H0, f ) >

√
n2m−3 −E‖W‖Gjn ,m(H0, f )

}
,

where we use the notation from (6.58). Using (6.60), we bound the last expression by∑
m∈Z:ρ2

n/2≤2m≤C

Pr
{‖W‖Gjn ,m(H0, f )−E‖W‖Gjn ,m(H0, f ) >

√
n2m−4

}
.

To this expression we can apply Theorem 2.5.8, noting that the supremum over Gj,m(H0, f )
can be realised, by continuity, as one over a countable subset of H0. By (6.65), the last
probability thus is bounded by∑

m∈Z:ρ2
n/2≤2m≤C

c′ exp

{
−c′′

n22m

2m

}
≤ c3e

−c4nρ2
n ,

completing the proof.

We now give some corollaries to demonstrate the usefulness of the preceding theorem.
The separation rate is driven by similar tradeoffs as in Proposition 6.2.3, with the additional
requirement (6.60), which we discuss now.

Since H0 is bounded in L2, the class Gjn,m(H0, f ) from (6.57) varies, for jn fixed,
in a ball of radius 2m/2 in the finite-dimensional space Vjn spanned by wavelets up to
resolution level jn. These spaces have dimension 2jn , and their balls of radius 2m/2 have
L2([0,1])-covering numbers of order (3 · 2m/2/ε)2

jn for all 0< ε < 2m/2 (Proposition 4.3.34
combined with the fact that the L2([0,1]) metric coincides with the Euclidean metric on
Vjn by Parseval’s identity.) Using Dudley’s metric entropy bound (Theorem 2.3.7) for the
Gaussian process W indexed by Gjm,m(H0, f ), we see that, for every n ∈N,

E‖W‖Gjn ,m(H0, f ) � 2jn/2

∫ 2(m+1)/2

0

√
log

3 · 2m/2

ε
dε � 2jn/22m/2 (6.66)

always holds. This bound is somewhat crude but does not require any assumptions
whatsoever on H0 other than that it is bounded in L2. It verifies (6.60) whenever ρ2

n is of
larger order than 2jn/n (with c large enough). Taking dn = 2jn/2 in Theorem 6.2.14 then
results in the following

Corollary 6.2.15 Consider H0,H1,B(j), jn as in Theorem 6.2.14 with separation rate

ρ2
n ≥ c2 max

(
Lσ 2 2jn

n
,B(jn)

)
.
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Consider the test�n from (6.56). For every D> 0, there exist L= L(ψ ,D) and c= c(L,σ ,D)
large enough such that

sup
f ∈H0

E f�n + sup
f ∈H1

E f (1−�n)≤ Dexp
{−D2jn

}
. (6.67)

If H0∪H1 is a bounded subset of Br
2∞([0,1]), then ρ2

n can be taken of order c2n−2r/(2r+1), and
then, for jn such that 2jn � n1/(2r+1),

sup
f ∈H0

E f�n + sup
f ∈H1

E f (1−�n)≤ Dexp
{−Dnρ2

n

}
. (6.68)

Proof The first part follows from Theorem 6.2.14 with dn = 2jn/2 and (6.60) verified by
(6.66), noting that a constant multiple of 2jn/22m/2 can be made less than

√
n2m for all 2m ≥ρ2

n

by choosing c large enough. The second result then follows from combining the preceding
and the approximation bound

sup
f0∈H0, f ∈H1

‖Kj( f − f0)− ( f − f0)‖2
2 ≤ C2−2jr ≡ B(j) (6.69)

under the regularity assumptions on H0 ∪ H1 (via the results from Sections 4.3.4
and 4.3.5).

Since ρn is effectively the L2-distance between the hypotheses H0 and H1, the second
assertion of the preceding corollary controls the type 1 and type 2 errors at rate e−Dn‖H0−H1‖2

2

if the distance between H0 and H1 is at least of order n−r/(2r+1).
In the bound (6.66), no information on H0 was used other than that it was bounded in

L2. If further structure is available, the separation rate can be substantially improved, as is
already clear from Proposition 6.2.3 for simple H0 and H1 bounded in Br

2∞([0,1]), where
the rate is

n−r/(2r+1/2) = o(n−r/(2r+1)).

If we want to retrieve this better rate from Theorem 6.2.14, we need to take dn = const and
2jn ∼ n1/(2r+1/2) in view of (6.69). If we can strengthen the simple entropy bound used in
(6.66), for instance, by assuming that

logN(Gj,m(H0, f ),L2([0,1]),ε)≤
(

A

ε

)1/s

, 0< ε < A, (6.70)

for every m ∈ Z, j ∈N and positive constants s,A independent of m, j, then a separation rate
improving on n−r/(2r+1) also can be attained in the composite case, at least if H0 is not ‘too
large’.

Corollary 6.2.16 Consider H0,H1 as in Theorem 6.2.14 such that H0 ∪ H1 are bounded
subsets of Br

2∞([0,1]), for some r > 0, such that (6.70) holds for some s > 1/2 and with
separation rate

ρ2
n ∼ c2 max

(
n−2s/(2s+1),n−r/(2r+1/2)

)
, c> 0. (6.71)

Consider the test�n from (6.56). For every α > 0, there exist L= L(ψ ,α) and c= c(L,σ ,α)
large enough such that, for all n ∈N,

sup
f ∈H0

E f�n + sup
f ∈H1

E f (1−�n)≤ α. (6.72)
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Proof For the choices of dn, jn indicated earlier, we retrieve the desired separation rate
from Theorem 6.2.14 and (6.69) if we can verify (6.60). From Dudley’s metric entropy
bound (Theorem 2.3.7) and (6.70) and (6.65), we have

E‖W‖Gjn ,m(H0, f ) ≤ C
∫ 2(m+1)/2

0
(A/ε)1/2sdε ≤ C′2m(1/2−1/4s). (6.73)

We see that

E‖W‖Gm,jn
≤√

n2m−4

is equivalent to 2m ≥ c′′′n−2s/(2s+1), for some sufficiently large c′′′ > 0, which is satisfied for
c large enough because 2m ≥ ρ2

n/2 ≥ (c/2)n−2s/(2s+1).

Examples for H0 satisfying condition (6.70) can be found in Chapters 3 and 4. For
instance, if H0 is a bounded subset of Bs

p∞([0,1]), then it satisfies (6.70) for any s>1/2
in view of Theorem 4.3.36 and the wavelet characterisation of the norm of Bs

2∞([0,1])
(Sections 4.3.4 and 4.3.5). Note that the ‖ ·‖Bs

p∞-norm of a function
∑

l≤jn,k〈h,ψlk〉ψlk cannot
exceed ‖h‖Bs

p∞ and that the translation by f extends the entropy for a bounded subset of Bs
p∞

to one for the set Gj,m(H0, f ) that is uniform in m, j, f . We discuss some concrete examples
after Proposition 6.2.18.

Infimum Tests Based on U-Statistics

We now consider the composite testing problem from the preceding subsection in the
sampling setting. Let X1, . . . ,Xn be i.i.d. with common bounded probability density function
f on [0,1]). For H0 ⊂ L2([0,1]), {ψlk} a wavelet basis of L2([0,1]) (with scaling function
equal to the wavelets at the initial resolution level) , j ∈N and h ∈ H0, define the U-statistic

Un(h)= 2

n(n− 1)

∑
i<i′

∑
l≤jn−1,k

(ψlk(Xi)−〈ψlk,h〉)(ψlk(Xi′)−〈ψlk,h〉).

For τn some thresholds to be chosen later, and following the ideas from (6.37), define the
test

�n = 1

{
inf

h∈H0

|Un(h)|> τn

}
. (6.74)

For f ∈ L2,m ∈ Z, j ∈N, we consider again the classes

Gj,m(H0, f )=
⎧⎨⎩ ∑

l≤j−1,k

ψlk(·)〈ψlk, f − h〉 : h ∈ H0, ‖Kj( f − h)‖2
2 ≤ 2m+1

⎫⎬⎭
from the preceding subsection. The role of the white noise process W is naturally replaced
by the empirical process Pn −P, and we write

‖Pn −P‖Gj,m(H0, f ) = sup
h∈H0,‖Kj( f −h)‖2

2≤2m+1

∣∣∣∣∣∣1n
n∑

i=1

∑
l≤jn−1,k

(ψlk(Xi)−〈 f ,ψlk〉)( flk − hlk)

∣∣∣∣∣∣ . (6.75)

The proof of the following theorem replaces the Gaussian process tools from Theo-
rem 6.2.14 by appropriate empirical process tools. For the degenerate part of the U-statistic,
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we use the concentration inequality from Section 3.4.3, which naturally leads to four
different concentration regimes. To simplify expressions, we restrict to sequences dn, jn
which do not grow too quickly (but still cover all the applications we have in mind), leading
to a pure Gaussian tail inequality. Other regimes can be obtained likewise from the proof.

Theorem 6.2.17 Let H0 be a family of probability densities on [0,1] that are uniformly
bounded by U. Consider testing the hypotheses

H0 vs. H1 ⊂ { f : ‖ f ‖∞ ≤ U,‖ f −H0‖2 ≥ ρn} ; ρn ≥ 0,

based on i.i.d. observations X1, . . . ,Xn from density f . Let B(j), j ∈ N, be a nonincreasing
sequence of positive real numbers such that

sup
f0∈H0, f ∈H1

‖Kj( f − f0)− ( f − f0)‖2
2 ≤ B(j), (6.76)

and, for c,L positive constants and jn ∈N,dn sequences of nonnegative numbers satisfying

1 ≤ dn ≤ min(2jn/2,n−1/4), 2jn/2d3
n ≤ n,

let

τn = Ldn
2jn/2

n
, ρ2

n ≥ c2 max

(
Ldn

2jn/2

n
,B(jn)

)
.

Assume, moreover, that for all n ∈N,

sup
f ∈H1

E f ‖Pn −P‖Gjn ,m(H0, f ) ≤ 2m

16
, for all m ∈ Z s.t. 2m ≥ ρ

2
n

2
. (6.77)

Then there exist L = L(U,ψ) and c = c(L,U) large enough such that the test �n from (6.74)
satisfies, for every n ∈N and constants ci, i = 1, . . . ,4, depending only on c,L,

sup
f ∈H0

E f�n + sup
f ∈H1

E f (1−�n)≤ c1 exp
{−c2d

2
n

}+ c3 exp{−c4nρ
2
n}. (6.78)

Proof We first control the type 1 errors. For f ∈ H0, we have

E f�n = PN
f

{
inf

h∈H0

|Un(h)|> τn

}
≤ PN

f

{
|Un( f )|> Ldn

2jn/2

n

}
. (6.79)

Now Un( f ) is a U-statistic with kernel

R f (x,y)=
∑

l≤jn−1,k

(ψlk(x)−〈ψlk, f 〉)(ψlk(y)−〈ψlk, f 〉)

which satisfies ER f (x,X1) = 0, for every x, since E f (ψlk(X)− 〈ψlk, f 〉) = 0, for every k, l.
Consequently, Tn( f ) is a degenerate U-statistic of order 2, and we can apply Theorem 3.4.8
to it, which we shall do with the choice u = d2

n. We thus need to bound the constants A,B,C
and D occurring in that theorem (cf. (3.146) and (3.147)) in such a way that

1

n(n− 1)
(Cdn +Dd2

n +Bd3
n +Ad4

n)� dn
2jn/2

n
, (6.80)

with constants in that inequality depending only on U,ψ , so the bound

c1 exp
{−c2d

2
n

}
(6.81)
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for the type 1 errors follows from choosing L=L(U,ψ) large enough. The bounds for A,B,C
and D are obtained as follows: first, since R f is fully centred we can bound ER2

f (X1,X2) by
the second moment of the uncentred kernel, and thus, using the ortho-normality of ψlk,

ER2
f (X1,X2)≤

∫ 1

0

∫ 1

0

⎛⎝ ∑
l≤jn−1,k

ψlk(x)ψlk(y)

⎞⎠2

f (x) f (y)dxdy

≤ ‖ f ‖2
∞

∑
l≤jn−1,k

∫ 1

0
ψ2

lk(x)dx
∫ 1

0
ψ2

lk(y)dy

≤ 2jnU2.

We obtain C2 ≤ n(n− 1)2jn−1U2, and it follows that

Cdn

n(n− 1)
� dn

2jn/2U

n
,

which precisely matches the right-hand side of (6.80). For the second term, note that, using
the Cauchy-Schwarz inequality and that Kj is an L2-projection operator,∣∣∣∣∣∣

∫ ∫ ∑
l≤jn−1,k

ψlk(x)ψlk(y)ζ(x)ξ(y) f (x) f (y)dxdy

∣∣∣∣∣∣=
∣∣∣∣∫ Kjn(ζ f )(y)ξ(y) f (y)dy

∣∣∣∣
≤ ‖Kjn(ζ f )‖2‖ξ f ‖2 ≤ ‖ f ‖2

∞ ≤ U2

and, similarly, that

|E[EX1[Kjn(X1,X2)]ζ(X1)ξ(X2)]| ≤ ‖ f ‖2
∞, |EKjn(X1,X2)| ≤ ‖ f ‖2

∞.

Thus, E[R f (X1,X2)ζ(X1)ξ(X2)] ≤ 4U2, and hence,

Dd2
n

n(n− 1)
≤ 2Ud2

n

n− 1
� dn

2jn/2

n

is satisfied because dn ≤ 2jn/2. For the third term, using the decomposition

R f (x1,x)= (r(x1,x)−EX1r(X,x))+ (EX,Yr(X,Y)−EYr(x1,Y)),

for r(x,y) = ∑
l≤jn−1,kψlk(x)ψlk(y), the inequality (a + b)2 ≤ 2a2 + 2b2 and again

ortho-normality, we have that, for every x ∈R,

|EX1R
2
f (X1,x)| ≤ 2

⎡⎣‖ f ‖∞
∑

l≤jn−1,k

ψ2
lk(x)+‖ f ‖∞‖Kjn( f )‖2

2

⎤⎦ ,

so, using ‖∑kψ
2
lk‖∞ � 2l by regularity of the wavelet basis, we have

Bd3
n

n(n− 1)
� 2jn/2d3

n

n

1√
n
� dn

2jn/2

n

because d2
n ≤

√
n by assumption. Finally, for the fourth term, we have A = ‖R f ‖∞ � 2jn by

regularity of the wavelet basis, and hence, by assumption on jn,dn,

Ad4
n

n(n− 1)
� 2jnd4

n

n2
� dn

2jn/2

n
,

verifying (6.79).
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504 The Minimax Paradigm

Second, we now turn to the type 2 errors. In this case, for f ∈ H1,

E f (1−�n)= PN
f

{
inf

h∈H0

|Un(h)| ≤ τn

}
. (6.82)

Using (6.41), we have, writing

Ln(h)= 2

n

n∑
i=1

∑
l≤jn−1,k

(ψlk(Xi)−〈ψlk, f 〉)〈ψlk, f − g〉 (6.83)

for every h ∈ H0,

|Un(h)| ≥ ‖Kjn( f − h)‖2
2 −|Un( f )|− |Ln(g)|. (6.84)

We can find random h∗n ∈ H0 such that infh∈H0 |Tn(h)| = |Tn(h∗n)| (see Exercise 6.2.2) and
hence bound the probability in (6.82), using (6.84), by

PN
f

{
|Ln(h

∗
n)|>

‖Kjn( f − h∗n)‖2
2 − τn

2

}
+PN

f

{
|Un( f )|> ‖Kjn( f − h∗n)‖2

2 − τn

2

}
.

Since h∗n ∈ H0, we have uniformly in H1∣∣∣∣∣∣
∑

l≤jn−1,k

( flk − h∗lk)
2

∣∣∣∣∣∣≥ inf
h∈H0

‖ f − h‖2
2 − 2B(j)≥ 1

2
inf

h∈H0

‖ f − h‖2
2 ≥ ρ2

n/2 ≥ 2τn, (6.85)

for c large enough by definition of ρn. We thus can bound the sum of the last two
probabilities by

PN
f {|Ln(h

∗
n)|> ‖KJn( f − h∗n)‖2

2/4}+PN
f {|Un( f )|> τn}.

For the second degenerate part, the exponential bound from of the first step applies as well
(only boundedness of f by U was used there), giving the first bound in (6.78).

The proof concludes by treating the linear part. We have

PN
f {|Ln(h

∗
n)|> ‖Kjn( f − h∗n)‖2

2/4} ≤ PN
f

{
sup
h∈H0

|Ln(h)|
‖Kjn( f − h)‖2

2

>
1

4

}
. (6.86)

Arguing as in (6.43), the variance of the linear process from (6.83) is bounded, for fixed
h ∈ H0, by

Var f (|Ln(h)|)≤ 4‖ f ‖∞‖Kjn( f − h)‖2
2

n
, (6.87)

so the supremum in (6.86) is one of a self-normalised ratio-type empirical process. For
h ∈ H0, define

σ 2(h) := ‖Kjn( f − h)‖2
2 ≥ ρ2

n/2,
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the inequality holding in view of (6.85). We bound the last probability in (6.86), for a suitable
finite constant C (using H0 ∪H1 is bounded in L2), by

PN
f

{
max

m∈Z:ρ2
n/2≤2m≤C

sup
h∈H0:2m≤σ 2(h)≤2m+1

|Ln(h)|
σ 2(h)

>
1

4

}

≤
∑

m∈Z:ρ2
n/2≤2m≤C

PN
f

{
sup

h∈H0:σ 2(h)≤2m+1
|Ln(h)|> 2m−2

}

≤
∑

m∈Z:ρ2
n/2≤2m≤C

PN
f

{‖Pn −P‖Gjn ,m −E f ‖Pn −P‖Gjn ,m > 2m−3 −E f ‖Pn −P‖Gjn ,m

}
(6.88)

≤
∑

m∈Z:ρ2
n/2≤2m≤C

PN
f

{
n‖Pn −P‖Gjn ,m − nE f ‖Pn −P‖Gjn ,m > n2m−4

}
,

where we have used (6.77) and written Gjn,m as shorthand for Gjn,m(H0, f ). We note that the
classes Gjn,m(H0, f ) are uniformly bounded by a constant multiple of U (using regularity of
the wavelet basis and |〈ψlk, f − h〉| ≤ 2−l/22U). Hence, we can apply Talagrand’s inequality
to the preceding expression, noting that the supremum over Gm,jn can be realised as one over
a countable subset of H0. Renormalising by U and using (3.100) in Theorem 3.3.9 as well as
(6.87) and (6.77), we can bound the expression in the preceding display, up to multiplicative
constants, by∑

m∈Z:C′ρ2
n≤2m≤C

exp

{
−c1

n2(2m)2

n2m + nE f ‖Pn −P‖Gjn ,m + n2m

}
≤

∑
m∈Z:C′ρ2

n≤2m≤C

e−c2n2m

≤ c3e
−c4nρ2

n ,

which completes the proof.

We obtain separation and concentration rates similar to those obtained in the corollaries
after Proposition 6.2.14. To verify (6.77), we may use bounds for the moments of
suprema of empirical processes indexed by the classes Gjn,m(H0, f ) (see Section 3.5). The
standard entropy condition (6.70) then needs to be strengthened to bracketing or uniform
metric entropy bounds. We may use results from Section 3.6 to derive results, paralleling
Corollaries 6.2.15 and 6.2.16. For instance, if we assume for any probability measure P that

logN(Gjn,m(H0, f ),L2(P),ε)≤
(

A

ε

)1/s

, 0< ε < A,

for constants A,s independent of m,n,P, and if H0 ∪H1 lie in a fixed ball of Br
2∞([0,1]), we

obtain the separation rate

ρ2
n ∼ max

(
n−2s/(2s+1),n−2r/(2r+1)

)
for the infimum – U-statistic test (6.74). One example is to take H0 a ball in Bs

2∞([0,1]) for
some s> 1/2, for which the preceding entropy bound is satisfied in view of Theorem 4.3.36
and because a bound on the Besov norm of elements of H0 carries over to the same bound
on the Besov norm of elements of Gjn,m(H0, f ).
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506 The Minimax Paradigm

Minimax Theory for Some Composite Testing Problems

For L∞-separation, the minimax separation rate for composite problems often can be shown
to equal the estimation rate (as in Theorem 6.2.7), and results such as Proposition 6.2.13
then can be used directly. We give some references in the notes to this chapter.

Minimax theory for composite testing problems with L2-separation appears to be more
difficult partly because the χ2- and U-statistic tools from Theorems 6.2.14 and 6.2.17 require
bounds on the complexity of H0 that may harm the separation rates. In particular, we cannot
expect the infimum test to be optimal in all situations. But let us start with some conditions
for when infimum tests are minimax optimal.

Proposition 6.2.18 Let r,B> 0 and suppose that H0 ⊂ L2 satisfies (6.70) for some s ≥ 2r,
contains f0 = 0 and is contained in a ball of Bt

2∞([0,1]) for some t> r. Then the minimax
separation rate for testing the hypotheses

H0 vs. H1 : f ∈ {‖ f ‖Br
2∞([0,1]) ≤ B,‖ f −H0‖2 ≥ rn

}
, (6.89)

in the sense of Definition 6.2.1 based on observations dY ∼ PY
f in the white noise model,

equals

ρn = c

(
1

n

)r/(2r+1/2)

,

where c is a positive constant.

Proof For the lower bound, we notice that the alternatives from the proof of Theo-
rem 6.2.11 are

fm(x)= ε2−jn(r+1/2)
∑

k

βmkψjnk(x), m = 1, . . . ,M,

for ε > 0 a small constant, βik = ±1, and with jn such that 2jn � n1/(2r+1/2). For all ε > 0,
some c> 0 and n large enough,

inf
h∈H0

‖ fm − h‖2 ≥
√∑

l≥jn,k

〈 fm,ψlk〉2 − sup
h∈H0

√∑
l≥jn,k

〈h,ψlk〉2 ≥ cεn−r/(2r+1/2) (6.90)

in view of

sup
h∈H0

√∑
l≥jn,k

〈h,ψlk〉2 = O(2−jnt), t> r.

Hence, the fm are contained in H1, and

sup
f ∈H0

E f�+ sup
f ∈H1

E f (1−�)≥ E0�+ sup
fm:m=1,...,M

E fm(1−�)

implies that the proof of Theorem 6.2.9 applies to yield the lower bound.
For the upper bound, we use Corollary 6.2.15 and note that for s≥ 2r, the second term in

(6.71) dominates.

A similar result can be proved in the sampling setting using Theorem 6.2.17. We see that
the minimum χ2- or U-statistic test is optimal at least in situations where the null hypothesis
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is not too complex (s ≥ 2r) and consists of functions that are smoother than the alternative
(t > r). For classical goodness-of-fit testing problems where H0 equals a fixed parametric
(finite-dimensional) model, we can typically apply the preceding proposition. Instead of
going into the details, we consider some more difficult examples where H0 itself can be
infinite dimensional.

Consider, for instance, testing a null hypothesis that lies in a fixed ball of functions
of bounded variation on [0,1] (see Section 4.3.3). This includes the important example of
testing for monotonicity of a bounded function f , that is,

H0 = { f : [0,1]→ (−∞,M], f is nondecreasing} ,

but also other examples, such as testing whether f is piecewise constant or not.

Corollary 6.2.19 Let 0< r< 1/2 and B,M> 0. Let H0 be any subset of

{ f : [0,1]→R,‖ f ‖BV ≤ M}
that contains f0 = 0. The minimax separation rate for testing the hypotheses

H0 vs. H1 : f ∈ {‖ f ‖Br
2∞([0,1]) ≤ B,‖ f −H0‖2 ≥ rn

}
, (6.91)

in the sense of Definition 6.2.1 based on observations dY ∼ PY
f in the white noise model,

equals

ρn = c(1\n)r/(2r+1/2) ,

where c is a positive constant.

Proof Any function f ∈ H0 is contained in a ball of B1
1∞ (see Proposition 4.3.21) and

then also in a ball of B1/2
2∞ (see Proposition 4.3.6). Theorem 4.3.36 then verifies (6.70), with

s = 1 ≥ 2r, so Proposition 6.2.18 applies with t = 1/2> r.

The infimum χ2 test from (6.56) is hence minimax in the setting of Corollary 6.2.19. The
restriction r< 1/2 in this corollary is natural in the sense that then H0 ⊂ Br

2∞, so the testing
problem is a nested one. In fact, inspection of the proof shows that r= 1/2 is also admissible
at least if M is fixed and if B is sufficiently large.

Another example to which Proposition 6.2.18 applies would be to take H0 itself equal to
a ball in the space Bs

2∞([0,1]), s> r, which satisfies (6.70) for the given s, as discussed after
Corollary 6.2.16. This amounts to testing whether the signal f observed is of regularity s
or r. For s ≥ 2r, Proposition 6.2.18 implies, via (6.71), that the infimum test is minimax
optimal, but for r < s < 2r, the interesting question arises whether the first term in this
separation rate

max
(
n−s/(2s+1),n−r/(2r+1/2)

)
should appear or not. On a more conceptual level, this is equivalent to the question of
whether the complexity of the null hypothesis should affect the minimax separation rate or
not. The following theorem shows that this is not the case and that the rate in the preceding
display is suboptimal for r< s< 2r. The construction of an optimal test in the proof relies
strongly on the geometry of the hypotheses H0 and H1 in this particular example.
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508 The Minimax Paradigm

Theorem 6.2.20 For any s > r > 0,B > 0, the minimax separation rate for testing the
hypotheses

H0 : f ∈ {‖ f ‖Bs
2∞([0,1]) ≤ B} vs. H1 : f ∈ {‖ f ‖Br

2∞([0,1]) ≤ B,‖ f −H0‖2 ≥ rn

}
, (6.92)

in the sense of Definition 6.2.1 based on observations dY ∼ PY
f in the white noise model,

equals

ρn = c

(
1

n

)r/(2r+1/2)

,

where c is a positive constant that depends on r,B,σ and on the desired level α of the test.

Proof Noting that f0 = 0 ∈ H0, for fm as in Proposition 6.2.18, we have

sup
f ∈H0

E f�+ sup
f ∈H1

E f (1−�)≥ E0�+ sup
fm:m=1,...,M

E fm(1−�)

using (6.90) with t = s, so the proof of Theorem 6.2.9 applies to yield the lower bound on
the separation rate.

For the upper bound, set σ = 1 without loss of generality. Note from Sections 4.3.4
and 4.3.5 that the wavelet characterisation of the Besov norm of f gives

‖ f ‖2
Bs

2∞
= max

J0≤l<∞
22ls

∑
k∈Zl

〈 f ,ψlk〉2. (6.93)

We construct a test that rejects the null hypothesis as soon as any of the scales l indicate
a too-large ‖ f ‖Bs

2∞ norm. Writing f̂lk =
∫ 1

0 ψlk(t)dY(t)= 〈 f ,ψlk〉 + (1/√n)glk, for glk ∼i.i.d.

N(0,1), and recalling |Zl| = 2l, define

Tn(l)=
∑
k∈Zl

f̂ 2
lk −

2l

n
,

which estimates the contribution of the lth scale to the Besov norm of the signal. Let jn be
such that 2jn ∼ n1/(2r+1/2), and define thresholds

τn(l)= B2

22ls
+ 2C

B

2ls

2(l+jn)/8

√
n

+C2 2(l+jn)/4

n
=
(

B

2ls
+C

2(l+jn)/8

√
n

)2

,

for a constant C to be chosen later. Take

�n = 1−
∏

J0≤l≤jn−1

1{Tn(l) < τn(l)}

as the test for H0.
Under the null hypothesis, we know, by definition of the Besov norm, that

sup
J0≤l≤jn−1

⎛⎝∑
k∈Zl

〈 f ,ψlk〉2 − B2

22ls

⎞⎠≤ 0;
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6.2 Testing Nonparametric Hypotheses 509

hence,

E f�n = PY
f (Tn(l) > τn(l) for some J0 ≤ l ≤ jn − 1)

≤
∑

l≤jn−1

Pr

⎛⎝∑
k∈Zl

f̂ 2
lk −

2l

n
> τn(l)

⎞⎠
=

∑
l≤jn−1

Pr

(∑
k

〈 f ,ψlk〉2 − B2

22ls
+ 2√

n

∑
k

〈 f ,ψlk〉glk + 1

n

∑
k

(g2
lk − 1) > τn(l)− B2

22ls

)

≤
∑

l≤jn−1

Pr

(∣∣∣∣∣ 2√
n

∑
k

〈 f ,ψlk〉glk

∣∣∣∣∣> 2C
B

2ls

2(l+jn)/8

√
n

)

+
∑

l≤jn−1

Pr

(∣∣∣∣∣1n∑
k

(g2
lk − 1)

∣∣∣∣∣> C2 2(j+l)/4

n

)

≤ C−22−jn/4
∑

l≤jn−1

2−l/4 +C−4c′2−j/2
∑

l≤jn−1

2l/2 ≤ c′′C−2 ≤ α/2,

for C large enough, using Chebyshev’s inequality and the variance bounds

Var

(∑
k

〈 f ,ψlk〉glk

)
≤ ‖〈 f ,ψl·〉‖2

2 ≤ B22−2ls and Var

(∑
k

(g2
lk − 1)

)
≤ c′2l.

We now turn to the alternatives and start with the following preliminary observation,
where πW denotes the L2-projection operator onto the linear spaces Vj,Wj =Vj+1\Vj spanned
by the wavelet basis. By the triangle inequality, for all j,

ρ2
n ≤ inf

h∈H0

‖ f − h‖2
2 ≤ inf

h∈H0

‖πVj( f )− h‖2
2 +B2−2jr,

so, for c large enough,
inf

h∈H0

‖πVjn
( f )− h‖2

2 ≥ 3ρ2
n/4. (6.94)

Next,

inf
h∈H0

‖πVjn
( f )− h‖2 ≤ inf

h∈H0

∑
l≤jn−1

‖πWl( f )− h‖2

= inf
hlk:2ls‖gl·‖2≤B

∑
l≤jn−1

√∑
k

( flk − hlk)2

=
∑

l≤jn−1

inf
hlk:2ls‖gl·‖2≤B

√∑
k

( flk − hlk)2

≤
∑

l≤jn−1

max

(
0,‖ fl·‖2 − B

2ls

)
,

where we note that the minimisation problems do not interact across the scale indices l.
Summarising, for any L> 1, our choice of ρn with c large enough, and writing

tn(l)= C22(l+jn)/4/n,
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we have

L
∑

l≤jn−1

√
tn(l)≤ 3ρn/4 ≤

∑
l≤jn−1

(
‖ fl·‖2 − B

2ls

)
, (6.95)

so at least one summand on the right-hand side, say, the l̄th, needs to exceed or equal the
corresponding

√
tn(l̄); hence,√

Ltn(l̄)≤ ‖ f l̄·‖2 − B

2l̄s
⇒‖ f l̄·‖2

2 ≥
(√

Ltn(l̄)+ B

2l̄s

)2

, (6.96)

for some l̄≤ jn −1. To bound the type 2 errors, we thus have, for f ∈H1 and L large enough

E f (1−�n)= PY
f (Tn(l)≤ τn(l) for all J0 ≤ l ≤ jn − 1)≤ PY

f

(
Tn(l̄)≤ τn(l̄)

)
= Pr

(∑
k

〈 f ,ψl̄k〉2 + 2√
n

∑
k

〈 f ,ψl̄k〉gl̄k +
1

n

∑
k

(g2
l̄k
− 1)≤ τn(l̄)

)

≤ Pr

(
− 2√

n

∑
k

〈 f ,ψl̄k〉gl̄k −
1

n

∑
k

(g2
l̄k
− 1)≥ Ltn(l̄)

+2
√

Ltn(l̄)
B

2l̄s
+ B2

22l̄s
− τn(l̄)

)

≤ Pr

(∣∣∣∣∣ 2√
n

∑
k

〈 f ,ψl̄k〉gl̄k

∣∣∣∣∣≥ 2(
√

L− 1)C
B

2ls

2(l+jn)/8

√
n

)

+Pr

(∣∣∣∣∣1n ∑
k

(g2
l̄k
− 1)

∣∣∣∣∣≥ (L− 1)C2 2(j+l)/4

n

)
≤ α/2

by the same arguments as at the end of the type 1 errors, completing the proof.

It is possible to prove a sampling analogue of the preceding result (see Exercise 6.2.4).

Exercises

6.2.1 (Kolmogorov-Smirnov test.) For F any continuous distribution function on R and GF the
F-Brownian bridge, show that the distribution of supt∈R |F(t)| equals the one of the maximum
supt∈[0,1] |G(t)| of a standard Brownian bridge. Hint: Use that the quantile transform F−1

maps [0,1] onto R and that F−1(U) has law F for U ∼ U(0,1). Moreover, use the
Dvoretzky-Kiefer-Wolfowitz inequality (Exercise 3.3.3) to find a numerical value zα such that

sup
F

PN
F P(‖Fn −F‖∞ > zα)≤ α ∀n ∈N,

where the supremum extends over all distribution functions F.
6.2.2 (Existence of infimum tests.) (a) Let H0 be a totally bounded subset of L2. Then its closure H̄0

is compact, and hence, for any continuous mapping defined on L2,

inf
h∈H0

|L f (h)| = |L f (h
∗)|,

for some h∗ ∈ H̄0. Hint: Apply standard continuity and weak compactness arguments from
real analysis. (b) Use the preceding to establish the existence of the infimum test statistics
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6.3 Nonparametric Estimation 511

considered in Theorems 6.2.14 and 6.2.17 for such H0, including, in particular, balls in Besov
spaces Br

2∞([0,1]). (c) Noting that h∗ in (b) is random, establish its measurability under the
maintained assumptions.

6.2.3 (U-statistic tests on the real line and Euclidean space.) Proposition 6.2.5 and Theorem 6.2.17
generalise to more general sample spaces A than [0,1] simply by replacing the basis functions
ψlk used there by appropriate basis functions of L2(A). For instance, when A=Rd, take a tensor
wavelet basis from Section 4.3.6 based on S-regular wavelets on R, and prove an analogue of
Theorem 6.2.17. Hint: The proof is very similar – since the sums in k are now not necessarily
finite anymore, in the variance estimate for ER2

f , use that
∑

l≤j−1,kψlk(x)ψlk(y) is majorised by
a nicely integrable convolution kernel K(x− y) (in view of Definition 4.2.14). The variances
are then of order 2jd/2/n, giving rise to separation rates ρn ∼ n−r/(2r+d/2).

6.2.4 Prove a sampling analogue of Proposition 6.2.20. Hint: Replace
∫
ψlk(t)dY(t) in the proof by

the empirical wavelet coefficients
∫
ψlk(t)dPn(t).

6.2.5 Show that the alternatives fm in the proof of Theorem 6.2.9 satisfy

‖ fm − 1‖1 ≥ cn−r/(2r+1/2)

and that thus the minimax separation rate is not changed if the ‖ · ‖2-norm is replaced by ‖ · ‖1

in H1 in that theorem. Hint: Use the results from Chapter 4 to obtain

‖ fm − 1‖1 ≥ c′‖ fm − 1‖B0
11
� 2−jn/2‖〈 fm,ψjn·〉‖1 = 2−jnr, c′ > 0,

for the wavelet sequence norm of B0
11. For upper bounds, notice that ρn ≤ ‖ f −1‖1 ≤ ‖ f −1‖2.

6.2.6 Let Kj be the Haar wavelet projection kernel. Show that for f ∈ Br
2q,1 ≤ q ≤∞, we have

‖Kj( f )‖2 ≥ c1‖ f ‖2 − c2‖ f ‖Br
2,q

2−jr.

Deduce that in Proposition 6.2.3, expression (6.34) with the middle inequality ommitted still
holds true for f satisfying (6.35) with r> 1 and that, hence, condition (6.32) can be ommitted
in Proposition 6.2.3. This implies that for nonparametric testing problems, we can always use
test statistics computed from the Haar basis only. See proposition 2.16 in Ingster and Suslina
(2003).

6.3 Nonparametric Estimation

Consider again statistical experiments En giving rise to observations Y = Y(n) on the
measurable space (Yn,An),n ∈ N, of law P f indexed by f varying in a parameter space F
(again, these laws may depend in principle on n). We now consider the problem of estimating
the parameter f directly from the observations Y(n). That is, we want to find a (measurable)
function f̂n : Yn → F that is close to f in the case where Y(n) is indeed drawn from f . To
measure closeness, we will endow F with a metric d, and consider the d-risk

E f d( f̂n, f ),

where E f is the expectation operator corresponding to P f . The minimax paradigm requires
the risk E f d( f̂n, f ) to be controlled independently of which f ∈ F has generated Y(n); that
is, we are looking for bounds for

sup
f ∈F

E f d( f̂n, f ).
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We can study the last quantity for particular choices of f̂n – some results of this kind were
given in Chapter 5. A fundamental statistical property of the triple (En,F ,d) is the minimal
uniform, or minimax risk,

inf
f̃ n

sup
f ∈F

E f d( f̂n, f )

that can be achieved by the ‘best’ estimator f̃ n.

Definition 6.3.1 Let (P f : f ∈ F) be a statistical model for the law of observations (Y(n) :
n∈N) in the measurable space (Yn,An). Let F be a subset of a metric space (S,d) equipped
with its Borel σ -field. The sequence (rn : n ∈ N) is called the minimax rate of estimation in
d-risk over F if the following two requirements are met:

(i) There exists a measurable function f̂n : Yn → S and a universal constant C such that,
for every n ∈N large enough,

r−1
n sup

f ∈F
E f d( f̂n, f )≤ C. (6.97)

(ii) There exists a universal constant C such that

liminf
n

r−1
n inf

f̃ n

sup
f ∈F

E f d( f̂n, f )≥ C, (6.98)

where the infimum extends over all measurable functions f̃ n : Yn → S.

As in the testing case from Definition 6.2.1, we remark that the following bounds we
obtain on the minimax risk typically hold for every n ∈ N but are informative usually for
large n. Moreover, we will show that the lower bounds also hold if expectations in (6.98)
are replaced by weaker probability statements (see (6.99)).

Upper bounds for the minimax rate of estimation in function estimation problems were
studied in detail in Chapter 5, and in this section we complement these upper bounds by
appropriate lower bounds, thus characterising the minimax rate of estimation in a variety
of nonparametric statistical models. We have already seen in Propositions 6.2.2 and 6.2.13
that estimators satisfying (6.97) solve certain testing problems, and we thus can attempt to
prove lower bounds for estimation by a reduction to testing problems. Some refinements
compared to the preceding section will be needed, taking into account that an estimator does
not solve only one testing problem H0 versus H1 but in fact can be used to solve many such
testing problems, depending on the complexity of the parameter space (F ,d). Intuitively,
the complexity of the metric space (F ,d) will govern the estimation rate, and for minimax
theory on Besov bodies, the wavelet techniques from Chapter 4 will be particularly useful.

6.3.1 Minimax Lower Bounds via Multiple Hypothesis Testing

We demonstrate in this subsection how minimax estimation lower bound results can
be reduced to lower bounds of certain testing problems that involve several hypotheses
H0,H1, . . . ,Hm in the parameter space and how information-theoretic tools from Section 6.1
can be used to obtain quantitative lower bounds for such testing problems.
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A General Reduction Principle

Markov’s inequality implies that

r−1
n inf

f̃ n

sup
f ∈F

E f d( f̃ n, f )≥ inf
f̃ n

sup
f ∈F

P f (d( f̃ n, f )> rn)≥ inf
f̃ n

max
m=0,...,M

P fm(d( f̃ n, fm)> rn), (6.99)

for any finite set ( fm : m = 0, . . . ,M) in F . Suppose that the fm are 2rn-separated from each
other; that is,

d( fm, fm′)≥ 2rn ∀ m 
= m′. (6.100)

Any estimator f̃ n can be used to test among the M + 1-many hypotheses fm simply by
choosing the fm closest to f̃ n: formally, let

�n : Y (n)→{0, . . . ,M}
be such that

d( f̃ n, f�n)= min
m=0,...,M

d( f̃ n, fm),

where in case of a tie we may choose any of the minimisers. The errors of this test are
bounded by

P fm(�n 
= m)≤ P fm(d( f̃ n, fm̄)≤ d( f̃ n, fm) for some m̄).

On the event in the preceding probability and by the triangle inequality,

d( f̃ n, fm)≥ d( fm, fm̄)− d( f̃ n, fm̄)≥ d( fm, fm̄)− d( f̃ n, fm),

so, by the separation hypothesis (6.100),

2d( f̃ n, fm)≥ d( fm, fm̄) ⇒ d( f̃ n, fm)≥ rn,

and we conclude that

P fm(�n 
= m)≤ P fm(d( f̃ n, fm)≥ rn) ∀m = 0,1, . . . ,M. (6.101)

The inequality is preserved by taking maxima over m and infima over f̃ n,�n, and we thus
have from (6.99)

r−1
n inf

f̃ n

sup
f ∈F

E f d( f̃ n, f )≥ inf
�n

max
m=0,...,M

P fm(�n 
= m) (6.102)

whenever the hypotheses ( fm : m = 0, . . . ,M)⊂F are 2rn-separated as in (6.100).

Information-Theoretic Lower Bounds for Multiple Hypothesis Testing Problems

To bound the right-hand side of (6.102) further, we can use the information-theoretic
tools from Section 6.1.2, in particular, the Kullback-Leibler distance K(P,Q) between two
probability measures. The following general-purpose result will be used repeatedly:

Theorem 6.3.2 Suppose that F contains

{ fm : m = 0,1, . . . ,M}, M ≥ 1,

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.007
http:/www.cambridge.org/core


514 The Minimax Paradigm

which are 2rn separated as in (6.100) and such that the P fm are all absolutely continuous
with respect to P f0 . Set M̄ = max(e,M), and assume that, for some α > 0,

1

M

M∑
m=1

K(P fm ,P f0)≤ α logM̄. (6.103)

Then the minimax risk from Definition 6.3.1 is lower bounded by

inf
f̃ n

sup
f ∈F

E f d( f̃ n, f )≥ rn

√
M̄

1+
√

M̄

(
1− 2α−

√
8α

logM̄

)
. (6.104)

Remark 6.3.3 The constant 8 can be replaced by 2 at the expense of a slightly longer proof.
For applications that follow, this improvement will be irrelevant.

Proof We prove the result under the assumption that all the P fm are mutually absolutely
continuous to each other; the general case needs only minor modifications. In view of
(6.102), it is sufficient to lower bound

inf
�n

max
m=0,...,M

P fm(�n 
= m) (6.105)

by the right-hand side of (6.104). For � any measurable function from Y (n) to {0,1, . . . ,M},
we can write {� 
= 0} = ∪1≤m≤M{� = m}, a union of disjoint events. Define the events

Am =
{

dP f0

dP fm

≥ 1−η
}

.

We have, for every 0< η < 1,

P f0(� 
= 0)=
M∑

m=1

P f0(� = m)≥
M∑

m=1

E f0

[
1{� = m}1Am

]
=

M∑
m=1

E fm

[
1{� = m}1Am

dP f0

dP fm

]

≥ (1−η)
M∑

m=1

P fm(� = m)− (1−η)
M∑

m=1

P fm(A
c
m).

Now, writing

p0 = 1

M

M∑
m=1

P fm(� = m), L = 1

M

M∑
m=1

P fm(A
c
m),

we have, for every 0< η < 1,

max
m=0,...,M

P fm(�n 
= m)= max

(
P f0(� 
= 0), max

1≤m≤M
P fm(� 
= m)

)

≥ max

(
(1−η)

M∑
m=1

P fm(� = m)− (1−η)
M∑

m=1

P fm(A
c
m),

1

M

M∑
m=1

P fm(� 
= m)

)
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= max((1−η)M(p0 −L),1− p0)

≥ inf
0≤p≤1

max((1−η)M(p−L),1− p)

= (1−η)M
1+ (1−η)M

1

M

M∑
m=1

P fm

(
dP f0

dP fm

≥ 1−η
)

because the infimum over p is attained when the two terms in the maximum are equal. As in
(6.11) and by Proposition 6.1.7, each of the summands in the preceding expression can be
further bounded below by

1− 1

log(1/(1−η))
[
K(P fm ,P f0)+

√
2K(P fm ,P f0)

]
,

and, by Jensen’s inequality,

1

M

M∑
m=1

√
K(P fm ,P f0)≤

√√√√ 1

M

M∑
m=1

K(P fm ,P f0),

so, combined with the preceding bound and using the hypothesis on the Kullback-Leibler
distance, we obtain, for every η > 0,

max
m=0,...,M

P fm(�n 
= m)≥ (1−η)M
1+ (1−η)M

(
1− 1

log 1
1−η

(
α logM̄+

√
2α logM̄

))
. (6.106)

Choosing η= 1− M̄
−1/2

gives the desired result.

6.3.2 Function Estimation in L∞ Loss

We consider in this section the problem of estimating an unknown function f in supnorm
loss based on observations in the sampling or Gaussian white noise model. A first basic
observation is that when estimating an unknown distribution function F, the rate 1/

√
n

obtained from the empirical distribution function Fn cannot be improved on.

Proposition 6.3.4 Denote by F the set of all probability distribution functions on [0,1]. The
minimax rate of estimation over F in ‖ · ‖∞ risk in the sense of Definition 6.3.1 based on
observations X1, . . .Xn ∼i.i.d. F equals

rn = 1√
n

.

Proof By Exercise 3.1.7 we have E‖Fn − F‖∞ ≤ 4/
√

n, for some constant C and every
n∈N, so the upper bound follows. For the lower bound, suppose that the rate rn is faster than
1/
√

n. Then we can construct an estimator for which Proposition 6.2.2 implies the existence
of a test that is consistent against rn-separated alternatives. This implies a contradiction to
Proposition 6.2.6.

This result can be easily generalised to the case of probability distribution functions on
Rd (see Exercise 6.3.1). Note further that the proof of Proposition 6.2.6 in fact implies that
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516 The Minimax Paradigm

the preceding result remains true when F consists of all probability distribution functions
that have S derivatives bounded in supremum norm by a fixed constant M, where S,M are
arbitrary. Hence, adding regularity constraints on F does not improve the rate if one is
interested in supnorm loss on distribution functions. For estimating densities, or functions
in white noise, such additional regularity constraints, however, fundamentally influence the
minimax rates. We investigate this in the next subsections.

L∞-Minimax Rates in Gaussian White Noise

Consider observing dY in (6.3) from some f that belongs to a Besov space Br
∞∞([0,1])

modelling r-Hölderian functions. In Proposition 5.1.7, we obtained the rate of estimation

(n/ logn)−r/(2r+1),

and we may wonder whether this is optimal. Similar to the proof of Proposition 6.3.4, we
can use Proposition 6.2.2 and the discussion after it combined with the lower bound in
Theorem 6.2.11 to show that the rate in the preceding display cannot be improved. Here is
another, more direct proof based on Theorem 6.3.2:

Theorem 6.3.5 Let B,r> 0. The minimax rate of estimation over

F = { f : ‖ f ‖Br∞∞([0,1]) ≤ B}
in ‖·‖∞ risk in the sense of Definition 6.3.1 based on observations dY f ∼PY

f in the Gaussian
white noise model equals

rn = C

(
logn

n

)r/(2r+1)

,

where the constant C depends on B,r,σ .

Proof The upper bound follows from Proposition 5.1.7. For the lower bound, take f0 = 0
on [0,1], and for S > r, let ψ be an S-regular Daubechies wavelet from Theorem 4.2.10,
translated by N ≡ N(S) so that its support is [1,2N]. For j ∈ N large enough, we can take
c02j = M wavelets ψjm = 2j/2ψ(2j(·)− m) with disjoint support contained in the interior
of [0,1], with c0 a fixed positive constant that depends only on N. Define, for ε > 0, the
functions

fm := ε2−j(r+1/2)ψjm, m = 1, . . . ,M. (6.107)

We have ‖ f0‖Br∞∞([0,1]) = 0 and, using Theorem 4.3.2,

‖ fm‖Br∞∞([0,1]) = ε2−j(r+1/2)‖ψjm‖Br∞∞(R) ≤ c1ε, (6.108)

for some constant c1 = c1(r), so for every j and ε ≤ B/c1 we have fm ∈ F for every m.
Moreover, in view of the disjoint support of the fm, we see that

‖ fm − fm′‖∞ = ε2−jr‖ψ‖∞,

so if we choose j = jn such that

2jn � (n/ logn)1/(2r+1),
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then the fm are all 2Crn-separated from each other in supremum norm for C small enough
depending only on ε,‖ψ‖∞. The Kullback-Leibler distance between P fm and P f0 equals, by
(6.16), for m = 1, . . . ,M,

K(P fm ,P f0)=
n

2σ 2
‖ fm‖2

2 =
n

2σ 2
ε22−jn(2r+1) ≤ ε2C(σ ,c0) logM,

and thus,

1

M

M∑
m=1

K(P fm ,P f0)≤ ε2C(σ ,c0) logM,

so the result follows from Theorem 6.3.2 after choosing ε small enough depending only on
c0,σ ,S.

Remark 6.3.6 Inspection of this proof, combined with Proposition 5.1.7, shows further that
the dependence of the constant C on B is of the form C= cB1/(2r+1), where c does not depend
on B.

L∞-Minimax Rates in Density Estimation

Consider next observing i.i.d. random variables X1, . . . ,Xn from probability density function
f , and denote the joint distribution of the observations by Pn

f . The following theorem
gives lower bounds for the univariate situation; the multivariate situation is treated in
Exercise 6.3.2. The dependence of the constant C on B is as in Remark 6.3.6

Theorem 6.3.7 Let B > 1,r > 0, let A equal either [0,1] or R and let F consist of all
probability density functions in

{ f : ‖ f ‖Br∞∞(A) ≤ B}.
The minimax rate of estimation over F in ‖ · ‖∞-risk in the sense of Definition 6.3.1 based
on observations X1, . . .Xn ∼i.i.d. f equals

rn = C

(
logn

n

)r/(2r+1)

,

where the constant C depends on B,r.

Proof The upper bound follows from Proposition 5.1.7. The proof of the lower bound
proceeds differently for A = [0,1] and A =R.

Case A = [0,1]: The proof considers similar alternatives as in Theorem 6.3.5. Let f ′0 = 1 be
the uniform density, and let

f ′m = 1+ ε2−jn(r+1/2)ψjm = f ′0 + fm, m = 1, . . . ,M,

where ψjnm, jn, fm are as in and before (6.107). We have ‖ f ′0‖Br∞∞ = 1 for all r, and as in
Theorem 6.3.5, we show, using B> 1, that for ε small enough, the f ′m are all positive and in
F and 2Crn-separated from each other in supremum norm. By (6.14), the Kullback-Leibler
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distance between the product measures Pn
f ′m ,Pn

f ′0
describing the law of the X1, . . . ,Xn under

f ′m, f ′0 is bounded by

K(Pn
f ′m ,Pn

f ′0
)= n

∫
log( f ′m(x)) f ′m(x)dx

= n
∫

log(1+ ε2−jn(r+1/2)ψjnm(x)) f ′m(x)dx

≤ εn2−jn(r+1/2)

∫
ψjnm(x)(1+ ε2−jn(r+1/2)ψjnm(x))dx

= ε2n2−jn(2r+1)

≤ ε2c logM,

where we have used log(1 + x) ≤ x for x > −1 and
∫
ψjnm = 0 for all m. The result now

follows from Theorem 6.3.2 after choosing ε small enough.

Case A = R: The proof needs minor modifications since f0 = 1 is not a smooth density
on the whole real line. Instead, we take f0 equal to a normal density with large enough
variance such that ‖ f0‖Br∞∞ < B (possible in view of ‖ f0‖∞ ≤ 1, B > 1, (4.104) and
Proposition 4.3.23), and define

fm = f0 + ε2−jn(r+1/2)ψjm,

which, arguing as earlier, are all in F for ε small enough and 2Crn-separated from each
other. The Kullback-Leibler divergence is bounded, using again log(1+ x)≤ x, for x>−1
and

∫
ψjnm = 0, as follows:

K(Pn
fm

,Pn
f0
)= n

∫
log

(
fm(x)

f0(x)

)
fm(x)dx

= n
∫

log

(
1+ ε2−jn(r+1/2) ψjnm(x)

f0(x)

)
fm(x)dx

≤ εn2−jn(r+1/2)

∫
ψjnm(x)

f0(x)
( f0(x)+ ε2−jn(r+1/2)ψjnm(x))dx

≤
(

inf
x∈[0,1]

f0(x)

)−1

ε2n2−jn(2r+1)

≤ ε2c logM,

for a constant c that can be taken to depend on r only. The result now follows again from
Theorem 6.3.2 after choosing ε small enough.

6.3.3 Function Estimation in Lp-Loss

Inspection of the proof of Theorem 6.3.5 reveals that the main idea behind the lower bound
was to construct functions that are separated in the L∞-norm at the estimation rate but whose
L2-distance is of much smaller order

√
(logn)/n, corresponding to the ‘spikes’ discussed

before Theorem 6.2.7. Since the Kullback-Leibler divergence between two white noise
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experiments is driven by the L2-distance of their drift coefficients, this means that functions
that are different on a small interval cannot be reliably estimated in uniform loss. One may
wonder whether the estimation rate improves if ‖ · ‖∞-loss is replaced by ‖ · ‖2-loss, since,
after all, then the loss function coincides with the information-theoretic distance on the
experiment. This would parallel the improvement of the testing rate in Theorem 6.2.11
when L∞-separation is replaced by L2-separation. Somewhat surprisingly perhaps, such
an improvement does not occur in L2-loss, except for the removal of the logn term in
Theorem 6.3.5. The proof of this fact, unlike Theorem 6.3.5, cannot be derived directly
from testing lower bounds from Section 6.2 but requires the more refined techniques from
Theorem 6.3.2.

The proof techniques for L2-risk in fact imply the same estimation rates for the Lp-risks
whenever 1 ≤ p <∞. Remarkably, the minimax estimation rates in Lp over Besov bodies
in Br

p∞ do not depend on p. This can change when the p-parameter of the Besov body is not
matched with the p-parameter of the Lp-risk (see the notes at the end of this chapter for some
discussion).

We finally remark that the natural exhaustive classes for minimax estimation are balls of
the spaces Br

p∞. The lower (and trivially also the upper) bounds in this section hold in fact
for any value q ∈ [1,∞] in Br

pq, showing that the choice of the q-index is not important for
estimation problems. Moreover, we could set p =∞, and all the lower bounds would still
remain true (see Exercise 6.3.3).

Lp-Minimax Rates in Gaussian White Noise

In Gaussian white noise with Lp-risk, Lp = Lp([0,1]),1≤ p<∞, and we have the following
theorem. Note that Remark 6.3.6 on the dependence of the constant C on B applies here as
well.

Theorem 6.3.8 Let B,r > 0 and 1 ≤ p <∞,1 ≤ q ≤ ∞. The minimax rate of estimation
over

F = { f : ‖ f ‖Br
pq([0,1]) ≤ B}

in ‖·‖p-risk in the sense of Definition 6.3.1 based on observations dY f ∼PY
f in the Gaussian

white noise model equals

rn = Cn−r/(2r+1),

where the constant C depends on B,r,p,σ .

Proof The upper bound follows from Proposition 5.1.7 and Br
pq ⊂ Br

p∞. For the lower
bound, let S > r, and take S-regular Daubechies wavelets ψjk from the proof of
Theorem 6.3.5 that are supported in the interior [0,1]. Recall that at the jth level there are
c02j of these interior wavelets, where c0 ≡ c0(S)≤ 1 is a fixed positive constant. Set f0 = 0,
and for m ≥ 1, βm = (βmk) any point in the discrete hypercube {−1,1}c02j

and ε > 0 a small
constant, define functions

fm(x)= ε2−j(r+1/2)
c02j∑
k=1

βmkψjk(x).
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By the wavelet characterisation of the Besov norm in Theorem 4.3.2, we have

‖ fm‖Br
pq = 2j(r+1/2−1/p)ε2−j(r+1/2)

(∑
k

|βmk|p
)1/p

≤ ε,

so the fm are all contained in F . By Parseval’s identity, the fm are L2-separated by

‖ fm − fm′‖2
2 = ε22−2j(r+1/2)

∑
k

(βmk −βm′k)
2 (6.109)

and more generally in Lp, from Proposition 4.2.8, by

‖ fm − fm′‖p ≥ K′2j( 1
2− 1

p )ε2−j(r+1/2)

(∑
k

|βmk −βm′k|p
)1/p

. (6.110)

To obtain suitably separated fm, we need to separate points in the hypercube {−1,1}c02j
: by

Example 3.1.4 (the Varshamov-Gilbert bound) and for j large enough, there exist universal
constants c1,c2 > 0 and a subset M of {−1,1}c02j

of cardinality M = 2c12j
such that∑

k

|βmk −βm′k|p ≥ c22
p2j

whenever m 
= m′. Hence,

‖ fm − fm′‖p ≥ c(ε,c2)2
−jr, m 
= m′,m,m′ ∈M, (6.111)

and choosing j = jn such that 2jn � n1/(2r+1), the { fm : m ∈ M} are 2Crn-separated
and contained in F . By (6.14), the Kullback-Leibler distances K(P fm ,P f0),m ≥ 1, are
bounded by

n

2σ 2
‖ fm‖2

2 =
n

2σ 2
ε22−2j(r+1/2)

c02j∑
k=1

1 ≤ ε2c(c0,c1,σ
2) logM, (6.112)

so the result follows from Theorem 6.3.2 by choosing ε small enough.

Lp-Minimax Rates in Density Estimation

The following theorem gives a sampling analogue of Theorem 6.3.8 when A = [0,1]. More
general sample spaces are discussed later.

Theorem 6.3.9 Let B> 1,r> 0,1 ≤ p<∞,1≤ q ≤∞, and let F consist of all probability
density functions in

{ f : ‖ f ‖Br
pq([0,1]) ≤ B}.

The minimax rate of estimation over F in ‖ · ‖p-risk in the sense of Definition 6.3.1 based
on observations X1, . . .Xn ∼i.i.d. f on [0,1] equals

rn = Cn−r/(2r+1),

where the constant C depends on B,r.
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Proof The upper bound follows from Proposition 5.1.7 and Br
pq ⊂ Br

q∞. For the lower
bound, we take the uniform density f ′0 = 1 and let

f ′m = f ′0 + ε2−j(r+1/2)
∑

k

βmkψjk(x)= f ′0 + fm,

with βmk,ψjk, fm as in the proof of Theorem 6.3.8. Arguing as in that proof and using

‖ f ′0‖Br
pq = ‖ f ′0‖p = ‖ f ′0‖p = 1,

∫
ψjk = 0,‖ f ′m − f ′0‖∞ < 1,

for j large enough, we show that the f ′m are positive probability densities contained in F .
Moreover, as before (6.111), we can find a subset M of {−1,1}c02j

of cardinality M = 2c12j

such that the { f ′m : m ∈ M} are 2Crn-separated in Lp-distance. Using log(1 + x) ≤ x for
x>−1, the Kullback- Leibler distances K(P f ′m ,P f ′0),m ≥ 1, are bounded by

K(Pn
f ′m ,Pn

f ′0
)= n

∫
log( f ′m(x)) f ′m(x)dx

= n
∫

log(1+ fm)(1+ fm(x))(x)dx

≤ n
∫

fm + n
∫

f 2
m(x)dx

= n‖ fm‖2
2,

so the result follows from the estimate (6.112) (with σ = 1) and Theorem 6.3.2.

We now turn to the case where the observations X1, . . . ,Xn take values on the real line.
The multivariate situation is treated in Exercise 6.3.2.

Theorem 6.3.10 Let B> 1,r> 0,1 ≤ p<∞,1 ≤ q ≤∞,s> (2− p)/p, and let F consist
of all probability density functions in

{ f : ‖ f ‖Br
pq(R) ≤ B}.

If 1 ≤ p < 2, intersect, F further with { f :
∫
R

f (t)(1 + |t|s) ≤ B}. The minimax rate of
estimation over F in ‖ · ‖p-risk in the sense of Definition 6.3.1 based on observations
X1, . . .Xn ∼i.i.d. f on R equals

rn = Cn−r/(2r+1),

where the constant C depends on B,r.

Proof The upper bound follows from Proposition 5.1.7. The lower bound is proved as
in Theorem 6.3.9, but with f0 = 1 there replaced by a normal density with variance large
enough that ‖ f0‖Br∞∞ < B and adapting the proof as in the case A=R in Theorem 6.3.7 in a
straightforward way. The details are left to the reader.

Exercises

6.3.1 Prove an analogue of Proposition 6.3.4 for the set F of probability distribution functions
on Rd.
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522 The Minimax Paradigm

6.3.2 Let A equal [0,1]d or Rd. Prove analogues of the theorems in this section for minimax lower
bounds when estimating functions in Lp-risk, 1≤ p<∞, and L∞-risk over a Besov ball Br

p∞(A).
Hint: The rates are of the order

n−r/(2r+d) and (n/ logn)−r/(2r+d)

in Lp and L∞, respectively. The proofs are the same as earlier using the results from
Section 4.3.6 and the alternatives ε2−j(r+1/2)

∑
kβmkψjk(x) and ε2−j(r+1/2)ψjm, with the ψjm

forming a wavelet basis of L2(A) so that at each resolution level j there are now 2jd wavelet
coefficients.

6.3.3 Show that the functions fm in the lower-bound proofs of Theorems 6.3.8 and 6.3.9 are in fact
contained in balls of Br∞∞([0,1]) and that hence the minimax rate of convergence over such
(Hölder) balls in Lp([0,1]) loss, 1 ≤ p<∞, is n−r/(2r+1).

6.4 Nonparametric Confidence Sets

Consider statistical experiments En giving rise to observations Y = Y(n) on the measurable
space (Yn,An),n ∈N. Suppose that the parameter space F describing the laws (P f : f ∈F)
that could have generated Y is a subset of a metric space (S,d) and that the minimax rate of
estimation over F in d-risk in the sense of Definition 6.3.1 is equal to rn. In this case, we
know that an estimator f̃ n based on Y(n) exists that attains the minimax rate of convergence:
for n large enough and some C<∞,

sup
f ∈F

E f d( f̃ n, f )≤ Crn. (6.113)

A key challenge in statistics is to go beyond the mere construction of an optimal decision
rule f̃ n = f̃ (Y(n)) by providing a data-driven quantification of the uncertainty in the estimate
of f . The reason why this is important is that a point estimate f̃ n alone will be quite useless
for the purposes of statistical inference if we cannot guarantee that f̃ n is within a certain
known distance to f with high probability. For instance, to give an extreme example, if
we cannot be sure that Crn is of smaller order than the diameter of F , we will not want
to trust the estimate f̃ n in practice. A statistical approach to uncertainty quantification is
based on the idea of using the observations Y(n) to construct a random subset Cn of F which
contains f with large probability whenever Y(n) was indeed generated from P f . Such sets
Cn provide a quantification of uncertainty through their size and are called confidence sets.
We will show that a natural goal is to construct Cn such that its d-diameter |Cn|d satisfies
|Cn|d = OP(rn), reflecting the accuracy of estimation in (6.113).

The theory of confidence sets comprises at least two main challenges: the first is that
in nonparametric situations, rn often depends on several unknown quantities that need to be
estimated themselves, and this can pose fundamental difficulties. We will touch on this issue
to a certain extent in what follows, and it will occur more prominently in the adaptive setting
of Section 8.3. The second challenge arises even in those situations where rn is known:
for example, the basic confidence set Cn = [ f̃ n − Lrn, f̃ n + Lrn] requires the choice of the
constant L in dependence of the desired coverage probability P f ( f ∈ Cn). If we want sharp
results, this can be a delicate matter that depends on the precise probabilistic properties of
f̃ n in the loss function in which we want Cn to be small. We present the minimax approach
to this problem in this section – a related Bayesian approach is discussed in Section 7.3.4.
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6.4 Nonparametric Confidence Sets 523

6.4.1 Honest Minimax Confidence Sets

To give a general definition, we notice that a confidence set need not necessarily be centred
at an estimator f̃ n but could be any random subset Cn of the parameter space F that contains
f with prescribed P f probability. Any such Cn then does not only provide an estimate of
f (by taking f̃ n equal to an arbitrary element of Cn) but also an estimate of the uncertainty
about f through the diameter of the set Cn.

Paralleling the situation of nonparametric testing and estimation, it is natural to require,
from a minimax point of view, that the coverage probability

P f ( f ∈ Cn)

of a confidence set be controlled at any given level 1−α,0<α < 1, uniformly in all f ∈F .
The level α has the usual interpretation of being chosen by the statistician; Cn thus is allowed
to depend on α. To fix ideas, let us give the following definition:

Definition 6.4.1 Let (P f : f ∈ F) be a statistical model for the law of observations (Y(n) :
n∈N) in the measurable space (Yn,An). Let F be a subset of a metric space (S,d) equipped
with its Borel σ -field BS. Given 0< α < 1, a honest level 1−α confidence set Cn for F is
a random subset Cn = C(α,Y(n)) : Yn →BS of (S,d) such that, for some sequence en = o(1),

inf
f ∈F

P f ( f ∈ Cn)≥ 1−α+ en. (6.114)

The confidence set Cn is said to be of exact asymptotic level 1−α if

inf
f ∈F

|P f ( f ∈ Cn)− (1−α)| = o(1). (6.115)

Note that such confidence sets are honest in the sense that there exists an index n0

depending only on the model such that from then onwards, coverage holds for all f in
the model. Clearly, for the uncertainty quantification provided by Cn to be as informative as
possible, we want Cn to be as small as possible – otherwise we could take Cn =F , which is
not an interesting confidence set. Denote the d-diameter of Cn by

|Cn|d = sup{d( f ,g) : f ,g ∈ Cn}; (6.116)

if d arises from an Lp-metric, we simply write |Cn|p in slight abuse of notation. We argue
now that a natural minimax optimality criterion for confidence sets is to require that |Cn|d
shrinks at the minimax rate of d-estimation over F in the sense of Definition 6.3.1.

First, we note that on the ‘coverage’ events { f ∈ Cn} we can find random f̃ n ∈ Cn

depending only on Y(n),α such that

{|Cn|d ≤ rn, f ∈ Cn} ⊆ {d( f̃ n, f )≤ rn}.
Negating this inclusion, we have

{|Cn|d > rn}∪ { f /∈ Cn} ⊇ {d( f̃ n, f ) > rn},
so

P f (d( f̃ n, f ) > rn)≤ P f (|Cn|2 > rn)+P f ( f /∈ Cn)≤ P f (|Cn|2 > rn)+α.

Hence, if |Cn|d = oP(rn) uniformly in F , then d( f̃ n, f ) would have rate of convergence
o(rn) uniformly in f ∈ F on an event of probability if at least 1 − α. A lower bound for
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524 The Minimax Paradigm

the estimation rate from the preceding section thus gives a lower bound for the size |Cn|d of
any confidence set. Conversely, if we are given an estimator f̃ n satisfying (6.113) with risk
bound Crn, we can consider the confidence set

Cn = [ f̃ n −LCrn, f̃ n +LCrn].
Note that this confidence set is statistically feasible only if Crn are known quantities.
Assuming that this is the case for the moment, we see that Cn obviously has diameter
|Cn|d = OP(rn) and satisfies, for L = L(α) large enough, by Markov’s inequality,

inf
f ∈F

P f ( f ∈ Cn)≥ 1− sup f ∈F E f d( f̃ n, f )

LCrn

≥ 1−α, (6.117)

so Cn is honest with level 1−α. The following definition hence is sensible:

Definition 6.4.2 An honest confidence set Cn from Definition 6.4.1 is minimax optimal
if its d-diameter |Cn|d shrinks at the minimax rate of estimation rn in d-risk over F from
Definition 6.3.1, that is, if for all α′ > 0 there exists M = M(α′) such that, for all n ∈N,

sup
f ∈F

P f (|Cn|d >Mrn) < α
′. (6.118)

6.4.2 Confidence Sets for Nonparametric Estimators

As just shown, any minimax optimal estimator gives rise to an honest minimax optimal
confidence set if the minimax rate of estimation rn is known (so that rn can be used in
the construction of Cn). However, even in this ideal situation, the bound via Markov’s
inequality used in (6.117) is very crude, and we describe in this subsection some more exact
constructions of minimax and near-minimax confidence sets based on the probabilistic tools
from preceding chapters.

From a descriptive point of view, perhaps the most useful confidence sets for
nonparametric functions defined on a subset A of R are confidence bands. In dimension one,
these are confidence sets of functions that create a band in the Euclidean plane to which the
graph of f belongs with probability 1− α. Formally, they can be described as a family of
random intervals [L(x),U(x)],x ∈ A, such that f (x) ∈ [L(x),U(x)] for all x simultaneously,
providing a clear visual description of the confidence set. The simplest example for a
confidence band is an L∞-ball. Other confidence sets with less obvious geometric structure,
such as L2-balls, are also of interest.

Most of what follows will be based on an a priori control of the approximation error of
the functions f ∈F , in particular, we shall assume that F is contained in an r-regular Besov
class with r known. As mentioned earlier, such knowledge is usually not available – this
leads to more fundamental adaptation questions which will be addressed in Section 8.3.

Kolmogorov-Smirnov Confidence Bands

We can construct asymptotic confidence bands for distribution functions by using Donsker’s
theorem. If X1, . . . ,Xn are i.i.d. F on the real line, and if

Fn(x)= 1

n

n∑
i=1

1(−∞,x](Xi), x ∈R,
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6.4 Nonparametric Confidence Sets 525

is the empirical distribution function, then by Corollary 3.7.39 and the continuous mapping
theorem, for continuous F,

√
n‖Fn −F‖∞ →d max

x∈[0,1]
|G(x)|, (6.119)

where G is the standard Brownian bridge on [0,1]. If we denote by zα the α-quantile of that
limit distribution, then we can construct the confidence band

Cn =
[
Fn(x)− zα√

n
,Fn(x)+ zα√

n

]
, x ∈R,

for which, by (6.119),

PN
F (F ∈ Cn)= PN

F

(
‖Fn −F‖∞ ≤ zα√

n

)
→ 1−α

as n →∞. This convergence is uniform in F in view of Examples 3.7.19 and 3.7.42, and
the L∞-diameter of Cn shrinks at a rate zα/

√
n, so this confidence band is minimax optimal

in view of Proposition 6.3.4. We can also use the Dvoretzky-Kiefer-Wolfowitz inequality
(Exercise 3.3.3) to give a nonasymptotic coverage result for this confidence set with slightly
enlarged zα.

Undersmoothed Confidence Bands via Exact Asymptotics for Linear Estimators

The construction of Kolmogorov-Smirnov confidence sets can be carried over to other
nonparametric estimators f̃ n if we can obtain the exact distribution of the random variable
r−1

n d( f̃ n, f ). This is typically untractable for fixed n but may be possible in the large sample
limit, perhaps after a suitable centring and scaling.

In Proposition 5.1.7, we constructed linear estimators f̃ n that attain the minimax rate in
supremum-norm loss over a given Besov ball Br

p∞ by using the decomposition

f̃ n − f = f̃ n −E f f̃ n +E f f̃ n − f

and by balancing the stochastic size of f̃ n − E f f̃ n with the deterministic approximation
error E f f̃ n − f . A classical approach to nonparametric confidence sets consists in simply
undersmoothing the estimate slightly so that d(E f f̃ n, f ) is asymptotically negligible
compared to the random term whose asymptotic distribution we can obtain. These
confidence sets are only ‘near minimax’ in the sense that an undersmoothing penalty is
paid in the rate for |Cn|d.

We illustrate the theory using Gaussian extreme value theory in the white noise model
(Theorem 2.7.1) to construct L∞-type simultaneous confidence bands. Suppose that we
observe dY ∼ PY

f and estimate f by the Haar-projection estimator

fn(j,x)=
2j−1∑
k=0

φjk(x)
∫ 1

0
φjk(t)dY(t), φjk(x)= 2j/21(k/2j,(k+1)/2j](x), x ∈ [0,1]. (6.120)

The uniform deviations ‖ fn(j)−E f fn(j)‖∞ amount to maxima over an increasing (j →∞)
number of i.i.d. Gaussian random variables. By Theorem 2.7.1, when suitably centred and
scaled, such maxima have a Gumbel limiting distribution. The following result then gives
‘undersmoothed’ confidence bands for f that are near minimax optimal within a logn factor
of the optimal rate over Besov balls Br

∞∞([0,1]),0< r ≤ 1 (cf. Theorem 6.3.5).
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Proposition 6.4.3 Let B > 0,0 < r ≤ 1, and consider observing dY ∼ PY
f in the Gaussian

white noise model (6.3) with σ = 1 and where f is contained in

F ≡ { f : ‖ f ‖Br∞∞([0,1]) ≤ B}.
Let j̄n be such that

2j̄n � (n/ logn)1/(2r+1),

and let jn = j̄n + un for some undersmoothing sequence un satisfying 2un ∼ (logn)2. For this
jn and fn(jn,x) as in (6.120), we have, for all t ∈R,

lim
n

sup
f ∈F

∣∣∣∣PY
f

(
an

(√
n

2jn
‖ fn(jn)− f ‖∞− bn

)
≤ t

)
− exp(−e−t)

∣∣∣∣= 0, (6.121)

where

an =
√

jn2log2 and bn = an − log jn + log(π log2)

2an
.

Consequently, for zα such that 1−α = exp(−e−zα ), the family of intervals

Cn ≡ Cn(α,x)=
[

fn(jn,x)±
√

2jn

n

(
zα
an

+ bn

)]
, x ∈ [0,1],

defines an honest confidence band Cn satisfying

inf
f ∈F

|PY
f ( f ∈ Cn)− (1−α)| = o(1), (6.122)

with L∞-diameter |Cn|∞ of the order

|Cn|∞ = OP

((
logn

n

)r/(2r+1)
)

2un/2 (6.123)

uniformly in F .

Proof Note that

‖E f fn(j)− f ‖∞ � B2−jr,

for all j ≥ 0 and 0 < r ≤ 1, by the approximation properties of the Haar wavelet basis
(Proposition 4.3.8). Hence,∣∣∣∣√ n

2jn
‖ fn(jn)− f ‖∞−

√
n

2jn
‖ fn(jn)−E f fn(jn)‖∞

∣∣∣∣
� B

√
n

2jn
2−jnr = 2−un(r+1/2)

√
logn = o(a−1

n )

uniformly in f ∈F . Moreover, under PY
f , we have, for gk ∼i.i.d. N(0,1),√

n

2jn
‖ fn(jn)−E f fn(jn)‖∞ = sup

x∈[0,1]

∣∣∣∣∣∣
2jn−1∑
k=0

1(k/2jn ,(k+1)/2jn ](x)gk

∣∣∣∣∣∣= max
k=0,...,2jn−1

|gk|.
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Combining the last two displays with Theorem 2.7.1 gives (6.121), from which the
remaining claims follow immediately, using the definition of jn, bn = O(

√
logn),

PY
f ( f ∈ Cn)= PY

f

(
‖ fn(jn)− f ‖∞ ≤

√
2jn

n

(
zα
an

+ bn

))
and √

2jn

n

(
zα
an

+ bn

)
= O

(√
2jn jn

n

)
= OP

((
logn

n

)r/(2r+1)
)

2un/2.

Inspection of this proof shows that the result holds in fact for any estimator for which

lim
n

sup
f ∈F

∣∣∣∣PY
f

(
an

(√
n

2jn
‖ fn(jn)−E f fn(jn)‖∞− bn

)
≤ t

)
− exp(−e−t)

∣∣∣∣= 0

can be established for suitable sequences an,bn. This includes more general projection
estimators and similar results for the sampling situation. See Section 5.1.3 for such results
and the notes at the end of this chapter for some discussion. By using more regular projection
kernels, this also generalises to r> 1.

The undersmoothing penalty 2un/2 is of order logn in the preceding result. This is in some
sense an artefact of the proof and can be removed at least if we are not interested in exact
limit distributions. For instance, we can use a good concentration inequality for ‖ fn(jn)−
E f fn(jn)‖∞ − bn, which is the supremum of a Gaussian process minus its expectation, so
Theorem 2.5.8 applies. We can then arrive at undersmoothing penalties of arbitrarily slow
divergent order.

Nonasymptotic Multivariate Confidence Tubes via Rademacher Complexities

Let us next discuss a general nonasymptotic approach to nonparametric confidence sets
based on ideas from Section 3.4.2 on Rademacher complexities. We investigate both the case
of confidence bands for multivariate distribution functions as well as the case of densities.

Consider first observing X1, . . . ,Xn i.i.d. from distribution F on Rd. When d = 1, we can
use the preceding Kolmogorov-Smirnov-type procedures from (6.119) without difficulty. In
the multivariate situation, the limit distribution supt∈Rd |GF(t)| is much less tractable, and the
nonasymptotic approach via the Dvoretzky-Kiefer-Wolfowitz inequality is also restricted
to dimension one. An alternative is provided by the Rademacher complexity approach to
concentration inequalities. We still centre the confidence band

Cn = [Fn(x)±Rn] , x ∈Rd,

at the empirical distribution function

Fn(x)= 1

n

n∑
i=1

1(−∞,x1]×···×(−∞,xd](Xi)≡ 1

n

n∑
i=1

1(−∞,x](Xi), x = (x1, . . . ,xd),

but now with random width given by the sum of a Rademacher complexity and a Gaussian
tail deviation term

Rn = 2

n
sup
x∈Rd

∣∣∣∣∣
n∑

i=1

εi1(−∞,x](Xi)

∣∣∣∣∣+ 3

√
2log(4/α)

n
, 0< α < 1.
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528 The Minimax Paradigm

Alternatively, we can replace Rn by its Rademacher expectation EεRn, a stochastically more
stable quantity. This confidence tube has nonasymptotic coverage: for every n ∈N,

PN
F (F ∈ Cn)= 1−PN

F (‖Fn −F‖∞ > Rn)≥ 1−α (6.124)

in view of Theorem 3.4.5 with F ={1(−∞,x] : x∈Rd}. By desymmetrisation (Theorem 3.1.21
and E‖Pn −P‖F � 1/

√
n (using (3.177) and Example 3.7.19)), we also have ERn � 1/

√
n,

so the diameter of this confidence band is minimax optimal.
This idea generalises to density estimation problems, where, however, we need more

refined concentration inequalities for Rademacher processes. Consider X1, . . . ,Xn i.i.d. from
density f on Rd, and let

fn(h,x)= 1

nhd

n∑
i=1

K

(
x−Xi

h

)
≡
∫
R

Kh(x− y)dPn(y), Pn = 1

n

n∑
i=1

δXi ,

be a kernel density estimator based on a kernel K : Rd → R that is of bounded variation,
integrates to 1 and is contained in L1 ∩L∞. We then know that, for f ∈ Br

∞∞(R
d),

E sup
x∈Rd

| fn(h,x)− f (x)|� ‖ f ‖1/2
∞

√
log(1/h)

nhd
+‖ f ‖Br∞∞(Rd)2

−jr (6.125)

from the results in Chapters 4 and 5, and we wish to construct a corresponding
multivariate confidence ‘tube’ around the estimator fn(h). All that follows works for
general (wavelet-projection) kernels K(x,y), too, if they are suitably regular, with obvious
modifications, using the techniques from Chapter 4.

Define a Rademacher process and the associated Rademacher complexity

fn(h,x)=
{

1

n

n∑
i=1

εiKh(x−Xi)

}
x∈Rd

, Rn(h) := Eε sup
x∈Rd

∣∣∣∣∣1n
n∑

i=1

εiKh(x−Xi)

∣∣∣∣∣ ,
with (εi)

n
i=1 an i.i.d. Rademacher sequence, independent of the Xi. Rn(h) can be easily

computed in practice: first, simulate n i.i.d. random signs, apply these signs to the summands
Kh(x−Xi) of the kernel density estimator and then maximise the resulting function over Rd.
Finally, take the expectation EεRn(h) of Rn(h) with respect to the Rademacher variables
only. This last step could be skipped but gives rise to a stochastically more stable quantity
and hence slightly better constants in the following results.

Let us assume that an upper bound U for ‖ f ‖∞ is known in what follows; otherwise,
replace U by the consistent estimate ‖ fn(h̄n)‖∞, where h̄n ∼ (logn)2/n1/d. Define the random
variable

σ R(n,h,z)= 3Rn(h)+ 4

√
2U‖K‖2

2z

nhd
+ 50‖K‖∞z

3nhd
. (6.126)

We construct a confidence band

C̄n = [ fn(h, ·)−σ R(n,h,z), fn(h, ·)+σ R(n,h,z)] (6.127)

for the mean E fn of fn.
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Proposition 6.4.4 Let fn(x,h) be as earlier, and let X1, . . . ,Xn be i.i.d. f ∈ L∞. Then we
have, for every n ≥ 1, every h> 0 and every z> 0, that

PN
f

{
sup
x∈Rd

| fn(h,x)−E fn(x,h)| ≥ σ R(n,h,z)

}
≤ 2e−z.

Moreover, the expected diameter of C̄n is bounded by

2E f σ
R(n,h,z)≤ C

(√
log(1/h)

nhd
+ log(1/h)

nhd

)
,

for every z> 0, every n ∈N, every h> 0 and some constant C depending only on U,K,z,d.

Proof We use Theorem 3.4.3; in fact, we use the remark after it. We can write in empirical
process notation

‖ fn(x,h)−E f fn(x,h)‖∞ = ‖Pn −P‖K. (6.128)

where K= {Kh(x−·) : x ∈Rd}. This class has envelope h−d‖K‖∞, and hence, the class

G ≡ {hdKh(x−·)/2‖K‖∞ : x ∈Rd}
is uniformly bounded by 1/2. For the weak variances, we have the estimate

sup
g∈G

Eg2(X)≤ sup
x∈Rd

h2d

4‖K‖2∞

∫
Rd

K2
h(x− y) f (y)dy ≤ U‖K‖2

2

4‖K‖2∞
hd ≡ σ 2.

Then, by (3.139) with S̃n as in the proof of Theorem 3.4.3, we have

PN
f

⎛⎝‖ fn(h, ·)−E fn(h, ·)‖∞ ≥ 3Rn(h)+ 4

√
2U‖K‖2

2z

nhd
+ 50‖K‖∞z

3nhd

⎞⎠
= PN

f

(
‖Pn −P‖G ≥ 3EεS̃n + 4

√
2σ 2z

n
+ 25z

3n

)
≤ 2e−z,

which proves the first claim. For the second claim of the proposition, we only have to show
that ERn(h) has, up to constants, the required order as a function of h,n. But this follows
readily from desymmetrisation (Theorem 3.1.21) and (6.125).

The constants in the choice of σ R are the best we can obtain from the concentration
of measure tools developed in Chapter 3. A ‘practical’ and perhaps optimistic choice for
moderate sample sizes may be to replace 3 by 1 in front of Rn and to ignore the third
’Poissonian’ term in (6.126) altogether, reflecting a pure Gaussian tail inequality.

Combined with undersmoothing as in Proposition 6.4.3, we can show that C̄n is indeed
a confidence set for the unknown function f which shrinks at the near-minimax rate of
estimation (see Exercise 6.3.2).

Corollary 6.4.5 Consider observing X1, . . . ,Xn i.i.d. f on Rd. Suppose that f is an element
of the class F consisting of all probability densities in

{ f : ‖ f ‖Br∞∞(Rd) ≤ B}.
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530 The Minimax Paradigm

Let h̄n be such that h � (n/ logn)−1/(2r+d), and let hn = h̄nun for some undersmoothing
sequence un → 0 as n →∞. Take C̄n as in (6.127) with h = hn, z = zα such that 2e−zα = α
and based on a kernel of order r. Then

inf
f ∈F

PY
f ( f ∈ Cn)≥ 1−α+ en, (6.129)

where en = o(1), and the L∞-diameter |C̄n|∞ is of the order

|Cn|∞ = OP

((
logn

n

)r/(2r+d)
)
√

un (6.130)

uniformly in F .

Proof Since

‖E f fn(h)− f ‖∞ � Bhr

for all h > 0, the result follows from hr
n = o(σ R(n,hn,z)) and the preceding proposition to

control the coverage probabilities.

If explicit control of the bias is available, we can give a nonasymptotic version of this
corollary as well by incorporating the bias bound into the diameter of the confidence set.

Minimax Confidence Sets via Unbiased Risk Estimation

Another approach to nonparametric confidence sets is based on the idea of estimating
the risk d( f̃ n, f ) of a nonparametric estimator f̃ n directly using sample splitting. This is
particularly useful when d is a metric that has some averaging structure, such as L2-loss.

Let us illustrate these ideas first in the sampling setting, where we have at hand
i.i.d. observations Xi from some probability density function f on [0,1]. Let us assume
that the sample size is 2n,n ∈ N, for notational convenience. Split the sample into two
halves, with index sets S1,S2 of equal size n, write P(i)f ,E(i)f , i = 1,2, for the corresponding

probabilities and expectation operators. Let f̃ n be some preliminary estimator of f based
on the sample S1. For a wavelet basis {ψlk} of L2([0,1]) from Section 4.3.4 or Section 4.3.5
with associated projection operator Kj, j ∈N, define the U-statistic

Un( f̃ n)=
2

n(n− 1)

∑
i<i′,i,i′∈S2

∑
l≤j−1,k

(ψlk(Xi)−〈ψlk, f̃ n〉)(ψlk(Xi′)−〈ψlk, f̃ n〉) (6.131)

which has expectation

E(2)f Un( f̃ n)=
∑

l≤j−1,k

〈ψlk, f − f̃ n〉2 = ‖Kj( f − f̃ n)‖2
2,

so Un( f̃ n) is an unbiased estimate of the jth wavelet approximation of the squared
L2-estimation error ‖ f − f̃ n‖2

2. The idea is to take Un( f̃ n) as a proxy for the true risk
‖ f̃ n − f ‖2

2, suggesting heuristically a confidence set of the form

Cn = { f : ‖ f̃ n − f ‖2
2 ≤ Un( f̃ n)+ zn,α},

where zn,α are suitable quantile constants controlling the estimation and approximation error
Un( f̃ n)−E(2)f Un( f̃ n) and ‖Kj( f − f̃ n)− ( f − f̃ n)‖2

2, respectively.
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Theorem 6.4.6 Consider i.i.d. observations X1, . . . ,X2n on [0,1] from a probability density
f ∈ L2([0,1]). Let f̃ n ∈ L2 be a preliminary estimator of f based on the subsample S1 =
{X1, . . . ,Xn}. Let F be a family of probability densities in L∞([0,1]) such that

sup
f ∈F

‖Kj( f − f̃ n)− ( f − f̃ n)‖2
2 ≤ B(j),

for some sequence (B(j) : j ∈N). Let further zα be a numerical quantile constant, and let

τ 2
n ( f )= 2j+1‖ f ‖2

∞
n(n− 1)

+ 4‖ f ‖∞
n

‖Kj( f − f̃ n)‖2
2.

Define the confidence set

Cn =
{

f ∈F : ‖ f − f̃ n‖2 ≤
√

zατn( f )+Un( f̃ n)+B(j)

}
, (6.132)

where Un( f̃ n) is as in (6.131) based on the second subsample S2 = {Xn+1, . . . ,X2n}. Then,
for every n ∈N and zα large enough,

inf
f ∈F

PN
f ( f ∈ Cn)≥ 1−α. (6.133)

Proof Writing P(2)f for the joint law of the Xi in S2, we have from Chebyshev’s inequality

P(2)f

{
Un( f̃ n)−‖ f − f̃ n‖2

2 ≥−B(j)− z(α)τn( f )
}

≥ P(2)f

{
Un( f̃ n)−‖Kjn( f − f̃ n)‖2

2 ≥−z(α)τn( f )
}

≥ 1− Var(2)(Un( f̃ n)−E(2)f Un( f̃ n))

(z(α)τn( f ))2
, (6.134)

for all f ∈F . The Hoeffding decomposition for the centred U-statistic Un( f̃ n)−E2
f Un( f̃ n)

with kernel

R(x,y)=
∑

l≤jn−1,k

(ψlk(x)−〈ψlk, f̃ n〉)(ψlk(y)−〈ψlk, f̃ n〉)

is (cf. Section 3.4.3 or before (6.40))

Un( f̃ n)−E2Un( f̃ n)=
2

n

∑
i∈S2

(π1R)(Xi)+ 2

n(n− 1)

∑
i<i′
(π2R)(Xi,Xi′)≡ Ln +Dn,

with linear

(π1R)(x)=
∑

l≤jn−1,k

(ψlk(x)−〈ψlk, f 〉)〈ψlk, f − f̃ n〉

and degenerate kernel

(π2R)(x,y)=
∑

l≤jn−1,k

(ψlk(x)−〈ψlk, f 〉)(ψlk(y)−〈ψlk, f 〉).
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The variance of Un( f̃ n)− E(2)f Un( f̃ n) is the sum of the variances of the two terms in the
Hoeffding decomposition. For the linear term we bound the variance Var(2)(Ln) by the
second moment, using ortho-normality of the ψlk, that is,

4

n

∫ ⎛⎝ ∑
l≤jn−1,k

ψlk(x)〈ψlk, f̃ n − f 〉
⎞⎠2

f (x)dx ≤ 4‖ f ‖∞
n

∑
l≤jn−1,k

〈ψlk, f̃ n − f 〉2,

which equals the second term in the definition of τ 2
n ( f ). For the degenerate term we can

bound Var(2)(Dn) analogously by the second moment of the uncentred kernel, i.e., by

2

n(n− 1)

∫ ⎛⎝ ∑
l≤jn−1,k

ψlk(x)ψlk(y)

⎞⎠2

f (x)dx f (y)dy ≤ 2jn+1‖ f ‖2
∞

n(n− 1)
,

using ortho-normality of the wavelet basis. For zα large enough independent of the Xis in
S1, the last term in (6.134) thus is bounded from below by 1− α, completing the proof by
integrating the inequality with respect to P(1)f .

Sharp choices for the constant zα can be obtained from applying the concentration of
measure tools for U-statistics from Section 3.4.3 and Bernstein’s inequality, to the U-statistic
appearing in the preceding proof.

The preceding theorem only proves coverage of the confidence set, and the important
question arises whether Cn is optimal in the sense of Definition 6.4.2. We now show that
this is the case if F equals a subset of a ball in Br

2∞([0,1]) with r known and when the
preliminary estimator is

f̃ n = fn(j̄n,x)=
1

n

∑
l≤j̄n−1,k,i∈S1

ψlk(x)ψlk(Xi), (6.135)

constructed on the same wavelet basis, assumed to be S-regular, S> r and for suitable j̄n.

Corollary 6.4.7 Consider i.i.d. observations X1, . . . ,X2n on [0,1] from probability density f
contained in

F = { f : max(‖ f ‖∞,‖ f ‖Br
2∞([0,1]))≤ B}.

Let f̃ n = fn(j̄n,x) be as in (6.135), where j̄n is such that 2j̄n � n1/(2r+1). Moreover, let
τn( f ),Un( f̃ n),Cn be as in Theorem 6.4.6, with j = jn ≥ j̄n such that 2jn � n1/(2r+1/2) and
B(jn)= d logn 2−2jnr for some d> 0. Then, for all n ≥ n0(B,d) large enough,

inf
f ∈F

PN
f ( f ∈ Cn)≥ 1−α, (6.136)

and if |Cn|2 is the L2-diameter of Cn, then for every α′ > 0 there exists L> 0 such that, for
all n ∈N,

sup
f ∈F

PN
f (|Cn|2 ≥ Ln−r/(2r+1))≤ α′. (6.137)

Proof Using the standard approximation bound

‖Kj( f )− f ‖2 � B2−jr
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for f ∈F , we deduce the coverage result from Theorem 6.4.6 for n large enough depending
on B only, noting also that

‖Kjn( f̃ n)− f̃ n‖2 = ‖ f̃ n − f̃ n‖2 = 0

since j̄n ≤ jn and since Kj is a L2-projector. The diameter of Cn equals√
zατn( f )+Un( f̃ n)+B(jn)

and can be bounded as follows: the nonrandom terms are of order√
lognB2−jnr + 2jn/4n−1/2 �

√
logn n−r/(2r+1/2) = o(n−r/(2r+1)).

The random component of τn( f ) has expectation

‖ f ‖1/4
∞ n−1/4E(1)‖Kjn( f̃ n − f )‖1/2

2 = o(n−r/(2r+1))

since KJn is a projection operator and since E‖ f̃ n− f ‖2 =O(n−r/(2r+1)) by Proposition 5.1.7.
Moreover, by that proposition and again the projection properties,

EUn( f̃ n)= E(1)‖Kjn( f̃ n − f )‖2
2 ≤ E(1)‖ f̃ n − f ‖2

2 ≤ cn−2r/(2r+1).

The term in this display is the leading term in our bound for the diameter of the confidence
set, completing the proof by Markov’s inequality.

The preceding confidence set is a genuine minimax confidence set in the sense of
Definition 6.4.2. Note that we are still undersmoothing (through the choice of B(jn)), but by
exploiting the L2-structure, this bias term is seen to be of smaller order than the estimation
rate. In fact, in the preceding proof there is some ‘space’ left in terms of how fast the bias has
to approach zero – this observation will be important in Section 8.3. This phenomenon is tied
to the L2-situation, and the construction of exact minimax confidence sets in L∞ (without
undersmoothing penalty) when the radius B is unknown poses fundamental difficulties. This,
again, will be discussed in Section 8.3.

These results have an analogue in the Gaussian white noise model. The proof of
Theorem 6.4.6 relies on splitting an i.i.d. sample into two halves. In the Gaussian white noise
model, we cannot directly split the sample, but as discussed in the paragraph surrounding
(6.10), given an observation dY, we can always create two independent observations dY1,dY2

of the same white noise model with variance increased by a factor of 2. We can compute a
preliminary estimator f̃ n from the first observation dY1 and estimate its L2-risk based on the
second observation dY2 by

Tn( f̃ n)=
∑

l≤j−1,k

(∫ 1

0
ψlkdY2 −〈ψlk, f̃ n〉

)2

− 2σ 2 2j

n
, (6.138)

where the ψlk form an S-regular, S > r wavelet basis of L2([0,1]) as in Section 4.3.4 or
Section 4.3.5 such that

∑
k,l≤j−1 1 = 2j. In this way, we obtain the following white noise

analogue of Theorem 6.4.6:
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534 The Minimax Paradigm

Theorem 6.4.8 Consider two independent white noise experiments dY1,dY2 generated from
(6.3) with f ∈F ⊂ L2([0,1]), and let f̃ n be a preliminary estimator of f based on the first
experiment. Suppose that

sup
f ∈F

‖Kj( f − f̃ n)− ( f − f̃ n)‖2
2 ≤ B(j)

for some sequence (B(j) : j ∈N). Let further zα be a quantile constant, g ∼ N(0,1), and let

τ 2
n ( f )= 8σ 2

n
‖Kj( f − f̃ n)‖2

2 + 4Eg4σ 4 2j

n2
.

Define the confidence set

Cn =
{

f : ‖ f − f̃ n‖2 ≤
√

zατn( f )+Tn( f̃ n)+B(j)

}
, (6.139)

where Tn( f̃ n) is as in (6.138) based on dY2. Then, for every n ∈N and zα large enough,

inf
f ∈F

PY
f ( f ∈ Cn)≥ 1−α. (6.140)

Proof We have from Chebyshev’s inequality

inf
f ∈F

PY2
f

{
Tn( f̃ n)−‖ f − f̃ n‖2

2 ≥−B(j)− z(α)τn( f )
}

≥ inf
f ∈F

PY2
f

{
Tn( f̃ n)−‖Kjn( f − f̂n)‖2

2 ≥−z(α)τn( f )
}

≥ 1− sup
f ∈F

Var2(Tn( f̃ n)−E(2)f Tn( f̃ n))

(z(α)τn( f ))2
.

The result now follows, bounding the variances of the centred χ2-statistic Tn( f̃ n) −
E(2)f Tn( f̃ n). We can decompose, for glk ∼i.i.d. N(0,1),

(Tn( f̃ n)−E(2)f Tn( f̃ n))= 2

√
2σ√
n

∑
l≤j−1,k

glk〈ψlk, f − f̃ n〉+
2σ 2

n

∑
l≤j−1,k

(g2
lk − 1).

The variance of the first term is bounded by

8σ 2

n
‖Kj( f − f̃ n)‖2

2

using ortho-normality of the wavelet basis. The variance of the second term is bounded by
4Eg4

lkσ
42j/n2, completing the proof.

A confidence set as in Corollary 6.4.7 now can be obtained likewise, with the same
bounds on |C|2. This is left as Exercise 6.4.1. Sharp choices of zα can be obtained from
replacing Chebyshev’s inequality by the Gaussian concentration tools from Chapter 2, in
particular, Theorem 3.1.9.
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Confidence Sets and Multiscale Inference

Another approach to constructing nonparametric confidence sets is based on the theory for
linear estimators in weak metrics developed in Section 5.2. Of particular interest is the
approach via multiscale spaces from Section 5.2.2 that we investigate now.

Consider the Gaussian white noise model with f contained in a ball of radius B in the
Hölder space Br

∞∞([0,1]). Recalling (5.86), we have that the estimator Y(n) satisfies
√

n(Y(n)− f )=W in M0(w), (6.141)

for any admissible sequence w such that wl/
√

l↑∞ (recalling Definition 5.2.13), and where
white noise W defines a tight Borel Gaussian random variable on the Banach space M0.

Then we use this result to construct a confidence set

Wn ≡
{

f : ‖Y(n)− f ‖M0(w) ≤ zα/
√

n
}

,

where zα are the α-quantiles of the distribution of the random variable ‖W‖M0(w). (A
Bayesian approach to ‘bootstrap’ these quantiles will be presented in Theorem 7.3.23.) The
multiscale approach consists in starting with the universal confidence set Wn and further
intersecting it with qualitative information about f . In the present case, this information is
a bound on the smoothness of f , and we define

Cn = Wn ∩Bn, Bn ≡ { f : ‖ f ‖Br∞∞ ≤ un}, (6.142)

where un →∞ as n →∞ is an undersmoothing sequence accommodating the fact that a
bound on the Hölder norm of f is usually not available. More precise (and less ad hoc)
choices for un are discussed in Exercise 6.4.2.

Theorem 6.4.9 Let B,r > 0, and consider observing dY ∼ PY
f in the Gaussian white noise

model (6.3) with σ = 1 and where f is contained in

F ≡ { f : ‖ f ‖Br∞∞([0,1]) ≤ B}.
Let jn be such that 2jn � (n/ logn)1/(2r+1), and let Cn be the random subset of Br

∞∞ given in
(6.142) with w chosen such that wjn/

√
jn = O(un). Then

sup
f ∈F

|PY
f ( f ∈ Cn)− (1−α)| = o(1), (6.143)

with L∞-diameter |Cn|∞ of the order

|Cn|∞ = OP

((
logn

n

)r/(2r+1)

un

)
, (6.144)

uniformly in F .

Proof For n large enough, ‖ f ‖Br∞∞ ≤ un, and then PY
f ( f ∈ Bn)= 1. From this and (6.141)

we infer, for n large enough, that

PY
f ( f ∈ Cn)= PY

f ( f ∈ Wn)= 1−α.
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To bound the L∞-diameter of Cn, pick any f ,g ∈ Cn, and let h = f − g. We have for any
S-regular wavelet basis, S> (1/2,r),

‖h‖∞ �
∑

l

2l/2 max
k

|〈h,ψlk〉|.

For the high frequencies l≥ jn, we have from the wavelet characterisation of the Besov norm∑
l>jn

2l/2 max
k

|〈h,ψlk〉| =
∑
l>jn,k

2−lr2l(r+1/2)max
k

|〈h,ψlk〉|

≤ ‖h‖Br∞∞2−jnr

= OP

(
(n/ logn)−r/(2r+1)un

)
.

For the low frequencies, we have, using ‖h‖M0(w) = OP(1/
√

n),∑
l≤jn

2l/2 max
k

|〈h,ψlk〉| =
∑
l≤jn

2l/2wl/wl max
k

|〈h,ψlk〉|

� ‖h‖M0(w)2
jn/2
√

jn(wjn/
√

jn)

= OP

(
(n/ logn)−2r/(2r+1)un

)
,

completing the proof.

The perceding confidence set consists of the simple thresholding rule

Cn =
{

f : |〈 f ,ψlk〉| ≤ min

(
zα2l/2wl√

n
,2−l(r+1/2)un

)}
. (6.145)

The proof shows that instead of undersmoothing in an additive bias-variance decomposition,
we can alternatively ‘undersmooth in the frequency domain’. An interesting feature of this
multiscale approach is that the confidence set is constructed for the full function f in a
weak loss function where parametric rates can be obtained. The intersection with a ball in
Br
∞∞ then yields sufficient regularity of the confidence set that its diameter shrinks at a

near-minimax optimal rate.
In the sampling setting, we can use the results from Section 5.2 in a similar fashion, using

Theorem 5.2.16 for the projected empirical measure Pn(jn), and replacing Wn by

Vn =
{
P : ‖P−Pn(jn)‖M0(w) ≤ zα/

√
n
}

,

where zα are the α-quantiles of the multiscale norm of the P-Brownian bridge. Assuming
that P has a bounded density f ∈ Br

∞∞([0,1]), we then prove an immediate analogue of
Theorem 6.4.9, choosing 2jn ∼ (n/ logn)1/(2r+1) and intersecting with a growing ball in
Br
∞∞([0,1]).

Exercises

6.4.1 Prove an analogue of Corollary 6.4.7 in the Gaussian white noise model.
6.4.2 Show that if in (6.142), we replace

{ f : ‖ f ‖Br∞∞ ≤ un}
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by

{ f : ‖ f ‖Br,γ∞∞ ≤ ‖ f̂n‖Br,γ∞∞ + δ′}
for δ′,γ > 0 arbitrary, then Theorem 6.4.9 still remains true. Hint: Show that ‖ f̂n‖Br,γ∞∞ estimates
‖ f ‖Br,γ∞,∞ consistently for f ∈ Br∞∞, and adapt the interpolation argument in the proof of
Theorem 6.4.9 to the logarithmically weakened Besov norm.

6.5 Notes

Section 6.1 Most of the materials in this section are basic. The realisation of the Gaussian white
noise model via the path space of Brownian motion in Ibragimov and Khasminski (1981) is based
on the basic theory of stochastic integrals

∫
f dW. Our construction of the white noise process W

relies only on basic Gaussian process tools and the Cameron-Martin Theorem 2.6.13. Yet another
way to interpret

∫
gdW is as a PW-measurable linear functional on C([0,1]); see p. 83ff. in Bogachev

(1998). The Gaussian sequence space analogues of these results are particularly simple as a basic
application of Kakutani’s theorem for infinite product measures. The Kullback-Leibler distance
was systematically used in information theory, we refer to Kullback (1967), where also a proof
of the first Pinsker inequality can be found. Pinsker (1964) obtained a slightly weaker version
of it.

Section 6.2 Nonparametric testing theory has been widely used in the theory of goodness-of-fit
tests for parametric models, where they serve the purpose of providing a ‘sanity check’ for a given
parametric model in use. Next to the Kolmogorov-Smirnov tests (Smirnov (1939)), a common
procedure is the Cramér–von Mises statistic, based on replacing ‖Fn − F‖∞ by ‖Fn − F‖2, which
is the distribution function analogue of the U-statistic approach considered in this section. Tests based
on χ2-ideas can be traced back to Pearson (1900) and have been in use in particular when the basis
functions of L2 used are those of the Haar basis, where computation of the involved test statistics is
simple. Chapter 1 of Ingster and Suslina (2003) contains an extensive review of the classical ideas in
the field and further historical remarks.

The nonparametric minimax perspective on testing problems was investigated in the landmark
work by Yuri Ingster in the 1980s and 1990s; see, in particular, Ingster (1982, 1986, 1993) and the
monograph by Ingster and Suslina (2003). Ingster concentrated mostly on minimax theory for simple
hypotheses such as H0 = {0} in white noise and H0 = {1} in the sampling model on [0,1]. He noted
the fact that Kolmogorov-Smirnov-type procedures are too crude for several important nonparametric
problems and that the geometry of the separation metric influences the testing rate. The L2-separation
rate n−r/(2r+1/2) can be shown to be connected to the L∞-separation rate n−r/(2r+1) (ignoring logn
terms) by the unified rate

ρn � n−r/(2r+1+p−1), 2 ≤ p ≤∞;

see Ingster (1986, 1993). For 1≤ p< 2, no further improvement is possible; see Exercise 6.4. Beyond
separation rates, we can ask for exact separation constants for tests, which is a more delicate matter.
In the Gaussian white noise model, such results are available; for L2-separation, see Ermakov (1990),
and for L∞-separation, see Lepski and Tsybakov (2000).

Composite nonparametric testing problems have been studied in the context of minimax
goodness-of-fit tests, mostly in the setting of 1/

√
n separation rates and where the null hypothesis is

a finite-dimensional parametric class see Pouet (2002) and Fromont and Laurent (2006), for instance.
The case of general composite hypotheses defined by qualitative constraints on the functions involved,
such as monotonicity or convexity, has been considered in Dümbgen and Spokoiny (2001) and
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Baraud, Huet and Laurent (2005), among others. For L∞-separation, the rates found there are typically
minimax, but for L2-separation conditions, the situation is more delicate – Corollary 6.2.19 gives a
sharp result of that kind. Theorem 6.2.14 on general infimum χ2-tests is a Gaussian adaptation of the
more difficult Theorem 6.2.17, which in essence is due to Bull and Nickl (2013) (see also Gayraud and
Pouet (2005) for some results). Theorem 6.2.17 can be extended to cover situations of hypotheses that
are not uniformly bounded if the complexity of the null hypothesis is not too large, as shown in the
(related) high-dimensional regression setting in Nickl and van de Geer (2013). Theorem 6.2.20 was
proved in Carpentier (2015). Some composite testing theory for Lp-separation, 2 ≤ p ≤∞, is implicit
in the work Carpentier (2013). The minimax theory of composite nonparametric testing remains a
field with several open problems.

Section 6.3 We have presented here only those very basic results on minimax lower bounds for
function estimation that are relevant for this book. Using wavelet theory and Kullback-Leibler
distances leads to proofs that are particularly short and transparent.

The general reduction principle leading to Theorem 6.3.2 was pioneered by Ibragimov and
Khasminskii (1977, 1981) and developed further in Korostelev and Tsybakov (1993), Tsybakov
(2009). Our exposition closely follows the one in Tsybakov (2009), to whom Theorem 6.3.2 is due.
Other key references include Cencov (1972), Bretagnolle and Huber (1979), Stone (1980, 1982),
Ibragimov and Khasminskii (1982), Nemirovski (1985).

Birgé (1983) showed that a general connection exists between the metric entropy of the parameter
space (F ,d) and the minimax estimation rate over F in d-risk. This connection can be successfully
exploited by wavelet theory, as shown in this section.

The wavelet approach to minimax lower bounds over Besov spaces was developed by
Kerkyacharian and Picard (1992), Donoho, Johnstone, Kerkyacharian and Picard (1996), Donoho
and Johnstone (1998). See also Härdle, Kerkyacharian, Picard and Tsybakov (1998) for a general
treatment and many further references, as well as a treatment of the theory for Lq-loss over Br

p∞-balls
where p 
= q, where new ‘nonlinear’ phenomena can arise. Several other approaches to lower bound
proofs exist and Chapter 2 in Tsybakov (2009) gives an excellent account of the general theory and
many further references.

Section 6.4 Kolmogorov-Smirnov-type nonparametric confidence sets for a distribution function
F can be obtained directly from the classical results of Kolmogorov (1933a) and Smirnov
(1939). Nonparametric confidence sets for densities or regression functions require more elaborate
constructions. Apparently, Smirnov (1950) was the first to realise the relevance of extreme value
theory: he proved a sampling analogue of Proposition 6.4.3 based on histogram estimators. This was
generalised to kernel density estimators using Gaussian approximation techniques and extreme value
for stationary Gaussian processes by Bickel and Rosenblatt (1973), who were unaware of Smirnov’s
(1950) work. For regression settings, this approach was developed further by Claeskens and van
Keilegom (2003), who also considered related bootstrap methods. The general projection kernel
extreme value theory that also allows for wavelet kernels was developed in Giné and Nickl (2010).
The difficulty in the general case arises from the lack of stationarity of wavelet-driven white noise
integrals x �→ ∫

K(x,y)dW(y). The conditions of the general theorem in Giné and Nickl (2010) for
such processes are verified in that paper for spline-based wavelets, and numerical proofs show that
the same is true for Daubechies wavelets; see Bull (2013) and the notes for Section 2.7.

The undersmoothing approach to nonparametric confidence sets was used in Smirnov (1950) and
Bickel and Rosenblatt (1973) and investigated systematically in Hall (1992), where it is argued
that undersmoothing can be more efficient than obtaining an estimate of the bias. The Rademacher
symmetrisation approach was introduced in the setting of empirical risk minimisation by Koltchinskii
(2006) and in the setting of nonparametric confidence sets by Lounici and Nickl (2011) and
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Kerkyacharian, Nickl and Picard (2012). The unbiased risk estimation approach to L2-confidence
sets is adapted from Robins and van der Vaart (2006), and related ideas also can be found in Juditsky
and Lambert-Lacroix (2003). The multiscale approach to nonparametric inference was developed in
Davies and Kovac (2001), Dümbgen and Spokoiny (2001) and Davies, Kovac and Meise (2009). The
functional multiscale space approach to confidence sets presented here is also implicit in corollary 3
in Nickl (2007) and was used in the Bayesian setting (to be discussed in the next chapter) by Castillo
and Nickl (2013, 2014).
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7

Likelihood-Based Procedures

Consider observations X = X(n) from law P f indexed by a parameter space F . From a very
basic perspective, statistical inference is about finding the value of f that is ‘most likely’
to have generated the observed values X = x. This perspective can be transformed into a
rigorous, principled approach to any statistical problem and has resulted in the development
of two paradigms of statistical inference that rely on the concept of the likelihood
function.

The first approach follows the well-known maximum likelihood principle, which takes
the preceding perspective literally and attempts to maximise a likelihood function which
represents the joint distribution of the data as a function of f over the parameter space
F . The second approach, to be introduced in more detail later, starts with a probability
distribution � on the parameter space F , often called the prior distribution, makes the
assumption that X ∼ P f conditional on f having been drawn from � and then computes
the conditional posterior distribution of f given the observations X, which is a reweighted
version of the likelihood function. As the last ‘updating’ step is often based on an application
of Bayes’ rule for conditional probabilities, this approach is called the Bayesian approach
to statistical inference.

In this chapter we develop some basic aspects of the theory of likelihood-based
inference for infinite-dimensional models F . A central role will be played by the
Hellinger distance – a metric that is naturally compatible with likelihood techniques in
the i.i.d. sampling model – and by the corresponding L2-distance in the Gaussian white
noise model. We start with nonparametric testing problems and show that certain likelihood
ratio–based procedures allow for general results in the sampling model, replacing the
analytic assumptions on the functions employed in Chapter 6 by general Hellinger-distance
compactness conditions. We then study the maximum likelihood principle and give a
general rate of convergence result using a bracketing version of these Hellinger compactness
conditions. We illustrate the theory for two concrete nonparametric maximum likelihood
estimators in some detail: the cases where F equals a ball in a Sobolev space and where
F equals the set of monotone decreasing densities. We will derive convergence rate results
in Hellinger and related metrics, and we shall prove an infinite-dimensional version of the
classical asymptotic normality result for maximum likelihood estimators. We then lay out
the main ideas of the Bayesian approach to nonparametric inference. We shall first prove
general contraction results for posterior distributions in the Hellinger and L2-distance and
give applications to Gaussian process priors. In the white noise setting with product priors
we conduct a finer asymptotic analysis of posterior distributions. In particular, we prove
nonparametric Bernstein–von Mises theorems, which establish asymptotic normality of
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542 Likelihood-Based Procedures

the posterior distribution in infinite-dimensional settings and which can be used to give a
frequentist justification of Bayesian methods to construct nonparametric confidence sets.

7.1 Nonparametric Testing in Hellinger Distance

We now develop the main ingredients of the theory of nonparametric testing using the
Hellinger distance on probability densities, which is based on the idea of endowing the space
of probability measures with a canonical Hilbert space structure. For any pair of probability
measures P,Q on a measurable space (X ,A) with densities p,q with respect to a dominating
measure μ, the Hellinger distance is defined as

h2(p,q)≡ h2(P,Q)=
∫
X

(√
p−√

q
)2

dμ. (7.1)

As discussed in Section 6.1.2, such a μ always exists, and one shows further that the
Hellinger distance is independent of the choice of μ. We always have h2(p,q) ≤ 2. The
Hellinger affinity is defined as

ρ(p,q)≡ 1− h2(p,q)/2 (7.2)

and satisfies

ρ(p,q)= EP

√
q

p
(X)= 〈√p,

√
q〉L2(μ), logρ(p,q)≤−1

2
h2(p,q), (7.3)

where 〈·, ·〉L2(μ) is the usual L2(μ) inner product on root densities.
Based on i.i.d. observations X1, . . . ,Xn in X , consider the testing problem of whether

the Xi have been generated by the density p or by q. Write PN,QN for the infinite product
measures arising from the samples from densities p and q, respectively, and EP,EQ for the
corresponding expectation operators. A natural likelihood ratio test is

�n = 1

{
n∏

i=1

q

p
(Xi) > 1

}
. (7.4)

Proposition 7.1.1 For two μ-densities p,q on X , consider the test �n from (7.4) for the
problem

H0 = {p} vs. H1 = {q}.
Then, for every n ∈N,

EP�n ≤ e−
1
2 nh2(p,q), EQ(1−�n)≤ e−

1
2 nh2(p,q). (7.5)

Proof For the type 1 errors, using Markov’s inequality and independence,

PN

(
n∏

i=1

q

p
(Xi) > 1

)
= PN

(
n∏

i=1

√
q

p
(Xi) > 1

)

≤ EP

(√
q/p(X)

)n

= exp {n logρ(p,q)}
≤ exp

{−nh2(p,q)/2
}
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and likewise, for the alternatives,

QN

(
n∏

i=1

q

p
(Xi)≤ 1

)
= QN

(
n∏

i=1

√
p

q
(Xi)≥ 1

)

≤ EQ

(√
p/q(X)

)n

≤ exp
{−nh2(p,q)/2

}
,

completing the proof.

This test allows us to distinguish two fixed densities p and q if their Hellinger distance is
at least a large constant times 1/

√
n.

Let us now generalise this approach to the situation where one wishes to test composite
hypotheses. The classical likelihood ratio test for composite hypotheses would compare
the maxima of both likelihood functions over the corresponding hypotheses, and in the
nonparametric situation, this leads to some mathematical difficulties that require control
of likelihood ratios uniformly in infinite-dimensional sets. Whereas we shall be able to
address some of these difficulties in the next section, for testing problems between two
Hellinger balls, there exists an elegant way around this problem using the explicit Hilbert
space structure induced by the Hellinger distance.

Theorem 7.1.2 Let p,q be probability densities on a measurable space (X ,A) with respect
to a dominating measure μ, dP = pdμ,dQ = qdμ. Let h(p,q)= d> 0, and define Hellinger
balls of μ-densities

B(p)= {r : h(r,p)≤ d/4} , B(q)= {r : h(r,q)≤ d/4} . (7.6)

Then there exists a measurable function � : X →[0,∞) such that, for dR = rdμ,

ER�(X)≤ 1− h2(p,q)

12
∀r ∈ B(p); ER(1/�)(X)≤ 1− h2(p,q)

12
∀r ∈ B(q).

Proof Define v0 =√
p,v1 =√

q, and denote by V the two-dimensional linear subspace of
L2(μ) spanned by v0,v1. Further, let V1 = {v ∈ V : ‖v‖L2(μ) = 1} denote the unit circle of that
space so that vi ∈ V1, i = 0,1. Let ω be such that

d2 = h2(p,q)= 2(1− cos(ω)), ω ∈ (0,π/2],
or, what is the same, such that

ρ(p,q)= 〈v0,v1〉L2(μ) = cos(ω).

For β ∈ [0,2π/ω), define vβ to be the rotation of v0 on V1 by the angle βω in V. Then v2
β is

a probability density too, with

〈vα,vβ〉 = cos((α−β)ω)= ρ(v2
α,v

2
β) (7.7)

and

vβ = sin(βω)v1 + sin((1−β)ω)v0

sinω
.
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We take α = 2/3,β = 1/3, so that

√
s ≡ v2/3 = sin(2ω/3)v1 + sin(ω/3)v0

sinω
,

√
t ≡ v1/3 = sin(ω/3)v1 + sin(2ω/3)v0

sinω

and
〈v2/3,v1/3〉L2(μ) = cos(ω/3)= ρ(v2

2/3,v
2
1/3)= ρ(s, t). (7.8)

Now define

�(x)≡ v2/3

v1/3
(x)=

√
s

t
(x), (7.9)

where we use the convention 0/0 = 1. Since∫
r
√

s/tdμ=
∫ √

s/t(
√

r−√
t)2dμ+ 2

∫ √
srdμ−

∫ √
stdμ

for any density r and since, using sin(2x)= 2sinxcosx,√
s

t
= sin(2ω/3)v1 + sin(ω/3)v0

sin(ω/3)v1 + sin(2ω/3)v0
≤ sin(2ω/3)

sin(ω/3)
= 2cos(ω/3),

we see that
ER�(X)≤ 2cos(ω/3)h2(r, t)+ 2ρ(r,s)−ρ(s, t). (7.10)

We can decompose
√

r = u + θvγ for some vγ ∈ V1 and θ ∈ [0,1],γ ∈ [0,2π/ω) and u
orthogonal in L2(μ) to the space V such that θ2 +‖u‖2

L2(μ)
= 1. As a consequence,

ρ(r, t)= 〈√r,v1/3〉L2(μ) = θ cos((γ − 1/3)ω), ρ(r,s)= θ cos((γ − 2/3)ω). (7.11)

Feeding this observation and (7.8) into (7.10) gives

ER�(X)≤ 4cos(ω/3) [1− θ cos((γ − 1/3)ω)]+ 2θ cos((γ − 2/3)ω)− cos(ω/3)

= 2θ [cos((γ − 2/3)ω)− 2cos(ω/3)cos((γ − 1/3)ω))]+ 4cos(ω/3)− cos(ω/3)

= 3cos(ω/3)− 2θ cos(γω),

where we have used elementary trigonometric identities (first for cos(x + y) and then for
sinxsiny and cosxcosy) to simplify the term in brackets. Since ρ(t,p) = 〈v1/3,v0〉L2(μ) =
cos(ω/3) and ρ(r,p)= θ cos(γω), we thus conclude that

ER�(X)≤ 3ρ(t,p)− 2ρ(r,p)= 1− (3/2)h2(t,p)+ h2(r,p)

≤ 1− (1/6)h2(p,q)+ h2(r,p), (7.12)

where we have used, in the last inequality,

1

2
h2(t,p)= 1− cos(ω/3)= 2sin2(ω/6),

1

2
h2(p,q)= 1− cos(ω)= 2sin2(ω/2)

and that (sinx)/x is decreasing on [0,π/2] to see that h2(t,p) ≥ (1/9)h2(p,q). Finally,
h(r,p)≤ d/4 = h(p,q)/4 implies that h2(r,p)≤ h2(p,q)/12, which gives the first inequality
of the theorem. The second inequality follows from interchanging the roles of v1/3,v2/3,
noting that the argument is entirely symmetric.
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Corollary 7.1.3 Based on i.i.d. observations X1, . . . ,Xn in X and for B(p),B(q) as in (7.6),
consider the testing problem

H0: r ∈ B(p) vs. H1 : r ∈ B(q), d = h(p,q) > 0. (7.13)

For � from the preceding theorem, define the test

�n = 1

{
n∏

i=1

�(Xi) > 1

}
. (7.14)

Then, writing dR = rdμ, we have, for every n ∈N,

sup
r∈H0

ER�n ≤ e−
1
12 nd2

, sup
r∈H1

ER(1−�n)≤ e−
1
12 nd2

. (7.15)

Proof In view of Markov’s inequality, the preceding theorem and log(1−x)≤−x, for any
r ∈ B(p),

RN

(
n∏

i=1

�(Xi)≥ 1

)
≤ (ER�(X))

n = exp{n logER�(X)}

≤ exp

{
−n

(
h2(p,q)

12

)}
,

and likewise, for any r ∈ B(q), we have

RN

(
n∏

i=1

�(Xi)≤ 1

)
≤ exp

{
−n

(
h2(p,q)

12

)}
,

completing the proof.

This result allows us to construct tests for general problems

H0 : p = p0 vs. H1 : p ∈P ∩{p : h(p,p0) > ε}, (7.16)

where p0 is a fixed density, dP0 = p0dμ, ε > 0, and where P is a collection of probability
densities that is totally bounded for the Hellinger metric. More precisely, we will assume
a bound on the ε-covering numbers N(P ,h,ε) required to cover suitable shells of P by
Hellinger balls of radius ε. We can then decompose the problem into testing H0 against a
collection of fixed Hellinger balls that cover H1 and use the preceding corollary to sum error
probabilities.

Theorem 7.1.4 Let P be a collection of μ-densities on (X ,A), and suppose that for some
nonincreasing function N(ε), some ε0 > 0 and all ε > ε0, we have

N({p ∈P : ε < h(p,p0)≤ 2ε},h,ε/4)≤ N(ε).

Then, for every ε > ε0, there exist tests �n for the problem (7.16) s.t. for some universal
constant 0< K<∞ and every n ∈N

EP0(�n = 1)≤ N(ε)

K
e−Knε2 , sup

p∈P :h(p,p0)>ε

EP(�n = 0)≤ e−Knε2 .
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Proof Choose a finite set S ′
j of points in each shell

Sj = {p ∈P : εj< h(p,p0)≤ ε(1+ j)}, j ∈N,

such that every p ∈ Sj is within distance jε/4 of at least one of these points. By hypothesis,
for j fixed, there are at most N(jε) such points qjl ∈ S ′

j , and from the preceding corollary for
each of them there exists a test �n,jl such that

EP0�n,jl ≤ e−Cnj2ε2 , sup
p∈Sj,h(p0,qjl)>jε/4

EP(1−�n,jl)≤ e−Cnj2ε2

for some universal constant C > 0. Let �n be the maximum of all these tests. By a union
bound for the maximum, we have

PN
0 (�n = 1)≤

∑
j

∑
l

exp{−Cnj2ε2} ≤
∑

j

N(jε)exp{−Cnj2ε2} (7.17)

and
sup

p∈∪jSj

EP(�n = 0)≤ exp{−Cnε2}, (7.18)

which implies the result (noting also that N(jε)≤ N(ε)).

The remarkable feature of this result is that in contrast to results from Chapter 6,
the Hellinger approach to nonparametric testing needs no qualitative assumptions (such
as smoothness) on the unknown densities but works under a complexity bound on the
alternative space H1 alone. At the same time, without having imposed any uniform
boundedness of the densities p involved, we obtain excellent exponential error bounds on
the type 1 and type 2 errors.

7.2 Nonparametric Maximum Likelihood Estimators

Consider an i.i.d. sample of n real random variables X1, . . . ,Xn from some unknown law P
of density function p with respect to some measure μ on a measurable space (X ,A). We
denote by PN the infinite product measure associated with the random experiment (X N,AN).
The joint probability density of the observations is

n∏
i=1

p(xi), xi ∈X .

If we consider a model P , of probability densities p, we can evaluate this joint density at the
observation points Xi and view the resulting statistic as a function of p only – this defines
the likelihood function

Ln(p)≡
n∏

i=1

p(Xi), (7.19)

which is a function of the argument p ∈ P that is random through the variables Xi.
The maximum likelihood approach suggests that we maximise the function Ln over P .
Equivalently, we maximise the (normalised) log-likelihood function

�n(p)= 1

n

n∑
i=1

logp(Xi). (7.20)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.008
http:/www.cambridge.org/core


7.2 Nonparametric Maximum Likelihood Estimators 547

We set log0 = −∞ throughout so that �n takes values in the extended real line [−∞,∞)
(endowed with its usual topology). If the Xi have been drawn from a fixed law P0 with
density p0, and if we assume that EP0 | logp(X)| < ∞, for all p ∈ P , we can define the
limiting log-likelihood function

�(p)=
∫
X

logp(x)dP0(x) (7.21)

which satisfies, by a version of Jensen’s inequality, for every probability density p that is
absolutely continuous with respect to p0(x)dx,

�(p)− �(p0)=
∫
X

log
p

p0
dP0 ≤ log1 = 0

with equality only if p = p0 μ a.e. and, hence,

�(p) < �(p0) ∀p ∈P , p 
= p0. (7.22)

This gives an intuitive justification of the maximum likelihood approach as it attempts to
maximise the empirical version �n(p) of �(p) over P . However, for nonparametric models
P such as the set of all probability density functions on a given interval or even the set of all
infinitely differentiable densities, this problem has no solution because we can make �n(p)
as large as desired by taking density functions that have very large peaks at the observation
points. From an intuitive point of view, the maximiser could be taken to be the empirical
measure Pn = (1/n)∑n

i=1 δXi , which for problems of nonparametric density estimation is,
however, not satisfactory. Indeed, for a nonparametric maximum likelihood estimator to
exist, the complexity of the possibly infinite-dimensional set P has to be restricted. Under
suitable constraints, such as a bound on the metric entropy of P , nonparametric maximum
likelihood estimators can be shown to exist and even to give minimax optimal estimation
procedures.

7.2.1 Rates of Convergence in Hellinger Distance

We consider a measurable space (X ,A) and a family P of probability density functions
p : X → [0,∞) with respect to the common σ -finite dominating measure μ on A. Further,
let X1, . . . ,Xn be i.i.d. from common density p0 ∈P , dP0 = p0dμ, and letμ0 equalμ restricted
to the support of p0. Throughout, p̂n denotes a nonparametric maximum likelihood estimator
(NPMLE) assumed to satisfy the relationship

sup
p∈P
�n(p)= �n(p̂n) (7.23)

for some model P of probability densities on X which contains p0. Sometimes sieved
maximum likelihood estimators are of interest, where the maximisation is performed over
a sequence of models Pn that increase with n and whose limit set P is assumed to
contain p0.

Before we study some concrete examples in more detail, we shall prove a general rate
of convergence result for such estimators that is based on a measure of the complexity of
the classes P ,Pn only. The result follows from empirical process techniques developed
in Section 3.5.3. When applied in the right way, these techniques allow us to control
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likelihood ratios uniformly in Hellinger balls. The conditions obtained are conceptually
related to the Hellinger metric entropy techniques encountered in Theorem 7.1.4 but require
additional bracketing conditions to deal with the local behaviour of the empirical processes
involved.

We first consider the unsieved case and shall assume for now that p̂n exists as an
element of P . We will measure the distance between two μ-densities p,q in the Hellinger
metric which, as we recall from (7.1), equals the L2-distance on the root densities; more
precisely,

h2(p,q)≡
∫
X
(
√

p−√
q)2dμ.

The Hellinger-distance ε-bracketing entropy of a class F of probability densities equals the
L2-bracketing metric entropy logN[](F 1/2,L2(μ),ε) from Section 3.5.2 of the class of root
densities

F 1/2 = {√ f : f ∈F}.
To accommodate the behaviour of elements in P near zero, it will be useful to consider
classes

P̄ =
{

p̄ ≡ p+ p0

2
: p ∈P

}
, (7.24)

and we set
P̄1/2 ≡ {√p̄ : p ∈P}, (7.25)

for which we will require a bound on the bracketing entropy integral

J(δ)≡ J(P̄1/2
,δ)=

∫ δ

0

√
logN[](P̄

1/2
,L2(μ),ε)dε∨ δ, 0< δ ≤ 1. (7.26)

We can consider slightly smaller quantities than J(δ) which cover local entropies and
divergent entropy integrals – this will not be relevant in the examples we consider later
but will be discussed briefly after the proof of the following theorem.

Theorem 7.2.1 Suppose that p0 ∈ P , and let p̂n solve (7.23). Take J (δ) ≥ J(P̄1/2
,δ) such

that J (δ)/δ2 is a non increasing function of δ ∈ (0,1]. Then there exists a fixed number
c> 0 such that for any δn satisfying

√
nδ2

n ≥ cJ (δn) ∀n ∈N (7.27)

we have, for all δ ≥ δn,
PN

0 (h(p̂n,p0)≥ δ)≤ cexp
(−nδ2/c2

)
. (7.28)

Proof Throughout this proof, the expectation operator, when applied to quantities
involving the MLE, has to be understood as P(g(p̂n)) =

∫
g(p̂n(x))dP(x) for measurable

functions g (so conditional on the value of p̂n). We start with the following basic inequality,
for which we recall the usual notation Pn = (1/n)∑n

i=1 δXi for empirical measures:

Lemma 7.2.2 For

gp ≡ 1

2
log

p̄

p0
= 1

2
log

p+ p0

2p0
, (7.29)
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we have

h2((p̂n + p0)/2,p0)≤ 2[(Pn −P0)(gp̂n)].
Proof By concavity of log, we see, on the set A = {p0 > 0},

log
p̂n + p0

2p0
≥ 1

2
log

p̂n

p0
,

so, by definition of p̂n,

0 ≤ 1

4

∫
A

log
p̂n

p0
dPn ≤ 1

2

∫
A

log
p̂n + p0

2p0
dPn

= (Pn −P0)(gp̂n)+
1

2

∫
A

log
p̂n + p0

2p0
dP0. (7.30)

Now, since (1/2) logx ≤√
x− 1, for x ≥ 0, we have, for any density q, that

1

2
log

q

p0
≤
√

q

p0
− 1,

and then, using (7.3), also

1

2

∫
A

log
q

p0
dP0 ≤

∫
A

√
q

p0
dP0 − 1 =−h2(q,p0)/2, (7.31)

which applied to q = (p̂n + p0)/2 in (7.30) implies the lemma.

We also have for any density p and some universal constant C> 0 that

h2(p,p0)≤ Ch2(p̄,p0); (7.32)

see Exercise 7.2.1. Therefore, intersecting the event inside the probability in (7.28) with the
inequality of the preceding lemma and (7.32), we can bound the probability in (7.28) by

PN
0

(√
n(Pn −P0)(gp̂n)−

√
nh2((p̂n + p0)/2,p0)≥ 0,h2((p̂n + p0)/2,p0)≥ δ2/C

)
≤ PN

0

(
sup

p∈P ,h2(p̄,p0)≥δ2/C

[√
n(Pn −P0)(gp)−√

nh2(p̄,p0)
]≥ 0

)

≤
S∑

s=0

PN
0

(
sup

p∈P ,h2(p̄,p0)≤2s+1δ2/C

√
n|(Pn −P0)(gp)| ≥ √

n2sδ2/C

)
,

where we have estimated the supremum by the maximum of all slices{
2sδ2/C ≤ h2(p̄,p0)≤ 2s+1δ2/C

}
, 0 ≤ s ≤ S,

noting that S is finite because h2(p,q)≤ 2 is always true. We apply the exponential inequality
Theorem 3.5.21 to sum these probabilities: We can bound the Bernstein norms with K = 1;
thereby,

ρ1(gp)≤ c′h(p̄,p0)≤ c′′2(s+1)/2δ ≡ R
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since the gp are bounded from below by −(log2)/2, and since

2(e|x| − 1−|x|)≤ c(D)(ex − 1)2, x ≥−D, D> 0. (7.33)

Similarly, the bracketing entropy HB,1 of P̄ from Definition 3.5.20 is bounded by the regular

bracketing metric entropy logN[](P̄
1/2

,L2(μ0),ε); see Exercise 7.2.2. In Theorem 3.5.21
with K = 1 and R as earlier we choose t = √

n2sδ2/24, which is admissible in view of our
choice of J , giving the bound

S∑
s=0

C′ exp

{
−22snδ2

C′

}
≤ cexp

{−nδ2/c
}

,

completing the proof.

Inspection of this proof shows that instead of (7.26), we can consider, more generally,
bounds for the entropy integral of classes

P̄1/2
(δ)≡

{√
p̄ : p ∈P ,h(p̄,p0)≤ δ

}
bounded away from zero, that is,

J′(P̄1/2
,δ)=

∫ δ

δ2/213

√
logN[](P̄

1/2
(δ),L2(μ0),ε)dε∨ δ, 0< δ ≤ 1,

to obtain the same result.
Let us next consider the case of sieved maximum likelihood estimators, where p̂n solves

sup
p∈Pn

�n(p)= �n(p̂n) (7.34)

for a sequence Pn of models of probability densities called the sieve. Assume that we can
construct an approximating sequence p∗n ∈Pn such that, for some 0<U<∞,

p0

p∗n
≤ U2 ∀n ∈N. (7.35)

Consider the classes

P̄1/2

∗,n =
{√

p+ p∗n
2

,p ∈Pn

}
, (7.36)

and require a bound on the bracketing entropy integrals

J∗(δ)≡ J(P̄1/2

∗,n ,δ)=
∫ δ

0

√
logN[](P̄

1/2

∗,n ,L2(μ),ε)dε∨ δ, 0< δ ≤ 1. (7.37)

The following theorem shows that the convergence rate in Hellinger distance is similar to
the unsieved case if the approximation errors h(p∗n,p0) can be controlled at a suitably fast
rate, paralleling the ‘bias-variance’ tradeoff from Chapter 6:

Theorem 7.2.3 Let p̂n,p∗n be as in (7.34) and (7.35) respectively. Take J (δ) ≥ J∗(P̄
1/2

∗,n ,δ)
such that J (δ)/δ2 is a nonincreasing function of δ ∈ (0,1] for every n large enough. Then
there exists a fixed number c> 0 such that for any δn satisfying

√
nδ2

n ≥ cJ (δn) ∀n ∈N large enough (7.38)
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we have
h(p̂n,p0)= OPN

0
(δn + h(p∗n,p0)). (7.39)

Proof As in the proof of Theorem 7.2.1, we have, with all integrals in the following
displays over {p∗n > 0},

0 ≤
∫

log
p̂n + p∗n

2p∗n
dPn

≤
∫

log
p̂n + p∗n

2p∗n
(dPn − dP0)− 2

∫ (
1−

√
p̂n + p∗n

2p∗n

)
dP0,

and the term subtracted can be further bounded using (7.2), (7.35) and the Cauchy-Schwarz
inequality, for some constant C = C(U), by∫ (

1−
√

p̂n + p∗n
2p∗n

)
p∗ndμ+

∫ (
1−

√
p̂n + p∗n

2p∗n

)
(p0 − p∗n)dμ

= 1

2
h2((p̂n + p∗n)/2,p∗n)+

∫ (√
p∗n −

√
p̂n + p∗n

2

)
(
√

p0 −
√

p∗n)
(

1+
√

p0

p∗n

)
dμ

≥ 1

2
h2((p̂n + p∗n)/2,p∗n)−Ch((p̂n + p∗n)/2,p∗n)h(p

∗
n,p0),

and thus,

h2((p̂n + p∗n)/2,p∗n)�
∫

log
p̂n + p∗n

2p∗n
d(Pn −P0)+ h((p̂n + p∗n)/2,p∗n)h(p

∗
n,p0).

If the second term dominates the preceding sum, we see that

h((p̂n + p∗n)/2,p∗n)� h(p∗n,p0),

so, as in (7.32), h(p̂n,p∗n)= O(h(p∗n,p0)), and then also, by the triangle inequality,

h(p̂n,p0)= O(h(p∗n,p0))

follows. Otherwise, we have

h2

(
p̂n + p∗n

2
,p∗n

)
�
∫

log
p̂n + p∗n

2p∗n
d(Pn −P0),

which replaces Lemma 7.2.2 in the the proof of Theorem 7.2.1, which then applies here as
well, with p∗n ∈Pn replacing p0.

7.2.2 The Information Geometry of the Likelihood Function

Many classical properties of maximum likelihood estimators θ̂n of regular parameters θ ∈
	 ⊂ Rp, such as asymptotic normality, are derived from the fact that the derivative of the
log-likelihood function vanishes at θ̂n, that is,

∂

∂θ
�n(θ)|θ̂n = 0. (7.40)
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This typically relies on the assumption that the true parameter θ0 is interior to 	 so that by
consistency θ̂n will eventually also be. In the infinite-dimensional setting, even if we can
define an appropriate notion of derivative, this approach is usually not viable because p̂n is,
as we shall see, never an interior point in the parameter space, even when p0 is.

We now investigate these matters in more detail in the setting where P consists of
bounded probability densities. In this case, we can compute the Fréchet derivatives of the
log-likelihood function on the vector space L∞ = L∞(X ) of bounded functions equipped
with the ‖ · ‖∞-norm. Recall that a real-valued function L : U → R defined on an open
subset U of a Banach space B is Fréchet differentiable at f ∈ U if

lim
‖h‖B→0

|L( f + h)−L( f )−DL( f )[h]|
‖h‖B

= 0, (7.41)

for some linear continuous map DL( f ) : B → R. If g ∈ U is such that the line segment
(1− t) f + tg, t ∈ (0,1), joining f and g, lies in U (e.g., if U is convex), then the directional
derivative of L at f in the direction g equals precisely

lim
t→0+

L( f + t(g− f ))−L( f ))

t
= DL( f )[g− f ].

Higher Fréchet derivatives are defined in the usual way as derivatives of the mapping f �→
DL( f )[h] for fixed h ∈ B.

The following proposition shows that the log-likelihood function �n is Fréchet differen-
tiable on the open convex subset of L∞ consisting of functions that are positive at the sample
points. A similar result holds for � if we restrict to functions that are bounded away from
zero.

Proposition 7.2.4 For any finite set of points x1, . . . ,xn ∈X , define

U(x1, . . . ,xn)=
{

f ∈ L∞ : min
1≤i≤n

f (xi) > 0

}
and

U =
{

f ∈ L∞ : inf
x∈X

f (x) > 0

}
.

Then U(x1, . . . ,xn) and U are open subsets of L∞(X ). Let �n be the log-likelihood function
from (7.20) based on X1, . . . ,Xn ∼i.i.d. P0, and denote by Pn the empirical measure associated
with the sample. Let � be as in (7.21). For α ∈ N and f1, . . . , fα ∈ L∞, the αth Fréchet
derivatives of �n : U(X1, . . . ,Xn)→ R, � : U → R at a point f ∈ U(X1, . . . ,Xn), f ∈ U ,
respectively, are given by

Dα�n( f )[ f1, . . . , fα] ≡ (−1)α−1(α− 1)!Pn( f −α f1 · · · fα),

Dα�( f )[ f1, . . . , fα] ≡ (−1)α−1(α− 1)!P0( f −α f1 · · · fα).

Proof The set U(x1, . . . ,xn) equals ∩n
i=1δ

−1
xi
((0,∞)) and hence is open since, by continuity

of δx on L∞, it is a finite intersection of open sets. Likewise, U is the preimage of (0,∞)
under the continuous map f �→ infx f (x) and hence open. The derivatives of �n are easily
computed using the chain rule for Fréchet differentiable functions, that δx is linear and
continuous and hence Fréchet differentiable on L∞ and that log is differentiable on (0,∞).
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The derivatives of � follow from the fact that �n is differentiable on U ⊂ U(x1, . . . ,xn) and
from interchanging differentiation with respect to f ∈ L∞ and integration with respect to P0,
admissible in view of Exercise 7.2.4.

We deduce from the preceding proposition the intuitive fact that the limiting
log-likelihood function has a derivative at the true point p0 > 0 that is zero in all ‘tangent
space’ directions h in

H≡
{

h :
∫
X

h = 0

}
(7.42)

since

D�(p0)[h] =
∫
X

p−1
0 hdP0 =

∫
X

h = 0. (7.43)

However, in the infinite-dimensional setting, the empirical counterpart of (7.43),

D�n(p̂n)[h] = 0, (7.44)

for h ∈H, and p̂n the nonparametric maximum likelihood estimator is not true in general.
The set P that the likelihood was maximised over will in typical nonparametric situations
have empty interior in L∞, and as discussed after (7.22), the maximiser p̂n will lie at the
boundary of P (see Proposition 7.2.9 for a concrete example). As a consequence, we cannot
expect that p̂n is a zero of D�n.

In some situations there is a way around this problem: if the true value p0 lies in the
interior ofP in the sense that local L∞ perturbations of p0 are contained inP∩U(X1, . . . ,Xn),
then we can prove the following:

Lemma 7.2.5 Let p̂n be as in (7.23), and suppose that for some ḡ ∈ L∞,η > 0, the line
segment joining p̂n and p0 ±ηḡ is contained in P ∩U(X1, . . . ,Xn). Then

|D�n(p̂n)[ḡ]| ≤ (1/η)|D�n(p̂n)(p̂n − p0)|. (7.45)

Proof Since p̂n is a maximiser over P , we deduce from differentiability of �n on
U(X1, . . . ,Xn) that the derivative at p̂n in the direction p0+ηḡ∈P∩U(X1, . . . ,Xn) necessarily
has to be nonpositive; that is,

D�n(p̂n)[p0 +ηḡ− p̂n] = lim
t→0+

�n(p̂n + t(p0 +ηḡ− p̂n))− �n(p̂n)

t
≤ 0 (7.46)

or, by linearity of D�n(p̂n)[·],
D�n(p̂n)[ηḡ] ≤ D�n(p̂n)(p̂n − p0). (7.47)

Applying the same reasoning with −η, we see that

|D�n(p̂n)[ηḡ]| ≤ D�n(p̂n)(p̂n − p0)= |D�n(p̂n)(p̂n − p0)|. (7.48)

Divide by η to obtain the result.

The preceding lemma is interesting if we are able to show that

D�n(p̂n)(p̂n − p0)= oPN
0
(1/

√
n),
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as then the same rate bound carries over to D�n(p̂n)[ḡ]. This, in turn, can be used to mimic
the finite-dimensional asymptotic normality proof of maximum likelihood estimators, which
does not require (7.40) but only that the score is of smaller stochastic order of magnitude
than 1/

√
n. As a consequence, we will be able to obtain the asymptotic distribution of linear

integral functionals of p̂n and, more generally, for P̂n the probability measure associated
with p̂n, central limit theorems for

√
n(P̂n − P) in ‘empirical process–type’ spaces �∞(F)

(comparable to results in Section 5.2.1 for linear estimators). To understand this better, we
notice that Proposition 7.2.4 implies the following relationships: if we define the following
projection of g ∈ L∞ onto H,

π0(g)≡ (g−P0g)p0 ∈H, P0(g)=
∫
X

gdP0, (7.49)

and if we assume that p0 > 0, then∫
X
(p̂n − p0)gdμ=

∫
X

p−2
0 (p̂n − p0)(g−P0g)p0dP0 =−D2�(p0)[p̂n − p0,π0(g)]

and

D�n(p0)(π0(g))= (Pn −P0)g

so that the following is true:

Lemma 7.2.6 Suppose that p0 > 0. Let p̂n be as in (7.23), and let P̂n be the random
probability measure induced by p̂n. For any g ∈ L∞ and Pn the empirical measure, we have

|(P̂n −Pn)(g)| =
∣∣∣∣∫

X
gd(P̂n −Pn)

∣∣∣∣= |D�n(p0)[π0(g)]+D2�(p0)[p̂n − p0,π0(g)]|. (7.50)

Heuristically, the right-hand side equals, up to higher-order terms,

D�n(p̂n)[π0(g)]−D2�n(p0)[p̂n − p0,π0(g)]+D2�(p0)[p̂n − p0,π0(g)]. (7.51)

Control of (7.45) with choice ḡ = π0(g) at a rate oPN
0
(1/

√
n) combined with stochastic

bounds on the second centred log-likelihood derivatives and convergence rates for p̂n−p0 →
0 thus give some hope that one may be able to prove that

(P̂n −P0 −Pn +P0)(g)= (P̂n −Pn)(g)= oPN
0
(1/

√
n)

and that, thus, by the central limit theorem for (Pn −P0)g,

√
n
∫
X
(p̂n − p0)gdμ→d N(0,P0(g−P0g)

2)

as n →∞. We shall show how this can be made to work in a rigorous fashion in the two
main examples we turn to now: the maximum likelihood estimator of a monotone density
and of a density contained in a t-Sobolev ball for t> 1/2.

7.2.3 The Maximum Likelihood Estimator over a Sobolev Ball

In this section we investigate the likelihood principle in the prototypical nonparametric
situation where the statistical model is a t-Sobolev ball of densities on [0,1]. We define
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Sobolev spaces Hm
2 for m∈N as in Chapter 4 but shall work immediately with the equivalent

wavelet definition, which makes sense for noninteger m as well: let

Hs ≡ Hs
2([0,1])≡ Bs

22([0,1])

=
⎧⎨⎩ f ∈ C([0,1]) : ‖ f ‖2

Hs ≡
∑
l≥−1

22ls
2l−1∑
k=0

|〈 f ,ψlk〉|2 <∞
⎫⎬⎭ , s> 0, (7.52)

where the {ψlk} are a periodised Meyer-wavelet basis of L2([0,1]) from Section 4.3.4,
with the usual notational convention ψ−1,k ≡ 1. We also could consider boundary-corrected
wavelet bases on [0,1] with only minor notational changes.

Existence and Basic Properties of the NPMLE

We observe i.i.d. random variables X1, . . . ,Xn from law P0 with Lebesgue density p0 on [0,1].
For t> 1/2, we define the statistical model

P ≡P(t,D)=
{

p ∈ C([0,1]), p ≥ 0 on [0,1],
∫ 1

0
p(x)dx = 1, ‖p‖Ht ≤ D

}
, (7.53)

which equals a Sobolev ball of probability density functions. Note that t > 1/2 implies
automatically (by (4.134)) that p ∈ Ht defines a continuous and periodic function on [0,1].
Moreover, we tacitly assume D > 1 to ensure that P contains densities that are different
from the constant one.

Recalling the likelihood function �n(p) from (7.19), a nonparametric maximum likelihood
estimator is any element p̂n ∈P such that

�n(p̂n)= sup
p∈P(t,D)

�n(p). (7.54)

The existence of p̂n is ensured in the following proposition. It is shown in Exercise 7.2.5 that
p̂n is in fact unique.

Proposition 7.2.7 Let t> 1/2,D> 1.

(a) The set P(t,D) is a compact subset of the Banach space C([0,1]).
(b) The log-likelihood function �n is a continuous map from P(t,D) to [−∞,∞) when

P(t,D) is equipped with the topology of uniform convergence.
(c) There exists p̂n ∈P(t,D) satisfying (7.54). The mapping (X1, . . . ,Xn)→ p̂n can be taken

to be Borel-measurable from [0,1]n → C([0,1]).

Proof (a) By Corollary 4.3.38, any fixed ball B of radius D in Ht ⊂ Bt
2∞, t > 1/2, is a

relatively compact subset of C([0,1]), and B is in fact compact because it is closed for
uniform convergence: note first that B is the unit ball in the separable Hilbert space Ht,
and hence B is sequentially compact for the weak topology of Ht (by the Banach-Alaoglu
theorem). Since point evaluation δx ∈ C([0,1])∗ ⊂ (Ht)∗ for any x ∈ [0,1], t > 1/2, this
implies that any sequence fm ∈B converges pointwise to f ∈B along a subsequence. Hence,
if fm is any sequence in B that converges uniformly to some f ∗, we infer from continuity
and uniqueness of limits that f ∗ = f , so B is ‖ · ‖∞-closed.
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Note next that the sets

{ f ∈ C([0,1]) : 0 ≤ f (x) <∞}=∩x∈[0,1]δ−1
x ([0,∞)),

{
f :
∫ 1

0
f (x)dx = 1

}
are both closed in C([0,1]) since point evaluation δx is continuous from C([0,1]) to R and
since uniform convergence implies L1-convergence on [0,1], which implies convergence of
integrals. Therefore, P is the intersection of a compact with two closed sets and hence is
itself compact.

Finally, since P consists of nonnegative uniformly bounded functions, claim (b) is
immediate because log0 = −∞ continuously extends log to [0,∞). The first claim in (c)
follows immediately from continuity of �n and compactness ofP . Measurability is discussed
in Exercise 7.2.3.

The Sieved NPMLE

Let us consider next a sieved maximum likelihood estimator over a wavelet sieve

Vj = span(ψlk : −1 ≤ l ≤ j,k = 0, . . . ,2l − 1),

that is, over the model

Pj ≡P(t,D, j)= {
p ∈P(t,D),p ∈ Vj

}
, j<∞. (7.55)

The sieved MLE p̂n,j is defined by

�n(p̂n,j)= sup
p∈Pj

�n(p). (7.56)

Since all that we have done is to intersect P(t,D) with a finite-dimensional linear space, it
is evident that Proposition 7.2.7 carries over directly, and hence, there exists p̂n,j ∈P(t,D, j)
satisfying (7.56) whenever t> 1/2.

Uniform Consistency of the NPMLE

We now derive almost-sure uniform consistency of p̂n under the assumption that p0 ∈P(t,D)
is strictly positive on [0,1]. We can derive from it that p̂n will eventually be the maximiser
also over P restricted to densities that are bounded away from zero.

We give a direct consistency proof based on compactness and strong laws of large
numbers only – the result also follows from the general rate of convergence theory applied
to P(t,D) (see Proposition 7.2.10). We shall say that an event An happens eventually Pr
almost surely if limm Pr(∩n≥mAn)= 1.

Proposition 7.2.8 Assume that p0 ∈ P(t,D) satisfies p0 > 0 on [0,1], and let p̂n satisfy
(7.54). Then, as n →∞,

‖p̂n − p0‖∞ → 0 PN
0 a.s.

In particular, for some ζ > 0, eventually PN
0 almost surely

p̂n ∈Pζ (t,D)≡P(t,D)∩{ f ≥ ζ on [0,1]}.
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Proof We note that by continuity, for some 0 < ξ < M <∞, we have ξ ≤ p0 ≤ M and
hence, by the strong law of large numbers PN

0 a.s.,

lim
n
|�n(p0)− �(p0)| = 0.

Moreover, for any constant 0< ε ≤ 1 and x ∈ [0,1], the mapping p �→ log(p(x)+ ε) is con-
tinuous from the compact metric space (P ,‖ · ‖∞) to [logε, supp∈P ‖p‖∞) and, in particular,
satisfies ∫ 1

0
sup
p∈P

| log(p(x)+ ε)|dP0(x) <∞.

Hence, for every fixed ε > 0, we have

lim
n

sup
p∈P

|�n(p+ ε)− �(p+ ε)| = 0 PN
0 a.s. (7.57)

by the strong law of large numbers in the separable Banach space C[(P ,‖ · ‖∞)]
(Corollary 3.7.21) applied to the i.i.d. average {p �→ 1

n

∑n
i=1 log(p(Xi)+ ε)} of continuous

functions on P .
In the rest of this proof we restrict ourselves to an event A of probability 1 on which

the last two displayed limits hold and show that every subsequence p̂n′ of p̂n has a further
subsequence that converges to p0 on this event. Take a decreasing sequence of positive real
numbers εl ↓ 0, and note that by compactness of P there exists a subsequence p̂n′′ of p̂n′ that
converges uniformly to some p∗ ∈ P . By definition of p̂n′′ and monotonicity of log, we see
that

�n′′(p0)≤ �n′′(p̂n′′)≤ �n′′(p̂n′′ + εl)

≤ �(p̂n′′ + εl)+ sup
p∈P

|�n(p+ εl)− �(p+ εl)|.

The first term on the right-hand side converges to �(p∗ + εl) since �(· + εl) is supnorm
continuous on P (using the dominated convergence theorem), and hence, on the event A,
we have, taking limits,

�(p0)≤ �(p∗ + εl). (7.58)

The functions log(p∗ + εl) converge pointwise to logp∗ and are bounded above by log(p∗ +
ε1), so, by monotone convergence, we deduce that �(p0) ≤ �(p∗). From (7.22), p∗ = p0

follows.

Geometric Interpretation of the Maximiser and Ht-Inconsistency of the MLE

While p̂n is consistent in ‖·‖∞-loss, it is not consistent in the norm that defines the constraint
of P(t,D). In fact, we now prove rigorously the intuitive fact that when maximising �n over
P in (7.54), the MLE p̂n always lies at the boundary of P(t,D) in the sense that it exhausts
the Sobolev norm ‖p̂n‖Ht =D. Then, for any p0 satisfying ‖p0‖Ht <D assuming consistency,
‖p̂n − p0‖Ht → 0 immediately leads to a contradiction. The fact that the MLE p̂n necessarily
lies on the D-sphere in Ht also implies, using the strict convexity of the Hilbert space Ht, the
uniqueness of p̂n (see Exercise 7.2.5).

Proposition 7.2.9 Let p̂n satisfy (7.54). Then we have for every n ∈N that ‖p̂n‖Ht = D.
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Proof Suppose that the claim is not true; hence, ‖p̂n‖Ht < D. By continuity, there exists
z ∈ (0,1) different from the X1, . . . ,Xn such that p̂n(z) > 0. Choose ε > 0 small enough
that I = [z − 2ε,z + 2ε],U = [X1 − 2ε,X1 + 2ε] and {Xj : Xj 
= X1} are all disjoint, and
infx∈I p̂n(x) > 0. There exists a compactly supported C∞ function ϕ : [0,1] → [0,1] such
that ϕ = 1 on [X1−ε,X1+ε] and ϕ = 0 outside of U. Define ϕ̄(y)= ϕ(y+X1− z) whenever
y+X1 − z ∈ [0,1] and equal to 0 otherwise. Note that ϕ̄ is the translation of ϕ by z−X1 and
hence has disjoint support with ϕ. Then g = ϕ − ϕ̄ integrates to 0, takes values in [−1,1]
and is contained in Ht because it is a C∞ function with support interior to [0,1]. We thus can
find η > 0 small enough such that

p̃n = p̂n +ηg ∈P .

Indeed, for η small, ‖p̂n + ηg‖Ht ≤ D, for x ∈ [0,1] \ I, we have g(x) ≥ 0, so p̃n(x) ≥ p̂n(x).
For x ∈ I, we have by construction p̃n(x)≥ p̂n(x)− η ≥ 0. Now, since η > 0 and g(X1)= 1,
we see that

p̃n(X1) > p̂n(X1),

but p̃n(Xj)= p̂n(Xj), for j 
= 1, so �n(p̃n) > �n(p̂n), a contradiction to p̂n being the maximiser
of �n.

Rates of Convergence

If p0 > 0, we can directly apply Theorem 7.2.1 combined with the entropy estimates from
Chapter 4 to obtain the following convergence rate estimates for p̂n − p0 in Hellinger, L2-
and L∞-distance:

Theorem 7.2.10 Assume that p0 ∈P(t,D) for some t> 1/2 satisfies p0 > 0 on [0,1]. Let p̂n

satisfy (7.54). Then we have, for some constants c,C depending only on t,D, infx∈[0,1] p0(x),
that

PN
0

(
h(p̂n,p0) > Cn−t/(2t+1)

)≤ cexp(−n1/(2t+1)/c), (7.59)

PN
0

(‖p̂n − p0‖2 > Cn−t/(2t+1)
)≤ cexp(−n1/(2t+1)/c), (7.60)

and also
PN

0

(‖p̂n − p0‖∞ > Cn−(t−1/2)/(2t+1)
)≤ cexp(−n1/(2t+1)/c). (7.61)

Proof We note that for infx∈[0,1] |p0(x)| ≥ ζ > 0, the functions (p+p0)/2 are bounded away
from 0 by ζ/2. Since x �→√

x is Lipschitz on [ζ/2,∞), the L2(μ)-bracketing metric entropy
(for μ equal to Lebesgue measure on [0,1]) of the class of functions{√

p+ p0

2
: p ∈Pζ (t,D)

}
can be bounded by the supnorm metric entropy of a bounded subset of the space Ht([0,1]).
By Corollary 4.3.38, this allows the choice

δ(1−
1
2t ) �J (δ)≥ C′

∫ δ

0
(1/ε)1/2tdε,
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for some C′ > 0, so Theorem 7.2.1 gives (7.59). Since p̂n,p0 are uniformly bounded, this
rate is inherited by the L2-distance

‖p̂n − p0‖2
2 ≤ 2(‖p̂n‖∞+‖p0‖∞)h2(p̂n,p0).

To obtain a rate for the supnorm distance, we can use results from Chapter 4 and interpolate:
using ‖p̂n − p0‖Ht ≤ D, the uniform convergence of the wavelet series of elements of Ht ⊂
Bt−1/2
∞∞ for t> 1/2 and the Cauchy-Schwarz inequality, we see that

‖p̂n − p0‖∞ �
∑

l

2l/2 max
k

|〈p̂n − p0,ψlk〉|

� 2j/2‖p̂n − p0‖2 +
∑
l>j

2−l(t−1/2)

= OPN
0

(
2j/2n−t/(2t+1)+ 2−j(t−1/2)

)
,

which gives the desired rate by choosing 2j ∼ n1/(2t+1).

Note that thus the MLE p̂n achieves the minimax optimal rate of estimation in L2-loss
over the Sobolev ball P whenever p0 > 0 on [0,1]; compare to Theorem 6.3.9 with r =
t,p = q = 2. For the supnorm, the rate is not optimal, but the bound will still be useful later.
It is an interesting open question whether the supnorm rate can be improved or not – see the
notes at the end of this chapter for some discussion.

We can obtain a similar result for the sieved MLE from (7.56):

Proposition 7.2.11 Assume that p0 ∈P(t,D) for some t> 1/2 satisfies p0 > 0 on [0,1]. Let
p̂n,jn be the sieved MLE from (7.56) with choice 2jn ∼ n1/(2t+1). Then we have

h(p̂n,jn ,p0)= OP(n
−t/(2t+1)), (7.62)

‖p̂n,jn − p0‖2 = OP(n
−t/(2t+1)) (7.63)

and also
‖p̂n,jn − p0‖∞ = OP(n

−(t−1/2)/(2t+1)). (7.64)

Proof See Exercise 7.2.6.

Stochastic Bounds for the Score Function

Taking notice of Lemma 7.2.5, we now investigate the behaviour of the likelihood derivative
D�n(p̂n) in the direction of p0.

Lemma 7.2.12 Assume that p0 ∈ P(t,D) for some t> 1/2 satisfies p0 > 0 on [0,1]. Let p̂n

satisfy (7.54). Then

|D�n(p̂n)(p̂n − p0)| = OPN
0

(
n−1/2n−(t−1/2)/(2t+1)

)
.

Proof By Theorem 7.2.10, we can restrict ourselves to the events{‖p̂n − p0‖∞ � n−(t−1/2)/(2t+1)
}

and hence, for n large enough, further to events where p̂n ≥ ζ for some ζ > 0. On these
events, both p̂n and p0 are contained in the set U(X1, . . . ,Xn) from Proposition 7.2.4, which

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.008
http:/www.cambridge.org/core


560 Likelihood-Based Procedures

we can use to calculate the derivative D�n(p̂n). Moreover (Exercise 4.3.5), the functions
p̂n, p̂−1

n ,p0 and pointwise products thereof vary in a fixed ball of Ht, t > 1/2, which has a
small enough supnorm (and then also bracketing) metric entropy in view of Corollary 4.3.38.
Using the moment inequality from Remark 3.5.5 (or (3.214)), (7.43) with h = p̂n − p0 and
again Theorem 7.2.10, we see that

|D�n(p̂n)(p̂n − p0)| = |D�n(p̂n)(p̂n − p0)−D�(p̂n)(p̂n − p0)+ (D�(p̂n)−D�(p0))(p̂n − p0)|

≤ sup
f :‖ f ‖Ht≤B,‖ f ‖∞�n−(t−1/2)/(2t+1)

|(Pn −P)( f )|+C
∫ 1

0
(p̂n − p0)

2(x)dx

= OPN
0

(
1√
n

n−(t−1/2)/(2t+1)+ n−2t/(2t+1)

)
,

which implies the desired result.

This result now can be combined with Lemma 7.2.5: if p0 is interior to P in the sense
that

inf
x∈[0,1]

p0(x) > 0,‖p0‖Ht <D, (7.65)

we can construct a line segment around p0 of the form p0 ± ηw where w is a fixed direction
in Ht ⊂ L∞ that integrates to 0, and where η ≤ D − ‖p0‖Ht is small enough. For general
g∈Ht, we recall (7.49) and take projections π0(g)= (g−P0g)p0, which by the multiplication
algebra property of Ht, t> 1/2 (Exercise 4.3.5), are again contained in Ht and integrate to 0.
From Lemma 7.2.5 with ḡ = π0(g), which applies by convexity of P , we thus obtain that
for every g ∈ Ht and p0 satisfying (7.65) we have

|D�n(p̂n)[π0(g)]| ≤ C(D−‖p0‖Ht)−1‖g‖Ht‖p0‖Htn−2t/(2t+1) (7.66)

for some fixed constant C independent of D,p0,g.

Asymptotic Normality of the NPMLE

Lemma 7.2.13 Let p̂n satisfy (7.54), and assume that p0 satisfies (7.65). Let P̂n be the
probability measure corresponding to p̂n, and let Pn be the empirical measure. Then, for any
fixed ball G of Ht, t> 1/2, of radius B,

sup
g∈G

|(P̂n −Pn)(g)| = OPN
0

(
Bn−1/2n−(t−1/2)/(2t+1)

)
, (7.67)

with constants independent of B.

Proof From Lemma 7.2.6 and Proposition 7.2.4, we have, using a pathwise mean value
theorem with mean values p̄n ∈ U ∩P on the line segment between p̂n,p0 ∈ U , and every
g ∈ G,

|(P̂n −Pn)(g)| = |D�n(p0)[π0(g)]+D2�(p0)[p̂n − p0,π0(g)]|
= |D�n(p̂n)[π0(g)]− (D2�n(p̄n)−D2�(p0))[p̂n − p0,π0(g)]|
≤ |D�n(p̂n)(π0(g))|+ |(D2�n(p̄n)−D2�(p̄n))[p̂n − p0,π0(g)]|
+ |(D2�(p̄n))−D2�(p0))[p̂n − p0,π0(g)]|.
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The first term was bounded in (7.66). As in the proof of Lemma 7.2.12, the second term is
bounded by

sup
f :‖ f ‖Ht≤B,‖ f ‖∞�n−(t−1/2)/(2t+1)

|(Pn −P)( f )| = OPN
0

(
n−1/2n−(t−1/2)/(2t+1)

)
,

and the third term is bounded by a constant multiple of

‖g‖∞
∫ 1

0
(p̂n − p0)

2 = OPN
0
(n−2t/(2t+1))

in view of Theorem 7.2.10.

The fact that this rate is faster than 1/
√

n allows us to push (7.67) further and, in
particular, to treat classes F of functions that are independent of t. For f ∈ F , we can
decompose, for πVJ( f ) the wavelet projection of f ∈F , onto the span VJ of wavelets up to
resolution level J, that is,

‖P̂n −Pn‖F ≤ sup
f ∈F

∣∣∣∣∫ 1

0
(p̂n − p0)( f −πVJ( f ))

∣∣∣∣
+ sup

f ∈F
|(P̂n −Pn)(πVJ( f ))|+ sup

f ∈F
|(Pn −P0)( f −πVJ( f ))|. (7.68)

From this we can deduce the following theorem. Recall the definition of convergence of
random probability measures in �∞(F) and of the P-Brownian bridge process GP from
Section 3.7.

Theorem 7.2.14 Let p̂n satisfy (7.54), and assume that p0 satisfies (7.65). Let P̂n,P0 be
the probability measures corresponding to p̂n,p0, respectively, and let Pn be the empirical
measure. For s> 1/2, letF be a bounded subset of the s-Sobolev space Hs or of the s-Hölder
space Cs. Then

‖P̂n −Pn‖F = sup
f ∈F

∣∣∣∣∫ 1

0
f d(P̂n −Pn)

∣∣∣∣= oPN
0
(1/

√
n)

and, thus,
√

n(P̂n −P0)→d GP0 in �∞(F).
In particular, for any f ∈ Hs or f ∈ Cs, we have

√
n
∫ 1

0
(p̂n(x)− p0(x)) f (x)dx →d N(0,‖ f −P0 f ‖2

L2(P0)
).

Proof Since Cs ⊂ Hs′ for any s > s′, it suffices to prove the case of Hs,s > 1/2 arbitrary.
For the first estimate, assume that s < t as otherwise the result is immediate from (7.67).
Choose 2jn ∼ n1/(2t+1). Then we have, from the definition of the Sobolev norm,

‖πVjn
( f )‖Ht � 2jn(t−s) � n(t−s)/(2t+1)

and, by Parseval’s identity,

‖ f −πVjn
( f )‖2 � 2−jns � n−s/(2t+1)
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and from uniform convergence of the wavelet series of f ∈ C([0,1]) also that

‖ f −πVjn
( f )‖∞ � n(−s+1/2)/(2t+1).

Combined with the fact that ‖p̂n − p0‖2 = OPN
0
(n−t/(2t+1)) from Theorem 7.2.10 and with

(7.68), this gives the bound

‖P̂n −Pn‖F = OPN
0

(
n(−t−s)/(2t+1)+ n−1/2n(−t+1/2)/(2t+1)n(t−s)/(2t+1)+ n−1/2n(−s+1/2)/(2t+1)

)
,

with last term controlled in view of the moment inequality in Remark 3.5.5 applied to an
empirical process indexed by a bounded subset of Hs with convergent uniform entropy
integral (Corollary 4.3.38) and with envelopes converging to 0. The overall bound is then
oP(n−1/2) as soon as s > 1/2. The remaining claims follow from the fact that a ball in
Hs,s> 1/2, is a uniform Donsker class (see Proposition 4.4.5).

We also can obtain the following result for the cumulative distribution function of P0:

Theorem 7.2.15 Under the assumptions of Theorem 7.2.14, let F̂n =
∫ t

0 p̂n(x)dx, t∈ [0,1], be
the distribution function of the MLE, and let F0 =

∫ t
0 p0(x)dx, t∈ [0,1], be the true distribution

function. Then
√

n‖F̂n −F0‖∞ = OPN
0
(1).

Proof In view of (3.7.39), we have

‖Fn −F0‖∞ = OPN
0
(1/

√
n),

where Fn(t)=
∫ t

0 dPn,0 ≤ t ≤ 1, is the empirical distribution function, and hence, it suffices

to prove that ‖F̂n −Fn‖∞ = OPN
0
(1/

√
n). Since

f = 1[0,t] ∈ B1
1∞ ⊂ B1/2

2∞

from the theory in Section 4.3, we have

‖πVj( f )‖Ht =
∑
l≤j

2lt
∑

k

|〈 f ,ψlk〉|2 ≤ C
∑
l≤j

2l(t−1/2) � 2j(t−1/2)

and

‖ f −πVj( f )‖2 = O(2−j/2).

Take 2jn ∼ n1/(2t+1); then, from (7.68), Lemma 7.2.13 and Theorem 7.2.10, we deduce the
bound

‖F̂n −Fn‖∞ = OPN
0

(
n−t/(2t+1)n−(1/2)/(2t+1)+ n−1/2n(−t+1/2+t−1/2)/(2t+1)

)+ oPN
0
(1/

√
n)

= OPN
0
(n−1/2),

where we used, for the third term of the decomposition, that {πVj(1[0,t]) : t ∈ [0,1]} is a
uniformly bounded VC-type class (it varies in a finite-dimensional linear space of functions)
with variances σ bounded by

‖πVj( f )− f ‖2,P0 ≤ ‖p0‖∞‖πVj( f )− f ‖2 → 0,

combined with the moment inequality Corollary 3.5.7.
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These estimates are just marginally too weak to infer that
√

n‖F̂n − Fn‖∞ = oPN
0
(1). A

similar gap appears when we study the MLE in generic directionsψlk for wavelets generating
the Sobolev space. These satisfy ‖ψlk‖Ht = 2lt, so for any wavelet ψlk, l ≥ −1,k = 0, . . . ,
2l − 1,

|(P̂n −Pn)(ψlk)| = OPN
0

(
2ltn−1/2n−(t−1/2)/(2t+1)

)
. (7.69)

It is an interesting open question whether these rates can be essentially improved or whether
they are the correct rates for p̂n.

7.2.4 The Maximum Likelihood Estimator of a Monotone Density

Let X1, . . . ,Xn be i.i.d. on [0,1] with law P0 and distribution function F0(x) =
∫ x

0 dP0,x ∈
[0,1]. Define the empirical measure Pn = n−1

∑n
i=1 δXi and the empirical cumulative

distribution function Fn(x)=
∫ x

0 dPn,x∈ [0,1]. If P is known to have a monotone decreasing
density p, then the associated maximum likelihood estimator p̂n maximises the likelihood
function �n(p) over

P ≡Pmon =
{

p : [0,1]→ [0,∞),
∫ 1

0
p(x)dx = 1,p is nonincreasing

}
;

that is,
max

p∈Pmon
�n(p)= �n(p̂n). (7.70)

It is easy to see that p̂n is a left-continuous step function whose jumps can only occur at the
observation points, or order statistics, X(1) < · · ·<X(n),X(0)≡ 0. We can show, moreover, that
the estimator has a simple geometric interpretation as the left derivative of the least concave
majorant F̂n of the empirical distribution function Fn (see Exercise 7.2.7 for details). The
estimator p̂n is also known as the Grenander estimator.

First Basic Properties and Rates of Convergence

We establish some first probabilistic properties of p̂n that will be useful later: if p0 is bounded
away from 0, then so is p̂n on the interval [0,X(n)], where X(n) is the last-order statistics
(clearly, p̂n(x) = 0 for all x > X(n) in view of Exercise 7.2.7). Similarly, if p0 is bounded
above, then so is p̂n with high probability.

Lemma 7.2.16 (a) Suppose that the true density p0 satisfies infx∈[0,1] p0(x) > 0. Then, for
every ε > 0, there exists ξ > 0 and a finite index N(ε) such that, for all n ≥ N(ε),

PN
0

(
inf

x∈[0,X(n)]
p̂n(x) < ξ

)
= Pr

(
p̂n(X(n)) < ξ

)
< ε

(b) Suppose that the true density p0 satisfies p0(x)≤K<∞ for all x∈ [0,1]. Then, for every
ε > 0, there exists 0< k<∞ such that, for all n ∈N,

PN
0

(
sup

x∈[0,1]
p̂n(x) > k

)
= Pr

(
p̂n(0) > k

)
< ε.

Proof (a) The first equality is obvious, since p̂n is monotone decreasing. On each interval
(X(j−1),X(j)], p̂n is the slope of the least concave majorant of Fn (see Exercise 7.2.7). The
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least concave majorant touches (X(n),1) and at least one other order statistic (possibly
(X(0),0)), so

{p̂n(X(n)) < ξ)} ⊆
{
X(n)−X(n−j) > j/(ξn) for some j = 1, . . . ,n

}
.

Note next that since F0 is strictly monotone, we have Xi = F−1
0 F0(Xi) and

F−1
0 F0(X(n))−F−1

0 F0(X(n−j))≤ 1

p0(η)

(
F0(X(n))−F0(X(n−j))

)≤ ζ−1
(
U(n)−U(n−j)

)
,

where the U(i) are distributed as the order statistics of a sample of size n of a uniform random
variable on [0,1], and where U(0) = 0 by convention. Hence, it suffices to bound

Pr

(
U(n)−U(n−j) >

ζ j

ξn
for some j = 1, . . . ,n

)
. (7.71)

By a standard computation involving order statistics (see Exercise 7.2.8), the joint
distribution of U(i), i = 1, . . . ,n, is the same as the one of Zi/Zn+1 where Zn = ∑n

l=1 Wl,
and where Wl are independent standard exponential random variables. Consequently, for
δ > 0, the probability in (7.71) is bounded by

Pr

(
Wn−j+1 + . . .+Wn

Zn+1
>
ζ j

ξn
for some j

)
= Pr

(
n

Zn+1

Wn−j+1 + . . .+Wn

n
>
ζ j

ξn
for some j

)
≤ Pr(n/Zn+1 > 1+ δ)+Pr

(
Wn−j+1 + . . .+Wn

n
>

ζ j

ξn(1+ δ) for some j

)
= A+B.

To bound A, note that it is equal to

Pr

(
1

n+ 1

n+1∑
l=1

(Wl −EWl) <
−δ− (1+ δ)/n

1+ δ
n

n+ 1

)
,

which, since δ > 0, is less than ε/2> 0 arbitrary, from some n onwards, by the law of large
numbers. For the term B, we have, for ξ small enough and by Markov’s inequality,

Pr

(
Wn−j+1 + . . .+Wn >

ζ j

ξ(1+ δ) for some j

)
≤

n∑
j=1

Pr

(
Wn−j+1 + . . .+Wn >

ζ j

ξ(1+ δ)
)

=
n∑

j=1

Pr

(
j∑

l=1

(Wn−l+1 −EWn−l+1) >
ζ j

ξ(1+ δ) − j

)

≤
n∑

j=1

ξ 4E(
∑j

l=1(Wn−l+1 −EWn−l+1))
4

j4C(δ,ζ )

≤ ξ 4C′(δ,ζ )
n∑

j=1

j−2 ≤ ξ 4C′′(δ,ζ ) < ε/2,
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since, for Yl = Wn−l+1 − EWn−l+1, by Hoffmann-Jørgensen’s inequality (Theorem 3.1.22
with ‘index set’ T equal to a singleton),∥∥∥∥∥

j∑
l=1

Yl

∥∥∥∥∥
4,P

≤ K

⎡⎣∥∥∥∥∥
j∑

l=1

Yl

∥∥∥∥∥
2,P

+
∥∥∥∥max

l
Yl

∥∥∥∥
4,P

⎤⎦≤ K′
(√

j+ j1/4
)

,

using the fact that Var(Y1)= 1 and EWp
1 = p!.

(b) From Exercise 7.2.7, we know that p̂n is the left derivative of the least concave majorant
of the empirical distribution Fn; hence

‖p̂n‖∞ = p̂n(0) >M ⇐⇒ Fn(t) >Mt, for some t.

Since F0 is concave and continuous, it maps [0,1] onto [0,1] and satisfies F0(t)≤ p0(0)t ≤
t‖p0‖∞, so we obtain

PN
0 (‖p̂n‖∞ >M)≤ PN

0

(
sup
t>0

Fn(t)

F0(t)
>M/‖p0‖∞

)
= PN

0

(
sup

t∈[0,1]

FU
n (t)

t
>M/‖p0‖∞

)
,

where FU
n is the empirical distribution function based on a sample of size n from the uniform

distribution. The last probability can be made as small as desired for M large enough using
Exercise 7.2.9.

We can now derive the rate of convergence of the maximum likelihood estimator of
a monotone density. The rate corresponds to functions that are once differentiable in an
L1-sense, which is intuitively correct because a monotone decreasing function has a weak
derivative that is a finite signed measure.

Theorem 7.2.17 Suppose that p0 ∈Pmon and that p0 is bounded. Let p̂n satisfy (7.70). Then

h(p̂n,p0)= OPN
0
(n−1/3)

and also

‖p̂n − p0‖2 = OPN
0
(n−1/3).

Proof In view of Lemma 7.2.16, part (b), we can restrict the set P over which p̂n

maximises the likelihood to Pmon intersected with a fixed ‖ · ‖∞-ball of radius k. The class{√
(p+ p0)/2 : p ∈P

}
then consists of monotone decreasing functions that are uniformly bounded by a fixed
constant. By Proposition 3.5.17, the L2(μ)-bracketing metric entropy of this class with
respect to Lebesgue measure μ on [0,1] is of order (1/ε), and application of Theorem 7.2.1
gives the result in Hellinger distance. The result in L2-distance follows as in Theorem 7.2.10
because p̂n,p0 are uniformly bounded.

Admissible Directions and the Score Function

Similar to the situation with the NPMLE of a t-Sobolev density, the maximiser p̂n is in
some sense an object that lives on the boundary of P – it is piecewise constant with step
discontinuities at the observation points, exhausting the possible ‘roughness’ of a monotone
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566 Likelihood-Based Procedures

function. We can construct line segments in the parameter space through p0, following the
philosophy of Lemma 7.2.5. For instance, if we assume that p0 ≥ ζ > 0 on [0,1] and that
its derivative p′0 exists, is bounded and is strictly negative, say, |p′0| ≥ ξ > 0 on [0,1], then
local perturbations of p0 with ηh, where h,h′ ∈ L∞,

∫
h= 0, will lie in P : indeed, for η small

enough, we then have

p0 +ηh ≥ ζ −η‖h‖∞ > 0, (p0 +ηh)′ = p′0 +ηh′ ≤ 0,
∫ 1

0
(p0 +ηh)= 1. (7.72)

For such p0, g,g′ ∈ L∞ and π0(g) as in (7.49), we thus obtain, from Lemma 7.2.5 with
ḡ = π0(g), that on events of probability as close to 1 as desired and n large enough,

|D�n(p̂n)[π0(g)]| ≤ d‖g‖C1([0,1])|D�n(p̂n)(p̂n − p0)|, (7.73)

for some constant d that depends on ζ ,ξ only. Note that ‖g‖C1 also makes sense for not
necessarily continuous g′ and that the differential calculus from Proposition 7.2.4 applies
because p̂n,p0 as well as all points on the line segment (1 − t)p̂n + tp0, t ∈ (0,1) lie in
U(X1, . . . ,Xn)∩P using Lemma 7.2.16, part (a).

We next need to derive stochastic bounds of the likelihood derivative at p̂n in the direction
of p0.

Lemma 7.2.18 Suppose that p0 is bounded and satisfies infx∈[0,1] p0(x)> 0. For p̂n satisfying
(7.70), we have

|D�n(p̂n)(p̂n − p0)| = OPN
0
(n−2/3).

Proof By Lemma 7.2.16, we can restrict ourselves to an event where

0< ξ ≤ inf
x∈[0,X(n)]

p̂n(x)≤ sup
x∈[0,1]

p̂n(x)≤ k<∞

and, by Theorem 7.2.17, further to an event where

‖p̂n − p0‖2,P0 ≤ ‖p0‖1/2
∞ ‖p̂n − p0‖2 ≤ ‖p0‖1/2

∞ Mn−1/3

for some finite constant M. We can write

D�n(p̂n)(p̂n − p0)= 1

n

n∑
i=1

p̂n − p0

p̂n
(Xi)1[0,X(n)](Xi)

= 1

n

n∑
i=1

p̂n − p0

p̂n
(Xi)1[0,X(n)](Xi)−

∫ 1

0

p̂n − p0

p̂n
(x)1[0,X(n)](x)p0(x)dx

+
∫ 1

0

p̂n − p0

p̂n
(x)1[0,X(n)](x)p0(x)dx−

∫ 1

0

p̂n − p0

p0
(x)1[0,X(n)](x)p0(x)dx

−
∫ 1

0

p̂n − p0

p0
(x)1[X(n),1](x)p0(x)dx.

On the events from Lemma 7.2.16, the functions p̂−1
n (p̂n−p0)1[0,X(n)] are of bounded variation

on [0,1], with variation bounded by a fixed constant K that depends only on k,ξ ,‖p0‖∞. As
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7.2 Nonparametric Maximum Likelihood Estimators 567

a consequence, on these events, recalling Proposition 7.2.4 as well as (7.43), we have

|D�n(p̂n)(p̂n − p0)|

� sup
h:‖h‖BV≤K,‖h‖2,P0

≤σ
|(Pn −P0)(h)|+ ‖p̂n − p0‖2

2 +
∫ 1

X(n)

|p̂n − p0|p−1
0 (7.74)

= OPN
0

(
n−1/2n−1/6 + n−2/3 + logn

n

)
,

where we have used the moment inequality Corollary 3.5.7 with

H = id,σ = (M/ζ )‖p0‖1/2
∞ n−1/3, F = u = const,

combined with the uniform entropy bound Corollary 3.7.50 with p = 1, to control the
supremum of the empirical process and Exercise 7.2.8 to deal with the last integral.

From Lemma 7.2.5, we now deduce the following:

Proposition 7.2.19 Suppose that p0 ∈ P is differentiable and that p0,p′0 are bounded and
satisfy p0 ≥ ζ > 0, |p′0| ≥ ξ > 0 on [0,1]. Let g ∈ L∞ have derivative g′ ∈ L∞. Then

|D�n(p̂n)[π0(g)]| = OPN
0

(‖g‖C1n−2/3
)
.

In particular, for P̂n the probability measure with density p̂n, Pn the empirical measure and

B = {g : g,g′ ∈ L∞,‖g‖C1 ≤ B},
we have

sup
g∈B

|(P̂n −Pn)(g)| = OPN
0
(Bn−2/3).

Proof We note that for such g,p0 the function π0(g) from (7.49) has a bounded derivative
and integrates to 0, so p0 + ηπ0(g) ∈ P ∩U for η a small multiple of ‖(gp0)

′‖−1
C1 . The first

claim of the proposition then follows from (7.73) and Lemma 7.2.18. To prove the second
claim, we use Lemma 7.2.6, Proposition 7.2.4, p̂n,p0 ∈ U(X1, . . . ,Xn) by Lemma 7.2.16 and
a Taylor expansion up to second order to see that

|(P̂n −Pn)(g)| = |D�n(p0)[π0(g)]+D2�(p0)[p̂n − p0,π0(g)]|
≤ |D�n(p̂n)[π0(g)]|+ |(D2�n(p0)−D2�(p0))[p̂n − p0,π0(g)]|
+ |(D3�n(p̄n)[p̂n − p0, p̂n − p0,π0(g)]|,

where p̄n equals some mean values pn ∈ U(X1, . . . ,Xn) between p̂n and p0. The first term is
bounded using the first claim of this proposition, giving the bound Bn−2/3 in probability.
The second term is bounded similar as in (7.74) by

sup
h:‖h‖BV≤K,‖h‖2,P0

≤Mn−1/3
|(Pn −P0)(h)| = OPN

0
(‖g‖C1n−2/3),

using also that the C1-norm bounds the BV-norm so that π0(g)/‖g‖C1 is contained in a fixed
BV-ball. The third term can be recentred at a constant multiple of∫ 1

0

1

p̄3
n(x)

(p̂n − p0)
2(x)π0(g)(x)1[0,X(n)] = OPN

0

(‖p̂n − p0‖2
2

)= OPN
0
(n−2/3),
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568 Likelihood-Based Procedures

using again Lemma 7.2.16 to bound p̄n from below on [0,X(n)]. The centred process is now
bounded again as in (7.74) using ‖p̂n − p0‖BV = OPN

0
(1) and noting that p̄n as a convex

combination of p̂n,p0 has variation bounded by a fixed constant on [0,X(n)], so we can
estimate this term by the supremum of the empirical process over a fixed BV-ball.

We can now approximate functions f in general classes F of functions to obtain, under
the conditions of the preceding proposition, an asymptotic normality result for integral
functionals of p̂n−p0 that is uniform in f ∈F . We proceed as in (7.68): we can decompose,
for πVJ( f ) the wavelet projection of f ∈ F onto the span of wavelets up to resolution
level J,

‖P̂n −Pn‖F ≤ sup
f ∈F

∣∣∣∣∫ 1

0
(p̂n − p0)( f −πVJ( f ))

∣∣∣∣
+ sup

f ∈F
|(P̂n −Pn)(πVJ( f ))|+ sup

f ∈F
|(Pn −P0)( f −πVJ( f ))|. (7.75)

For the following theorem, we recall that convergence in distribution in �∞(F) of random
probability measures towards the P0-Brownian bridge GP0 was defined as in Section 3.7.

Theorem 7.2.20 Suppose that p0 ∈ P is differentiable and that p0,p′0 are bounded and
satisfy p0 ≥ ζ > 0, |p′0| ≥ ξ > 0 on [0,1]. Let F be a ball in the s-Hölder space Cs of order
s> 1/2. Then

‖P̂n −Pn‖F = oPN
0
(1/

√
n)

as n →∞ and thus
√

n(P̂n −P0)→d GP0 in �∞(F).

In particular, for any f ∈ Cs, we have

√
n
∫ 1

0
(p̂n(x)− p0(x)) f (x)dx →d N(0,‖ f −P0 f ‖2

L2(P0)
).

Proof It is sufficient to prove the result for 1/2 < s < 1. We recall from Chapter 4 that
Cs = Bs

∞∞ for s /∈ N and that the C1-norm is bounded by the B1
∞1-norm, so, for the wavelet

partial sum πVj( f ) of f ∈ Cs, we have

‖πVj( f )‖C1 �
∑
l≤j−1

23l/2 max
k

|〈 f ,ψlk〉| <∼ 2j(1−s)max
l≤j−1

2l(s+1/2) sup
l≤j−1,k

|〈 f ,ψlk〉|

≤ 2j(1−s)‖ f ‖Bs∞∞ .

Moreover, by Parseval’s identity,

‖πVj( f )− f ‖2 = O(2−js).

Thus, taking 2j ∼ n1/3, we have

sup
f ∈F

|(P̂n −Pn)(πVj( f ))| = OPN
0
(n−2/3n(1−s)/3)= oPN

0
(n−1/2)
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since s> 1/2. Also, using Theorem 7.2.17 and the Cauchy-Schwarz inequality,∣∣∣∣∫ 1

0
(p̂n − p0)( f −πVj( f ))

∣∣∣∣= OPN
0
(n−1/3n−s/3)= oPN

0
(1/

√
n),

and since the class { f − πVj( f )} is contained in a fixed s-Hölder ball and has envelopes
sup f ‖ f −πvj( f )‖∞ → 0, the third term in (7.75) is also oPN

0
(1/

√
n), arguing as at the end

of the proof of Theorem 7.2.14 (since the empirical process is tight and has a degenerate
Gaussian limit). The remaining claims follow from the fact that F is a uniform Donsker
class.

Exercises

7.2.1 Show that h2(p,p0)≤ Ch2(p̄,p0) for some universal constant C. Hint: Use

p̄1/2 + p1/2
0

p1/2 + p1/2
0

≤ 2

for any density p.
7.2.2 Let 0 ≤ pL ≤ pU, and consider p̄L, p̄U as well as

gL = 1

2
log

p̄L

p0
, gU = 1

2
log

p̄U

p0

on the sets {p0 > 0}. Show that ρ1(gU − gL)≤ 2h(p̄l, p̄U). Hint: Use (7.33) and gU − gL ≥ 0.
7.2.3 Let (X ,A) be a measurable space, 	 a compact metric space and u : X ×	→ R a function

that is measurable in its first argument for every θ ∈	 and continuous on 	 for every x ∈ X .
Show that there exists a Borel-measurable function θ̂ : (X ,A)→ 	 such that u(x, θ̂ (x)) =
supθ∈	 u(x,θ). Hint: Reduce to u(θ̂) = 0, and realise 	 as a compact subset of RN. Then
show that the set of maximisers of u contains a largest element θ̂ for the lexicographic order.
Then establish measurability of θ̂ by establishing measurability of each coordinate. Deduce
Proposition 7.2.7, Part (c).

7.2.4 (Interchanging differentiation and integration in a Banach space setting.) Let V be an open
subset of some Banach space E, and let (S,A,μ) be a measure space. Suppose that the function
f (v,s) : V×S→R is contained in L1(S,A,μ) for every v∈V. Assume that for every v∈V and
every s∈ S the Fréchet derivative D1 f (v,s) w.r.t. the first variable exists. Furthermore, assume
that for every s ∈ S, the map v �→ D1 f (v,s) from V to E′ is continuous. Suppose further that
there exists a function g ∈ L1(S,A,μ) such that ‖D1 f (v,s)‖′E ≤ g(s) for every v ∈ V and s ∈ S.
Then show that the function

ϕ : v �−→
∫

S
f (v,s)dμ(s)

from V⊆E→R is Fréchet differentiable with derivative Dϕ(v)(h)= ∫
S D1 f (v,s)(h)dμ(s) for

h ∈ E. Use this fact to justify the formula for Dα�( f ) in Proposition 7.2.4.
7.2.5 Show that the MLE p̂n over a Sobolev ball from (7.54) is unique. Hint: The function �n is

concave on the convex set P , so the set S of maximisers must be convex. By Proposition 7.2.9,
we know that the maximiser p̂n lies on the D-sphere of the space Ht, whose Hilbert norm is
strictly convex, so S must be a singleton.

7.2.6 Prove Proposition 7.2.11. Hint: Combine the proof of Theorem 7.2.10 with Theorem 7.2.3. To
construct a sequence in Vjn such that (7.35) holds and

h(p∗n,p0)= O(‖p∗n − p0‖2)= O(2−jnt)= O(n−t/(2t+1)),
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take p∗n = πVj(p0)/‖πVj(p0)‖1 and use ‖πVj(p0)−p0‖∞ → 0 to show that p∗n ∈P∩Vj for j large
enough. Further, use |‖πVj(p0)‖1 −‖p0‖1| ≤ ‖πVj(p0)− p0‖2.

7.2.7 Show that the MLE p̂n in (7.70) equals the left derivative F̂′
n of the least concave majorant F̂n

of the empirical distribution function Fn. (Note that F̂n is the smallest concave function that
satisfies F̂n(x)≥Fn(x) for all x.) Deduce that p̂n is piecewise constant on [0,1], left continuous,
with jumps only at the observation points, and identically 0 on (X(n),1]. Hint: First reduce to
solutions that are of the form

p =
∑

i

ai1[0,X(i)], ai = log( fi/ fi+1), fn+1 = 1, fi ≥ fi+1,

and deduce
∫

log f dF̂n ≥ ∫
log f dFn. Then show that f = F̂′

n gives equality in the last
inequality, and use identifiability

∫
log p̂ndF̂n >

∫
log f dF̂n, f 
= p̂n, of the Kullback-Leibler

distance (cf. 7.22) to obtain uniqueness.
7.2.8 Let X1, . . . ,Xn be i.i.d. from distribution F on [0,1] with density f , and let X(1) < · · · < X(n)

be the corresponding order statistics. Show that the vector (X(1), . . . ,X(n)) then has density
n!∏n

i=1 f (xi) on the set x1 < · · ·< xn and that X(i) has density

nCn−1
i−1 F(x)i−1(1−F(x))n−i f (x).

Deduce that for infx∈[0,1] f (x)≥ ζ and an → 0 such that nan →∞, we have, for some constant
c = c(ζ ),

Pr((1−X(n)) > an)= n
∫ 1−an

0
F(x)n−1 f (x)dx ≤ (1− can)

n → 0

as n→∞. For uniform random variables F(t)= t on [0,1], deduce that the X(i) have the same
(joint) distribution as Zi/Zn+1, where Zn is a sum of n independent Exp(1) random variables.

7.2.9 Let FU
n be the empirical distribution function of a uniform U(0,1) sample U1, . . . ,Un of size n.

For M ≥ 1, show that

Pr(FU
n (t)≤ Mt ∀t ∈ [0,1])= 1− 1/M.

Hint: The probability in question equals

n!
∫ 1

1/M

∫ X(n)

(n−1)/nM
. . .

∫ X(2)

1/Mn
dx(1) · · ·dx(n),

and using the preceding exercise, the result follows from elementary integration.
7.2.10 Show that if a bounded monotone decreasing density p0 has a jump discontinuity at x0 ∈ (0,1),

then for F̂n the distribution function of the MLE of a monotone density and Fn the empirical
distribution function, we have

F̂n(x0)−Fn(x0)= oP(1/
√

n).

Hint: Use Lemma 7.2.16, and note that (7.72) still remains true for h = 1[0,x0] since p′0 +ηh′ is
then, for η small enough, the negative constant multiple of a Dirac measure. Then proceed as
in the proof of Theorem 7.2.20. [See also Söhl (2015).]

7.3 Nonparametric Bayes Procedures

The Bayesian paradigm of statistical inference is in many respects fundamentally different
from all the main ideas in this book because it does not view the unknown parameter f
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7.3 Nonparametric Bayes Procedures 571

indexing the distribution P f of the sample as a point in a fixed parameter space F but
rather itself as random. In this way, the Bayesian can accommodate subjective beliefs about
the nature of f as encoded in a prior distribution � on F . For instance, this could model
probabilities assigned to different hypotheses about a theory by a scientific community or,
more generally, any kind of subjective beliefs about the nature of f . Given observations
X ∼ P f , the simple ‘updating’ rule known as Bayes’ theorem then computes the best
subjective guess about f given X – known as the posterior distribution �(·|X). For a
subjective Bayesian, the story ends here. However, interesting questions arise if one analyses
the posterior distribution under the frequentist sampling assumption that X ∼ P f0 from a
fixed f0 in the support of the prior. This frequentist Bayes approach is nourished by the
hope that the likelihood (i.e., the observations) may eventually dominate the choice of the
prior, resulting in valid asymptotic frequentist inferences.

Despite the slight arbitrariness of the choice of the prior, in nonparametric models, the
Bayesian approach can be very attractive from a methodological point of view: we have seen
in the preceding section that likelihood-based methods need some complexity regularisation,
such as constraining the model to a Sobolev ball or to the set of monotone densities. The
posterior distribution gives another way to regularise the likelihood by averaging it out – or
‘resampling’ it – according to a prior distribution. At the same time, the Bayesian approach
furnishes us with a posterior distribution that we can readily use for inference, such as for the
construction of point estimators, tests and ‘credible sets’ (the Bayesian ‘posterior’ version
of a confidence set). Belief in such inferences, however, needs to be founded on a thorough
frequentist analysis. In this section we shall develop mathematical techniques that can be
used to show that certain nonparametric Bayes methods give optimal frequentist procedures
in some infinite-dimensional models.

Since the setting for Bayesian analysis involves conditional probabilities in
infinite-dimensional models, let us first give a rigorous foundation for the notion of the
posterior distribution. Consider a measurable space (X ,A) and a family {p f : f ∈ F}
of probability densities on X with respect to a common σ -finite dominating measure
μ. Suppose further that F is equipped with a σ -field B for which the mappings
f �→ p f (x),x ∈ X , are all measurable. If � is a probability measure on (F ,B) – called
the prior distribution – we obtain on A⊗ B a product measure μ⊗�, and define the
probability space

(X ×F ,A⊗B,Q), dQ(x, f )= p f (x)dμ(x)d�( f ), (7.76)

the canonical setting for Bayesian analysis: by standard properties of conditional distribu-
tions (see Exercise 7.3.1), the distribution of the coordinate map X onto X conditional on f
has density

X| f ∼ p f dμ∫
X p f (x)dμ(x)

= p f dμ, (7.77)

and the distribution of the coordinate map f onto F conditional on X is

f |X ∼ p f (X)d�( f )∫
F p f (X)d�( f )

(7.78)
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in the sense that for any measurable set B ∈ B, we have

�(B|X)=
∫

B p f (X)d�( f )∫
F p f (X)d�( f )

, (7.79)

the identity holding μ almost surely. The law of f |X is known as the posterior distribution.
Let us illustrate what the preceding formulas give in the main sampling models

considered in this book. Suppose, first, that we are given an i.i.d. sample X1, . . . ,Xn on
a measurable space (X ,A) from a probability density p with respect to some dominating
measure μ, and consider a prior distribution � on a family (P ,B) of such probability
densities. The preceding formalism then applies directly with p f = p,F = P . We find that
the posterior distribution �(·|X1, . . . ,Xn) of p|X1, . . . ,Xn on P equals

d�(p|X1, . . . ,Xn)∼
∏n

i=1 p(Xi)d�(p)∫
P
∏n

i=1 p(Xi)d�(p)
, μn a.s. (7.80)

When making the frequentist assumption that the Xi were drawn from a fixed density p0, we
will often write the preceding expression as

d�(p|X1, . . . ,Xn)∼
∏n

i=1

p

p0
(Xi)d�(p)∫

P
∏n

i=1

p

p0
(Xi)d�(p)

. (7.81)

For the Gaussian white noise model

dY(t)= f (t)dt+ σ√
n

dW(t), t ∈ [0,1], (7.82)

with σ > 0,n∈N, we recall the results from Section 6.1.1: we take (X ,A) equal to C([0,1])
equipped with its Borel σ -field and μ equal to PY

0, a scaled Wiener measure (σ/
√

n)PW. By
Proposition 6.1.1 and the remark after it, the law PY

f of dY is, for every f ∈ L2, absolutely
continuous with respect to PY

0, with density

p f (Y)= exp

{
n

σ 2

∫ 1

0
f dY− n

2σ 2
‖ f ‖2

2

}
, PY

0 a.s. (7.83)

If � is a prior distribution on the Borel sets B of F ⊆ L2, then we obtain from (7.78) that
the posterior distribution �(·|Y) of f |Y on F is

d�( f |Y)∼ p f (Y)d�( f )∫
F p f (Y)d�( f )

=
exp

{ n

σ 2

∫ 1
0 f dY− n

2σ 2
‖ f ‖2

2

}
d�( f )∫

F exp
{ n

σ 2

∫ 1
0 f dY− n

2σ 2
‖ f ‖2

2

}
d�( f )

, PY
0 a.s. (7.84)

Under the frequentist assumption dY ∼ PY
f0

for some fixed f0 ∈ L2, we can rewrite the last
expression as

d�( f |Y)∼
exp

{√
n

σ

∫ 1
0 ( f − f0)dW− n

2σ 2
‖ f − f0‖2

2

}
d�( f )

∫
F exp

{√
n

σ

∫ 1
0 ( f − f0)dW− n

2σ 2
‖ f − f0‖2

2

}
d�( f )

, PW a.s. (7.85)
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The posterior distribution in the white noise model has another representation using
the isometry of L2 with sequence space �2. The preceding arguments combined with
Proposition 6.1.4 give for f ∈ L2 and basis coefficients ( fk = 〈 f ,ek〉 : k ∈ Z) the posterior
distribution of f |(Yk : k ∈ Z) as

d�( f |Y)∼
exp

{ n

σ 2

∑
k fkYk − n

2σ 2
‖ f·‖2

�2

}
d�( f )∫

F exp
{ n

σ 2

∑
k fkYk − n

2σ 2
‖ f·‖2

�2

}
d�( f )

=
exp

{√
n

σ

∑
k( fk − f0,k)gk − n

2σ 2
‖ f· − f0,·‖2

�2

}
d�( f )

∫
F exp

{√
n

σ

∑
k( fk − f0,k)gk − n

2σ 2
‖ f· − f0,·‖2

�2

}
d�( f )

(7.86)

a.s. under the infinite Gaussian product measure PW of (gk : k ∈ Z),gk ∼i.i.d. N(0,1), and
where the last identity holds under the frequentist assumption Yk = f0,k + (σ/√n)gk.

7.3.1 General Contraction Results for Posterior Distributions

We now give general conditions such that the posterior distribution�(·|X) ‘contracts’ about
the parameter f0 in some metric d on F under the frequentist assumption that X∼P f0 . More
precisely, for � some prior distribution, we want to derive results of the kind

�( f : d( f , f0) >Mεn|X)→ 0,

in P f0 probability, for some fixed constant M, and where εn is known as the rate of
contraction of�(·|X) about f0 in the metric d.

Contraction Results in the i.i.d. Sampling Model

We first consider the case of the i.i.d. sampling model with a general model P of densities
on (X ,A). The conditions involved in the following theorem require that the prior charges
neighbourhoods of p0 with a sufficient amount of probability, where neighbourhoods are in
the ‘correct topology’ arising from the expected likelihood function in the sampling model.
Moreover, if we want to derive a contraction rate εn in a metric d on P , then a sufficiently
large set in the support of the prior has to admit consistent tests with sufficiently good
exponential error bounds for the nonparametric hypotheses

H0 : p = p0 vs. H1: {p : d(p,p0) >Mεn}
such as those studied in Chapter 6.2 and in Theorem 7.1.4. We write EP for expectation
under PN, where P has density p ∈ P . We allow the prior � to depend on n too in the
following result.

Theorem 7.3.1 Let P be a collection of probability densities on a measurable space (X ,A)
with respect to some σ−finite dominating measure μ, and let B be a σ -field over P such
that the mappings p �→ p(x),x∈X , are all B-measurable. Let�=�n be a sequence of prior
distributions on B, suppose that X1, . . . ,Xn are i.i.d. from density p0 on X , dP0 = p0dμ and
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let �(·|X1, . . . ,Xn) be the posterior distribution from (7.80). For εn a sequence of positive
real numbers such that

εn → 0,
√

nεn →∞,

and C,L fixed constants, suppose that � satisfies,

�

(
p ∈P : −EP0 log

p

p0
(X)≤ ε2

n ,EP0

(
log

p

p0
(X)

)2

≤ ε2
n

)
≥ e−Cnε2n (7.87)

and that

�(P \Pn)≤ Le−(C+4)nε2n , (7.88)

for some sequence Pn ⊂ P for which we can find tests (indicator functions) �n ≡
�(X1, . . . ,Xn) such that, for every n ∈N,M> 0 large enough,

EP0�n →n→∞ 0, sup
p∈Pn:d(p,p0)≥Mεn

EP(1−�n)≤ Le−(C+4)nε2n . (7.89)

Then the posterior �(·|X1, . . . ,Xn) contracts about p0 at rate εn in the metric d; that is,

�(p : d(p,p0) >Mεn|X1, . . .Xn)→ 0 (7.90)

in PN
0 probability as n →∞.

Proof First,

EP0

[
�
({

p ∈P : d(p,p0)≥ Mεn

∣∣X1, . . . ,Xn

})
�n

]≤ EP0�n → 0

by assumption on the tests, so we only need to prove convergence in PN
0 probability to 0 of

�({p ∈P : d(p,p0)≥ Mεn

∣∣X1, . . . ,Xn})(1−�n)

=
∫

d(p,p0)≥Mεn

∏n
i=1(p/p0)(Xi)d�(p)(1−�n)∫

P
∏n

i=1(p/p0)(Xi)d�(p)
.

Lemma 7.3.2 shows that for all c> 0 and probability measures ν with support in

Bn :=
{

p ∈P : −EP0 log
p

p0
(X)≤ ε2

n , Ep0

(
log

p

p0
(X)

)2

≤ ε2
n

}
,

we have

PN
0

(∫ n∏
i=1

p

p0
(Xi)dν(p)≤ e−(1+c)nε2n

)
≤ 1

c2nε2
n

.

In particular, this result applied with c = 1 and ν equal to the normalised restriction of � to
Bn, together with condition (7.87) of the theorem, shows that if An is the event

An :=
{∫

Bn

n∏
i=1

p

p0
(Xi)d�(p)≥�(Bn)e

−2nε2n ≥ e−(2+C)nε2n

}
,
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then PN
0 (An)≥ 1− 1/nε2

n → 1, and we can write, for every ε > 0,

PN
0

(∫
d(p,p0)≥Mεn

∏n
i=1(p/p0)(Xi)d�(p)(1−�n)∫

P
∏n

i=1(p/p0)(Xi)d�(p)
> ε

)

≤ PN
0 (A

c
n)+PN

0

(
e(2+C)nε2n (1−�n)

∫
d(p,p0)≥Mεn

n∏
i=1

p

p0
(Xi)d�(p) > ε

)
.

Now, using that

EP0

[
n∏

i=1

p

p0
(Xi)

]
=
[∫

p0>0
pdμ

]n

≤ 1, EP0

[
n∏

i=1

p

p0
(Xi)(1−�n)

]
≤ EP(1−�n),

and that 0 ≤ 1−�n ≤ 1, we obtain

EP0

[
(1−�n)

∫
d(p,p0)≥Mεn

n∏
i=1

p

p0
(Xi)d�(p)

]
≤ �(P \Pn)+ sup

p∈Pn:d(p,p0)≥Mεn

EP(1−�n).

Now the assumptions on Pn and on the tests combined with Markov’s inequality give, for
every ε > 0,

PN
0

(
(1−�n)

∫
d(p,p0)≥Mεn

n∏
i=1

p

p0
(Xi)d�(p) >

ε

e(2+C)nε2n

)
≤ (2L/ε)e−2nε2n ,

and the theorem follows by combining the preceding estimates, since nε2
n → ∞

as n →∞.

Lemma 7.3.2 For every ε > 0 and probability measure ν on the set

B =
{

p ∈P : −EP0 log
p

p0
(X)≤ ε2,EP0

(
log

p

p0
(X)

)2

≤ ε2

}
,

we have, for every c> 0,

PN
0

(∫
B

n∏
i=1

p

p0
(Xi)dν(p)≤ exp{−(1+ c)nε2}

)
≤ 1

c2nε2
.

Proof By Jensen’s inequality,

log
∫ ∏ p

p0
(Xi)dν(p)≥

n∑
i=1

∫
log

p

p0
(Xi)dν(p),

and if
√

n(Pn −P0) is the empirical process, then the probability in question is bounded by

Pn
0

(√
n
∫ ∫

log
p

p0
dν(p)d(Pn −P0)≤−√

n(1+ c)ε2 −√
n
∫ ∫

log
p

p0
(x)dν(p)dP0(x)

)
.

Now, by Fubini’s theorem,

−√
n
∫ ∫

log
p

p0
dν(p)dP0(x)=√

n
∫

−EP0 log
p

p0
dν(p)≤√

nε2,
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and the last probability is thus further bounded, using the inequalities of Chebyshev and
Jensen (again on ν), by

PN
0

(√
n
∫ ∫

log
p

p0
dν( f )d(Pn −P0)≤−√

ncε2

)
≤ VarP0(

∫
log(p/p0)(X)dν(p))

c2nε4

≤ EP0

∫
(log(p/p0))

2dν(p)

c2nε4

≤ 1

c2nε2
,

which completes the proof.

We can use the techniques from Section 7.1 to construct tests for alternatives that are
separated in the Hellinger distance, which, in turn, give contraction rates of posterior
distributions in the Hellinger distance h, under an entropy condition on a large support set
Pn of P .

Theorem 7.3.3 In the setting of Theorem 7.3.1, assume for C,L fixed constants and εn

s.t. εn → 0,
√

nεn →∞, that � satisfies,

�
(
p ∈P : −EP0 log(p/p0)(X)≤ ε2

n ,EP0(log(p/p0)(X))
2 ≤ ε2

n

)≥ e−Cnε2n (7.91)

and that

�(P \Pn)≤ Le−(C+4)nε2n , (7.92)

for some sequence Pn ⊂P for which

logN(Pn,h,εn)≤ nε2
n . (7.93)

Then the posterior �(·|X1, . . . ,Xn) contracts about p0 at rate εn in Hellinger distance, and

�(p : h(p,p0) >Mεn|X1, . . .Xn)→ 0 (7.94)

in PN
0 probability as n →∞ for M> 0 a large enough constant.

Proof Combine Theorems 7.3.1 and 7.1.4 with ε0 = Mεn for M a large enough constant
and N(ε)= N(εn) constant in ε to obtain suitable tests.

We can also use the testing tools from Chapter 6 instead of the Hellinger distance. This
is illustrated in the white noise setting in the next subsection.

A General Contraction Theorem in Gaussian White Noise

An analogue of the results from the preceding subsection for the posterior (7.84) in the
Gaussian white noise model is proved without difficulty, replacing Lemma 7.3.2 by the
following result:

Lemma 7.3.4 For every ε > 0 and probability measure ν on the set

B = {
f ∈F : ‖ f − f0‖2

2 ≤ ε2/σ 2
}

,
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we have, for every c> 0,

PW

(∫
B

exp

{√
n

σ

∫ 1

0
( f − f0)dW− n

2σ 2
‖ f − f0‖2

2

}
dν( f )≤ exp{−(1+ c)nε2/σ 2}

)
≤ σ 2

c2nε2
.

Proof We set σ = 1 to expedite notation. By Jensen’s inequality, the probability in question
is hence less than or equal to

PW

(∫
B

(√
n
∫ 1

0
( f − f0)dW− n

2
‖ f − f0‖2

2

)
dν( f )≤−(1+ c)nε2

)
.

Using ‖ f − f0‖2
2 ≤ ε2 and that

∫ 1
0 ( f − f0)dW ∼ N(0,‖ f − f0‖2

2) implies, again by Jensen,

Var

(∫
B

∫ 1

0
( f − f0)dWdν( f )

)
≤
∫

B
E

[∫ 1

0
( f − f0)dW

]2

dν( f )≤ ‖ f − f0‖2
2,

so we can bound the last probability by

PW

(∫
B

∫ 1

0
( f − f0)dWdν( f )≤−c

√
nε2

)
≤ ‖ f − f0‖2

2

c2nε4
≤ 1

c2nε2
,

completing the proof.

Given this lemma and (7.85), the proof of the following theorem is now a straightforward
modification of the proof of Theorem 7.3.1 and is left as Exercise 7.3.2.

Theorem 7.3.5 Let F ⊂ L2 be equipped with its Borel σ -field B. Let�=�n be a sequence
of prior distributions on B, suppose that dY∼PY

f0
is an observation in the white noise model

(7.82) and let�(·|Y) be the posterior distribution from (7.84). For εn a sequence of positive
real numbers such that

εn → 0,
√

nεn →∞
and C,L fixed constants, suppose that � satisfies

�
(

f ∈F : ‖ f − f0‖2 ≤ ε2
n

)≥ e−Cnε2n (7.95)

and that
�(F \Fn)≤ Le−(C+4)nε2n , (7.96)

for some sequence of measurable sets Fn ⊂ F for which we can find tests (indicator
functions) �n ≡�(Y) such that, for M a large enough constant,

E f0�n →n→∞ 0, sup
f ∈Fn:d( f , f0)≥Mεn

E f (1−�n)≤ Le−(C+4)nε2n . (7.97)

Then the posterior �(·|Y) contracts about f0 at rate εn in the metric d; that is,

�( f : d( f , f0) >Mεn|Y)→ 0 (7.98)

in PY
f0

probability as n →∞.
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To construct suitable tests, we can adapt the Hellinger testing theory to the white noise
model, with h replaced by ‖ · ‖2, the relevant information-theoretic distance, and proceed
accordingly. Since L2 is naturally compatible with approximation theory, we can instead
use the results on nonparametric testing that were developed in Chapter 6, resulting in
simple approximation-theoretic conditions on � which can be easily verified for natural
priors and which are at any rate closely related to an L2-version of the entropy condition
in Theorem 7.3.3. The following result is based on an approximation kernel K satisfying
Conditions 5.1.1 with A = [0,1]:
Theorem 7.3.6 Let F ⊂ L2 be equipped with its Borel σ -field B. Let�=�n be a sequence
of prior distributions on B, suppose that dY ∼ P f0 is an observation in white noise and
let �(·|Y) be the posterior distribution from (7.84). Let εn be a sequence of positive real
numbers such that

εn → 0,
√

nεn →∞,

and for C,L fixed constants, suppose that � satisfies

�( f ∈F : ‖ f − f0‖2 ≤ εn)≥ e−Cnε2n . (7.99)

Further, let jn be such that 2jn ∼ nε2
n, and suppose that for some sequence of measurable sets

Fn ⊂ { f ∈ L2 : ‖Kjn( f )− f ‖2 ≤ εn},
we have

�(F c
n )≤ Le−(C+4)nε2n . (7.100)

Assume further that ‖Kjn( f0)− f0‖2 = O(εn). Then the posterior �(·|Y) contracts about f0

at rate εn in the L2-distance; that is,

�( f : ‖ f − f0‖2 >Mεn|Y)→ 0 (7.101)

in P f0 probability as n →∞ for M large enough.

Proof We apply Theorem 7.3.5 with sieve set

Fn = { f ∈ L2 : ‖Kjn( f )− f ‖2 ≤ εn},
and all that is needed is to construct suitable tests verifying (7.97). Using

‖Kj( f − f0)− f + f0‖2 ≤ 2εn ≡ B(jn),

the existence of such tests follows from Corollary 6.2.15 with H0 = { f0}, 2jn ∼ nε2
n .

The approximation-theoretic approach to testing also works in the sampling setting,
giving an alternative approach to Hellinger tests – we discuss some references in the notes
at the end of this chapter.

7.3.2 Contraction Results with Gaussian Priors

It is time to put the general contraction theorems in the preceding section to a test for
some natural prior choices. Whereas the theory indeed applies widely, some of the main
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mechanisms are best understood in the situation where the prior is Gaussian. We shall
see that the use of very fine properties of Gaussian measures from Chapter 2, such as the
isoperimetric theorem and small-ball asymptotics, allows us to verify the conditions in the
preceding theorems to give minimax optimal contraction rates for nonparametric posterior
distributions. We shall start with the conceptually simpler case of Gaussian white noise.

Contraction Rates with Integrated Brownian Motion Priors in the
White Noise Model

Let us first illustrate how to apply Theorem 7.3.6 in the case where the prior on f is the
random trajectory of a Brownian motion W = (W(t) : t ∈ [0,1]). Almost surely this process
will have nondifferentiable trajectories that are ‘almost’ 1/2-Hölder continuous. It also
satisfies W(0) = 0, which is somewhat unnatural from a statistical point of view, and we
thus release it at zero and consider W0 = g + W, where g ∼ N(0,1) independent of W. A
good test case is to assume that f0 is contained in the Sobolev space H1/2

2 ([0,1]), which
intuitively means that the smoothness of f0 is matched with the regularity of the trajectories
of the prior. The posterior contraction rate we hope for over H1/2

2 = B1/2
22 in light of the

minimax results in Chapter 6 is εn � n−1/4.

Step 1. Small-ball estimate. We first need to guarantee that the prior charges an
L2-neighbourhood of f0 with sufficient probability. The prior law of W0 is a Gaussian
Borel probability measure supported in L2 with reproducing kernel Hilbert space (RKHS)

H= H1([0,1])= B1
22([0,1])

(see Proposition 2.6.24). By Proposition 2.6.19, we have

�
(

f ∈ L2 : ‖ f − f0‖2 ≤ εn

)≥
exp

{
− inf

h∈H:‖h− f0‖2≤εn/2

[
1

2
‖h‖2

H− logPr
(‖W0‖2 < εn/2

)]}
. (7.102)

We see that the small-ball requirement (7.95) is governed by the small-ball probability of
the prior at zero ( f0 = 0) and by the relative position of f0 to the RKHS H. Now, from
Corollary 2.6.27 and ‖W0‖2 ≤ ‖W0‖∞, we know, for some c> 0, that

− logPr
(‖W0‖2 < εn/2

)≤ c−1ε−2
n � nε2

n

because εn � n−1/4. Moreover, we can approximate f0 ∈ B1/2
22 by its wavelet projection

πVj( f0) ∈H, with j large enough, 2j ∼√
n, to give

‖πVj( f0)− f0‖2 � ‖ f0‖B1/2
22

∑
l>j

2−j/2 ≤ εn, ‖πVj( f0)‖2
H � ‖ f0‖2

B1/2
22

2j �√
n � nε2

n ,

using (4.149), so indeed the probability in (7.102) is lower bounded by e−Cnε2n for some
constant C.

Step 2. Construction of approximating sets Fn. For � the cumulative distribution function
of a standard normal distribution (and C = 1, for instance), let

Mn =−2�−1(e−(C+4)nε2n ),
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and note that an =�(‖ f ‖∞ ≤ εn)≥ e−Cnε2n from Corollary 2.6.27 (and by multiplying εn by
a large enough constant). Consider the sets

Fn = { f = f1 + f2 : ‖ f1‖∞ ≤ εn,‖ f2‖H ≤ Mn} , (7.103)

to which the isoperimetric inequality Theorem 2.6.12 applies to give

�(F \Fn)≤ 1−�(�−1(an)+Mn)≤ 1−�(Mn/2)= exp{−(C+ 4)nε2
n}. (7.104)

Next, we control the approximation errors using a wavelet approximation Kj( f ), the wavelet
characterisation of Bs

22 spaces (4.149), and that Mn �√
nεn, to see

‖Kjn( f1 + f2)− f1 − f2‖2 ≤ C‖ f1‖∞+ 2−jn‖ f2‖H � εn + (nε2
n)

−1√nεn � ε−1
n /

√
n � εn

and

‖Kj( f0)− f0‖2 � ‖ f0‖B1/2
22
(nε2

n)
−1/2 = n−1/4,

completing the verification of the conditions of Theorem 7.3.6, so we conclude, for � a
Brownian motion released at zero, that

�
(

f : ‖ f − f0‖2 >Mn−1/4|Y)→PY
f0 0 (7.105)

as n →∞ whenever f0 ∈ B1/2
22 ([0,1]) for some large enough constant M.

To model smoother functions, we can take k primitives of Brownian motion, resulting
in a function whose kth derivative is almost 1/2-Hölder continuous (see Section 2.6.3).
Moreover, we wish to release these processes at zero and hence consider as prior � the
law of the process (Wk(t) : t ∈ [0,1]) from equation (2.82). The following theorem gives
the minimax optimal contraction rate for the resulting posterior distributions for functions
f0 ∈ Bk+1/2

22 , including the case of Brownian motion (k = 0) discussed in the preceding
paragraphs:

Theorem 7.3.7 Consider a prior � on L2 arising from the kth integrated Brownian motion
Wk,k ∈ N ∪ {0}, released at zero, from (2.82). Suppose that we observe dY ∼ PY

f0
in the

white noise model (7.82), where f0 ∈ Bα22 for α = k + 1/2. Then, for some large enough
constant M,

�
(

f : ‖ f − f0‖2 >Mn−α/(2α+1)|Y)→PY
f0 0 (7.106)

as n →∞.

Proof The proof follows the argument for standard Brownian motion combined with the
results obtained in Section 2.6, where

εn = Mn−α/(2α+1).

Note that the RKHS H ≡ Hk of Wk equals Hk+1
2 = Bk+1

22 in view of Proposition 2.6.24 and
the results in Chapter 4 (more precisely, the version of (4.105) for spaces defined on [0,1]).
We can use (7.102) combined with Corollary 2.6.30, ‖W‖2 ≤ ‖W‖∞ and the estimate, for
2j � n1/(2α+1) � nε2

n ,

‖πVj( f0)− f0‖2 � ‖ f0‖Bα22

∑
l>j

2−jα ≤ εn, ‖πVj( f0)‖2
H � ‖ f0‖2

Bα22
2j � nε2

n ,
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to obtain

�
(

f ∈ L2 : ‖ f − f0‖2 ≤ εn

)≥ e−Cnε2n

for some constant C. As approximating set, we take Fn as in (7.103) with H = Hk and the
current choice of εn, so �(F \Fn) is bounded just as in (7.104). The approximation errors
are also bounded as earlier, that is,

‖Kjn( f1 + f2)− f1 + f2‖2 ≤ C‖ f1‖∞+ 2−jn(α+1/2)‖ f2‖H
� εn + (nε2

n)
−α−1/2√nεn

= εn(1+ n−(α+1/2)/(2α+1)√n)= εn

and

‖Kj( f0)− f0‖2 � ‖ f0‖Bα22
(nε2

n)
−α � εn,

completing the proof by application of Theorem 7.3.6.

This approach can be generalised to smoothness indices other than k + 1/2,k ∈ N, by
considering fractional Brownian motions instead of primitives of standard Brownian motion.

Contraction Rates with Gaussian Priors in Density Estimation

Consider next the situation where we observe X1, . . . ,Xn i.i.d. from some density f on [0,1]
with respect to Lebesgue measure μ. A prior for f needs to accommodate a nonnegativity
and integrability constraint, so we cannot use the trajectory of Wk directly as in the preceding
subsection. However, we can consider priors of the form

pw = ew∫ 1
0 ew

, w ∼ Wk. (7.107)

The following auxiliary lemma relates the Hellinger distance as well as the
information-theoretic quantities appearing in (7.87) of such densities to the uniform distance
of the ‘kernels’ w:

Lemma 7.3.8 For any measurable functions v,w : (X ,A)→R and pv,pw as in (7.107), we
have

(a) h(pv,pw)≤ ‖v−w‖∞e‖v−w‖∞/2,
(b) −∫ log(pv/pw)pw ≤ ‖v−w‖2

∞e‖v−w‖∞(1+‖v−w‖∞), and
(c)

∫
(log(p/p0))

2p0 ≤ ‖v−w‖2
∞e‖v−w‖∞(1+‖v−w‖∞)2.

Proof The proof is basic but somewhat technical, see Exercise 7.3.3.

The following result shows that the resulting posteriors contract in Hellinger distance h
at the correct rates for Hölderian densities p0 ∈ Bα∞∞,α = k+ 1/2,k ∈N.

Theorem 7.3.9 Consider a prior � on probability densities on [0,1] arising from (7.107)
with Wk,k ∈ N ∪ {0}, equal to a kth integrated Brownian motion released at zero (as in
(2.82)). Suppose that we observe X1, . . . ,Xn i.i.d. from density p0 such that both p0 and
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582 Likelihood-Based Procedures

w0 = logp0 ∈ Bα∞∞([0,1]) for α = k+ 1/2. Then, for some large enough constant M,

�
(
p : h(p,p0) >Mn−α/(2α+1)|X1, . . . ,Xn

)→PN
f0 0 (7.108)

as n →∞.

Proof We apply Theorem 7.3.3 with εn = Mn−α/(2α+1). By Lemma 7.3.8, we can lower
bound the probability in (7.91) by

Pr(‖Wk −w0‖∞ ≤ εn).

Then, using Proposition 2.6.19 as in (7.102) with the L∞-norm, replacing the L2-norm, we
deduce from Corollary 2.6.30 the desired lower bound for the centred small-ball probability.
The approximation from the RKHS H= Bk+1

22 also satisfies, for 2j � n1/(2α+1) � nε2
n ,

‖πVj(p0)− p0‖∞ � ‖p0‖Bα∞∞
∑
l>j

2−jα ≤ εn, ‖πVj(p0)‖2
H � ‖p0‖2

Bα∞∞2j � nε2
n ,

so (7.91) follows.
We next choose Pn = {pw : w ∈Fn}, where Fn is as in (7.103), with εn = Mn−α/(2α+1). As

in (7.104), the Gaussian isoperimetric inequality verifies (7.92). In view of Corollary 4.3.38,
the εn L∞-metric entropy of a ball in Hk is of order (Mn/εn)

1/k, and this carries over to Fn

because we are only adding an L∞-ball of radius εn. By Lemma 7.3.8, this bound carries
over to the Hellinger metric entropy of Pn = {pw : w ∈Fn}. Then, recalling Mn �√

nεn, we
see that (

Mn

εn

)1/(α+1/2)

� n1/(2α+1) ≤ nε2
n ,

for M large enough, so Theorem 7.3.3 implies the conclusion.

7.3.3 Product Priors in Gaussian Regression

Consider in this subsection the Gaussian white noise model

dY(n)(t)= f (t)dt+ 1√
n

dW(t), t ∈ [0,1], (7.109)

from (7.82), where f ∈ L2 = L2([0,1]), and where we set σ = 1 for simplicity. As usual, we
denote by PY

f the distribution of dY = dY(n) and by E f = EY
f the corresponding expectation

operator.
Many common prior distributions � on L2 can be realised as a product measure on a

suitable basis {ek} or, what is the same, are laws of a random function
∑

kφkψk, where the
φk are independent real random variables. For instance, this is the case for any Gaussian
prior on L2 in view of Theorem 2.6.10, with φk i.i.d. N(0,1). Since the noise process
(gk) = (

∫
ψkdW) =W induces a Gaussian product measure N = ⊗kN(0,1) on the ψk too,

the posterior distribution �(·|Y) is then also a product probability measure on the ψk. In
the special case where the φk are themselves Gaussians, we can show that �(·|Y) is also
Gaussian – the so-called conjugate situation (see (7.115)).

In such product prior settings we can perform a direct coordinate-wise analysis of�(·|Y)
and obtain more precise results than through the general contraction theorems from earlier.
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7.3 Nonparametric Bayes Procedures 583

In particular, we will be able to obtain sharp results in loss functions that are not comparable
to the L2-distance, which appears to be difficult through the ‘testing methods’ from the
preceding section (see also the notes at the end of this chapter).

We investigate this in what follows for product priors defined on general bases of L2 that
satisfy the following condition. Note that we use double-indexed ‘wavelet notation’ but that
standard ‘single-indexed’ bases {ek} are admissible too in part(a).

Definition 7.3.10 Let S ∈N. By an S-regular basis {ψlk : l ∈L,k ∈Zl} of L2 with index sets
L⊂ Z,Zl ⊂ Z and characteristic sequence al, we shall mean any of the following:

(a) ψlk ≡ el is S-times differentiable with all derivatives in L2, |Zl| = 1, al =max(2, |l|), and
{el : l ∈L} forms an ortho-normal basis of L2.

(b) ψlk is S-times differentiable with all derivatives in L2, al = |Zl| = 2l, and {ψlk : l ∈L,k ∈
Zl} forms an ortho-normal basis of L2.

We consider priors of the form

f ∼�, �=
⊗

l∈L,k∈Zl

�lk,

defined on the coordinates of the ortho-normal basis {ψlk}, where �lk are probability
distributions with Lebesgue density ϕlk on the real line. Further assume, for some fixed
density ϕ on the real line, that

ϕlk(·)= 1

σl
ϕ

( ·
σl

)
∀k ∈Zl, with σl > 0.

To expedite notation, we shall write flk for 〈 f ,ψlk〉 when no confusion may arise, and we
recall that the white noise model (7.109) can be expressed on the basis {ψlk} as

Ylk ≡ Y(n)lk =
∫ 1

0
ψlkdY(n) = flk + 1√

n
glk, (7.110)

and we shall use this notation repeatedly in this section. The posterior distribution �(·|Y)
given observations Y= (Ylk) in the white noise model is then given in (7.86). When assuming
Y ∼ PY

f0
from some fixed f0, we have to require that f0,lk is in the interior of the support of

ϕlk for all k, l. This is in some sense the analogue of the ‘small-ball’ conditions from the
preceding section.

Let us summarise these hypotheses in the following assumption.

Condition 7.3.11 (a) For {ψlk} from Definition 7.3.10, consider product priors � arising
from the law of random series

f (x)=
∑
l∈L
σl

∑
k∈Zl

φlkψlk(x),

where the φlk are i.i.d. random variables from bounded density ϕ : R → R, and where∑
l,kσ

2
l <∞, ensuring f ∈ L2 almost surely.
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584 Likelihood-Based Procedures

(b) Consider data Y generated from equation (7.109) under a fixed function f0 ∈ L2 with
coefficients { f0,lk} = {〈 f0,ψlk〉}, and suppose that

(P1) For a finite constant M> 0,

sup
l∈L,k∈Zl

| f0,lk|
σl

≤ M.

(P2) For some τ >M and 0< cϕ ≤ Cϕ <∞,

ϕ(x)≤ Cϕ ∀x ∈R, ϕ(x)≥ cϕ ∀x ∈ (−τ ,τ),
∫
R

x2ϕ(x)dx<∞.

We allow for a rich variety of base priors ϕ, such as Gaussian, sub-Gaussian, Laplace,
most Student laws or, more generally, any law with positive continuous density and finite
second moment but also uniform priors with large enough support (−τ ,τ) ⊃ (−M,M). In
view of the results in Sections 4.3.4 and 4.3.5, we can interpret Condition (P1) as a Hölder
regularity condition on f0 through the decay of the wavelet coefficients of f0 relative to the
regularity of the prior, modelled by the sequence (σl).

A Contraction Result for Marginal Posterior Second Moments

We first provide a result on the contraction of the marginal coordinates of the posterior
distribution.

Theorem 7.3.12 Consider observations dY in white noise (7.109), and for a prior and f0

satisfying Condition 7.3.11, let �(·|Y) be the resulting posterior distribution. Then we have
for every fixed l,k, some constant 0< C<∞ independent of k, l,n and every n ∈N,

EY
f0

∫
( flk − f0,lk)

2d�( flk|Y)≤ Cmin(σ 2
l ,1/n).

Proof We decompose the index set L into

Jn := {l ∈L,
√

nσl ≥ S0}
and its complement J c

n , where S0 is a fixed positive constant. Setting

Blk(Y) :=
∫
( flk − f0,lk)

2d�( flk|Y),

we shall show that

sup
l∈Jn,k

EY
f0

Blk(Y)≤ C/n, sup
l∈J c

n ,k
σ−2

l EY
f0

Blk(Y)≤ C,

which implies the result. We write E = EY
f0

throughout the proof to ease notation and let
εlk =

∫
ψlkdW be a sequence of i.i.d. N(0,1) variables.

Using the independence structure of the prior and under PY
f0

, we have from (7.86) that

Blk(Y)=
∫
( flk − f0,lk)

2e−(n/2)( flk− f0,lk)
2+√

nεlk( flk− f0,lk)ϕlk( flk)d flk∫
e−

n
2 ( flk− f0,lk)

2+√
nεlk( flk− f0,lk)ϕlk( flk)d flk
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= 1

n

∫
v2e−(v2/2)+εlkv 1√

nσl
ϕ

(
f0,lk + n−1/2v

σl

)
dv

∫
e−(v2/2)+εlkv

1√
nσl
ϕ

(
f0,lk + n−1/2v

σl

)
dv

=:
1

n

Nlk

Dlk
(εlk).

Consider first the indices l ∈J c
n . Restricting the integral to [−√

nσl,
√

nσl], we see that

Dkl(εkl)≥
∫ √

nσl

−√
nσl

e−(v
2/2)+εlkv 1√

nσl
ϕ

(
f0,lk + n−1/2v

σl

)
dv.

To simplify the notation, we suppose that τ > M + 1. The argument of the function ϕ in
the preceding display stays in [−M + 1,M + 1] under (P1). Under assumption (P2), this
implies that the value of ϕ in the preceding expression is bounded from below by cϕ . Next,
applying Jensen’s inequality with the logarithm function with respect to dv/(2

√
nσl) on

[−√
nσl,

√
nσl], we obtain the lower bound

logDkl(εkl)≥ log(2cϕ)−
∫ √

nσl

−√
nσl

v2

2

dv

2
√

nσl
+ εlk

∫ √
nσl

−√
nσl

v
dv

2
√

nσl

= log(2cϕ)− (√nσl)
2/6.

Thus, Dkl(εkl) ≥ 2cϕe−(
√

nσl)
2/6, which is bounded away from zero by a fixed constant for

indices in J c
n .

To deal with the numerator, we have from Fubini’s theorem as before and then changing
variables back

ENlk =
∫
R

v2e−(v
2/2)E[eεlkv] 1√

nσl
ϕ

(
f0,lk + n−1/2v

σl

)
dv

=
∫
R

(√
nσlu−√

nσl
f0,lk

σl

)2

ϕ(u)du

≤ 2nσ 2
l

[
f 2
0,lk

σ 2
l

+
∫ +∞

−∞
u2ϕ(u)du

]
.

Thus, using Condition 7.3.11, this term is bounded on J c
n by a fixed constant times nσ 2

l ,
and as a consequence, there exists a fixed constant D independent of n,k, l such that
E(σ−2

l Blk(X))≤ D, for all k and all l ∈J c
n .

Now, about the indices in Jn, for such l,k, using (P1)–(P2), we can find L0> 0 depending
only on S0,M,τ such that, for any v in (−L0,L0), ϕ(( f0,lk + n−1/2v)/σl) ≥ cϕ . Thus, the
denominator Dlk(εlk) can be bounded from below by

Dlk(εlk)≥ cϕ

∫ L0

−L0

e−(v
2/2)+εlkv 1√

nσl
dv.

Moreover, the numerator can be bounded above by

Nlk(εlk)≤ Cϕ

∫
v2e−(v

2/2)+εlkv 1√
nσl

dv,

Putting these two bounds together leads to

Blk(εlk)≤ 1

n

Cϕ
cϕ

∫
v2e−(v2/2)+εlkvdv∫ L0

−L0
e−(v2/2)+εlkvdv

.
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This last quantity has a distribution independent of l,k. Let us thus show that

Q(L0)= E

[ ∫
v2e−(v−ε)2/2dv∫ L0

−L0
e−(v−ε)2/2dv

]
is finite for every L0 > 0, where ε ∼ N(0,1). In the numerator, we substitute u = v − ε.
Using the inequality (u+ ε)2 ≤ 2u2 +2ε2, the second moment of a standard normal variable
appears, and this leads to the bound

Q(L0)≤ CE

[
1+ ε2∫ L0

−L0
e−(v−ε)2/2dv

]
for some finite constant C> 0. Denote by g the density of a standard normal variable, by �
its distribution function and by �̄= 1−�. It is enough to prove that the following quantity
is finite

q(L0) :=
∫ +∞

−∞

(1+ u2)g(u)

�̄(u−L0)− �̄(u+L0)
du = 2

∫ +∞

0

(1+ u2)g(u)

�̄(u−L0)− �̄(u+L0)
du,

since the integrand is an even function. Using the standard inequalities

1√
2π

u2

1+ u2

1

u
e−u2/2 ≤ �̄(u)≤ 1√

2π

1

u
e−u2/2, u ≥ 1,

it follows that for any δ > 0, we can find Mδ > 0 such that,

(1− δ)1
u

e−u2/2 ≤√
2π�̄(u)≤ 1

u
e−u2/2, u ≥ Mδ.

Set Aδ = 2L0 ∨Mδ. Then, for δ < 1− e−2L0 , we deduce

q(L0)≤ 2
∫ Aδ

0

(1+ u2)g(u)

�̄(Aδ−L0)− �̄(Aδ+L0)
du

+ 2
√

2π
∫ +∞

Aδ

(u−L0)(1+ u2)
e(u−L0)

2/2g(u)

1− δ− e−2L0
du

≤ C(Aδ,L0)+ 2eL2
0/2

1− δ− e−2L0

∫ +∞

Aδ

u(1+ u2)e−L0udu<∞.

We conclude that supl∈Jn,k EY
f0
|Blk(Y)| = O(1/n), completing the proof.

Contraction Rates in L2-Norms

By summing the preceding bounds over all coordinates k, l and using Parseval’s identity, we
obtain an optimal L2-contraction result for the posterior second moments (and by Markov’s
inequality also for the posterior distribution itself). In fact, the result immediately generalises
to give contraction rates in general Sobolev norms too (see Exercise 7.3.5 and the proof of
Theorem 7.3.19).

Corollary 7.3.13 Set σl = |l|−1\2−γ or σl = 2−(γ+1/2)l depending on the chosen basis of type
either (a) or (b) from Definition 7.3.10. Suppose that the conditions of Theorem 7.3.12 are
satisfied. Then

EY
f0

∫
‖ f − f0‖2

2d�( f |Y)= O
(
n−2γ /(2γ+1)

)
.
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Moreover, denote by f̄ n := f̄ n(Y) := ∫
f d�( f |Y) the posterior mean. Then we also have

EY
f0
‖ f̄ n − f0‖2

2 = O
(
n−2γ /(2γ+1)

)
.

Proof For both types of bases, using Parseval’s identity and Theorem 7.3.12, we have

‖ f − f0‖2
2 �

∑
l

|Zl|(σ 2
l ∧ n−1)= O(n−2γ \2γ+1).

The second claim then follows from the Cauchy-Schwarz inequality

EY
f0
‖ f̄ n − f0‖2

2 = EY
f0

∑
l,k

[∫
( flk − f0,lk)d�( flk|Y)

]2

≤ EY
f0

∑
l,k

[∫
( flk − f0,lk)

2d�( flk|Y)
]

.

The preceding choice of σl entails a regularity condition on f0 through Condition (P1),
namely, supk | f0,lk| ≤ Mσl. If σl = 2−(γ+1/2)l and we use a wavelet basis of L2([0,1]) from
Section 4.3.4 or 4.3.5 in Definition 7.3.10, then this amounts to a standard smoothness
condition f0 ∈ Cγ ([0,1]), implying that the preceding rates are minimax optimal in view of
the results in Section 6.3.

A Sub-Gaussian Bound on the Posterior Marginal Coordinates

For low frequencies l, we can refine Theorem 7.3.12 to a sub-Gaussian estimate on the
posterior marginal coordinates. The following result foreshadows (and will be necessary to
prove) the exact Gaussian asymptotics for the posterior distribution to be derived in the next
section.

Proposition 7.3.14 Under the conditions of Theorem 7.3.12, let l∈N be such that
√

nσl ≥ S0

for some fixed constant 0 < S0 <∞. Then, for some fixed positive constant C = C(S0)

independent of l,k,n and every t ∈R,n ∈N, we have

EY
f0

E�
(
et
√

n〈 f −Y,ψlk〉|Y
)
≤ Cet2/2. (7.111)

As a consequence, we also have, for some 0< C′ <∞ and every n ∈N,

EY
f0

E�

[
max
k∈Zl

|〈 f − f0,ψlk〉||Y
]
≤ C′

√
log(1+|Zl|)

n
. (7.112)

Proof We have from (7.86) that under Y ∼ PY
f0

, with εlk ∼i.i.d. N(0,1) and substituting
v =√

n( flk − f0,lk),

E
(
et
√

n〈 f −Y,ψlk〉|Y(n)
)

=
∫

exp
{
t
√

n( flk − f0,lk)− tεlk +√
nεlk( flk − f0,lk)− n

2
( flk − f0,lk)

2
}
ϕlk( flk)d flk∫

exp
{√

nεlk( flk − f0,lk)− n

2
( flk − f0,lk)2

}
ϕlk( flk)d flk
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= e−tεlk

∫
exp{(t+ εlk)v− v2/2}ϕ

(
f0,lk + v/

√
n

σl

)
dv

∫
exp{εlkv− v2/2}ϕ

(
f0,lk + v/

√
n

σl

)
dv

.

Now, by Condition 7.3.11(b) and hypothesis on l, we have

inf
v∈[−L0,L0]

ϕ

(
f0,lk + v/

√
n

σl

)
≥ c,

for some fixed positive constants L0,c. Using that ϕ is also bounded, we see that the last
expression in the preceding display is bounded by a constant multiple of

e−tεlk

∫
etv−(v−εlk)2/2dv∫ L0

−L0
e−(v−εlk)2/2dv

=
∫

etu−u2/2du∫ L0
−L0

e−(v−εlk)2/2dv
=

√
2πet2/2∫ L0

−L0
e−(v−εlk)2/2dv

.

The expectation of the inverse of this integral is bounded by a fixed constant, arguing as at
the end of the proof of Theorem 7.3.12, so the first bound of the proposition follows.

The second inequality of the proposition is obvious under Condition 7.3.10(a) as then
Zl is a singleton. In case (b), we have |Zl| = 2l, so, by a standard bound for maxima of
sub-Gaussian random variables (as in Section 2.3, using Lemma 2.3.2), the second bound
follows too, noting that we can decompose

〈 f − f0,ψlk〉 = 〈 f − dY,ψlk〉+ n−1/2〈ψlk,dW〉,
the sum of two sub-Gaussian processes.

Contraction Rates in L∞-Distance

Consider the case of a uniform wavelet prior �γ ,B, where the φlk in Condition 7.3.11 are
drawn from a uniform U(−B,B) distribution on the interval [−B,B],B> 0, based on basis
functions ψlk from Definition 7.3.10. We choose

σl = 2−l(γ+ 1
2 ), γ > 0. (7.113)

Recalling the results from Sections 4.3.4 and 4.3.5, we see that this models a function that
lies in a Hölder-type space

Cγ ([0,1])= Bγ∞∞([0,1])=
{

f : ‖ f ‖Cγ = sup
k,l

2l(γ+1/2)|〈 f ,ψlk〉|<∞
}

and has Cγ -norm no larger than B (Note the slight abuse of the Cγ notation in this
subsection.). Such a prior hence draws a natural random function from a fixed Hölder ball.
Assuming that the observations are generated from a fixed f0 satisfying ‖ f0‖Cγ < B, we
see that Condition 7.3.11 applies and obtain from Corollary 7.3.13 the L2-contraction rate
n−γ /(2γ+1) for the posterior distribution about f0. We now refine this result and prove a
minimax optimal contraction rate in the uniform norm over the given Hölder ball.

Proposition 7.3.15 Consider data generated from equation (7.109) under a fixed function
f0 satisfying ‖ f0‖Cγ ([0,1]) < B. For the uniform wavelet prior �γ ,B from before (7.113) with
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resulting posterior distribution �γ ,B(·|Y), we then have

EY
f0

E�γ ,B [‖ f − f0‖∞|Y] ≤ M

(
logn

n

)γ /(2γ+1)

,

for some constant 0<M<∞.

Proof Choose jn such that 2jn = (n/ logn)1/(2γ+1), and note that
√

nσl ≥
√

logn ≥ S0 for
l ≤ jn. We can estimate

‖ f − f0‖∞ �
∑
l≤jn

√
2l

n
max

k

√
n|〈 f − f0,ψlk〉|+

∑
l>jn

2l/2 max
k

|〈 f − f0,ψlk〉|.

Using (7.112), the first term has EY
f0
�γ ,B [·|Y]-expectation of order∑

l≤jn

√
2ll

n
= O

(√
2jn jn

n

)
= O

(
logn

n

)γ /(2γ+1)

.

Since prior and posterior and hence also f − f0 concentrate on a fixed ball in Cγ ([0,1]), the
second term is less than or equal to a constant multiple of∑

l>jn

2−lγ = O(2−jnγ )= O

(
logn

n

)γ /(2γ+1)

in view of the wavelet definition of the Hölder norm, completing the proof.

For priors that have support in the whole Hölder space, the control of the high frequencies
in the preceding theorem is not as simple. Under conditions on the exact tail of ϕ we
can obtain supnorm rates too. Perhaps the most interesting case is where ϕ is a Gaussian
distribution, where we can make an explicit conjugate analysis. For the general case, we
give some references in the notes at the end of this chapter.

The Gaussian Conjugate Situation

Consider next the situation where the prior � on L2 is defined on a wavelet basis from
Definition 7.3.10, part(b), as

f =
∑

l

σl

∑
k

glkψlk,
∑

l,k

σ 2
l <∞, (7.114)

where the glk ∼i.i.d. N(0,1), corresponding to a random wavelet series f ∈ L2 as in the
preceding subsection with the uniform random variables replaced by i.i.d. Gaussians.

Given an observation dY in (7.109), one shows, using the conjugacy of Gaussian random
variables in each coordinate l,k (see Exercise 7.3.4), that the posterior distribution�(·|Y) is
also a Gaussian measure on L2 which is given, conditional on Y = (Ylk), by the law of the
random wavelet series

f |Y =
∑

l,k

[
σ 2

l

σ 2
l + 1/n

ylk +
(

σ 2
l

nσ 2
l + 1

)1/2

ḡlk

]
ψlk (7.115)

= E�( f |Y)+
∑

l,k

(
σ 2

l

nσ 2
l + 1

)1/2

ψlkḡlk, (7.116)
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where the ḡlk variables are i.i.d. N(0,1) independent of the ylk =
∫ 1

0 ψlkdY. Explicit analysis of
this Gaussian posterior distribution gives the following contraction result in the supremum
norm:

Theorem 7.3.16 Let � be the law of the random function f from (7.114), where

σl = 2−l(γ+1/2)l−1/2, γ > 0,

and let �(·|Y) be the posterior distribution given observations Y in (7.109). If Y ∼ PY
f0

for
some fixed f0 ∈ Cγ ([0,1]), then there exist fixed constants C,M0 <∞ such that, for every
M0 ≤ M<∞ and for all n ∈N,

EY
f0
�

(
f : ‖ f − f0‖∞ >M

(
logn

n

)γ /(2γ+1) ∣∣Y)≤ n−C2(M−M0)
2
. (7.117)

Proof Let us write

εn =
(

logn

n

)γ /(2γ+1)

throughout the proof. Under PY
f0

, we have

EY
f0
�(‖ f − f0‖∞ >Mεn|Y)

= Pr

{∥∥∥∥∑
l,k

[ −1/n

σ 2
l + 1/n

〈 f0,ψlk〉+ σ 2
l√

n(σ 2
l + 1/n)

glk +
(

σ 2
l

nσ 2
l + 1

)1/2

ḡlk

]
ψlk

∥∥∥∥
∞
>Mεn

}
(7.118)

= Pr
{∥∥∥EY

f0
(E�( f |Y)− f0)+G

∥∥∥
∞
>Mεn

}
,

where G is the centred Gaussian process

G(t)=
∑

l,k

[
σ 2

l√
n(σ 2

l + 1/n)
glk +

(
σ 2

l

nσ 2
l + 1

)1/2

ḡlk

]
ψlk(t), t ∈ [0,1].

We will apply Theorem 2.5.8 to the probability in (7.118), and for this we need to
bound ‖EY

f0
(E�( f |Y) − f0)‖∞, E‖G‖∞ and ‖E(G2(·))‖∞. Choose Jn such that 2Jn �

(n/ logn)1/(2γ+1).
First, since f0 ∈ Cγ ([0,1]) and

∥∥∑
k |ψlk|

∥∥
∞ ≤ C2l/2, we obtain∥∥∥EY

f0
(E�( f |Y)− f0)

∥∥∥
∞
=
∥∥∥∥∥∑

l,k

−1/n

σ 2
l + 1/n

〈 f0,ψl,k〉ψlk

∥∥∥∥∥
∞

�
∑

l,k

|ψlk|2
−l(γ+1/2)

nσ 2
l + 1

�
(∑

l≤Jn

2−lγ

nσ 2
l

+
∑
l>Jn

2−lγ

)

�
(

logn

n

)γ /(2γ+1)

.
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Second, to bound E‖G‖∞, recall from Section 2.3 that for any sequence of centred normal
random variables Zj,

E max
1≤j≤N

|Zj| ≤ C
√

logNmax
j≤N
(EZ2

j )
1/2, (7.119)

where C is a universal constant. Therefore, using σ 2
l
<∼ n−1 for l≥ Jn and 1/n�σ 2

l otherwise,

E‖G‖∞ = E

∥∥∥∥∥∑
l,k

[
σ 2

l√
n(σ 2

l + 1/n)
glk +

(
σ 2

l

nσ 2
l + 1

)1/2

ḡlk

]
ψlk

∥∥∥∥∥
∞

�
∑

l

2l/2Emax
k≤2l

|glk|
(

σ 4
l

n(σ 2
l + 1/n)2

+ σ 2
l

nσ 2
l + 1

)1/2

�
∑

l

(l2l)1/2
(

σ 4
l

n(σ 2
l + 1/n)2

+ σ 2
l

nσ 2
l + 1

)1/2

�
(∑

l≤Jn

√
2ll

n
+
∑
l>Jn

√
2llnσ 2

l +
∑
l>Jn

√
2llσ 2

l

)

�
(√

2JnJn

n
+ 2−Jnγ

)
≤ D

(
logn

n

)γ /(2γ+1)

. (7.120)

Finally,

EG2(t)=
∑

l,k

(
σ 4

l

n(σ 2
l + 1/n)2

+ σ 2
l

nσ 2
l + 1

)
ψ2

lk(t)≤ C

(
2Jn

n
+ 2−Jn(2γ+1)

)
≤ C3

2Jn

n
. (7.121)

Summarising the preceding estimates and combining them with Theorem 2.5.8 give, for
suitable constants C̄1, C̄2,

Pr
{∥∥∥EY

f0
(E�( f |Y)− f0)+G

∥∥∥
∞
>Mεn

}
≤ Pr

{
‖G‖∞−E‖G‖∞ >Mεn −

∥∥∥EY
f0
(E�( f |Y)− f0)

∥∥∥
∞
−E‖G‖∞

}
≤ Pr

{‖G‖∞−E‖G‖∞ > (M− C̄1 − C̄2)εn

}
≤ exp

(
− (M− C̄1 − C̄2)

2ε2
n

C32Jn/n

)
. (7.122)

Taking into account that ε2
n � 2JnJn/n completes the proof.

7.3.4 Nonparametric Bernstein–von Mises Theorems

A classical result in the theory of parametric statistical models is the Bernstein–von
Mises (BvM) theorem: it states that the posterior is approximately distributed as a normal
distribution, centred at the maximum likelihood (or, in fact, at any) efficient estimator and
with covariance attaining the Cramér-Rao information bound. Remarkably, this is true under
mild assumptions on the prior, effectively only requiring that the prior charges a neighbour-
hood of the true parameter point that generated the observations with positive probability.
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592 Likelihood-Based Procedures

A consequence is that posterior-based inference is asymptotically equivalent to standard
frequentist inference procedures, including confidence sets and critical regions for tests.
This provides a frequentist justification of the Bayesian approach to statistical inference that
does not rely on any subjective belief in the prior distribution.

In this section we investigate the phenomena behind the Bernstein–von Mises theorem
in the infinite-dimensional setting. The geometry of the space in which one can expect a
Bernstein–von Mises theorem turns out to be of importance. In standard �2 � L2-spaces,
an analogue of the Bernstein–von Mises theorem can be shown not to hold true even in
basic settings (see the notes at the end of this chapter). However, we shall show that for
some other geometries that resemble topologies weaker than �2 � L2, Bernstein–von Mises
theorems hold true. The results we obtain are in some sense analogues of the asymptotic
normality results for nonparametric likelihood estimators obtained in the first part of this
chapter (Theorems 7.2.14 and 7.2.20). We shall concentrate on the situation of product
priors in Gaussian models treated in the preceding section to lay out the main ideas. Some
extensions and related results in sampling models are discussed in the notes at the end of
this chapter.

The BvM Phenomenon for Finite-Dimensional Subspaces

We start with the easiest and, of course, in view of the classical theory from parametric
models not at all surprising situation where one can expect a BvM theorem – the case of fixed
finite-dimensional projection subspaces. Understanding the finite-dimensional situation is
helpful to develop the main intuitions behind BvM-type results and at any rate will be needed
as an ingredient of the proofs for the nonparametric settings considered later.

For � any prior Borel probability distribution on L2, the posterior distribution �n ≡
�(·|Y) based on observing dY in white noise (7.109) defines a random probability measure
on L2. Let V be any of the finite-dimensional projection subspaces of L2 spanned by the ψlk

from Definition 7.3.10, equipped with the L2-norm, and suppose that� is a product measure
on the coordinates {ψlk}. Let πV denote the projection of any infinite vector f = ( flk) onto
V. For z = (zlk), define the transformation

Tz ≡ Tz,V : f �→√
n πV( f − z),

and consider the image measure �n ◦ T−1
z of the posterior measure under Tz. The

finite-dimensional space V carries a natural Lebesgue product measure on it.

Condition 7.3.17 Suppose that � is a product measure on the span of the {ψlk} and that
� ◦π−1

V has a Lebesgue-density d�V in a neighbourhood of πV( f0) that is continuous and
positive at πV( f0). Suppose also that for every δ > 0 there exists a fixed L2-norm ball C=Cδ
in V such that, for n large enough, EY

f0
(�(·|Y) ◦T−1

f0
)(Cc) < δ.

This condition requires that the projected prior have a continuous density at πV( f0) and
that the image of the posterior distribution under the finite-dimensional projection onto V
concentrate on a 1/

√
n-neighbourhood of the projection πV( f0) of the true f0 onto V.

For the main result of this section, denote by ‖ · ‖TV the total variation norm on the
space of finite signed measures on V. We denote the observations dY and white noise dW as
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infinite vectors

Y= (Ylk)=
(∫

ψlkdY : k ∈Zl, l ∈L
)

, W=
(∫

ψlkdW : k ∈Zl, l ∈L
)

(7.123)

in the following theorem. We note that a draw from the shifted posterior random measure
�(·|Y) ◦ T−1

Y is then simply
√

n(πV( f ) − πV(Y)), where f is drawn from the posterior.
The following result says that this random variable is approximately a standard Gaussian
measure N(0, I) on V with diagonal covariance equal to the identity I and that this
approximation holds, with high probability, in the strong sense of total variation distance. It
is a version of the classical parametric Bernstein–von Mises theorem in a finite-dimensional
Gaussian white noise model.

Theorem 7.3.18 Consider Y ∼ PY
f0

generated in white noise (7.109) under a fixed function
f0 ∈ L2. Assume Condition 7.3.17. Then we have, as n →∞,

‖�(·|Y) ◦T−1
Y −N(0, I)‖TV →PY

f0 0.

Proof Under PY
f0

we have Y = f0 + n−1/2W . Moreover, WV = πV(W) is a standard

Gaussian variable on V, and if �̃n,V = �n ◦ T−1
f0,V, then it suffices to prove that ‖�̃n,V −

N(WV, I)‖TV converges to zero in PY
f0

-probability. In the following, denote by λ the Lebesgue
measure on V and by λC its restriction to a measurable subset C of V.

Define �̃
C

n,V, the posterior distribution �̃n,V based on the prior restricted to a measurable
set C and renormalised; that is, for B a Borel subset of V and since � is a product measure,

�̃
C

n,V(B)=
∫

B e−‖h‖2/2+〈h,WV〉d�̃
C

V(h)∫
e−‖g‖2/2+〈g,WV〉d�̃

C

V(g)
,

where �̃V =� ◦T−1
f0,V, and where μC(B)= μ(B∩C)/μ(C), for any probability measure μ.

A simple computation shows that

EY
f0
‖�̃n,V − �̃C

n,V‖TV ≤ 2EY
f0
�̃n,V(C

c) < 2δ,

using Condition 7.3.17 for the second inequality. Likewise, if NC(WV, I) is the restricted
and renormalised normal distribution, ‖N(WV, I)−NC(WV, I)‖TV<δ almost surely, for every
δ > 0 and for C = Cδ a ball of large enough radius. It thus suffices to prove that

‖�̃C

n,V −NC(WV, I)‖TV →PY
f0 0.

The total variation distance ‖�̃C

n,V −NC(WV, I)‖TV is bounded by twice∫ (
1− dNC(WV, I)(h)

1Ce−‖h‖2/2+〈h,WV〉d�̃V(h)/
∫

C e−‖g‖2/2+〈g,WV〉d�̃V(g)

)+
d�̃

C

n,V(h)

≤
∫ ∫ (

1− e−‖g‖2/2+〈g,WV〉d�̃V(g)dNC(WV, I)(h)

e−‖h‖2/2+〈h,WV〉d�̃V(h)dNC(WV, I)(g)

)+
dNC(WV, I)(g)d�̃

C

n,V(h)

≤ c
∫ ∫ (

1− d�̃V(g)

d�̃V(h)

)+
dλC(g)d�̃

C

n,V(h),
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where we used (1− EY)+ ≤ E(1− Y)+ in the first inequality, and where the constant c ≡
c(WV) in the preceding display is an upper bound for the density of NC(WV, I)(g)with respect
to λC. This constant is random but bounded in PY

f0
-probability since WV is tight.

Now note that the preceding display is random through WV only. Thus, considering
convergence to zero under PY

f0
amounts to considering convergence to zero under the

marginal distribution PY
f0,V on the subspace V. Under PY

f0,V, the variable WV has law N(0, I).
We have to take the expectation of the display with respect to this law, which we denote by
PWV . That is, dPWV has Lebesgue density proportional to e−‖w‖2/2dw on V.

Define, for c(V) a normalising constant,

dPY
C(w)= c(V)

(∫
e−‖k−w‖2/2d�̃

C

V(k)

)
dλ(w) (7.124)

=
(∫

e−‖k‖2/2+〈k,w〉d�̃
C

V(k)

)
dPWV(w),

a probability measure with respect to which dPWV is contiguous (see Exercise 7.3.6) so that
it suffices to show convergence to zero under dPY

C instead of dPWV . The PY
C-expectation of

the quantity in the preceding but one display equals the expectation of the integrand under

d�̃
C

n,V(h)dPY
C(w)dλC(g)= c(V)e−‖h−w‖2/2dwd�̃

C

V(h)dλC(g),

the latter identity following from Fubini’s theorem and∫
C

e−(‖k‖2/2)+〈k,w〉 e−(‖h‖2/2)+〈h,w〉d�̃
C

V(h)∫
e−(‖m‖2/2)+〈m,w〉d�̃

C

V(m)
d�̃

C

V(k)e
−(‖w‖2/2)dw = e−(‖h−w‖2/2)dwd�̃

C

V(h).

We thus can obtain the bound, for n large enough and using that d�V is continuous at and
thus bounded near πV( f0),

c′
∫ ∫ ∫ (

1− d�̃V(g)

d�̃V(h)

)+
e−‖h−w‖2/2dwdλC(g)dλC(h)

= c′′
∫ ∫ (

1− d�V(πV( f0)+ g/
√

n)

d�V(πV( f0)+ h/
√

n)

)+
dλC(g)dλC(h),

which converges to zero by dominated convergence and continuity of d�V at πV( f0).

Bernstein–von Mises Theorems in Negative-Order Sobolev Spaces

Recalling the results from Section 4.4.1, we now consider negative-order Sobolev spaces as
a genuinely infinite-dimensional framework for BvM-type results. For basis functions ψlk

from Definition 7.3.10, define

Hs,δ
2 ≡

⎧⎨⎩ f : ‖ f ‖2
Hs,δ

2
:=

∑
l∈L

a2s
l

(logal)2δ

∑
k∈Zl

|〈ψlk, f 〉|2 <∞
⎫⎬⎭ , δ ≥ 0,s ∈R,

which are Hilbert spaces satisfying the (compact) imbeddings Hr
2 ⊂ Hr,δ

2 ⊂ Hs
2 for any real

valued s < r. In particular, they contain L2 for s < 0, and arguing as in Section 4.4.1, the
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white noise process W = (∫ 1
0 ψlkdW) defines a tight Gaussian Borel probability measure

N in

H(δ)≡ H−1/2,δ
2 ,

for any δ > 0, and for f0 ∈ L2, and then so does Y = (∫ 1
0 ψlkdY). Similarly, any prior

and posterior distribution on L2 defines a Borel probability measure on H(δ) simply by
the compact embedding L2 ⊂ H(δ).

The following theorem shows that a Bernstein–von Mises theorem holds true in the
space H(δ) for the product priors considered in the preceding section. Let βS denote the
bounded Lipschitz metric for weak convergence of probability measures in a metric space S
(cf. Theorem 3.7.24).

Theorem 7.3.19 Suppose that the prior � and f0 satisfy Condition 7.3.11 and that ϕ is
continuous at f0,lk for all k, l. Let �(·|Y) denote the posterior distribution from observing Y
in white noise (7.82). Let τ : H(δ)→H(δ) be the mapping f �→√

n( f −Y), let�(·|Y)◦τ−1

be the image of the posterior measure under τ (i.e., the law of
√

n( f −Y)) and let N be the
Gaussian measure on H(δ) which is the law of W. Then

β
(
�(·|Y) ◦ τ−1,N

)→PY
f0 0

as n →∞, where β is the BL metric for weak convergence in the space H(δ).

Proof A first observation is that from Theorem 7.3.12 we deduce for every δ′ > 1/2 and
some D> 0 that

EY
f0

E�
[‖ f − f0‖2

H(δ′)|Y
]≤∑

l,k

a−1
l (logal)

−2δ′EY
f0

E�
[
( flk − f0,lk)

2|Y]≤ D/n, (7.125)

which implies also, for V a fixed finite-dimensional space as in Condition 7.3.17, by
continuity of the projection πV : H(δ′)→ V, the bound

EY
f0

E�
[‖ f − f0‖2

V|Y
]≤ D′/n, (7.126)

for some D′ > 0. To prove the theorem, it is enough to show that for every ε > 0 there exists
N = N(ε) large enough such that, for all n ≥ N,

PY
f0

(
β(�n ◦ τ−1,N ) > 4ε

)
< 4ε.

Fix ε > 0 and let VJ be the finite-dimensional subspace of L2 spanned by {ψlk : k ∈ Zl, l ∈
L, |l| ≤ J}, for an integer J. Writing �̃n for�(·|Y) ◦ τ−1, we see from the triangle inequality
that

β(�̃n,N )≤ β(�̃n,�̃n ◦π−1
VJ
)+β(�̃n ◦π−1

VJ
,N ◦π−1

VJ
)+β(N ◦π−1

VJ
,N ).

The middle term converges to zero in PY
f0

-probability for every VJ, by Theorem 7.3.18,
using that Condition 7.3.17 can be checked by (7.126) and hypothesis on ϕ, and since the
total variation distance dominates β. Next,

β2(N ◦π−1
VJ

,N )≤ E‖πVJ(W)−W‖2
H(δ) =

∑
l>J,k

a−1
l

(logal)2δ
→ 0
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as J →∞, so the last term in the preceding decomposition can be made as small as desired
for J large.

Finally, we handle the first term in the preceding decomposition corresponding to
approximate finite-dimensional concentration of the posterior measures. For Q> 0, consider
the random subset D of H(δ′) defined as

D = {g : ‖g+W‖2
H(δ′) ≤ Q}.

Under PY
f0

, we have �̃n(D)=�(Dn|Y), where

Dn = { f : ‖ f − f0‖2
H(δ′) ≤ Q/n}.

Using (7.125) and Markov’s inequality yields PY
f0
(�̃n(Dc) > ε/4)≤ ε for Q large enough.

If Xn ∼ �̃n (conditional on Y), then πVJ(Xn)∼ �̃n ◦π−1
VJ

. For F any bounded function on
H(δ) of Lipschitz norm less than 1,∣∣∣∣∫

H(δ)
Fd�̃n −

∫
H(δ)

Fd(�̃n ◦π−1
VJ
)

∣∣∣∣= ∣∣E�̃n

[
F(Xn)−F(πVJ(Xn))

]∣∣
≤ E�̃n

[‖Xn −πVJ(Xn)‖H(δ)1D(Xn)
]+ 2�̃n(D

c),

where E�̃n
denotes expectation under �̃n (given dY). With xlk = 〈Xn,ψlk〉,

E�̃n

[‖Xn −πVJ(Xn)‖2
H(δ)1D(Xn)

]= E�̃n

[∑
l>J

a−1
l (logal)

−2δ
∑

k

|xlk|21D(Xn)

]

= E�̃n

[∑
l>J

a−1
l (logal)

2δ′−2δ−2δ′
∑

k

|xlk|21D(Xn)

]
≤ (logaJ)

2δ′−2δE�̃n

[‖Xn‖2
H(δ′)1D(Xn)

]≤ 2(logaJ)
2δ′−2δ

[
Q+‖W‖2

H(δ′)
]
.

From the definition of β, we deduce that

β(�̃n,�̃n ◦π−1
VJ
)≤ 2�̃n(D

c)+√
2(logaJ)

δ′−δ
√

Q+‖W‖2
H(δ′).

Since aJ → ∞ as J → ∞, we conclude that PY
f0
(β(�̃n,�̃n ◦ π−1

VJ
) > ε) < 2ε, for J large

enough, combining the preceding deviation bound for �̃n(Dc) and that ‖W‖H(δ′) is bounded
in probability. This concludes the proof.

The proof of the preceding theorem gives in fact enough uniform integrability that
convergence of moments (Bochner integrals)

√
nE�[ f −Y|Y]→PY

f0 EN in H(δ) ⇐⇒ ‖ f̄ n −Y‖H(δ) = oPY
f0
(1/

√
n) (7.127)

occurs; see Exercise 7.3.8 for details.

Bernstein–von Mises Theorems in Multiscale Spaces

We now show that a Bernstein–von Mises theorem holds also in the multiscale spaces
M0(w) from Section 5.2.2 if the coordinate densities ϕ of the product prior are
sub-Gaussian. Any such product prior takes values in M0(w), and from the results in
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Section 5.2.2, it follows that the random variables W = (∫ ψlkdW),Y = (Ylk =
∫
ψlkdY)

define Gaussian Borel probability measures on M0(w). Likewise, any probability measure
on L2 also defines a probability measure on M0(w).

Theorem 7.3.20 Consider a prior� and f0 on a wavelet basis {ψlk} from Definition 7.3.10,
part (b), that satisfy Condition 7.3.11 with σl = 2−l(α+1/2), for some α > 0, and where ϕ
satisfies in addition that

(a) ϕ(x)≤ Ce−a|x|2 ∀x ∈R for some finite positive constants a,C and
(b) ϕ is continuous at 〈 f0,ψlk〉 for all k, l.

Let �(·|Y) denote the posterior distribution from observing Y in white noise (7.109). Let
τ :M0(w)→M0(w) be the mapping f �→√

n( f −Y), let�(·|Y)◦ τ−1 be the image of the
posterior measure under τ and let N be the Gaussian measure on M0(w) which is the law
of W. Then, if w is admissible, we have

β
(
�(·|Y) ◦ τ−1,N

)→PY
f0 0,

as n →∞, where β is the BL metric for weak convergence in M0(w).

Proof Main ideas and notation are as in the proof of Theorem 7.3.19, although stronger
estimates on the marginal posterior coordinates are required to obtain a similar result in the
multiscale space M0(w). For πVj the projection operator onto Vj and �̃n ≡�(·|Y)◦ τ−1, we
decompose

β(�̃n,N )≤ β
(
�̃n,�̃n ◦π−1

VJ

)
+β

(
�̃n ◦π−1

VJ
,N ◦π−1

VJ

)
+β (N ,N ◦π−1

VJ

)
.

The second term converges to zero for every J ∈ N by Theorem 7.3.18, as in the proof of
Theorem 7.3.19. The third term can be made as small as desired for admissible w and J large
enough using

β(N ◦π−1
VJ

,N )≤ E‖πVJ(W)−W‖M0(w) ≤ sup
l>J

√
l

wl
Esup

k,l

|W(ψlk)|√
l

and since one shows, arguing as in Theorem 4.4.4b) and using also Theorem 2.1.20 a), that

Esup
k,l

|W(ψlk)|/
√

l<∞. (7.128)

Likewise, for the first term in the preceding decomposition, if f ∼�(·|Y) conditional on
Y, then it suffices to bound

EY
f0

E�(‖√n(id−πVJ)( f −Y)‖M(w)|Y)

≤√
nsup

l>J

√
l

wl
EY

f0
E�

[
sup
l>J

maxk |〈 f −Y,ψlk〉|√
l

|Y
]

. (7.129)

The result thus follows for admissible w by choosing J large enough if we can bound the
iterated expectation by a fixed constant divided by 1/

√
n. To achieve the latter, let j= jn ∈N

be such that

σ−1
j = 2j(α+1/2) �√

n, σl �
1√
n
∀l> j,
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and consider the decomposition in M0(w), under PY
f0

,
√

n( f −Y)=√
n(πVj( f )−πVj(Y))+

√
n( f −πVj( f ))

+√
n(πVj( f0)− f0)+ (πVj(W)−W)

= I+ II+ III+ IV.

We bound the multiscale norm from (7.129) for each of the terms I–IV separately and note
that the term IV is bounded as in (7.128).

(III) This term is nonrandom, and we have, by definition of σl and Condition 7.3.11, for
some constant 0<M<∞,

√
nsup

l>j,k
l−1/2 |〈 f0,ψlk〉|� M

√
nsup

l>j
l−1/2σl � M/

√
j.

(II) For E the iterated expectation under PY
f0

and �(·|Y), we can bound

Esup
l>j,k

l−1/2|〈 f ,ψlk〉| ≤
∑
l>j

l−1/2Emax
k

|〈 f ,ψlk〉|.

We are to bound the Laplace transform E[es flk] for s= t,−t. Both cases are similar, so we
focus on s = t,

E[et flk] = E

∫
et( f0,lk+(v/

√
n))e−(v2/2)+εlkv 1√

nσl
ϕ
(

f0,lk + (v/√n))
)
dv∫

e−(v2/2)+εlkv
1√
nσl
ϕ
(
( f0,lk + (v/√n))

)
dv

=: E
Nlk(t)

Dlk
.

To bound the denominator Dlk from below, we apply the same technique as in the proof
of Theorem 7.3.12. We first restrict the integral to (−√

nσl,
√

nσl) and notice that over this
interval the argument of ϕ lies in a compact set; hence the function ϕ can be bounded below
by a constant, using Condition 7.3.11. Next, we apply Jensen’s inequality to obtain, for
l ≥ j, that Dlk ≥ e−C. To bound the numerator Nlk(t), setting w = f0,lk + v/

√
n and using the

subgaussianity of ϕ, we see that

ENlk ≤
∫

etσlwE(e−
n
2 (wσl− f0,lk)

2+εlk
√

n(wσ l− f0,lk))ϕ(w)dw

≤
∫

etσlwϕ(w)dw ≤ ed(σlt)
2
,

for some d> 0. We conclude that, for some constant D> 0 and all t ∈R,

E[et flk] ≤ Deσ
2
l t2/D,

so, from Lemmas 2.3.2 and 2.3.4, we deduce that

Emax
k

| flk|� σll
1/2.

This gives the overall bound∑
l>j

2−l(1/2+α) ≤ 2−j(1/2+α) = O(1/
√

n).

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.008
http:/www.cambridge.org/core


7.3 Nonparametric Bayes Procedures 599

(I) For the frequencies l ≤ jn, we have from Proposition 7.3.14 the sub-Gaussian bound

EY
f0

E(et
√

n( flk−Ylk)|X)≤ Cet2/2. (7.130)

Using the results from Section 2.3 and writing Pr for the law with expectation E f0E(·|Y), we
have for all v> 0 and universal constants C,C′ that

Pr(
√

n| flk −Xlk|> v)≤ C′e−Cv2
.

We then bound, for M a fixed constant,

EY
f0

E

(
sup
l≤j

l−1/2 max
k

√
n| flk −Ylk||Y

)
≤ M+

∫ ∞

M
Pr

(
sup
l≤j,k

l−1/2 max
k

√
n| flk −Ylk|> u

)
du.

The tail integral can be further bounded as follows:∑
l≤j,k

∫ ∞

M
Pr
(√

n| flk −Ylk|>
√

lu
)

du ≤
∑
l≤j

2l

∫ ∞

M
e−Clu2

du �
∑
l≤j

2le−CM2l ≤ const,

for M large enough. This completes the proof.

Again, the proof of the preceding theorem gives in fact enough uniform integrability that
convergence of moments (Bochner integrals)

√
nE�[ f −Y|Y]→PY

f0 EN in M0(w) ⇐⇒ ‖ f̄ n −Y‖M0(w) = oPY
f0
(1/

√
n) (7.131)

occurs; see Exercise 7.3.8 for details.

Some Useful Facts about Weak Convergence in Probability of Posterior Measures

In Theorems 7.3.19 and 7.3.20 we have established weak convergence of the shifted and
scaled random posterior measures �̃n = �(·|Y) ◦ τ−1 towards the Gaussian measure N
induced by a white noise W on H(δ) and M0(w). Unlike in the classical finite-dimensional
Bernstein–von Mises theorem (e.g., Theorem 7.3.18), however, we have not established
convergence in total variation distance but only in the BL metric for weak convergence. In
statistical applications, this can be a drawback since one often needs

sup
B∈B

|�̃n(B)−N (B)|→PY
f0 0 (7.132)

for sufficiently large classes of measurable sets B. For instance, in the next subsection we
will want to take B = Cn a credible set of posterior measure �̃n(Cn) = 1 − α,0 < α <
1, and the randomness of such Cn can be accommodated by taking a suitable supremum
over measurable sets. Total variation convergence in H(δ),M0(w) would imply that (7.132)
holds for all Borel sets of the respective space, which appears to be asking for too much in
the infinite-dimensional setting. For instance, in the Gaussian conjugate situation (7.115),
closeness of the posterior distribution to N in total variation distance would force these
Gaussian measures to be eventually absolutely continuous to each other, which for σl → 0
as l →∞ cannot be the case.

There is, however, still uniformity as in (7.132) for large classes B of sets. The idea is
that weak convergence of measures implies uniformity in the family B of sets that have a
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uniformly regular boundary for the limiting measure. For a Borel subset A of a metric space
(S,d), define

∂εA = {x ∈ A : d(x,A) < ε,d(x,Ac) < ε},
where as usual d(x,A) = infy∈A d(x,y). The proof of the following result consists of an
application of standard arguments in weak convergence theory; see Exercise 7.3.7 for some
hints.

Proposition 7.3.21 Suppose that the probability measures μn on a separable metric space
(S,d) converge weakly towards the probability measure μ. Let B be a family of measurable
subsets of a metric space (S,d) which satisfies, as n →∞,

lim
ε→0

sup
B∈B
μ(∂εB)= 0. (7.133)

Then

sup
B∈B

|μn(B)−μ(B)|→ 0,

as n →∞.

From this proposition and Theorems 7.3.19 and 7.3.20 we can now deduce the following:

Corollary 7.3.22 Let the conditions of Theorem 7.3.19 or Theorem 7.3.20 be satisfied, and
denote by�(·|Y) the posterior distribution from the corresponding theorem. Let B be a class
of measurable subsets of H(δ),M0(w), respectively, which satisfies

lim
ε→0

sup
B∈B

N (∂εA)= 0.

Then, as n →∞,
sup
B∈B

|�(·|Y) ◦ τ−1(B)−N (B)|→ 0 (7.134)

in PY
f0

-probability.

Proof Suppose that the limit of �n = supB∈B |�(·|Y) ◦ τ−1(B)−N (B)| is not zero; that is,
along a subsequence of n and for some ε0 > 0, we have

PY
f0
(�n ≥ ε0) > 0. (7.135)

By either Theorem 7.3.19 or Theorem 7.3.20, we have for this subsequence

β(�(·|Y) ◦ τ−1,N )→PY
f0 0,

which implies, by passing to a further subsequence if necessary, weak convergence of
�(·|Y) ◦ τ−1 towards N almost surely. Using Proposition 7.3.21, this implies that �n → 0
almost surely along this subsequence, contradicting (7.135).

Balls in the spaces H(δ),M0(w) will be shown to be N -uniformity classes, which is
useful in applications to Bayesian credible/confidence sets, as we show in the next section.
Further applications are discussed in the notes at the end of this chapter.

Using the same subsequence argument, one proves a continuous mapping theorem:
suppose that F is a continuous mapping from either H(δ) or M0(w) to a metric space
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(S,d). Then, under the conditions of Theorems 7.3.19 and 7.3.20, respectively, we have,
for �̃n =�(·|Y) ◦ τ−1 the shifted posterior measures,

βS(�̃n ◦F−1,N ◦F−1)→Pn
f0 0, (7.136)

as n →∞, where βS is the BL metric for weak convergence in S.

Confident Bayesian Nonparametric Credible Sets

Let B(0, t) be a ball of radius t in either H(δ) or M(w). We will show that the family
B= {B(0, t) : t∈ [0,∞)} forms a uniformity class for weak convergence towards N in either
of these spaces, and this implies the following result for posterior credible sets:

Theorem 7.3.23 Let S equal H(δ) or M(w), for δ > 0 or admissible w, respectively.
Suppose that � satisfies the conditions of Theorem 7.3.19 or Theorem 7.3.20, respectively.
For 0< α < 1, consider Rn such that

Cn =
{

f : ‖ f −Tn‖S ≤ Rn/
√

n
}

, �(Cn|Y)= 1−α,

where either Tn = Y or Tn = f̄ n(Y) the posterior mean of �(·|Y). Then the credible set Cn

satisfies, as n →∞,

P f0( f0 ∈ Cn)→ 1−α, Rn →PY
f0 const.

Proof By Exercise 2.4.4, the mapping

� : t �→N (B(0, t))=N ◦ (‖ · ‖S)
−1([0, t])

is uniformly continuous and increasing on [0,∞). In fact, the mapping is strictly increasing
on [0,∞): using Theorem 2.4.5 and Corollary 2.6.18, it suffices to show that any shell
{ f : s< ‖ f ‖S < t},s< t, contains an element of the RKHS L2 of N , which is obvious as L2

is dense in S. Thus, � has a continuous inverse �−1 : [0,1)→[0,∞). Since � is uniformly
continuous for every γ > 0, there exists ε > 0 small enough that |�(t+ ε)−�(t)|< γ , for
every t ∈ [0,∞). Now

N (∂εB(0, t))=N (B(0, t+ ε))−N (B(0, t− ε))= |�(t+ ε)−�(t− ε)|< 2γ ,

for ε > 0 small enough, independently of t. We deduce that the balls {B(0, t)}0≤t<∞ form a
N -uniformity class, and from Corollary 7.3.22, we can thus conclude, with Tn =Y, that

sup
0≤t<∞

∣∣�( f : ‖ f −Tn‖S ≤ t/
√

n|Y)−N (B(0, t))
∣∣→ 0

in PY
f0

-probability, as n →∞. This combined with definition of Cn gives that

N (B(0,Rn))=N (B(0,Rn))−�( f : ‖ f −Tn‖S ≤ Rn/
√

n|Y)+ 1−α
converges to 1 − α as n → ∞ in PY

f0
-probability, and thus, by the continuous mapping

theorem,

Rn →PY
f0 �−1(1−α), (7.137)
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as n →∞. Now, using this last convergence in probability,

PY
f0
( f0 ∈ Cn)= PY

f0
( f0 ∈ B(Y,Rn/

√
n))

= PY
f0
(0 ∈ B(W,Rn))

= PY
f0
(0 ∈ B(W,�−1(1−α)))+ o(1)

=N (B(0,�−1(1−α))+ o(1)

=�(�−1(1−α))+ o(1)= 1−α+ o(1),

which completes the proof of the first claim. The second claim follows from the same
arguments combined with convergence of moments (Exercise 7.3.8), which implies that

Pn
f0
( f0 ∈ B( f̄ n,Rn/

√
n))−Pn

f0
( f0 ∈ B(Y,Rn/

√
n))→ 0

in PY
f0

-probability, as n →∞.

We can now proceed as in Section 6.4.2 to intersect the credible set with additional
prior or posterior information. For instance, in the case of a uniform wavelet prior � from
Proposition 7.3.15, which also satisfies the conditions of the preceding theorem, we can
naturally intersect Cn with the support of the posterior, which equals a ball in Cγ ([0,1]).
Corollary 7.3.24 Consider the 1−α credible set

C̄n = Cn ∩Bn, Bn ≡ { f : ‖ f ‖Cγ ≤ B},
where Cn is as in Theorem 7.3.23 with M0(w), for the posterior �γ ,B(·|Y) based on a
uniform wavelet prior �γ ,B. If Y ∼ PY

f0
for some fixed f0 satisfying ‖ f0‖Cα([0,1]) < B, then

P f0( f0 ∈ C̄n)→ 1−α,

and the L∞-diameter of Cn satisfies

|C̄n|∞ = OP

(
(n/ logn)γ/(2γ+1)un

)
,

where un →∞ as slowly as desired.

Proof Given Theorem 7.3.23, asymptotic coverage is immediate, and the M0(w) diameter
of C̄n is of order 1/

√
n. The rest of the proof is now the same as that of Proposition 6.4.9.

Exercises

7.3.1 Prove (7.77) and (7.78).
7.3.2 Prove Theorem 7.3.5.
7.3.3 Prove Lemma 7.3.8 (See also van der Vaart and van Zanten (2008).)
7.3.4 For f ∈R,σ 2 > 0, let Y| f ∼ N( f ,1/n), and suppose that f ∼ N(0,σ 2). Show that

f |Y ∼ N

(
σ 2

σ 2 + 1/n
Y,

σ 2

nσ 2 + 1

)
.

Hint: Use (7.78).
7.3.5 Under the conditions of Corollary 7.3.13, prove that the contraction rate about f0 in a ‖ · ‖Hs

2

Sobolev norm, 0< s< γ , is n−γs/(2γ+1), where γs = γ − s.
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7.4 Notes 603

7.3.6 Suppose that PY
C(An)→ 0 for some sequence of measurable sets, where PY

C is defined in (7.124).
Then PWV(An)→ 0 or, in other words, PWV is contiguous with respect to Pn

C. Hint: Suppose that
PY

C(An)→ 0, for a sequence of measurable sets An. This implies that∫
An

[
inf
k∈C

e−‖k‖2/2+〈k,w〉
]

dPWV(w)→ 0.

Since C is compact, the infimum of the continuous function in the display is attained for some
fixed γ in C. Thus,∫

An

e−‖γ ‖2/2+〈γ ,w〉e−‖w‖2/2dλ(w)=
∫

An

e−‖γ−w‖2/2dλ(w)→ 0.

Conclude by showing that N(γ , I) and N(0, I) are mutually contiguous (e.g., chapter 6 in van
der Vaart (1998)).

7.3.7 Prove Proposition 7.3.21. Hint: Cover S by a countable partition of μ-continuity sets Ui of
diameter less than δ; then μn(Ui)→ μ(Ui), for all i by weak convergence. Moreover, for any
U in Uδ , the σ -field generated by the Ui, we have

sup
U

|μn(U)−μ(U)| ≤
∑

i

|μn(Ui)−μ(Ui)|→ 0

by Scheffé’s theorem. Deduce that we can always find a μ-uniformity class Vδ such that for
each A ⊂ S there exist V,W ∈ Vδ such that W ⊂ A ⊂ V and V \W ⊂ ∂δA. From this observation,
Proposition 7.3.21 follows easily. The result is due to Billingsley and Topsoe (1967).

7.3.8 Prove (7.127) and (7.131). Hint: Reduce to almost-sure weak convergence as in the proof of
Corollary 7.3.22. Then, since second or exponential moments are bounded, we can use uniform
integrability combined with weak convergence to deduce convergence of moments by standard
arguments.

7.4 Notes

Section 7.1 The fundamental role of the Hellinger distance for estimating the distribution of a random
sample was studied systematically by Le Cam (1973, 1986) and Birgé (1983, 1984). Theorem 7.1.2 is
due to Birgé (1984), and the current proof is taken from Birgé (2012). The observation Theorem 7.1.4
is taken from Ghosal, Gosh and van der Vaart (2000). Recent developments in this area can be found
in Birgé (2006, 2012) and Baraud (2011).

Section 7.2 The general convergence rate theory in the Hellinger distance for maximum likelihood
estimators was developed in the papers by Birgé and Massart (1993) and van de Geer (1993), with
important ideas dating back to Le Cam (1973). A version of Theorem 7.2.1 is due to Wong and
Shen (1995), with important refinements in Birgé and Massart (1998) and van de Geer (2000). Our
exposition partly follows the monograph by van de Geer (2000), where several further references and
applications of the theory are given. Rates of convergence in stronger norms, such as L∞, can be
obtained by interpolation as in Theorem 7.2.10, but whether such rates are optimal is unclear. In the
related Bayesian setting, optimal supremum norm convergence rates are given in Castillo (2014) – his
ideas may be useful in answering this question also for MLEs.

The differential calculus of nonparametric likelihood derivatives and its connection to the
asymptotic distribution of linear functionals of the NPMLE are taken from Nickl (2007), with some
ideas implicit in the work of Wong and Severini (1991). The theory for the nonparametric MLE over
a Sobolev ball was mostly developed in Nickl (2007), where Theorem 7.2.14 is proved and where
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also several applications to semiparametric functional estimation are discussed. Propositions 7.2.8
and 7.2.9 are taken from Gach and Pötscher (2011), where generalisations and applications of the
results in Nickl (2007) to (simulation-based) robust statistical inference are given. The case of sieved
MLEs over a Sobolev ball is treated in detail in Nickl (2009).

The maximum likelihood estimator of a monotone density was first derived in Grenander (1956),
and hence is sometimes also called the Grenander estimator. While the global convergence theory in
Hellinger distance for this estimator seems to require the empirical process techniques developed
here, other aspects of the estimator can be analysed by more direct probabilistic tools: Prakasa
Rao (1969) and Groeneboom (1985) obtain the exact pointwise limit distribution of the MLE of a
monotone density, and this result is made uniform in certain subsets of [0,1] in the more recent
contribution Durot, Kulikov, Lopuhaä (2012). Kiefer and Wolfowitz (1976) showed under a strict
curvature hypothesis on F that the distribution function F̂n of the MLE of a monotone density satisfies

‖F̂n −Fn‖∞ = oP(n
−1/2), and hence

√
n(F̂n −F0)→d GP0 in �∞(R)

as n→∞, where Fn is the empirical distribution function. Balabdaoui and Wellner (2007) revisit this
result. These results are similar in flavour (although formally different from) Theorem 7.2.20 which
as such we do not have a reference for: some main ideas of the proof are implicit in Nickl (2007), and
some generalisations can be found in Söhl (2015). Maximum likelihood estimators can be constructed
for ‘shape constraints’ other than monotonicity, including (log-) concavity and convexity constraints,
and in the regression setting, see Nemirovski, Polyak and Tsybakov (1985), Groeneboom, Jongbloed
and Wellner (2001), Dümbgen and Rufibach (2009), Balabdaoui, Rufibach and Wellner (2009) and
Doss and Wellner (2015) for some theory.

Section 7.3 A classical result on the frequentist consistency of Bayes procedures in general parameter
spaces is Doob’s (1949a) consistency theorem, which holds for almost all parameters under the
prior. Further important references are Le Cam (1953), Freedman (1963) and Schwartz (1965), who
focussed on consistency of Bayes procedures in weak metrics. Consistency in stronger metrics such
as the Hellinger distance was studied in Barron, Schervish and Wasserman (1999). The general
contraction theory in the Hellinger metric was developed in Ghosal, Gosh and van der Vaart (2000),
Shen and Wasserman (2001), Ghosal and van der Vaart (2007) and van der Vaart and van Zanten
(2008). Theorems 7.3.1 and 7.3.3, including in particular non-i.i.d. situations such as the one in
Lemma 7.3.4, are due to Ghosal, Gosh and van der Vaart (2000). The approximation-theoretic
approach that replaces Hellinger-type tests by general nonparametric tests from Chapter 6 was
introduced in Giné and Nickl (2011), who focussed on the i.i.d. sampling setting – see also Ray
(2013) for the white noise model case (including inverse problem settings). The elegant contraction
theory for Gaussian process priors presented here is mostly due to van der Vaart and van Zanten
(2008). Testing tools are not always approriate to obtain contraction rates, particularly not for some
stronger loss functions such as supremum norm loss (see Hoffmann, Rousseau and Schmidt-Hieber
(2015)). Semiparametric tools can give stronger results in specific situations; see Castillo (2014).

An explicit analysis of Gaussian product priors in the Gaussian white noise model has been
undertaken in Zhao (2000) and, more recently, Giné and Nickl (2011). The relevant proof techniques
are tied to the conjugate situation, and the nonconjugate analysis of the posterior in the general setting
that is presented here is due to Castillo and Nickl (2013, 2014) and Castillo (2014). The proof of
the finite-dimensional Bernstein–von Mises theorem based on contiguity arguments is due to Le Cam
(1986), see also van der Vaart (1998). The nonparametric Bernstein–von Mises Theorems 7.3.19
and 7.3.20 and the resulting theory for confident credible sets was developed in Castillo and Nickl
(2013, 2014), and these references contain several further applications as well as extensions to the
more intricate i.i.d. sampling setting too. Extensions for adaptive priors of the results in Castillo and
Nickl (2013, 2014) can be found in Ray (2014). It should be noted that several negative results for
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7.4 Notes 605

Bernstein–von Mises theorems have been obtained earlier (see Cox (1993), Freedman (1999) and
Leahu (2011)), but these are all relative to �2-type topologies. In this sense, the H(δ) and M(w)
spaces can be considered the right choices for nonparamemtric Bernstein–von Mises results.

A large and important class of priors that we have not presented here is based on the Dirichlet
process and variations of it; we refer to Ghosal (2010), Lijoi and Prünster (2010) and Teh and Jordan
(2010) for an overview of this theory, which requires very different mathematical techniques than
those presented in this book.
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8

Adaptive Inference

A main motivation for the study of nonparametric models is that they do not impose
potentially unrealistic finite-dimensional, or parametric, a priori restrictions. The minimax
paradigm has revealed that the statistical performance of optimal nonparametric procedures
depends heavily on structural properties of the parameter to be estimated and does not
typically scale at the universal rate 1/

√
n encountered in classical parametric models. This

dependence arises typically through the choice of tuning parameters which require choices
of usually unknown aspects of the function f to be estimated, for instance, its smoothness r
and the corresponding bound on the Besov norm ‖ f ‖Br

pq . The question arises as to how
fully automatic procedures that do not require the specification of such parameters can
perform from a minimax point of view and whether procedures exist that ‘adapt’ to the
unknown values of r,B. We shall show in this chapter that full adaptation is possible
in many testing and estimation problems and that mild losses occur for some adaptive
testing problems. In contrast, the theory of adaptive confidence sets – and, more generally,
the problem of adaptive uncertainty quantification – is more intricate, and the price for
adaptation can be severe unless some additional structural assumptions on the parameter
space are imposed. We shall explicitly characterise the parameter regions in nonpara-
metric models where this discrepancy between estimation and uncertainty quantification
arises and reveal the underlying relationship to certain nonparametric hypothesis-testing
problems.

The theory of adaptive inference in infinite-dimensional models reveals fundamental, and
in this form previously unseen, information-theoretic differences between the three main
pillars of statistics, that is, between estimation, testing and the construction of confidence
sets. The insights drawn from the results in this chapter belong to the most intriguing
statistical findings of the nonparametric theory, showcasing the genuine challenges of
statistical inference in infinite dimensions. To meet this challenge, a class of ‘self-similar’
functions will be introduced, for which a unified theory of estimation, testing and confidence
sets can be demonstrated to exist.

8.1 Adaptive Multiple-Testing Problems

In most situations encountered in Section 6.2, the construction of minimax optimal non-
parametric test procedures depended strongly on regularity properties of the nonparametric
model maintained – for instance, that f has Br

p∞-norm at most B. The crucial parameters
r,B are usually not given in practice – it is thus desirable to construct an adaptive test of a

607
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608 Adaptive Inference

null hypothesis H0 which does not require knowledge of such parameters but still performs
optimally for any given value of r,B> 0. We shall see that such adaptive tests exist for the
signal-detection problem on [0,1] and for the problem of testing for uniformity on [0,1].
When the alternative hypothesis H1 is separated away from H0 in L2-distance, adaptivity
comes at the expense of a marginal increase in the separation rate, which, as we will show,
cannot be circumvented from a minimax point of view. However, we also show that in the
case of separation in L∞-distance, no price for adaptation has to be paid at all.

8.1.1 Adaptive Testing with L2-Alternatives

Adaptive Minimax Signal Detection

Let us first turn to the signal-detection problem, where we wish to test

H0 : f = 0 vs. H1 : ‖ f ‖2 ≥ ρn

based on an observation

dY(t)= dY(n)(t)= f (t)dt+ σ√
n

dW(t), t ∈ [0,1], (8.1)

in the Gaussian white noise model – we recall from Chapter 6 that dY has law PY
f on a

suitable underlying sample spaceYn, and we denote by E f expectation under PY
f . The testing

problem considered is thus about whether the observation has arisen from a pure Gaussian
white noise or whether a sufficiently strong signal f has been present.

When the alternatives H1 are further restricted to a ball of radius B in the Besov space
Br

2∞([0,1]), then we have seen in Section 6.2 that the choice

j = jn ∈N, 2jn � B2/(2r+1/2)n1/(2r+1/2), r,B> 0, (8.2)

from before (6.36) ensures that the χ2 test

�n(j)= 1{|Tn| ≥ τn}; Tn = ‖ fn(j)‖2
2 −σ 2 2j

n
, τn = σ 2L

2j/2

n
, L> 0,

from Proposition 6.2.3 achieves the minimax separation rate

ρn = c′ max(1,B)(1/4r+1)n−(r/2r+1/2),

for given values of r,B > 0. The question arises whether a test of comparable statistical
performance can be constructed that does not require knowledge of r,B > 0. We shall call
any such test adaptive as it adapts to the unknown regularity parameters r,B of the alternative
spaces H1.

A starting point is to notice that the resolution levels jn in (8.2) are at most of order
2j ≤ 2jmax � n2, and we may thus reject H0 as soon as one of the tests {�n(j), j ∈ [1, jmax] ∩
N} does. Controlling the type 1 error of this ‘maximum test’ will require enlarged critical
values τn that accommodate the multiplicity of jmax � logn tests involved in the procedure.
Enlarging the thresholds τn, in turn, has repercussions on the separation rates ρn that are
required to control type 2 errors. Some analysis shows that the critical values need to be
increased by a suitable power of log logn, and we shall show that the resulting increase in
the separation rate is necessary from a minimax point of view for adaptation to unknown r,B.
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8.1 Adaptive Multiple-Testing Problems 609

Searching for a minimax test that adapts to the unknown smoothness r> 0 can be cast into
the framework of Definition 6.2.1: We wish to control the maximum of type 1 and type 2
errors uniformly over the alternative space H1 consisting of the union of all the alternatives
H1(r,B),r,B > 0, at separation rates ρn(r,B) that are optimal in the sense that (6.20) holds
for the given r. To focus on the main ideas, we restrict adaptation to r ≤ R in the following
theorem, where R is arbitrary but fixed. For r-smooth functions with r> R, we thus obtain a
performance of the adaptive test pertaining to the R-smooth case. The case of unbounded r
also can be treated (see Exercise 8.1.1).

Theorem 8.1.1 Let R> 0 be arbitrary. For real sequences ρ ≡ (ρn(r,B) : n∈N),B> 0,0<
r ≤ R, consider testing

H0 : f = 0 vs. f ∈ H1(ρ)=
⋃

0<r≤R,B>0

H1(r,B,ρn(r,B)),

based on observations dY ∼ PY
f in the white noise model (8.1), where

H1(r,B,ρn(r,B))=
{

f : ‖ f ‖Br
2∞([0,1]) ≤ B,‖ f ‖2 ≥ ρn(r,B)

}
.

(a) For n ∈N (and setting log logn equal to an arbitrary positive constant for n ≤ ee), let

ρ∗ ≡ ρ∗n (r,B)= Cmax(1,B)(1/4r+1)n−(r/2r+1/2)(log logn)(r/4r+1).

For every α > 0, there exists a test�n :Yn →{0,1} such that, for every n∈N and C> 0
large enough,

E0�n + sup
f ∈H1(ρ

∗)
E f (1−�n)≤ α.

(b) Let ρn(r,B) be any sequences such that ρn(r,B)= o(ρ∗n (r,B)), for all r,B. Then

liminf
n

inf
�n

[
E0�n + sup

f ∈H1(ρ)

E f (1−�n)

]
> 0,

where the infimum extends over all measurable functions �n : Yn →{0,1}.
Proof We set σ 2 = 1 for notational simplicity, and let

J = [1, jmax] ∩N,

where jmax ≡ jmax,n is a sequence of natural numbers such that 2jmax � n2 for all n ∈N.
Part (a): Consider the test

�n = 1{|Tn| ≥ τn},
where

Tn = max
j∈J

2−j/2

∣∣∣∣‖ fn(j)‖2
2 −

2j

n

∣∣∣∣ , τn = L
√

log logn

n
, L> 0,

and where fn(j) is as in (6.28) based on a R-regular wavelet basis of L2([0,1]) from
Section 4.3.5 (or Section 4.3.4 in the periodic case or on Haar wavelets; see Exercise 8.1.1).
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610 Adaptive Inference

Let us control the type 2 errors for f contained in any alternative H1(r,B,ρn(r,B)): for jn
balancing

2jn/2
√

log logn

n
and B22−2jr ⇒ 2jn � B2/(2r+1/2)n1/(2r+1/2)(log logn)1/(4r+1),

we have

E f (1−�n)≤ PY
f

(∣∣∣∣‖ fn(jn)‖2
2 −

2jn

n

∣∣∣∣< L
2jn/2

√
log logn

n

)
→ 0,

as n →∞, arguing as after (6.34) in the proof of Proposition 6.2.3, using that for C large
enough depending only on L,

(ρ∗n )
2 ≥ 4L

2jn/2
√

log logn

n
,

for this choice of jn.
To control the type 1 error: under f = 0, we have, for L large enough depending only

on α,

E0�n = Pr

⎛⎝max
j∈J

2−j/2

∣∣∣∣∣∣
∑
l≤j−1

∑
k

(g2
lk − 1)

∣∣∣∣∣∣≥ L
√

log logn

⎞⎠≤ α

by Exercise 3.1.11, noting that
∑

l≤j

∑
k(g

2
lk − 1) is a centred sum of 2j-many i.i.d. squared

N(0,1) variables. (An alternative to using that exercise is to notice that J consists of at most
approximately logn terms and to apply the ‘diagonal’ case of Theorem 3.1.9 to deduce, for
some universal constant D> 0 and n large enough, the bound

jmax∑
j=1

1

D
exp{−DL2 log logn}� logn

(logn)DL2 (8.3)

for the last probability. Choosing L large enough that this quantity converges to zero as
n →∞.)

Part (b): Assume without loss of generality that R> 2, fix B = 1 and take a dissection of
[1,2] into |Sn| ≈ logn smoothness levels Sn = {si}|Sn|

i=1 , with corresponding distinct resolution
levels js ∈J , such that

2js = n1/(2s+1/2)(log logn)−1/(4s+1), s ∈ Sn.

Pick σ at random from Sn with equal probability 1/|Sn|, and define the functions

fm = ε2−jσ (σ+1/2)
∑

k∈Zjσ

βmkψjk,

as in the proof of part (c) of Theorem 6.2.11 but now with r chosen at random through σ .
By hypothesis on ρ(r,1) for n large enough, these functions are in H1(s,1,ρn(s,1)) for some
s ∈ [1,2]. Part (b) of the theorem thus will follow from (6.23), where

Z = 1

|Sn|
∑
σ∈Sn

Zσ ,
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8.1 Adaptive Multiple-Testing Problems 611

and Zσ is the average likelihood ratio from the proof of Theorem 6.2.11, part (c), for fixed
σ = r. By independence of the {gjsk,s ∈ Sn} and since E0Zσ = 1, we have

E0(Z− 1)2 = 1

|Sn|
∑
σ∈Sn

E0(Zσ − 1)2.

Now we bound E0Z2
σ as in the proof of Theorem 6.2.11, part(c), but with

γ ′
n ≡ ε2n2−jσ (2σ+1) ≡ 2−jσ /2γn � 2−jσ /2ε2

√
log logn

and hence

exp{D0γ
2
n /2}� (logn)(D0/2)ε

2
, D0 > 0,

to see that, for ε > 0 small and n large enough,

E0(Z− 1)2 � (logn)D0ε
2

|Sn| → 0, (8.4)

completing the proof.

Intuitively speaking, the penalty of order a power of log logn arises from the fact
that adapting to the unknown smoothness r is, for fixed sample size n, equivalent to an
alternative space that contains approximately logn ‘independent copies’ of the original
testing problems. Since sub-Gaussian bounds are available for each test, we can control
maxima by a penalty of the order of an iterated logarithm.

Adaptive Tests of Uniformity on [0,1]
We now turn to the i.i.d. sampling analogue of the signal-detection problem; that is,
we consider the adaptive version of the minimax test for uniformity on [0,1] from
Theorem 6.2.9. The situation is quite similar to the preceding and only needs adaptation
of the probabilistic tools from the proof of Theorem 8.1.1.

Theorem 8.1.2 Let R> 0 be arbitrary. For real sequences ρ ≡ (ρn(r,B) : n∈N),B> 0,0<
r ≤ R, consider testing

H0 : f = f0 ≡ 1 vs. f ∈ H1(ρ)=
⋃

0<r≤R,B>0

H1(r,B,ρn(r,B)),

based on observations X1, . . . ,Xn ∼i.i.d. f on [0,1], where

H1(r,B,ρn(r,B))=
{
max(‖ f ‖∞,‖ f ‖Br

2∞([0,1]))≤ B,‖ f − 1‖2 ≥ ρn(r,B)
}

.

(a) For n ∈N (and setting log logn equal to an arbitrary positive constant for n ≤ ee), let

ρ∗ ≡ ρ∗n (r,B)= Cmax(1,B)(1/4r+1)n−(r/2r+1/2)(log logn)(r/4r+1).

For every α > 0, there exists a test �n : [0,1]n → {0,1} such that, for every n ∈ N and
C> 0 large enough,

E f0�n + sup
f ∈H1(ρ

∗)
E f (1−�n)≤ α.
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612 Adaptive Inference

(b) Let ρn(r,B) be any sequences such that ρn(r,B)= o(ρ∗n (r,B)) for all r,B. Then

liminf
n

inf
�n

[
E f0�n + sup

f ∈H1(ρ)

E f (1−�n)

]
> 0,

where the infimum extends over all measurable functions �n : [0,1]n →{0,1}.
Proof We use the notation of the proof of Theorem 8.1.1 and sketch the necessary
adaptations of it relevant for the sampling situation.

Part (a): We consider a slight modification of the test statistic used in Proposition 6.2.5,
namely,

�n = 1{|Tn| ≥ τn},
where τn = L

√
log logn/n, and

Tn = max
j∈J

2−j/2

∣∣∣∣∣∣ 2

n(n− 1)

∑
i<i′

∑
l≤j−1

∑
k

(ψlk(Xi)−〈1,ψlk〉)(ψlk(Xi′)−〈1,ψlk〉)
∣∣∣∣∣∣ ,

where the {ψlk} form an R-regular wavelet basis of L2([0,1]) as in Section 4.3.5 (or
Section 4.3.4 for the periodic case). The control of type 2 errors of this test is obtained as
in the proof of Theorem 8.1.1 after direct adaptations of the arguments of Proposition 6.2.5.
Likewise, type 1 errors can be bounded as in (8.3), where Theorem 3.1.9 is replaced by
Theorem 3.4.8, applied as in the proof of Theorem 6.2.17, with f = f0,dn = L

√
log logn

(cf. also (6.81)).
To prove part (b), we take functions

fm = 1+ ε2−jσ (σ+1/2)
∑

k∈Zjσ

βmkψjk ∈ H1,

as in the proof of Theorem 6.2.9, but with σ random as in the proof of Theorem 8.1.1.
Proceeding as in that proof, the standard inequality (6.23) and the proof of Theorem 6.2.9
then give a bound similar to (8.4) and hence the result.

8.1.2 Adaptive Plug-in Tests for L∞-Alternatives

We now show that the penalty (log logn)1/(4r+1) that occurred in the preceding two theorems
is specific to L2-separation – and that it does not occur when the alternative hypothesis is
separated in L∞-distance. Full adaptation is thus possible in the setting of Theorem 6.2.7 at
no cost in the separation rates.

Theorem 8.1.3 Let R be arbitrary. For

ρ ≡ ρn(r,B)= CB
1

2r+1

(
logn

n

)(r/2r+1)

, 0< r ≤ R,B> 0,

consider testing

H0 : f = 0 vs. f ∈ H1(ρ)=
⋃

0<r≤R,B>0

H1(r,B,ρn(r,B)),
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8.1 Adaptive Multiple-Testing Problems 613

based on observations dY ∼ PY
f in the white noise model (8.1), where

H1(r,B,ρn(r,B))=
{‖ f ‖Br∞∞([0,1]) ≤ B,‖ f ‖∞ ≥ ρn(r,B)

}
.

For every α > 0, there exists a test �n : Yn → {0,1} such that, for every n ∈ N and C > 0
large enough,

E0�n + sup
f ∈H1(ρ

∗)
E f (1−�n)≤ α.

Proof We take linear wavelet estimators

fn = fn(j)=
∑
l≤j

∑
k

(∫ 1

0
ψlk(t)dY(t)dt

)
ψlk

based on an R-regular wavelet basis of L2([0,1]) as in Proposition 5.1.12, where j varies in
the discrete grid

J = [1, jmax] ∩N, 2jmax ∼ n.

Consider the test

�n = 1

{
max
j∈J

√
1

2jj
‖ fn(j)‖∞ ≥ L√

n

}
.

If f ∈ H1(ρ), then f ∈ H1(r,B,ρn(r,B)) for some r,B, and if jn ∈J is such that

2jn � B2/(2r+1)(n/ logn)1/(2r+1)),

then, for C and in turn L′ large enough, we have from Proposition 5.1.7 and Markov’s
inequality and since ‖E fn(jn)− f ‖∞ ≤ cB2−jnr that

E f (1−�n)≤ PY
f

(
‖ fn(jn)‖∞ < L

√
2jn jn

n

)

≤ PY
f

(
‖ fn(jn)− f ‖∞ > ‖ f ‖∞−L

√
2jn jn

n

)

≤ PY
f

(
‖ fn(jn)−E fn(jn)‖∞ > L′

√
2jn jn

n

)
≤ α/2,

as n →∞. For type 1 errors, we have, for L large enough,

E0�n = PY
0

(
max
j∈J

√
1

2jj
‖ fn(j)−E fn(j)‖∞ ≥ L/

√
n

)

≤
∑
j∈J

PY
0

(
‖ fn(j)−E fn(j)‖∞ ≥ L

√
2jj

n

)

≤ c
∑
j∈J

e−L2j/c ≤ α/2

as n →∞, using Proposition 5.1.12.
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614 Adaptive Inference

A sampling analogue of the preceding theorem can be proved by standard adaptation of
the last proof (see Exercise 8.1.2).

Exercises

8.1.1 Prove versions of Theorems 8.1.1 and 8.1.2, where 0< r<∞ is unrestricted in the alternative
hypothesis. Hint: Use test statistics based on Haar wavelets and Remark 6.2.4.

8.1.2 Formulate and prove a sampling analogue of Theorem 8.1.3. Hint: Proceed as in the proof of that
theorem, but use Theorems 5.1.5 and 5.1.13 in place of Theorem 5.1.2 and Proposition 5.1.12.

8.2 Adaptive Estimation

We now turn to the crucial question of whether minimax optimal estimation of the functional
objects f from an observation in white noise or the i.i.d. sampling model is possible in a
fully automatic way. That is, we are searching for fully data-driven algorithms that recover
the minimax estimation rates from Chapter 6 for the unknown parameter f contained in a
suitable scale of functional smoothness classes. We shall show that, remarkably, for L2- and
L∞-risk, full adaptive estimation is possible at no cost in the minimax rate of convergence.
There are several methods that lead to adaptation, and we discuss two key ones: Lepski’s
method and wavelet thresholding. Other methods exist, and all are of a related nature, as
discussed in the notes at the end of this chapter.

8.2.1 Adaptive Estimation in L2

For both observational models considered here (white noise and i.i.d. sampling), we have
seen in Proposition 5.1.7 that suitable choice of the estimation method and resolution level
jn (or related bandwidth hn) produced estimators fn(jn) for which the risk bound

sup
f :‖ f ‖Bs

2∞≤B
E f ‖ fn(jn)− f ‖2 ≤ Cmax(1,B)1/(2s+1)n−s/(2s+1) (8.5)

could be established for any fixed s,B > 0 and some constant C > 0. In Theorems 6.3.8
and 6.3.9, we proved that such a bound cannot be improved in the sense that n−s/(2s+1) is
the minimax rate of convergence in L2-risk over any ball of functions/densities in the Besov
spaces Bs

2∞, when s is given. The estimator fn(jn) depended, through the choice of jn, on the
values s,B, which are typically unknown to the statistician. We now show that knowledge of
s,B is not necessary and that a single estimator f̂n exists that achieves the performance from
(8.5) for any value s,B> 0. We say that f̂n adapts to the unknown values of s and B – from
the point of view of minimax L2-rates of convergence, there is thus no loss of information
incurred from not knowing s,B.

Lepski’s Method

We recall that jn in Proposition 5.1.7 was chosen to balance the bounds obtained for bias and
variance of the unbiased estimator fn(j) of the projection Kj( f ):

E f ‖ fn(j)−E f fn(j)‖2
2 ≤ L2 2j

n
and ‖Kj( f )− f ‖2

2 ≤ c2‖ f ‖2
Bs

2∞
2−2js.
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8.2 Adaptive Estimation 615

The dependence on s,B is thus entirely induced by the nonstochastic approximation error of
f by Kj( f ) and, roughly speaking, j is chosen to balance the antagonistic terms

2j

n
≈ B22−2js

to provide a minimax optimal procedure over a given ball { f : ‖ f ‖Bs
2∞ ≤ B}.

A first attempt at adaptation, which has come to be known as Lepski’s method (see the
notes at the end of this chapter for historical remarks), works for many such bias-variance
tradeoff situations and, in the setting of L2-risk, is based on considering statistics

Tn(j, l)= ‖ fn(j)− fn(l)‖2
2,

where the parameters j< l vary in a finite grid J bounded between ‘minimal’ and ‘maximal’
resolution levels jmin, jmax, respectively. If we use wavelet estimators, we can naturally
restrict to all j ∈ [jmin, jmax] and take jmin = 1 (although sometimes it will be seen that letting
jmin diverge with n is natural). For kernel estimators, we can discretise the set of possible
bandwidths h by the dyadic conversion h= 2−j, j ∈J , or construct a grid of a similar nature
directly. We can write Tn(j, l) as

‖ fn(j)− fn(l)‖2
2 = ‖ fn(j)−E f fn(j)− ( fn(l)−E f fn(l))+Kj( f )−Kl( f )‖2

2.

In the wavelet case and for observations in Gaussian white noise, this decomposes (up to a
typically negligible cross-term) into

l−1∑
�=j

∑
k

(y�k −E f y�k)
2 and

l−1∑
�=j

f 2
�k

and thus into the variance and bias term restricted to the window [j, l]. As there are 2l

wavelets at level l, the first term has stochastic order 2l/n, and hence, when Tn(j, l) is of that
order, it indicates that the bias is comparably small. However, if Tn(j, l) is significantly larger
than 2l/n, this indicates that the second summand in the preceding display must contribute,
and hence the presence of too large approximation error, so increasing j will be necessary
to obtain a minimax performance. Intuitively speaking, we should choose j as the smallest
resolution level j for which Tn(j, l), l > j, does not significantly exceed 2l/n, for all l > j,
suggesting that j is the most parsimonious ‘model dimension’ for which the approximation
error does not dominate the stochastic error.

We detail the preceding ideas now in the setting of the Gaussian white noise model
(8.1) and in the setting of periodic signals, f ∈ Bs,per

2∞ ([0,1]). As shown in Section 4.3.4,
this space can be defined with a periodised translation operator or, equivalently, via
wavelets. Throughout we denote Bs,per

2∞ ([0,1]) from (4.130) by Bs
2∞ in this subsection, with

wavelet norm based on periodised Meyer wavelets (cf. Remark 4.3.25 and Theorem 4.2.9).
Restriction to periodicity is by no means necessary but is convenient to lay out the main
ideas. Using the periodised wavelet basis

{ψlk} ≡ {ψ−10 = 1,ψlk : l ≥ 0,k = 0, . . . ,2l − 1}
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616 Adaptive Inference

of L2([0,1]), the observations dY can be mapped into sequence space as

ylk =
∫ 1

0
ψlk(t)dY(t)dt = 〈 f ,ψlk〉+ 1√

n

∫ 1

0
ψlk(t)dW(t)

≡ flk + 1√
n

glk, glk ∼i.i.d. N(0,1). (8.6)

For the resulting linear wavelet estimator

fn(j)=
∑
l≤j−1

∑
k

ylkψlk, E f fn(j)=
∑
l≤j−1

∑
k

flkψlk, (8.7)

we then have, with c(s) = 1/(1− 2−2s) and for any f ∈ Bs
2∞,s > 0 (as the Meyer-basis is

S-regular for every value of S ∈N), that

‖E f fn(j)− f ‖2
2 = ‖Kj( f )− f ‖2

2 ≤ c(s)‖ f ‖2
Bs

2∞
2−2js ≡ B(j, f ), (8.8)

as well as

E f ‖ fn(j)−E f fn(j)‖2
2 =

1

n
E f

∑
l≤j−1

∑
k

g2
lk =

2j

n
. (8.9)

Take jmax ∈N such that n � 2jmax ≤ n, and define a discrete grid J of resolution levels

J = {j ∈N : j ∈ [1, jmax]} (8.10)

which has approximately logn elements. For f ∈ Bs
2∞, we define

j∗ = j∗n( f )= min

{
j ∈J : B(j, f )≤ 2j

n

}
, (8.11)

which, by monotonicity, balances bias and variance terms in the sense that

B(j, f )= c(s)2−2js‖ f ‖2
Bs

2∞
≤ 2j

n
, ∀j ≥ j∗n,

B(j, f )= c(s)2−2js‖ f ‖2
Bs

2∞
>

2j

n
, ∀j< j∗n.

In particular, we see that j∗n is such that

2j∗n � ‖ f ‖2/(2s+1)
Bs

2∞
n1/(2s+1),

hence theoretically producing an estimator fn(j∗n) that is minimax optimal for f contained
in a ball of Bs

2∞. Now we estimate (8.11) from the observations, and define

j̄n = min

{
j ∈J : ‖ fn(j)− fn(l)‖2

2 ≤ τ
2l

n
∀l> j, l ∈J

}
, (8.12)

where τ is a constant to be chosen. In case the set defining the preceding minimum
is empty, we define by convention j̄n = jmax. The following lemma shows that, for
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8.2 Adaptive Estimation 617

n large, this procedure selects a resolution level that exceeds j∗n only with very small
probability:

Lemma 8.2.1 Assume that f ∈ Bs
2∞ for some s> 0, and let j∗n be as in (8.11). Let j̄n be as in

(8.12), based on observations dY ∼ PY
f generated from (8.1). For some constant C> 0 that

depends only on σ , every τ ≥ 4, every j> j∗n and every n ∈N, we have

PY
f (j̄n = j)≤ 1

C
exp{−Cτ2j}

and

PY
f (j̄n > j∗n)≤

1

C
exp{−Cτ2j∗n}.

Proof We set the variance σ = 1 without loss of generality. The case where j̄n = jmax is
obvious. Pick any j ∈ J , j > j∗n, and denote by j− = j− 1 ≥ j∗n the previous element in the
grid J . If j̄n = j, then one of the tests in (8.12) with j− must have exceeded the threshold,
and hence, by a union bound,

PY
f (j̄n = j)≤

∑
l∈J :l≥j

PY
f

(∥∥ fn(j
−)− fn(l)

∥∥2

2
> τ

2l

n

)
. (8.13)

By Parseval’s identity,

∥∥ fn(j
−)− fn(l)

∥∥2

2
=

l−1∑
�=j−

∑
k

(y�k −E f y�k)
2 +

l−1∑
�=j−

∑
k

f 2
�k +

2√
n

l−1∑
�=j−

∑
k

g�k f�k.

Since f ∈ Bs
2∞ (and recalling (4.131)), we have, from (8.8), l ≥ j− ≥ j∗n and the definition of

j∗n, that
l−1∑
�=j−

∑
k

f 2
�k ≤ c(s)‖ f ‖2

Bs
2∞

2−2j−s ≤ B(j∗n, f )≤ 2j∗n

n
≤ 2l

n
. (8.14)

Consequently, each probability in (8.13) is bounded from above by the sum of

PY
f

⎧⎨⎩1

n

l−1∑
�=j−

∑
k

g2
�k >

τ − 1

2

2l

n

⎫⎬⎭≤
l−1∑
�=j−

PY
f

{∑
k

(g2
�k − 1) >

τ − 3

2
2l

}
(8.15)

and

PY
f

⎧⎨⎩
∣∣∣∣∣∣ 2√

n

l−1∑
�=j−

∑
k

g�k f�k

∣∣∣∣∣∣> τ − 1

2

2l

n

⎫⎬⎭= Pr

{
|Z(j−)|> τ − 1

4

2l

√
n

}
, (8.16)

where Z(j−) is a Gaussian random variable with variance
∑l−1
�=j−

∑
k f 2

lk ≤ B(j∗n, f ).
Each probability in (8.15) is, by Theorem 3.1.9, less than or equal to a constant multiple of

exp

{
−D

(τ − 3)222l

(2l + (τ − 3)2l)

}
≤ e−cτ2l

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.009
http:/www.cambridge.org/core


618 Adaptive Inference

for universal constants c,D, and by (8.14) and a standard Gaussian tail bound, the probability
in (8.16) is bounded by a constant multiple of

exp

{
−D′ (τ − 1)222l

nB(j∗n, f )

}
≤ e−c′τ2l

,

for some constants D′,c′ > 0. We thus obtain the overall bounds

PY
f (j̄n = j)≤

jmax∑
l=j

l∑
�=j

(1/c)e−cτ2l
, j> j∗n, PY

f (j̄n > j∗n)≤
∑
j>j∗n

jmax∑
l=j

l∑
�=j

(1/c)e−cτ2l
.

The result follows by summing these series.

We cannot control in general the probability that j̄n < j∗n in a similar way (unless we
make additional assumptions on f ; see Lemma 8.3.17), but for adaptive estimation of f by
f̂n = fn(j̄n), this is immaterial, as the proof of the following theorem shows.

Theorem 8.2.2 The estimator f̂n = fn(j̄n) with fn as in (8.7), j̄n as in (8.12) and any choice
τ > 4, based on observations in a Gaussian white noise model (8.1), satisfies, for all s,B> 0
fixed and every n ∈N,

sup
f :‖ f ‖Bs

2∞≤B
E f ‖ f̂n − f ‖2 ≤ Dmax(1,B)1/(2s+1)n−s/(2s+1),

where D is a constant that depends only on s,σ ,τ .

Proof Consider the cases {j̄n ≤ j∗n} and {j̄n > j∗n} separately. First, by the definition of j̄n, j
∗
n

and (8.8), (8.9), for some constant D> 0,

E f

∥∥ fn(j̄n)− f
∥∥2

2
I{j̄n≤j∗n} � E f

(‖ fn(j̄n)− fn(j
∗
n)‖2

2 +‖ fn(j
∗
n)− f ‖2

2

)
I{j̄n≤j∗n}

≤ τ 2j∗n

n
+E f ‖ fn(j

∗
n)−E f fn(j

∗
n)‖2

2 +‖Kj∗n( f )− f ‖2
2 (8.17)

≤ (D/2)2 max(1,B)2/(2s+1)n−2s/2s+1.

On the event {j̄n > j∗n}, we can use (8.9), the Cauchy-Schwarz inequality and Lemma 8.2.1
to see that

E f

∥∥ fn(j̄n)− f
∥∥

2
I{j̄n>j∗n} ≤

∑
j∈J :j>j∗n

(
E f ‖ fn(j)− f ‖2

2

)1/2 (
E f I{ĵn=j}

)1/2

≤
∑

j∈J :j>j∗n

[√
2j

n
+√

B(j, f )

]
·
√

PY
f (ĵn = j)

�
∑

j∈J :j>j∗n

√
PY

f (ĵn = j)

≤
√

jmaxPY
f (j̄n > j∗n)= o(n−s/2s+1),

completing the proof.
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8.2 Adaptive Estimation 619

The preceding theorem holds in the i.i.d. sampling model just as well: if X1, . . . ,Xn

are i.i.d. from bounded density f : [0,1] → [0,∞), we take in place of (8.7) the density
estimators

fn(j)=
∑
l≤j−1

∑
k

ylkψlk, where now ylk =
∫ 1

0
ψlk(t)dPn(t), Pn = 1

n

n∑
i=1

δXi . (8.18)

The procedure defining f̂n = fn(j̄n) can be adapted directly, but the thresholds need to be
modified slightly because the stochastic error fn(j)− E f fn(j) depends now, unlike in the
white noise case, also on the unknown density f . If f is bounded by a constant U, we can
take

τ = τ̃U, U ≥ 1, (8.19)

in (8.12). Clearly, U will usually not be available in practice, but we can replace it by
‖ fn(j̃n)‖∞, with j̃n ∈N chosen such that 2j̃n ∼ (n/ log2 n) – the proof of the following theorem
goes through with this random choice of τn too (see Exercise 8.2.1), and hence we restrict to
U known for simplicity. The choice of the constant τ̃ is discussed in the notes at the end of
this chapter. We also note that for probability densities, we always have

∫
f = 1 and hence

‖ f ‖Bs
2∞ ≥ 1 at least, so the restriction to B ≥ 1 is natural in the following theorem:

Theorem 8.2.3 Consider the estimator f̂n = fn(j̄n) with fn as in (8.18), based on
i.i.d. observations X1, . . . ,Xn from density f on [0,1]. Let j̄n as in (8.12) with τ as in (8.19)
and τ̃ a large enough universal constant. Then, for all s> 0,B ≥ 1,U ≥ 1 and every n ∈N,

sup
f :‖ f ‖Bs

2∞≤B,‖ f ‖∞≤U
E f ‖ f̂n − f ‖2 ≤ DB1/(2s+1)n−s/(2s+1),

where D is a constant that depends only on s,U, τ̃ .

Proof Given the following lemma the proof of the theorem is the same as that of
Theorem 8.2.2, noting that (8.9) also holds (up to multiplicative constants) for the density
estimator fn(j) by Theorem 5.1.5.

Lemma 8.2.4 Let X1, . . . ,Xn be drawn i.i.d. on [0,1] from density f ∈ Bs
2∞,s> 0, satisfying

‖ f ‖∞ ≤ U. Let j∗n be as in (8.11). Then, for every τ̃ large enough, every j > j∗n and every
n ∈N, there exists a universal constant C> 0 such that we have

PN
f (j̄n = j)≤ 1

C
exp{−Cτ̂min(2j,

√
n)}

and

PN
f (j̄n > j∗)≤ 1

C
exp{−Cτ̃min(2j∗ ,

√
n)}.

Proof The proof is similar to that of Lemma 8.2.1: using the triangle inequality and
Parseval’s identity,

‖ fn(l)− fn(j
−)‖2 ≤ ‖ fn(l)−E f fn(l)− ( fn(j

−)−E f fn(j
−))‖2 +

√√√√ l−1∑
�=j−

f 2
lk,
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620 Adaptive Inference

which combined with (8.14) allows us to bound PN
f (j̄n = j), j> j∗n, by

∑
l∈J ,l≥j

PN
f

(
‖ fn(l)−E f fn(l)− ( fn(j

−)−E f fn(j
−))‖2 > (

√
τ̃U− 1)

√
2l

n

)

≤
∑

l∈J ,l≥j

PN
f

(
n‖ fn(l)−E f fn(l)‖2 >

√
τ̃n2l−1‖ f ‖∞

)
+

∑
l∈J ,l≥j

PN
f

(
n‖ fn(j

−)−E f fn(j
−)‖2 >

√
τ̃n2l−1‖ f ‖∞

)
,

for τ̃ large enough. The second inequality in Theorem 5.1.13 with p= 2, x= cτ̃min(2l,
√

n),
τ̃ large enough and suitable c > 0 (noting that 2j � n for j ∈ J and that the Lp-norms of �
in that Theorem can be taken to be bounded by a universal constant for the fixed periodised
Meyer wavelet basis) implies a bound of order e−c′ τ̃min(2l,

√
n) for each of the summands in the

last term. The remainder of the proof of the lemma again proceeds as in Lemma 8.2.1.

8.2.2 Adaptive Estimation in L∞

We now replace L2-risk by the (on [0,1] strictly dominant) L∞-risk and investigate the
problem of adaptation, where quite naturally the spaces Bs

2∞ from the preceding subsection
are replaced by the Hölder-Besov spaces Bs

∞∞. Both in Gaussian white noise and in the
i.i.d. sampling model, we have seen in Proposition 5.1.7 that linear estimators fn(jn) can
achieve the risk bound

sup
f :‖ f ‖Bs∞∞≤B

E f ‖ fn(jn)− f ‖∞ ≤ Cmax(1,B)1/2s+1

(
logn

n

)s/(2s+1)

, (8.20)

for any fixed s,B> 0, some constant C> 0 and every n≥ 2,n ∈N. This is minimax optimal
over balls in Bs

∞∞ in view of Theorems 6.3.5 and 6.3.7.
Just as earlier, the construction of this estimator depends on knowledge of the value s,B,

and the question arises as to whether such knowledge can be circumvented by an adaptive
estimator. The answer is, as in the L2-setting, affirmative, and Lepski’s method can be used
to this effect (another method will be discussed later). Let us quickly describe the necessary
modifications in the setting of Gaussian white noise with σ = 1 – the sampling model case is
treated in Exercise 8.2.2. We consider as earlier in (8.7) the wavelet estimator fn(j) based on
periodised Meyer wavelets. If f ∈ Bs

∞∞, for any s> 0, then, by the results in Section 4.3.4,

‖E f fn(j)− f ‖∞ = ‖Kj( f )− f ‖∞ ≤ c(s)‖ f ‖Bs∞∞2−js ≡ B(j, f ), (8.21)

as well as, for some universal constant c0 > 0,

E f ‖ fn(j)−E f fn(j)‖∞ ≤ c0

√
2jj

n
, (8.22)

from Theorem 5.1.5.
Take integers 1 ≤ jmax ∈N such that (n/ logn)� 2jmax ≤ (n/ logn) and

J = {j ∈N : j ∈ [1, jmax]} . (8.23)
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8.2 Adaptive Estimation 621

For f ∈ Bs
∞∞, B(j, f ) as in (8.21), we define

j∗ = j∗n( f )= min

{
j ∈J : B(j, f )≤ c0

√
2jj

n

}
, (8.24)

which is such that

2j∗n � ‖ f ‖2/(2s+1)
Bs∞∞ (n/ logn)1/(2s+1),

hence theoretically producing an estimator fn(j∗n) that is minimax optimal for estimating
f contained in a ball of Bs

∞∞ in supnorm loss. Following (8.12), the estimated resolution
level is

j̄n = min

{
j ∈J : ‖ fn(j)− fn(l)‖∞ ≤ τ

√
2ll

n
∀l> j, l ∈J

}
, (8.25)

where τ is a threshold constant. In case the set defining the preceding minimum is empty,
we simply set j̄n = jmax.

Theorem 8.2.5 The estimator f̂n = fn(j̄n), with fn as in (8.7) and j̄n as in (8.25) based on
observations in a Gaussian white noise model (8.1), satisfies, for τ large enough, all s,B> 0
and every n ∈N,

sup
f :‖ f ‖Bs∞∞≤B

E f ‖ f̂n − f ‖∞ ≤ Dmax(1,B)1/(2s+1)(n/ logn)−s/(2s+1),

where D is a constant that depends only on s,σ ,τ .

Proof Given the proof of Theorem 8.2.2, all that is needed is an analogue of Lemma 8.2.1,
given by the following result, which, due to the L∞-structure, has a slightly ‘worse’ (but still
good enough) exponential tail in j or j∗:

Lemma 8.2.6 Assume that f ∈ Bs
∞∞ for some s > 0, and let j∗n be as in (8.24). For some

constant C > 0 that depends only on σ , every τ large enough, j > j∗n and every n ∈ N, we
have

PY
f (j̄n = j)≤ 1

C
exp{−Cτ j}

and

PY
f (j̄n > j∗)≤ 1

C
exp{−Cτ j∗}.

Proof With j, j∗, j− as before (8.13), we have

PY
f (j̄n = j)≤

∑
l∈J :l≥j

PY
f

(∥∥ fn(j
−)− fn(l)

∥∥
∞ > τ

√
2ll

n

)
. (8.26)

By the triangle inequality,∥∥ fn(j
−)− fn(l)

∥∥
∞ ≤ ‖ fn(j

−)−E f fn(j
−)− ( fn(l)−E f fn(l))‖∞+‖Kl( f )−Kj−( f )‖∞.
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622 Adaptive Inference

Since f ∈ Bs
∞∞ (and recalling (4.131)), we have, from (8.26), l ≥ j− ≥ j∗ and the definition

of j∗, that

‖Kl( f )−Kj−( f )‖∞ ≤ c(s)‖ f ‖Bs
2∞2−j−s ≤ B(j∗, f )≤

√
2j∗ j∗

n
≤
√

2ll

n
.

Consequently, each probability in (8.26) is bounded from above by

PY
f

{
‖ fn(j

−)−E f fn(j
−)− ( fn(l)−E f fn(l))‖∞ > τ

2

√
2ll

n

}
.

For τ large enough, we can apply Proposition 5.1.12 with p = ∞, x = cτ l to the last
probability and obtain the overall bound

PY
f (j̄n > j∗n)≤

∑
j>j∗

jmax∑
l=j

l∑
�=j

(1/c)e−cτ l

The result follows from summing the preceding series.

The rest of the proof is as in Theorem 8.2.2, noting that, for τ large enough, we can make
Pr(ĵn = j), j> j∗n, asymptotically offset any polynomial growth in n.

Wavelet Thresholding

An alternative to Lepski’s method to construct an adaptive estimate is wavelet thresholding,
particularly suited to the situation of L∞-adaptation. Let us discuss the main ideas again
first with observations dY in the Gaussian white noise model (8.1). Instead of attempting to
select the correct resolution level j∗ at which the linear wavelet estimator (8.7) should be
truncated, we take the full estimated wavelet series fn(jmax), where

jmax ∈N, 2jmax � n.

In the expansion

fn(jmax)=
∑

l≤jmax−1

∑
k

Ylkψlk, Ylk =
∫ 1

0
ψlk(t)dY(t),

however, we only retain the estimated coefficients Ylk whose absolute values exceed a certain
threshold. The idea is that we should not keep the coefficients whose estimated values
suggest that flk = 〈 f ,ψlk〉 is actually zero. This leads to the thresholded wavelet estimator

f T
n (x)=

∑
l≤jmax−1

∑
k

Ylk1{|Ylk|> τn}ψlk(x), x ∈ [0,1], τn ≡ τ
√

logn

n
, (8.27)

where τ is a thresholding constant to be specified, and where the {ψlk} constitute a periodised
Meyer wavelet basis of L2([0,1]) (general S-regular wavelet bases can be used as well if we
restrict adaptation to unknown smoothness less than S). We note that just like a Lepski-type
estimator fn(j̄n) from above, f T

n is nonlinear in the observations dY.
The following theorem implies that this estimator is fully rate adaptive, just as the

estimator from Theorem 8.2.5, and provides a perhaps conceptually simpler solution of the
adaptation problem. Again, Besov spaces are to be understood as periodic spaces in what
follows.
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8.2 Adaptive Estimation 623

Theorem 8.2.7 Consider observations in the Gaussian white noise model (8.1). The
estimator f T

n from (8.27) with τ a large enough constant satisfies, for all s,B > 0 fixed
and every n ≥ 2,

sup
f :‖ f ‖Bs∞∞≤B

E f ‖ f T
n − f ‖∞ ≤ Dmax(1,B)1/(2s+1)

(
logn

n

)s/(2s+1)

,

where D is a constant that depends only on s,σ ,τ .

Proof We will write flk for 〈 f ,ψlk〉 and use repeatedly that, for constants c,C,C′ and glk ∼
N(0,1),

E f max
k

|Ylk − flk| = 1√
n

Emax
k

|glk| ≤ c

√
l

n
,∥∥∥∥∥∑

k

|ψlk|
∥∥∥∥∥
∞
≤ C2l/2

and

‖ f ‖Bs∞∞ ≤ B ⇒ max
k

| flk| ≤ C′B2−l(s+1/2) ∀l, (8.28)

in view of the results in Sections 2.3 and 4.3.4.
We first have, for all x ∈ [0,1],

| f T
n (x)− f (x)| ≤ C

∑
l≥jmax

2l/2| flk|+
∣∣∣∣∣∣
∑

l≤jmax−1

∑
k

(Ylk1{|Ylk|> τn}− flk)ψlk(x)

∣∣∣∣∣∣ .
By the preceding decay estimate (8.28) on the | flk|, and since s> s/(2s+ 1), the first term
is seen to be of order

2−jmaxs � n−s = o

(
logn

n

)s/(2s+1)

.

We decompose the second term as∑
l≤jmax−1

∑
k

(Ylk − flk)ψlk (1{|Ylk|> τn, | flk|> τn/2}+ 1{|Ylk|> τn, | flk| ≤ τn/2})

−
∑

l≤jmax−1

∑
k

flkψlk (1{|Ylk| ≤ τn, | flk|> 2τn}+ 1{|Ylk| ≤ τn, | flk| ≤ 2τn})

= I+ II+ III+ IV

and treat these four terms separately.
About term (I): Let j1(s)≤ jmax be such that

2j1(s) � ‖ f ‖2/(2s+1)
Bs∞∞ (n/ logn)1/(2s+1).
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624 Adaptive Inference

Then, by the estimates at the beginning of the proof,

E f

∥∥∥∥∥∥
∑

l≤j1(s)−1

∑
k

(Ylk − flk)ψlkI[Ylk|>τn,| flk|>τn/2]

∥∥∥∥∥∥
∞

≤
∑

l≤j1(s)−1

∥∥∥∥∥∑
k

|ψlk|
∥∥∥∥∥
∞

E f max
k

|Ylk − flk|

≤ cC
∑

l≤j1(s)−1

√
2ll

n
= O

((
logn

n

)s/(2s+1)
)

.

For the second part of (I), using the definition of τn, we have

E f

∥∥∥∥∥∥
jmax−1∑
l=j1(s)

∑
k

(Ylk − flk)ψlkI[|Ylk|>τn,| flk|>τn/2]

∥∥∥∥∥∥
∞

≤
jmax−1∑
l=j1(s)

E f max
k

|Ylk − flk|2
τ

√
n

logn
max

k
| flk|

∥∥∥∥∥∑
k

|ψlk|
∥∥∥∥∥
∞

≤ C
jmax−1∑
l=j1(s)

2−ls = O

((
logn

n

)s/(2s+1)
)

.

For term (II), we have, using the Cauchy-Schwarz inequality and

{|Ylk|> τn, | flk| ≤ τn/2} ⊂ {|Ylk − flk|> τn/2}, (8.29)

for τ large enough,

E f

∥∥∥∥∥∥
∑

l≤jmax−1

∑
k

(Ylk − flk)ψlkI[|Ylk|>τn,| flk|≤τn/2]

∥∥∥∥∥∥
∞

≤
∑

l≤jmax−1

∑
k

‖ψlk‖∞
√

E f (|Ylk − flk|)2
√

PY
f (|Ylk − flk|> τn/2)

�
∑

l≤jmax−1

23l/2n−1/2e−τ
2 logn/16 = o

((
logn

n

)s/(2s+1)
)

since, using the standard Gaussian tail inequality,

PY
f (|Ylk − flk|> τn/2)= Pr(|glk|> τ

√
logn/2)≤ 2exp

{−τ 2 logn/8
}

.
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8.2 Adaptive Estimation 625

For term (III), using the same Gaussian tail estimate and an inclusion similar to (8.29),

E f

∥∥∥∥∥∥
∑

l≤jmax−1

∑
k

flkψlkI{|Ylk| ≤ τn, | flk|> 2τn}
∥∥∥∥∥∥
∞

≤
∑

l≤jmax−1

∑
k

‖ψlk‖∞| flk|PY
f (|Ylk − flk|> τn)

≤ D′ ∑
l≤jmax−1

2l2−lse−τ
2 logn/2 = o

((
logn

n

)s/(2s+1))
,

for τ large enough.
Finally, for term (IV), we have∥∥∥∥∥∥

∑
l≤jmax−1

∑
k

flkψlkI[|Ylk|≤τn,| flk|≤2τn]

∥∥∥∥∥∥
∞

≤
∑

l≤jmax−1

∥∥∥∥∥∑
k

|ψlk|
∥∥∥∥∥
∞

max
k

| flk|I[| flk|≤2τn]

≤ CC′ ∑
l≤jmax−1

min(2l/2τn,2
−ls).

If j1(s) is as above, then we can estimate the last quantity by

c

√
logn

n

∑
l≤j1(s)−1

2l/2 + c
∑

j1(s)≤l≤jmax−1

2−ls = O

((
logn

n

)s/(2s+1))
, (8.30)

completing the proof.

A version of the preceding theorem in the i.i.d. sampling model on [0,1] can be proved
by replacing Gaussian tail inequalities for centred wavelet coefficients Ylk by Bernstein’s
inequality (i.e., by Theorem 3.1.7), using that the ψlk are all uniformly bounded. When
the density f does not have compact support, the situation is somewhat more difficult
because the sums over k at each resolution level l are then not finite any longer – Bernstein’s
inequality then has to be replaced by concentration inequalities for suprema of empirical
processes, as will be done in the proof of the next theorem.

For i.i.d. observations X1, . . . ,Xn from density f on the real line, the thresholding density
estimator is

f T
n (x)=

∑
l≤Jmax−1

∑
k∈Z

Ylk1{|Ylk|> τn}ψlk(x), x ∈R, (8.31)

with

Ylk = 1

n

n∑
i=1

ψlk(Xi), Jmax ∈N, 2Jmax � n

logn
, τn ≡ τ

√
U

√
logn

n
,

where U is a bound on ‖ f ‖∞. If no such bound U is available, it can be replaced by an
estimate (see Exercise 8.2.1).

If we use compactly supported (e.g., Daubechies) wavelets in the construction of the
preceding estimator, then the sums over k in the definition of f T

n are all finite, and
computation of f T

n is straightforward. This comes at the expense of adapting only up to
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626 Adaptive Inference

smoothness S in the following theorem, where S is the regularity of the wavelet basis. If we
choose an infinitely regular wavelet basis such as the Meyer basis, then, as in the preceding
results, adaptation holds for all s > 0, but the sums over k are infinite (which, in practice,
is no problem either because the localisation of the Meyer wavelet implies that only finitely
many Ylk are nonzero within machine precision). We note again that f being a density, the
assumption B ≥ 1 is natural in the following theorem:

Theorem 8.2.8 Consider i.i.d. observations X1, . . . ,Xn from density f : R → [0,∞). The
estimator f T

n from (8.31), with τ a large enough constant and based on S-regular wavelets,
satisfies, for all B ≥ 1, 0< s< S and every n ≥ 2,

sup
f :‖ f ‖Bs∞∞(R)≤B

E f ‖ f T
n − f ‖∞ ≤ DB1/(2s+1)(n/ logn)−s/(2s+1),

where D is a constant that depends only on s.

Proof The proof is similar to that of Theorem 8.2.7, with some modifications pertaining
to the possibly unbounded support of f . Particularly, we will use repeatedly that

E f sup
k∈Z

|Ylk − flk| ≤
√

E f

(
sup
k∈Z

|Ylk − flk|
)2

≤ c
√

l/n, (8.32)

for any bounded density f (see Proposition 5.1.8 and Remark 5.1.16) that
∥∥∑

k∈Z |ψlk|
∥∥
∞ �

2l/2 and that (8.28) holds with suprema over k ∈ Z as well when f ∈ Bs
∞∞(R). As in the

preceding proof, we have

E f ‖ f T
n − f ‖∞ ≤E f

∥∥∥∥∥ ∑
l≤Jmax−1

∑
k

(Ylk1|Ylk|>τn − flk)ψlk

∥∥∥∥∥
∞
+O(2−Jmaxs),

the second ‘bias’ term is negligible, and the quantity inside the expectation of the supremum
of the second term can be decomposed as∑

l≤Jmax−1

∑
k

(Ylk − flk)ψlk

(
1|Ylk|>τn,| flk|>τn/2 + 1|Ylk|>τn,| flk|≤τn/2

)
−

∑
l≤Jmax−1

∑
k

βlkψlk

(
1|Ylk|≤τn,| flk|>2τn + 1|Ylk|≤τn,| flk|≤2τn

)= I+ II+ III+ IV.

We first treat the large deviation terms (II) and (III). For (II), using (8.32) and the
Cauchy-Schwarz’s inequality, we have

E f sup
x∈R

∣∣∣∣∣ ∑
l≤Jmax−1

∑
k

(Ylk − flk)ψlk(x)1|Ylk|>τn,| flk|≤τn/2

∣∣∣∣∣ (8.33)

≤ E f

[ ∑
l≤Jmax−1

sup
k
|Ylk − flk|sup

k
1|Ylk|>τn,| flk|≤τn/2

∥∥∥∥∥∑
k

|ψlk|
∥∥∥∥∥
∞

]

≤
∑

l≤Jmax−1

2l/2c

[
E f sup

k
|Ylk − flk|2

]1/2[
E f sup

k
1|Ylk|>τn,| flk|≤τn/2

]1/2

.
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8.2 Adaptive Estimation 627

We have, using Theorem 5.1.13 with p = ∞ and (5.23) and (5.24), choosing τ large
enough and using that (2ll/n)1/2 is bounded by a fixed constant independent of l ≤ Jmax,

E f sup
k

1|Ylk|>τn,| flk|≤τn/2 ≤ E f sup
k

1|Ylk− flk|>τn/2 ≤ E f 1supk |Ylk− flk|>τn/2 (8.34)

≤ PY
f

(
sup

k
|Ylk − flk|> τ‖ f ‖1/2

∞

√
logn

n

)
≤ Ke−τ

2 logn/K,

for some fixed constant K> 0, so (II) is negligible by choosing τ large enough.
For term (III), using (8.34) as well as

∑
k | flk| � 2l/2 for any density f ∈ L1 ⊂ B0

1∞(R),
we have, for τ large enough,

E f sup
x∈R

∣∣∣∣∣ ∑
l≤Jmax−1

∑
k

flkψlk(x)1|Ylk|≤τn,| flk|>2τn

∣∣∣∣∣
≤

∑
l≤Jmax−1

2l/2‖ψ‖∞
∑

k

| flk|PY
f (|Ylk| ≤ τn, | flk|> 2τn)

≤ C′′′e−τ
2 logn/K

∑
l≤Jmax−1

2l = o(n−1/2).

We now bound term (I). Let j1(s) be as in the proof of Theorem 8.2.7. Then, by (8.32),

E f sup
x∈R

∣∣∣∣∣∣
∑

l≤j1(s)−1

∑
k

(Ylk − flk)ψlk(x)1|Ylk|>τn,| flk|>τn/2

∣∣∣∣∣∣
≤ c

∑
l≤j1(s)−1

E f sup
k
|Ylk − flk|2l/2 ≤ D

∑
l≤j1(s)−1

√
2l logn

n

≤ D′′G
(

logn

n

)(s/2s+1)

,

where D′′ > 0 is some constant. For the second part, we use the definition of τ , f ∈ Bs
∞∞

and again (8.32) to obtain

E f sup
x∈R

∣∣∣∣∣∣
Jmax−1∑
l=j1(s)

∑
k

(Ylk − flk)ψlk(x)1|Ylk|>τn,| flk|>τn/2

∣∣∣∣∣∣
≤ c

Jmax−1∑
l=j1(s)

E f sup
k
|Ylk − flk|2

τ

√
n

logn
sup

k
| flk|2l/2

≤ D′′′
Jmax−1∑
l=j1(s)

2−ls ≤ D′′′′
(

logn

n

) s
2s+1

,

where D′′′′ is some constant.
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628 Adaptive Inference

To complete the proof, we control term (IV): by (8.32), we see that

sup
x∈R

∣∣∣∣∣ ∑
l≤Jmax−1

∑
k

flkψlk(x)1|Ylk|≤τn, | flk|≤2τn

∣∣∣∣∣≤ c
∑

l≤Jmax−1

sup
k

2l/2| flk|1| flk|≤2τn

≤ c′
∑

l≤Jmax−1

min

(
2l/2

√
logn

n
,2−ls

)
,

which is controlled as in (8.30), completing the proof.

Exercises

8.2.1 Show that Theorems 8.2.3 and 8.2.8 remain true if U is replaced by ‖ fn(j̃n)‖∞, where j̃n is
such that 2j̃n = (n/ log2 n). Hint: Use a concentration inequality for ‖ fn(j̃n)−E fn(j̃n)‖∞ and a
bias bound for uniformly continuous f to infer concentration of ‖ fn(j̃n)‖∞ about the true value
‖ f ‖∞ for n large enough.

8.2.2 Prove a version of Theorem 8.2.5 in the i.i.d. sampling setting.

8.3 Adaptive Confidence Sets

In the preceding section we saw that adaptive estimation is possible at no loss of precision in
terms of minimax rates of convergence in the L2- and L∞-risk. In this section we investigate
whether confidence sets in the sense of Section 6.4 exist that resemble these adaptive risk
bounds. From a statistical point of view, this question is of central importance – a positive
answer would mean that we can take advantage of the construction of adaptive estimators
in the preceding section for purposes of uncertainty quantification and inference. Perhaps
somewhat surprisingly, however, and in contrast to the situation of classical parametric
statistics, the construction of confidence sets for adaptive estimators is a far from obvious
task. The challenges are not just technical but fundamental, and we shall reveal that whether
adaptive confidence sets exist or not depends on deeper information-theoretic properties
of the statistical problem at hand. Moreover, a qualitative difference between L2- and
L∞-theory exists, and geometric considerations will be seen to play a key role in our
results. The reason behind is related to the fact that ‘adaptive estimation of a function’ and
‘estimation of the accuracy of adaptive estimation’ are statistically quite distinct problems in
nature: the former just requires the existence of a method that is adaptive optimal, whereas
the latter implicitly requires the estimation of aspects of the unknown function, such as its
smoothness, which will be seen to be a fundamentally more difficult problem.

We shall first develop the theory in a simple two-class adaptation problem, where the
main mechanisms can be explained fairly easily by establishing a relationship between
adaptive confidence sets and certain composite testing problems from Chapter 6.2.4. These
mechanisms are shown to form a general statistical principle of ‘adaptive inference’ and
are not specific to function estimation problems. In Sections 8.3.2 and 8.3.3 we move
on to the more concrete problem of constructing confidence sets for common adaptive
estimators over a continuous scale of Hölder or Besov balls. We will see that full adaptive
inference is possible for certain subclasses of Sobolev and Hölder balls characterised by
a ‘self-similarity’ property of the wavelet expansion of the function on which we want to
make inference. These subclasses will be shown to be generic in several ways – in particular,
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8.3 Adaptive Confidence Sets 629

they provide necessary and sufficient conditions for the possibility of inference in general
adaptation problems.

We shall develop the theory in this section entirely in the Gaussian white noise model
(8.1). The results for the sampling model are the same up to fairly obvious modifications
given the material already developed in this book.

8.3.1 Confidence Sets in Two-Class Adaptation Problems

We first turn our attention to the problem of confidence sets that adapt to only two fixed
smoothness degrees and with a known bound on the Besov norm on the functions involved.
Whereas such a ‘toy’ situation is perhaps not practically relevant, it highlights the subtleties
that we have to expect in the general case and also provides some first lower bounds that
disprove the existence of adaptive confidence sets even in simple situations. The results will
strongly depend on the geometry through the choice of either the L∞- or L2-risk, and we
consider the least favourable L∞ case first.

Adaptive Confidence Bands for Two Nested Hölder Balls

Consider observations dY ∼ PY
f in the Gaussian white noise model (8.1), where we know

that f is contained in a fixed Hölder ball


(r)≡
(r,B)= {
f : [0,1]→R,‖ f ‖Br∞∞ ≤ B

}
(8.35)

of radius B > 0 and smoothness level r > 0. We take here the Hölder-Besov norm
‖ · ‖Br∞∞ arising from a wavelet basis of L2([0,1]), such as the ones from Section 4.3.4
or Section 4.3.5.

We will assume for now that the radius B is known (and hence suppress the dependence
in the notation), and consider adaptation to the smoothness parameter only. The adaptation
hypothesis is that f is possibly much more regular, say, contained in
(s) for some s> r, but
we do not know whether this is the case or not. An adaptive estimator exists – for instance,
if we take the wavelet thresholding estimator from Theorem 8.2.7 (which does not even
require knowledge of B), then

sup
f ∈
(t)

E f ‖ f T
n − f ‖∞ �

(
logn

n

)t/(2t+1)

∀ t ∈ {s,r}.

In other words, the estimator f T
n picks up the minimax L∞-risk over
(s)whenever f indeed

is smooth enough and otherwise attains the optimal convergence rate over the maximal
model 
(r). Following the ideas laid out in Section 6.4, and given significance levels 0 <
α,α′ < 1, we are interested in a corresponding adaptive confidence set, that is, in a random
subset Cn of L∞ that has at least asymptotically honest coverage over the full model 
(r)⊃

(s), that is,

liminf
n

inf
f ∈
(r)

PY
f ( f ∈ Cn)≥ 1−α, (8.36)

and whose L∞-diameter |Cn|∞ shrinks at the minimax optimal rate (recalling Defini-
tion 6.4.2 and Theorem 6.3.5) in the sense that

sup
f ∈
(t)

PY
f

(
|Cn|∞ > L

(
logn

n

)t/(2t+1)
)
≤ α′, for all t ∈ {s,r} and some L> 0. (8.37)
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630 Adaptive Inference

This inequality is usually only required (and, since L is not specified, only interesting) for
n large enough. Because we measure the diameter of Cn in L∞-distance we can always
replace Cn by the smallest L∞-ball that contains Cn without changing this problem. In
this way, we can think of Cn as a ‘confidence band’ that gives pointwise control of the
estimation error at all points x ∈ [0,1] simultaneously. The significance levels α,α′ are to be
chosen by the statistician – the number 1−α has the traditional interpretation as a coverage
probability. The number α′ specifies the exceptional probability for which Cn may not be
adaptive – typically we will require (8.37) to hold for every α′ > 0 if L = L(α′) is chosen
large enough. Instead of introducing α′, we could have insisted on the stronger requirement
of a bound for E f |Cn|∞ in (8.37) – as the following results are particularly interesting from
the point of view of lower bounds, however, we prefer the weaker formulation involving α′.

Our more refined results later will in particular imply the following negative result:

Theorem 8.3.1 Consider observations dY ∼ PY
f in (8.1). A confidence set Cn ≡

C(dY,α,α′,B) satisfying both (8.36) and (8.37) does not exist. In fact, any confidence
set Cn satisfying (8.36) cannot also satisfy

sup
f ∈
(s)

PY
f (|Cn|∞ > rn)≤ α′,

for s> r, every n large enough and every α′ > 0 at any rate

rn = o

((
logn

n

)r/(2r+1)
)

.

In words, this theorem shows that adaptive confidence bands do not exist over the whole
of
(r). Moreover, this is not just a problem of possibly paying a mild penalty for adaptation
(as in Section 8.1.1, for instance): if we want an adaptive confidence set over all of 
(r),
then the price for adaptation is maximal in the sense that only the minimax rate of the
maximal model over the submodel 
(s). Note that this is not a shortcoming of a particular
procedure but an information-theoretic lower bound on any procedure.

One may construe the preceding theorem as saying that adaptive minimax confidence
bands simply do not exist over Hölder balls 
(r). Not being able to quantify the uncertainty
in an adaptive estimator poses serious doubts as to whether adaptive procedures are useful
in statistics. Before drawing such strong conclusions, let us try to analyse the situation more
closely: for ρ ≥ 0, let us introduce sets


̃(r,ρ)=
{

f ∈
(r) : inf
g∈
(s)

‖ f − g‖∞ ≥ ρ
}

(8.38)

which consist of the elements of the full model 
(r) that are separated away from the
adaptation hypothesis
(s) by uniform distance ‖ f −g‖∞ at least ρ. Clearly,
(r,0)=
(r),
but otherwise (the following proofs imply that) we are removing elements from
(r)\
(s).
Instead of requiring coverage over all of 
(r) as in (8.36), we shall now only require, for
some sequence (ρn : n ∈N), the weaker coverage inequality

liminf
n

inf
f ∈
(s)∪
̃(r,ρn)

PY
f ( f ∈ Cn)≥ 1−α, (8.39)
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8.3 Adaptive Confidence Sets 631

as well as the following adaptation properties: for some fixed α′ > 0, constant L > 0,
sequence rn to be chosen, we have, for all n large enough, that

sup
f ∈
(s)

PY
f (|Cn|∞ > Lrn)≤ α′ (8.40)

and

sup
f ∈
̃(r,ρn)

PY
f

(
|Cn|∞ > L

(
logn

n

)r/(2r+1)
)
≤ α′. (8.41)

When ρ = 0 and rn = (n/ logn)−s/(2s+1), this just reproduces the situation of Theorem 8.3.1,
but allowing for flexible choices of ρn,rn will reveal some interesting features of the problem
at hand. Let us write

rn(t)=
(

logn

n

)t/(2t+1)

in what follows to expedite notation.

Theorem 8.3.2 Consider observations dY∼ PY
f in the Gaussian white noise model (8.1).

(a) Suppose that for every α,α′ > 0, any sequence rn = o(rn(r)) and some sequence (ρn :
n ∈ N), a confidence set Cn = C(dY,α,α′) satisfies (8.39), (8.40) and (8.41). Then,
necessarily,

liminf
n

ρn

rn(r)
> 0. (8.42)

(b) If for some large enough constant c> 0 and all n large enough

ρn ≥ crn(r), (8.43)

then for every α,α′ > 0 and such ρn there exists a confidence set Cn = C(dY,α,α′,B)
satisfying (8.39), (8.40) and (8.41) with rn = (n/ logn)−s/(2s+1).

Remark 8.3.3 Part (a) implies, in particular, by way of contradiction, Theorem 8.3.1.

Proof Part (a): We will argue by contradiction and assume that a confidence set exists for
ρn such that the limit inferior in (8.42) is zero. By passing to a subsequence, we can assume
without loss of generality that the limit inferior is a limit, that is,

ρn = o(rn(r)).

As in the proof of Theorem 6.2.11, part (b), we take distinct functions

{ fm = ε2−j(r+1/2)ψjm : m = 1, . . . ,M}, M � 2j,

which all satisfy ‖ fm‖Br∞∞ = ε <B for ε small enough. Then, for any g∈
(s), by definition
of the Bs

∞∞-norm and since |〈h,ψlk〉| ≤ ‖ψlk‖1‖h‖∞ ≤ 2−l/2‖h‖∞,

‖ fm − g‖∞ ≥ sup
l,k

2l/2 |〈 fm,ψlk〉− 〈g,ψlk〉|

≥ ε2−jr −B2−js ≥ (ε/2)2−jr,

for j large enough, depending only on r,s,B,ε. Now let (ρ ′n : n ∈N) be such that

max(rn,ρn)3 ρ ′n 3 rn(r), n ∈N;
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632 Adaptive Inference

such a sequence exists by the hypotheses on rn,ρn. If j∗n is such that 2−j∗nr � rn(r), then we
can find jn > j∗n such that (ε/2)2−jnr ≥ ρ ′n, and hence, for such j= jn, all the fm are contained
in 
̃(r,ρn).

Suppose now that Cn is a confidence band that is adaptive and honest over
(s)∪
̃(r,ρn),
and consider testing

H0 : f = 0 against H1 : f ∈ { f1, . . . , fM} =M.

Define a test �n as follows: if Cn ∩M= ∅, then �n = 0, but as soon as one fm is contained
in Cn, then �n = 1. We control the type 1 and type 2 error probabilities of this test. Using
(8.39) and (8.40) and noting that rn = o(ρ ′n), we deduce, for n large enough,

PY
0(�n 
= 0)= PY

0( fm ∈ Cn for some m)

= PY
0( fm,0 ∈ Cn for some m)+PY

0( fm ∈ Cn for some m,0 /∈ Cn)

≤ PY
0(‖ fm − 0‖∞ ≤ |Cn| for some m)+α+ o(1)

≤ PY
0(|Cn| ≥ ρ ′n)+α+ o(1)≤ α′ +α+ o(1).

Under any alternative fm ∈ 
̃(r,ρ ′n) and invoking honesty of Cn, we have

PY
fm
(�n = 0)≤ PY

fm
( fm /∈ Cn)≤ α+ o(1),

so, summarizing, we have

limsup
n

(
E0�n + sup

f ∈M
E f (1−�n)

)
≤ 2α+α′.

For α,α′ small enough, this contradicts the testing lower bound from Theorem 6.2.11,
part (b), which implies that

liminf
n

(
E f0�n + sup

f ∈M
E f (1−�n)

)
> 0. (8.44)

Part (b): Let α,α′ be given. For every β > 0, we can use Proposition 6.2.13 (noting
that (6.52) holds with the choice rn = rn(r) for the uniform norm metric d in view of
Theorem 6.3.5) to construct a test �n of

H0 : f ∈
(s) vs. H1 : f ∈
(r, ρ̃n), ρn = crn(r), c> 0,

with type 1 and type 2 errors bounded by β. If H0 is accepted, we take as confidence band
Cn = [ f T

n ± Lrn(s)] and otherwise Cn = [ f T
n ± Lrn(r)], where f T

n is the adaptive estimator
from Theorem 8.2.7, and where L is a large enough constant. We then have

inf
f ∈
(s)

PY
f ( f ∈ Cn)≥ 1− sup

f ∈
(s)
PY

f

(‖ f T
n − f ‖∞ > Lrn(s)

)≥ 1−α,

for L large enough by adaptivity of f T
n (Theorem 8.2.7 and Markov’s inequality). When

f ∈ 
̃(r,ρn),

inf
f ∈
̃(r,ρn)

PY
f ( f ∈ Cn)≥ 1− sup f ∈
̃(r,ρn)

E f ‖ f T
n − f ‖∞

Lrn(r)
− sup

f ∈
̃(r,ρn)

PY
f (�n = 0),
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8.3 Adaptive Confidence Sets 633

and, as earlier, the first term subtracted can be made smaller than α/2 for L large enough.
The second term is also less than any α/2 for c large enough and level β small enough.

Moreover, this confidence band is adaptive: When f ∈ 
̃(r,ρn), there is nothing to prove,
and when f ∈ 
(s), the confidence band has diameter Lrn(s) unless �n = 1 has occurred.
The probability of that exceptional event is again controlled at any level α′ by taking the test
�n to have level β small enough, completing the proof.

Note that part (a) actually holds for any α,α′ such that 2α + α′ < 1 because the lower
bound in (8.44) can be taken to be 1, as in (6.49).

Another, more statistically intuitive way of formulating the preceding theorem for the
specific choice rn = (n/ logn)−s/(2s+1) is the following:

Theorem 8.3.4 An honest and adaptive (with rn = rn(s)) L∞-confidence set over 
(s) ∪

̃(r,ρn) exists if and only if ρn exceeds, up to a multiplicative constant, the minimax rate of
testing between the hypotheses

H0 : f ∈
(s) vs. H1 : f ∈ 
̃(r,ρn).

This ‘testing’ interpretation will be investigated further later in a general
decision-theoretic framework (Proposition 8.3.6). This result shows that adaptive
confidence bands exist in the two-class model precisely whenever the level of smoothness
t ∈ {s,r} can be consistently tested from the observations. This is in strict contrast to the
existence of adaptive estimators in Theorem 8.2.7 for the whole scale of Hölder balls

(s),s > r. Adaptive L∞-confidence sets do not exist for parameters that are too close to
the adaptation hypothesis 
(s), and the separation rate required is dictated by the minimax
rate of the associated composite testing problem.

Adaptive L2-Confidence Balls and Unbiased Risk Estimation

Let us next investigate the situation where the L∞-risk is replaced by the weaker L2-risk
or, what is the same, when the performance of the confidence set Cn is measured by its
L2-diameter |Cn|2. The situation is qualitatively different from the L∞ case considered in the
preceding section.

Consider again an observation dY ∼ PY
f in the Gaussian white noise model (8.1), where

we assume now that f is contained in a Besov ball

S(r)≡ S(r,B)= { f : [0,1]→R,‖ f ‖Br
2∞ ≤ B} (8.45)

of radius B and smoothness level r > 0. We again take the Besov norm generated by a
wavelet basis of L2([0,1]) from Sections 4.3.4 and 4.3.5. All that follows also works for
standard bases {ek : k ∈ Z} of L2 if one replaces S(r) by a Sobolev ball (similar to the proof
of Theorem 8.3.16).

We can split the sample into two ‘halves’ as in (6.10) and compute the adaptive estimator
f̂n = fn(j̄n) from Theorem 8.2.2 based on the first subsample. (In fact, any adaptive estimator
could be used.) Based on the second subsample, we can then construct the confidence set
Cn from (6.139), where we choose j = jn such that 2j � n1/(2r+1/2) and where B(j) = B̄2−2jr

with B̄ a large enough constant depending only on B. As will be shown in the next theorem,
the expected diameter E|Cn|2 is then of order

max
(
n−r/(2r+1/2),n−s/(2s+1)

)
which is O(n−s/(2s+1)), if s ≤ 2r; (8.46)
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634 Adaptive Inference

hence, such Cn provides adaptation in the smoothness window s ∈ [r,2r], highlighting
a remarkable difference to the L∞ situation from the preceding subsection. However,
adaptation only to the window [r,2r] is rather limited, and the question arises as to whether
one can adapt to s > 2r too. The answer to this question is negative, as will be shown by
using the separation approach from the preceding subsection. However, in the L2 setting,
the separation rates are different, pertaining to the fact that the minimax testing rates are
sensitive to whether separation occurs in L2 or L∞. Let us rigorously collect all these findings
now in a theorem.

For ρ ≥ 0, we again consider separated sets

S̃(r,ρ)=
{

f ∈ S(r) : inf
g∈S(s)

‖ f − g‖2 ≥ ρ
}

, (8.47)

where the separation distance is now the L2-metric. For fixed 0<α < 1 and some sequence
(ρn : n ∈N), we require asymptotic coverage

liminf
n

inf
f ∈S(s)∪S̃(r,ρn)

PY
f ( f ∈ Cn)≥ 1−α (8.48)

and the following adaptation properties: for some fixed α′ > 0, constant L> 0 and sequence
rn to be chosen, we have

sup
f ∈S(s)

PY
f (|Cn|2 > Lrn)≤ α′ (8.49)

and
sup

f ∈S̃(r,ρn)

PY
f

(|Cn|2 > Ln−r/(2r+1)
)≤ α′, (8.50)

for all n large enough.

Theorem 8.3.5 Consider observations dY in the Gaussian white noise model (8.1).

(a) Suppose that for every α,α′ > 0, any sequence rn = o(n−r/(2r+1/2)) (so, in particular,
with rn = n−s/(2s+1), for s> 2r,) and some sequence (ρn : n ∈ N), a confidence set Cn =
C(dY,α,α′) satisfies (8.48), (8.49) and (8.50). Then, necessarily,

liminf
n

ρn

n−r/(2r+1/2)
> 0. (8.51)

(b) For every α,α′ > 0, a confidence set Cn = C(dY,α,α′,B) satisfying (8.48), (8.49) and
(8.50) with rn = n−s/(2s+1) exists if one of the following conditions is satisfied:

(i) s ≤ 2r and ρn = 0 ∀n, or
(ii) s> 2r and, for some large enough constant c> 0 and every n ∈N large enough,

ρn ≥ cn−r/(2r+1/2). (8.52)

Proof We first prove part (b)(i) and invoke Theorem 6.4.8, as discussed in the paragraph
containing (8.46), with F = S(r), f̃ n = f̂n, where f̂n is the adaptive estimator from
Theorem 8.2.2, and jn such that 2−jnr � n−r/(2r+1/2). Applying Lemma 8.2.1 with r in place
of s, and since jn > j∗n holds for n large enough, we see that

sup
f ∈S(r)

‖Kj( f − f̂n)− ( f − f̂n)‖2
2 = OP(2

−2jnr)= OP(n
−2r/(2r+1/2)),
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8.3 Adaptive Confidence Sets 635

verifying the first hypothesis of Theorem 6.4.8. For f ∈ S(s), we can further uniformly
bound Eτn( f ) by a term of order

1√
n

E‖ f̂n − f ‖2 + 2jn/2

n
= O

(
1√
n

n−s/(2s+1)+ n−2r/(2r+1/2)

)
= O(n−2s/(2s+1))

in view of Theorem 8.2.2, and since s ≤ 2r, implying that the L2-diameter of Cn is indeed
of the required adaptive order. Coverage of Cn follows from Theorem 6.4.8, completing the
proof of this part of the theorem.

Part (b)(ii) is proved in a similar fashion as Theorem 8.3.2, part (b), where
Proposition 6.2.13 is replaced by Theorem 6.2.20 to first construct a level α test for the
testing problem

H0 : f ∈ S(s) vs. H1 : f ∈ S̃(r,ρn),

and where f T
n is replaced by f̂n from Theorem 8.2.2. The result also follows from the general

Proposition 8.3.7.
Finally, to prove part (a), we apply the same testing reduction as in the proof of

Theorem 8.3.2, but since the role of Theorem 6.2.11, part (b), has to be replaced by
Theorem 6.2.11, part (c), there, the difference in the minimax testing rates explains the
difference in the required separation rates. Again, the result also follows from the general
considerations in Proposition 8.3.6 (combined with Theorem 6.2.11, part (c)).

Note that the bounds in parts (a) and (b)(ii) complement each other and imply that for
s> 2r, the separation rate n−r/(2r+1/2) is necessary and sufficient for the existence of adaptive
confidence sets.

A Decision-Theoretic Perspective on Adaptive Minimax Confidence Sets

Having seen that the geometry of the inference problem affects the nature of the problem of
existence of adaptive confidence sets, we wish to show in this section that this mechanism
is in fact a general decision-theoretic principle and is not particular to the statistical function
estimation problems considered here. We restrict again to the two-class problem, where the
exposition of the main ideas is clearest.

Suppose that we are given observations (X(n) : n ∈ N) taking values in some measurable
space (X (n),A(n)) with distribution P f , where f is indexed by some parameter space 
. We
suppose that 
 is endowed with a metric d, and we denote by rn(
) the minimax rate of
estimation on this space, that is

inf
Tn

sup
f ∈


E f d(Tn, f )∼ rn(
), rn(
)→n→∞ 0, (8.53)

the infimum extending over all estimators Tn : (X (n),A(n))→
.
We consider an arbitrary subset 
0 ⊆ 
 for which the minimax rate of estimation is

rn(
0). If rn(
0) = o(rn(
)) as n → ∞, it is sensible to speak of 
0 as an adaptation
hypothesis – we may wish to construct an estimator Tn that attains this rate when f ∈ 
0

while still performing optimally when f ∈ 
 \
0. We have seen in this chapter that such
estimators exist in a variety of situations; for instance, 
 could be a Sobolev or Hölder ball
in Br

p∞ and 
0 a ball in the same scale of spaces but of higher smoothness s> r.
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636 Adaptive Inference

We are interested not simply in the construction of an adaptive estimator but also in an
adaptive confidence set Cn for f , that is, a random subset Cn = C(X(n)) of 
 based on
the observations only such that Cn contains f with prescribed probability and such that the
random diameter

|Cn| = sup
f ,g∈Cn

d( f ,g)

of Cn for the d-metric reflects the rates of adaptive estimation rn(
0),rn(
), depending on
whether f ∈ 
0 or not. Note that, unlike an adaptive estimator, any such confidence set
Cn provides an estimate |Cn| of the minimax accuracy rn of estimation. We shall see that
this is in general a harder problem than adaptive estimation, whose solution depends on the
‘information geometry’ of the triplet (
,
0,d).

To develop this idea, we separate 
0 from 
: Setting d( f ,
0) = infv∈
0 d( f ,v), we
define


̃(ρ)= { f ∈
 : d( f ,
0)≥ ρ} (8.54)

and study the composite testing problem

H0 : f ∈
0 vs. H1 : f ∈ 
̃(ρ). (8.55)

A test �n for this problem is a measurable function �n = �(X(n)) taking values in {0,1}.
Following Chapter 6, a sequence (ρ∗n : n ∈ N) is called the minimax rate of testing for this
problem if the following two requirements are satisfied:

(a) For every β, there exists a constant L = L(β) and a test �n such that

sup
f ∈
0

E f�n + sup
f ∈
̃(Lρ∗n )

E f (1−�n)≤ β. (8.56)

(b) For some β ′ > 0 and any ρ ′n = o(ρ∗n ), we have

liminf
n

inf
�

[
sup
f ∈
0

E f�n + sup
f ∈
̃(ρ′n)

E f (1−�n)

]
≥ β ′. (8.57)

We shall consider confidence sets that are adaptive and honest for the model

P(ρn)=
0 ∪ 
̃(ρn)

for a suitable sequence ρn ≥ 0. Note that ρn = 0 is admissible in principle. Formally, we
require Cn to satisfy, for some sequence ρn, some constant 0 < K <∞ and every 0 < α,
α′ < β ′/3, the following three requirements:

liminf
n

inf
f ∈P(ρn)

P f ( f ∈ Cn)≥ 1−α, (8.58)

limsup
n

sup
f ∈
0

P f (|Cn| ≥ Krn(
0))≤ α′, (8.59)

limsup
n

sup
f ∈
̃(ρn)

P f (|Cn| ≥ Krn(
))≤ α′. (8.60)

The first result is the following lower bound, which says that if the rate of adaptive
estimation in 
0 is faster than the rate ρ∗n of testing in (8.55), then an adaptive confidence
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8.3 Adaptive Confidence Sets 637

set over P(ρ ′n) cannnot exist for any ρ ′n = o(ρ∗n ), particularly not for all of 
 as soon as
liminfnρ

∗
n > 0.

Note that the following proof applies for any (not necessarily minimax estimation) rate
rn(
0)= o(ρ∗n ).

Proposition 8.3.6 Let ρ∗n be the minimax rate of testing for the problem (8.55), and let
rn(
0) be the minimax rate of estimation over 
0 in d-risk. Suppose that

rn(
0)= o(ρ∗n ). (8.61)

Then an adaptive and honest confidence set Cn that satisfies (8.58), (8.59) and (8.60) for
any α,α′ such that 0< 2α+α′ < β ′ and any ρn = o(ρ∗n ) does not exist.

Proof Suppose that such Cn exist. For any sequence ρ ′n ≥ ρn, the properties (8.58), (8.59)
and (8.60) with ρn replaced by ρ ′n hold as well. We can choose such ρ ′n in a way that

rn(
0)= o(ρ ′n), ρ ′n = o(ρ∗n ).

We consider testing (8.55) for ρ = ρ ′n, and construct

�n = 1{Cn ∩ 
̃(ρ ′n) 
= ∅},
so we reject H0 as soon as Cn contains any of the alternatives. Then, using coverage (8.58)
and also (8.59) combined with rn(
0)= o(ρ ′n),

sup
f ∈
0

E f�n = sup
f ∈
0

P f (Cn ∩ 
̃(ρ ′n) 
= ∅)

≤ sup
f ∈
0

P f ( f ∈ Cn,Cn ∩ 
̃(ρ ′n) 
= ∅)+α+ o(1)

≤ sup
f ∈
0

P f (|Cn| ≥ ρ ′n)+α+ o(1)≤ α′ +α+ o(1).

Likewise, using again (8.58),

sup
f ∈
̃(ρ′n)

E f (1−�n)= sup
f ∈
̃(ρ′n)

P f (Cn ∩H1 = ∅)≤ sup
f ∈
̃(ρ′n)

P f ( f /∈ Cn)≤ α+ o(1).

Summarising, using the bounds on α,α′, this test verifies that

limsup
n

[
sup
f ∈
0

E f�n + sup
f ∈
̃(ρ′n)

E f (1−�n)

]
< 2α+α′ < β ′,

which contradicts (8.57) and completes the proof.

However, as soon as the testing problem (8.55) can be solved, then adaptive confidence
sets exist as soon as adaptive estimators do, as the following proposition shows. One can
also show in general that when ρ∗n = O(rn(
0)), then adaptive honest confidence sets exist
without the necessity of separation in Proposition 8.3.6 (see the notes at the end of this
chapter).

Proposition 8.3.7 Suppose that there exists an estimator f̂n = f̂ (X(n)) that is adaptive, that
is, such that ∀ε > 0 there exists L′ = L′(ε) such that

sup
f ∈
0

P f (d( f̂n, f ) > L′rn(
0)) < ε and sup
f ∈


P f (d( f̂n, f ) > L′rn(
)) < ε.
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638 Adaptive Inference

Suppose, moreover, that for every β ′ > 0 there exists a test �n satisfying (8.56). Then, for
every α > 0, there exists L = L(α,α′) and a confidence set Cn satisfying (8.58), (8.59) and
(8.60) for ρn = Lρ∗n .

Proof Define, for 0<M<∞ to be chosen,

Cn =
{
{ f ∈
 : d( f , f̂n)≤ Mrn(
0)}, if �n = 0,

{ f ∈
 : d( f , f̂n)≤ Mrn(
)}, if �n = 1.

To establish coverage: for f ∈
0, we have from adaptivity of f̂n that

inf
f ∈
0

P f ( f ∈ Cn)≥ 1− sup
f ∈
0

P f

(
d( f̂n, f ) >Mrn(
0)

)
≥ 1−α,

for M ≥ L′(α) large enough. When f ∈ 
̃(ρn),

inf
f ∈
̃(ρn)

P f ( f ∈ Cn)≥ 1− sup
f ∈
0

P f

(
d( f̂n, f ) >Mrn(
)

)
− sup

f ∈
̃(ρn)

E f (1−�n)≥ 1−α,

using again the adaptivity of f̂n with M ≥ L′(α/2) and (8.56) for L = L(α/2) large enough.
This proves that Cn satisfies (8.58). For adaptivity: by the definition of Cn, we always have
(8.60) with M ≥ K. If f ∈
0, then, again with M ≥ K,

P f {|Cn|> Lrn(
0)} ≤ P f {�n = 1} ≤ α′,
for L = L(α′) large enough, completing the proof for M, a large enough constant exceeding
max(K,L(α/2)).

8.3.2 Confidence Sets for Adaptive Estimators I

The results from the preceding subsection reveal some of the intrinsic difficulties associated
with the theory of adaptive confidence sets. There is still need to provide uncertainty
quantification for adaptive estimators, and the goal we shall set ourselves here is to find
maximal parameter spaces for which honest inference with adaptive estimators is possible.
That is, we want confidence sets that reflect the actual accuracy of adaptive estimation and
that are valid for as many points in the parameter space as possible. The theory is made
more difficult by the fact that in most nonparametric adaptation problems the target we want
to adapt to (smoothness and perhaps also the Hölder or Sobolev norm of the function to be
estimated) is not a discrete but a continuous parameter, and the two-class theory from the
preceding section does not obviously generalise to the continuous case. We shall investigate
this problem in this (and the subsequent) subsection.

Risk Estimation and Canonical Discretisations

Let dY ∼ PY
f be an observation in the white noise model (8.1). Consider the situation where

we know a priori that f belongs to a Sobolev-Besov ball

S(r,B0)= { f : [0,1]→R,‖ f ‖Br
2∞ ≤ B0}, r> 0,B0 > 0,
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8.3 Adaptive Confidence Sets 639

and we are interested in adapting to the unknown smoothness s ∈ [r,R] for some fixed but
arbitrary R> r and to norm ‖ f ‖Bs

2∞ ≤ B,B ≤ B0.
The idea is to split the sample as in (6.10) to compute one’s favourite adaptive estimator

f̂n based on the first subsample and to estimate its resulting risk E f ‖ f̂n − f ‖2
2 based on

the second subsample. Indeed, if we consider a ‘canonical discretisation’ of the adaptation
window [r,R] equal to

R= {r,2r,4r,8r, . . . ,2N−1r} = {si}N−1
i=0 , where N is such that sN ≡ 2Nr> R,

then in view of the proof of Theorem 8.3.5, we know that for every fixed window [si,si+1],
we can estimate E f ‖ f̂n − f ‖2

2 at a precision that is compatible with adaptation, and hence,
adaptive confidence sets exist for f ∈ 
(si,B0) in that window. The idea is now to try
to estimate the ‘true’ s = s( f ) ∈ R and then to use the procedure from Theorem 8.3.5
for the estimated value of s. We call the discretisation R canonical because it reflects the
fact, specific to L2-theory, that the unknown smoothness s of the function f needs to be
estimated only at accuracy within a constant to construct adaptive confidence sets. We note
in advance that such a construction does not work for L∞-confidence bands, where the
unknown smoothness needs to be estimated consistently (as will be discussed later).

Using the notation ‖ f −T ‖2 = infg∈T ‖ f − g‖2 for any set of functions T and defining

ρn(t)= n−t/(2t+1/2), t ∈R, (8.62)

we define the model

Fn = S(sN,B0)∪
(⋃

s∈R
{ f ∈ S(s,B0) : ‖ f −S(t,B0)‖2 ≥ Lρn(s) ∀t> s, t ∈R}

)
, (8.63)

where L is a large enough constant to be chosen. We will construct a confidence set that
adapts to smoothness s ∈ [r,R] in L2-diameter and is honest over Fn if r and B0 are known.
This confidence set can in fact be taken to be centred at an arbitrary adaptive estimator
f̂n whose performance is estimated by a statistic constructed in the proof of the following
theorem.

Theorem 8.3.8 Let dY∼PY
f be an observation in the Gaussian white noise model (8.1), and

let 0 < r < R <∞. For every α,α′ > 0, there exists L large enough and a confidence set
Cn = C(α,α′,B0,r,R,dY) that is honest over Fn from (8.63)

liminf
n

inf
f ∈Fn

PY
f ( f ∈ Cn)≥ 1−α (8.64)

and that is adaptive in the sense that, for some fixed constant L′ > 0,

limsup
n

sup
f ∈S(s,B)∩Fn

PY
f (|Cn|2 ≥ L′B1/(2s+1)n−s/(2s+1))≤ α′ ∀s ∈ [r,R], B ∈ [1,B0]. (8.65)

Remark 8.3.9 We remark that adaptation in (8.65) holds both with respect to smoothness
s ∈ [r,R] and radius B ∈ [1,B0]. Also note that the intersection with Fn, in (8.65) is in fact
not necessary, but since coverage cannot be guaranteed for elements not contained in Fn,
this is only of theoretical interest.

Proof Writing S(s)≡ S(s,B0) throughout this proof, we begin with a test

H0 : S(2r) vs. H1 : S̃(r,ρn(r))≡ { f ∈ S(r) : ‖ f −H0‖2 ≥ ρn(r)} .
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640 Adaptive Inference

That is, we test whether the signal f that has generated the observations dY is possibly 2r
smooth or not. If the test rejects, we set ŝn = r; if it accepts, we continue to test whether f is
perhaps 4r smooth or not, and so on; that is, we define ŝn to be the first element of R in this
upwards procedure for which the test between

H0 : f ∈ S(si) and H1 : f ∈ S(si−1),‖ f −H0‖2 ≥ ρn(si−1)

rejects the null hypothesis. For each of these composite testing problems, the minimax rate
of testing was seen to equal

ρn(si−1)= n−(si−1)/(2si−1+1/2), i = 1, . . . ,N− 1,

in Section 6.2.4, and we can use the test function �n(i) constructed in Theorem 6.2.20 for
each of these individual testing problems. (Alternatively, if r> 1/4, we can use the test from
Corollary 6.2.16, noting that (6.70) is then verified with s = si > 1/2 for i > 1 in view of
Theorem 4.3.36). Since there is only a finite number N− 1 of tests that are independent of
sample size n, we can apply a trivial multiple-testing correction (by tuning each test to have
level α/N instead of α). For each f ∈Fn, we either have f ∈ S(sN−1), in which case we set
s( f ) = sN−1, or otherwise f ∈ S̃ s( f ) for some unique s( f ). Using the minimax property of
all the tests �n(i), we deduce that, for L = L(α/(2N)) and n large enough, we have

sup
f ∈Fn

PY
f (ŝn 
= s( f ))≤ α/2. (8.66)

Hence, the confidence set Cn constructed in the proof of Theorem 8.3.5 with r there replaced
by ŝn and tuned to have coverage α/2 has the desired property (using the proof there on the
event ŝn = s( f )).

We note that this construction is optimal in the sense that the separation sequences ρn(t)
in (8.62) cannot be taken any faster because otherwise we would arrive at a contradiction
with Theorem 8.3.5, part (a). In particular, the set removed from S(r,B0) ‘disappears’ in the
large sample limit, and any f will eventually be contained in Fn if n is only large enough.
The fact that the set Fn grows dense in the full model S(r,B0) implies, in particular, the
following ‘misleading’ corollary:

Corollary 8.3.10 For every α,α′, there exist confidence sets Cn = C(α,α′,r,R,B0,dY) such
that

liminf
n

PY
f ( f ∈ Cn)≥ 1−α ∀ f ∈ S(r,B0)

and such that

|Cn|2 = OPY
f
(n−s/(2s+1)) ∀ f ∈ S(s,B0), s ∈ [r,R].

This result seemingly suggests that adaptive confidence sets exist for the whole model
S(r,B0). However, the result is pointwise in f , and the index n from when onwards coverage
holds depends on f , so this is a bad use of asymptotics. We need to insist on honest
(uniform in f ) coverage to reveal the additional complexity behind the existence of adaptive
confidence sets.

Next to optimality of the separation sequences ρn(t), we may ask whether the restriction
to known upper bounds on r,B0 in Theorem 8.3.8 and Corollary 8.3.10 could be removed.
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8.3 Adaptive Confidence Sets 641

We shall now turn to proving a general lower bound that shows in particular that
Corollary 8.3.10 (and a fortiori Theorem 8.3.8) cannot hold true if no bound on B0 is
required.

Impossibility of Confidence Sets without Qualitative Constraints

Theorem 8.3.8 (and Corollary 8.3.10) shows that the ‘pathological’ set removed from
consideration to construct L2-adaptive confidence sets over a fixed Sobolev ball vanishes
as n →∞. This is only true thanks to the fact that we have a priori restricted to a fixed ball
in Br

2∞, which in itself means that some functions f ∈ Br
2∞ are permanently excluded from

consideration. We may ask whether such a qualitative restriction (a bound on the radius) is
indeed necessary. We show now that this is the case, even if one is only after ‘pointwise in
f ’ confidence sets. This implies that full adaptive inference in the space Br

2∞ is impossible
when R> 2r. It shows, moreover, that one has to make qualitative assumptions of some kind
on the parameter space in question if one wants adaptive confidence statements.

Theorem 8.3.11 Consider observations dY ∼ PY
f in the Gaussian white noise model (8.1),

and let 0< α < 1/2. A random subset Cn = C(α,dY) of L2 cannot simultaneously satisfy

liminf
n

PY
f ( f ∈ Cn)≥ 1−α ∀ f ∈ Br

2∞ (8.67)

and
|Cn|2 = oP(rn) (8.68)

at any rate

rn = o(n−r/(2r+1/2)).

Remark 8.3.12 When R > 2r, we have n−s/(2s+1) = o(n−r/(2r+1/2)), implying the desired
impossibility result. For R ≤ 2r, no restrictions are necessary for adaptation in view of
Theorems 8.3.5, part (b)(i).

Proof Let {ψlk} denote a wavelet basis of L2([0,1]) that generates all the norms of the
spaces Bs

2∞([0,1]),s∈ [r,R], as in Section 4.3.4 or Section 4.3.5. For each l, consider disjoint
index sets K(1)

l ,K(2)
l such that |K(2)

l | ≥ c2l for some c> 0. Fix s′> 2r, and take f0 ∈ Bs′
2∞ any

function for which the coefficients 〈ψlk, f0〉 are zero for all l ∈N,k ∈K(2)
l . (For the proof of

this theorem, we could simply take f0 = 0,K(1)
l = ∅ and K(2)

l = {0,1, . . . ,2l − 1}, but other
choices will be of interest later, so we give this proof in this slightly more general setting.)
For m ∈N and some coefficients βjik =±1 to be chosen later, we will define functions

fm = f0 +
m∑

i=1

∑
k∈K(2)ji

2−ji(r+1/2)βjikψjik, m ∈N. (8.69)

The monotone increasing sequence jm is chosen inductively as follows: set δ = (1− 2α)/5.
We have already defined f0 and set n0 = 1. Given fm−1 ∈ Br

2∞, we can use the hypotheses
of the theorem to find nm > nm−1 depending only on fm−1 such that both

PY
fm−1
( fm−1 /∈ Cnm)≤ α+ δ and (8.70)

PY
fm−1
(|Cnm |2 ≥ rnm)≤ δ (8.71)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.009
http:/www.cambridge.org/core


642 Adaptive Inference

hold true. We then choose jm,m ∈N, through

nm � C 2jm(2r+1/2),

where C > 0 is a small enough constant chosen later depending only on δ, and require in
addition that jm/jm−1 ≥ 1+ (1/2r). (The last inequality can always be achieved by choosing
nm sufficiently large in each step.)

To choose the βjik in each step, consider functions

fm,β = fm−1 + gβ , gβ = 2−jm(r+1/2)
∑

k∈K(2)jm

βjmkψjmk,

where β is a point in the discrete hypercube {−1,1}K(2)jm . For

γ ′
nm

= nm2−(2r+1)jm

and gk ∼ N(0,1), we see from Proposition 6.1.1 that the likelihood ratio between
observations from fm,β and from fm−1 (and at noise level 1/nm), as well as its averaged
version are given by

Zβ =
dPY

fm,β

dPY
fm−1

=
∏

k∈K(2)jm

exp{βjmk

√
γ ′

nm
gk − γ ′

nm
/2}, and Z = 1

2|K
(2)
jm

|

∑
β

Zβ ,

respectively. Thus, we have

E fm−1(Z
2)= E fm−1

⎛⎜⎝2−|K(2)jm
|∑
β

∏
k∈K(2)jm

exp{βk

√
γ ′

nm
gk − γ ′

nm
/2}

⎞⎟⎠
2

= 2−2|K(2)jm
|∑
β,β ′

E0

⎡⎢⎣ ∏
k∈K(2)jm

exp{(βk +β ′
k)
√
γ ′

nm
gk − γ ′

nm
}dPY

fm−1

dPY
0

⎤⎥⎦
= 2−2|K(2)jm

|∑
β,β ′

∏
k∈K(2)jm

exp{(βk +β ′
k)

2γ ′
nm
/2− γ ′

nm
}

= 2−2|K(2)jm
|∑
β,β ′

exp

⎧⎪⎨⎪⎩γ ′
nm

∑
k∈K(2)jm

βkβ
′
k

⎫⎪⎬⎪⎭
= E(exp[γ ′

nm
Yjm])

using independence of the {gk : k ∈K(2)
jm } with dPY

fm−1
/dPY

0, the identities

E0[dPY
fm−1
/dPY

0] = 1, Eeugk = eu2/2,

and where Yjm = ∑
k∈K(2)jm

Rk,Rk ∼i.i.d. ±1, is a Rademacher average. We conclude as in

the last two displays of the proof of Theorem 6.2.9 that, for C small enough depending
only on δ,

E fm−1(Z− 1)2 ≤ δ2.
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As a consequence, if we consider the statistic

Tnm = 1
{∃ f ∈ Cnm ,‖ f − fm−1‖2 ≥ rnm

}
, (8.72)

then, by the usual testing bound (as in (6.21)) and the Cauchy-Schwarz inequality,

PY
fm−1
(Tnm = 1)+max

β
PY

fβ
(Tnm = 0)≥ 1+E fm−1[(Z− 1)1{Tnm = 0}] ≥ 1− δ. (8.73)

Now we set fm = fm,β for β maximising the left-hand side of the preceding inequality. By
definition of jm, we have

‖ f∞− fm‖2
2 �

∞∑
i=m+1

2−2jir � 2−2jm+1r � 2−jm(2r+1); (8.74)

in particular, the sequence fm is uniformly Cauchy and converges to a limiting function f∞
that is contained in Br

2∞ (since its wavelet coefficients are all equal to either zero, 〈 f∞,ψlk〉=
ε2−l(2r+1)(±1) or 〈 f0,ψlk〉). Considering likelihood ratios (and writing gk = gik in slight abuse
of notation),

Z′ = dPY
f∞

dPY
fm

=
∞∏

i=m+1

∏
k∈K(2)ji

exp{βk

√
nm2−(2r+1)jigk − nm2−(2r+1)ji/2},

we show from a similar computation as earlier and using (8.74) that

E fm[(Z′)2] = exp{nm‖ f∞− fm‖2
2} ≤ exp{D2−jm/2} ≤ 1+ δ2,

for m large enough and some fixed constant D> 0. We obtain, using also (8.73) evaluated
at the maximiser in β,

PY
fm−1
(Tnm = 1)+PY

f∞(Tnm = 0)

= PY
fm−1
(Tnm = 1)+PY

fm
(Tnm = 0)+PY

f∞(Tnm = 0)−PY
fm
(Tnm = 0)

≥ 1− δ+E fm[(Z′ − 1)1{Tnm = 0}]
≥ 1− 2δ.

Now, if Cn is a confidence set as in the theorem, then we have, from (8.70) and along the
chosen subsequence nm of n,

PY
fm−1
(Tnm = 1)≤ PY

fm−1
( fm−1 /∈ Cnm)+PY

fm−1
(|Cnm | ≥ rnm)≤ α+ 2δ, (8.75)

which combined with the preceding display gives

PY
f∞(Tnm = 0)≥ 1− 2δ−PY

fm−1
(Tnm = 1)≥ 1−α− 4δ.

Moreover, for m large enough and positive constants d,D′,

‖ f∞− fm−1‖2
2 ≥

∑
k∈K(2)jm

2−(2r+1)jm ≥ d2−2jmr ≥ D′n−2r/(2r+1/2)
m 5 r2

nm
(8.76)

by hypothesis on rn. Consequently, on the event f∞ ∈Cnm and by (8.76), the set Cnm contains
an element f∞ that is at distance from fm−1 by more than rnm , and we conclude overall that

PY
f∞( f∞ ∈ Cnm)≤ PY

f∞(Tnm = 1)≤ α+ 4δ = 1−α− δ < 1−α,

giving a contradiction to (8.67) and completing the proof.
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644 Adaptive Inference

8.3.3 Confidence Sets for Adaptive Estimators II: Self-Similar Functions

Theorem 8.3.11 exhibits limitations for adaptive confidence sets and shows that if we are
not willing to make some a priori restrictions on the functional parameter f , then the
adaptation window [r,2r] from Theorem 8.3.5 cannot be improved on in the L2 setting.
In Theorem 8.3.8, a priori upper bounds B0,r on the parameters B,s were assumed in the
inequality ‖ f ‖Bs

2∞ ≤B, so a testing suite could be used to estimate the ‘smoothness window’
that f belongs to. In the L∞ setting, no such adaptation window exists at all (Theorem 8.3.2),
so this approach cannot be used. Moreover, when adaptation for full ranges of smoothness
parameters s,B is desired, the ‘testing and separation’ approach from earlier cannot be
directly implemented as it relies on knowledge of B0.

The question arises as to whether a qualitative assumption exists other than a bound on B0

under which adaptive inference is possible over a full range of parameters. We study such
a condition in this subsection. It models ‘typical’ elements of Bs

p∞ that are ‘identifiably
s-smooth’ in some sense. These conditions will be coined self-similarity conditions for
reasons to be discussed later. How much ‘identifiability’ is needed will be seen to depend
on the information-theoretic structure of the problem. The conditions we will introduce
will be shown in Section 8.3.4 to give a natural model for s-regular functions, but more
importantly perhaps, they give adaptive confidence sets for standard adaptive estimators
(such as those constructed from Lepski’s method) without requiring any knowledge of
unknown parameters such as B0.

Self-Similarity for Hölder Balls and Estimating the Hölder Exponent

We start by introducing the concept of self-similarity in the L∞ setting, where adaptation
is sought after in supremum-norm loss. In this case, the natural smoothness classes are
Hölder-Besov balls


∞(s,B)≡ { f : ‖ f ‖Bs∞∞ ≤ B}.
For such f , we know that the approximation errors of wavelet projections (or convolution

kernels) scale as
‖Kj( f )− f ‖∞ ≤ c‖ f ‖Bs∞∞2−js. (8.77)

Note that such a bound does not identify the smoothness of f – no statement is made about
the maximal value of s for which f ∈ Bs

∞∞ holds true. In fact, the Hölder exponent

s( f )= sup{s : f ∈ Bs
∞∞}

need not be attained for a given function, and hence, we cannot in general define a unique s
that describes the ‘true smoothness’ of f .

One way around this problem is to assume, in addition, that f ∈ Bs
∞∞ also satisfies a

lower bound matching (8.77); that is, for some ε > 0 and some J0 ∈N,

‖Kj( f )− f ‖∞ ≥ ε‖ f ‖Bs∞∞2−js ∀j ≥ J0. (8.78)

Intuitively speaking, (8.77) and (8.78) require the approximation errors (=bias) to behave
similarly across all scales j ≥ J0, uniquely identifying the smoothness s( f ) of f .

In basic examples, the requirement (8.78) can be quite reasonable: for instance, when the
approximation Kj( f )= (2jK(·/2j)) ∗ f is based on a convolution kernel K = 1[−1/2,1/2], we
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8.3 Adaptive Confidence Sets 645

have

‖Kj( f )− f ‖∞ = sup
x∈R

∣∣∣∣∫ 1/2

−1/2
( f (x− u2−j)− f (x))du

∣∣∣∣ . (8.79)

Suppose now that f is infinitely differentiable except at x0, where f behaves locally as
|x − x0| so that f ∈ B1

∞∞ but f /∈ B1+γ
∞∞, for any γ > 0; hence, the Hölder exponent is

s( f )= 1. The integrand in (8.79), for x = x0, equals 2−j|u|, so ‖Kj( f )− f ‖∞ ≥ ε2−j indeed
follows.

We shall show in the next subsection that (8.78) holds for ‘representative’ or ‘typical’
elements of Bs

∞∞ and hence may be considered a reasonable modelling assumption. For
the moment, however, let us demonstrate why (8.78) is a condition useful in statistical
analysis of adaptive inference procedures: it allows us to complement Lemma 8.2.6 by a
corresponding result for small values of j< j∗.

Lemma 8.3.13 Suppose that f ∈ Bs
∞∞ satisfies (8.78) for some ε,s > 0,J0 ∈ N. Let

j∗ = j∗n( f ), j̄n be as in (8.24) and (8.25), respectively, where fn(j) is as in (8.7) based on
observations dY in Gaussian white noise (8.1) and with a general grid J = {[jmin, jmax]∩N}
for some J0 ≤ jmin < jmax. Then there exists m ∈ N depending only on ε,τ ,s such that, for
every j< j∗n( f )−m, j ∈J , and some universal constant c′, we have

PY
f (j̄n = j)≤ (1/c′)exp{−c′ε222msj}. (8.80)

In particular,
PY

f (j̄n < j∗n( f )−m)≤ (1/c′)exp{−c′ε222msjmin}. (8.81)

Remark 8.3.14 When adapting to s in a fixed window [smin,smax], it is natural to let jmin →
∞ with n, so the requirement jmin ≥ J0 is met for n large enough. A version of this lemma
can be proved for the choice jmin = 1 as well by slightly modifying the thresholds in (8.25):
we replace

√
(2ll)/n by

√
(2l max(l, logn))/n, in which case j, jmin in (8.80) and (8.81) can

be replaced by logn, as inspection on the following proof shows:

Proof Fix j ∈J , j< j∗ −m, where m ∈N, and observe that

PY
f (ĵn = j)≤ PY

f

(
‖ fn(j)− fn(j

∗)‖∞ ≤ τ
√

2j∗ j∗

n

)
. (8.82)

Now, using the triangle inequality, we deduce

‖ fn(j)− fn(j
∗)‖∞ ≥ ‖Kj( f )− f ‖∞−‖Kj∗( f )− f ‖∞−‖ fn(j)

−E fn(j)− fn(j
∗)+E fn(j

∗)‖∞
so that, using Conditions (8.77) and (8.78) and the definition of j∗, the probability in (8.82)
is bounded by

PY
f

(
‖ fn(j)−E fn(j)− fn(j

∗)+E fn(j
∗)‖∞ ≥ (

ε2msc′′(s)− τ))√2j∗ j∗

n

)
,

for some constant c′′(s) > 0. We can now choose m> 2 sufficiently large but finite and only
depending on ε,s,τ so that, using Theorem 5.1.12 with p =∞, the preceding probability
can be bounded by the right-hand side of (8.80). The bound (8.81) follows from summing
the first bound over jmin ≤ j ≤ j∗ −m.
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This result, combined with Lemma 8.2.6, implies that the Lepski-type estimate j̄n
approximates the optimal choice j∗n( f ) within a fixed constant m: with high probability,

j̄n ∈ [j∗n( f ), j∗n( f )−m].
Asymptotically, this means that j̄n concentrates on a finite number of choices, and hence,

the theory of confidence sets for linear estimators from Section 6.4 can be carried over to
the fully data-driven ‘nonlinear’ estimators fn(j̄n). As a consequence, adaptive confidence
bands can be constructed for f that are honest over classes of self-similar functions. In the
easiest case, we split the sample into two (cf. (6.10)) and use half the sample for construction
of j̄n and the other half for fn(j). See Exercise 8.3.1 for some details and hints. Instead of
pursuing this direction, we discuss now an alternative way to use the preceding result to
construct an adaptive confidence band for f which is related to direct estimation of the
Hölder exponent.

The starting point is to notice that j̄n can be turned into a consistent estimate of the
unknown smoothness s( f ) of a self-similar function f (satisfying (8.77) and (8.78)). From
the discussion after (8.24) we see that

j∗ = 2

2s+ 1

(
Dn + log2 ‖ f ‖Bs∞∞

)+ 1

2s+ 1
log2 N, N ≡ n

logn
,

where Dn = O(1) is a sequence of universal constants. Hence,

s( f )= Dn + log2 ‖ f ‖Bs∞∞
j∗

+ log2 N

2j∗
− 1

2
. (8.83)

We can then define the estimate

ŝ = log2 N

2j̄n
− 1

2
, (8.84)

which has accuracy, in view of Lemmas 8.2.6 and 8.3.13 and by definition of j∗n,

|ŝ− s( f )| =
∣∣∣∣ (j∗ − j̄n) log2 N

2j̄nj∗n

∣∣∣∣+O

(
1

j∗n

)
= OPY

f

(
m

logn

)
. (8.85)

We conclude that under self-similarity, the Hölder exponent s( f ) of f can be estimated
consistently, in fact, with 1/ logn rate.

Splitting the sample into two parts dY,dY′ as in (6.10), we can use one half to estimate
ŝ and the other half to construct a multiscale confidence band Cn from (6.142), where r is
selected to equal ŝ with a small ‘undersmoothing correction’. To fix ideas, let us consider
adaptation to self-similar functions

f ∈ 
̃(s,ε)≡
∞(s,B)∩{ f satisfies (8.78)} , (8.86)

where s ∈ [smin,smax],0< smin < smax <∞, and where ε > 0,J0 ∈N are arbitrary but fixed.

Theorem 8.3.15 Let dY be observations in the Gaussian white noise model (8.1), split into
two halves dY′,dY′′. Let un,vn be any sequences such that un,vn →∞,vn = o(log2 n). For ŝ=
ŝ(dY′′) as in (8.84) with jmin such that 2jmin � n1/(2s′+1),s′ > smax, define s̃ = ŝ− (vn/ log2 N).

Consider the multiscale confidence band Cn = C(α,dY′) from (6.142), where r = s̃. Then

sup
f ∈∪s∈[smin,smax]
̃(s,ε)

|PY
f ( f ∈ Cn)− (1−α)|→ 0, (8.87)
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as n →∞, and whenever f ∈ 
̃(s,ε) for some s ∈ [smin,smax], the L∞-diameter of Cn is of
order

|Cn|∞ = OP

(
B1/(2s+1)

(
logn

n

)s/(2s+1)

νn

)
, (8.88)

where νn = max(un,2O(vn))→∞ can be taken to grow as slowly as desired.

Proof The modified estimate s̃ still satisfies, as in (8.85), that

|s̃− s( f )| = OP

(
m

logn
+ vn

logN

)
→ 0,

as n →∞, and also, for n large enough depending only on B,smin,smax, by Lemma 8.3.13,

PY
f (s̃n > s( f ))= PY

f

(
(log2 N)(j∗ − j̄n)

2j∗ j̄n
>

vn

log2 N
− Dn + log2 ‖ f ‖Bs∞∞

j∗

)
≤ PY

f

(
C(m,smin,smax)

log2 N
>

vn

2log2 N

)
+ o(1)→ 0.

The proof is now similar to that for Theorem 6.4.9: since the events {s̃n ≤ s( f )} have
probability approaching 1 as n →∞, we have

sup
f ∈
̃(s,ε)

PY
f (‖ f ‖Bs̃∞∞ ≤ un)→ 1,

and thus (8.87) follows from (6.141). The diameter bound (8.88) follows as in the last two
displays in the proof of Theorem 6.4.9, with choice of jn such that 2jn � B2/(2s+1)N1/(2s+1),
and using for the high frequencies that, again on the events {s̃n ≤ s( f )},

‖ f ‖
Bs̃n∞∞2−jns̃n ≤ B2−jns2−jn(s̃n−s) = OP

(
2−jns2O(vn)

)
is of the desired order.

Self-Similarity for Sobolev Balls

We continue by investigating the concept of self-similarity in the setting of L2-confidence
sets, that is, when the diameter |Cn| is measured in the weaker L2-norm instead of in L∞.
As is perhaps expected, the theory here is somewhat more subtle: optimal results hold under
comparably weak self-similarity conditions, but proving this requires some additional effort.

Since wavelet bases are not of particular importance in the L2 setting, we cast our results
in the general sequence space setting under the isometry of L2 via an arbitrary ortho-normal
basis {ek : k ∈ N} of L2. (A result for wavelet bases can be obtained by enumerating the
wavelet functions in lexicographic order.) Thus, consider observations Y = (yk : k ∈ N) in
the Gaussian sequence space model

yk = fk + 1√
n

gk, gk
i.i.d.∼ N(0,1), k ∈N, (8.89)

write Pr f for the law of (yk : k∈N) and recall that E f denotes expectation under the law Pr f .
Let us assume that the unknown sequence of interest f = ( fk) ∈ �2 belongs to a Sobolev
ball, that is, an ellipsoid in �2 of the form

Ss(B)= { f ∈ �2 : ‖ f ‖s,2 ≤ B}, s> 0, B> 0,
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where the Sobolev norm is given by

‖ f ‖2
s,2 =

∞∑
k=1

f 2
k k2s.

We will consider adaptation to smoothness degrees s in any fixed window [smin,smax] and to
the radius B ∈ [b,∞). Here 0< smin < smax <∞ are fixed and known parameters, whereas
b> 0 is a (not necessarily known) lower bound for B.

For s∈ [smin,smax], self-similarity function ε : [smin,smax]→ (0,1], J0 ∈N, 0< b<B<∞,
and constant c(s)= 16× 22s+1 define self-similar classes

Ss
ε(s) ≡ Ss

ε(s)(b,B,J0) (8.90)

≡
{

f ∈ �2 : ‖ f ‖s,2 ∈ [b,B] :
2J∑

k=2J(1−ε(s))
f 2
k ≥ c(s)‖ f ‖2

s,22
−2Js ∀J ∈N,J ≥ J0

}
,

where the notation
∑b

k=a ck for a,b∈R stands for
∑'b(

k=6a7 ck throughout the remainder of this
subsection. Note that ‖ f ‖s,2 <∞ implies, for all J ∈N,∑

k≥2J(1−ε(s))
f 2
k ≤ ‖ f ‖2

s,22
−2J(1−ε(s))s = ‖ f ‖2

s,22
−2Js × 22Jε(s)s,

and for self-similar functions, this upper bound needs to be matched by a lower bound,
accrued repeatedly over coefficient windows k∈ [2J(1−ε(s)),2J],J≥ J0, that is not off by more
than a factor of 22Jε(s)s/c(s). The condition is thus comparable to (8.78) in the L∞ setting,
although it is in a certain sense weaker: the proofs will reveal that the Sobolev exponent of
f is only approximately identified, even for large scales J ≥ J0.

If condition (8.90) holds for some ε(s) > 0, then it also holds for c(s) = 16 × 22s+1

replaced by an arbitrary small positive constant and any ε′(s) > ε(s) (for J0 chosen
sufficiently large). In this sense, the particular value of c(s) is somewhat arbitrary and chosen
here only for convenience.

Larger values of ε(s) correspond to weaker assumptions on f : indeed, increasing the
value of ε(s) makes it easier for a function to satisfy the self-similarity condition as the
lower bound is allowed to accrue over a larger window of ‘candidate’ coefficients and since
the ‘tolerance factor’ 22Jε(s)s in the lower bound increases. In contrast, smaller values of ε(s)
require a strong enough signal in blocks of comparably small size.

A heuristic summary of what we shall prove is that signal-strength conditions enforced
through the self-similarity function ε(s) allow for the construction of honest adaptive
confidence balls over the parameter space⋃

smin≤s≤smax

Ss
ε(s),

for arbitrary values of B. We will effectively show that

ε(s) <
1

2
∀s
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is a necessary condition for the construction of such adaptive confidence sets (when smax >

2smin), whereas a sufficient condition is

ε(s) <
s

2s+ 1/2
∀s.

As s →∞, we have s/(2s+ 1/2)→ 1/2, showing that the necessary condition cannot be
improved on.

To formulate our main results, let us introduce the notation

S(ε)= S(ε,b,B,J0)≡∪s∈[smin,smax]S
s
ε(s)(b,B,J0) (8.91)

for the collection of self-similar functions with regularity ranging between [smin,smax] and
function ε : [smin,smax] �→ (0,1).

A Sharp Adaptive Confidence Ball

In this subsection we give an algorithm which provides asymptotically honest and adaptive
confidence sets over the collection S(ε) of self-similar functions whenever the function ε(·)
satisfies

sup
s∈[smin,smax]

ε(s)
2s+ 1/2

s
≤ m< 1, (8.92)

for some known parameter 0 < m < 1 that is fixed in advance. As a first step, we split the
‘sample’ into two parts that we denote, in slight abuse of notation, by y = (yk) and y′ = (y′k)
(with Gaussian noise gk and g′k drawn from N(0,2), respectively, as in (6.10)), inflating the
variance of the noise by 2. We denote the laws by Pr1 and Pr2 and the expectations by E1

and E2, respectively. Furthermore, we denote by Pr or Pr f and E or E f the joint distribution
and corresponding expected value, respectively.

Using the first sample y, we denote by fn(j) the linear estimator with ‘resolution level’
j ∈N

fn(j)≡ (yk)1≤k≤2j , E1 fn(j)= ( fk)1≤k≤2j = Kj( f ), (8.93)

where Kj denotes the projection operator onto the first 2j coordinates. Let us consider
minimal and maximal truncation levels jmin = σ log2 n, jmax = σ log2 n – for concreteness
we take σ = 1/(2s′ +1) for arbitrary s′ > smax and σ = 1, but other choices are possible. We
define a discrete grid J of resolution levels

J = {j ∈N : j ∈ [jmin, jmax]}
that has approximately log2 n elements. Using Lepski’s method, we define a first
estimator by

j̄n ≡ min

{
j ∈J : ‖ fn(j)− fn(l)‖2

2 ≤ 4× 2l+1

n
∀l> j, l ∈J

}
. (8.94)

While j̄n is useful for adaptive estimation via fn(j̄n) (as in Theorem 8.2.2), for adaptive con-
fidence sets we shall need to systematically increase j̄n by a certain amount – approximately
by a factor of 2. To achieve this, let us choose parameters 0 < κ1 < 1 and 0 < κ2 < 1 that
satisfy

m<
2smin + 1/2

smin + (smin + 1/2)/κ1
< 1 and 0<

1+ κ1

2κ2
< κ2 < 1. (8.95)
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650 Adaptive Inference

Intuitively, given δ > 0, we can choose m,κ1,κ2 such that all lie in (1− δ,1) – the reader
thus may think of the κi as constants that are arbitrarily close to 1. Next, an undersmoothed
estimate Ĵn > j̄n is defined as

Ĵn = 6Jn7, where
1

Jn
≡ 1

2κ2

1

j̄n
− 1− κ2

2κ2

1

log2 n
. (8.96)

With Ĵn in hand, we use again the sample y to construct any standard adaptive estimator
f̂n of f in �2 loss; for concreteness, let us take f̂n = fn(j̄n) (for which an analogue of
Theorem 8.2.2 is easily proved using Lemma 8.3.17, part (a); other adaptive estimators
could be used as well). Adapting ideas from Theorem 6.4.8 we then use the second
subsample y′ to estimate the squared �2 risk of f̂n: the statistic

Un( f̂n)=
∑
k≤2Ĵn

(y′k − f̂n,k)
2 − 2Ĵn+1

n

has expectation (conditional on the first subsample)

E2Un( f̂n)=
∑
k≤2Ĵn

( fk − f̂n,k)
2 = ‖KĴn

( f − f̂n)‖2
2. (8.97)

Our �2-confidence ball is defined as

Cn =
{

f : ‖ f − f̂n‖2
2 ≤ Un( f̂n)+

√
8γα

2Ĵn/2

n

}
, (8.98)

where γα denotes the 1− α quantile of the standard normal N(0,1) random variable, 0 <
α < 1. We note that we do not require knowledge of any self-similarity or radius parameters
in the construction; we only used the knowledge of smax in the construction of the discrete
grid J and the parameters m and smin in the choice of κ2.

Theorem 8.3.16 For any 0 < b < B <∞,J0 ∈ N, and self-similarity function ε satisfying
(8.92), the confidence set Cn defined in (8.98) has exact honest asymptotic coverage 1− α
over the collection of self-similar functions S(ε); that is,

sup
f ∈S(ε,b,B,J0)

∣∣∣Pr f ( f ∈ Cn)− (1−α)
∣∣∣→ 0,

as n →∞. Furthermore, the �2-diameter |Cn|2 of the confidence set is rate adaptive: for
every s ∈ [smin,smax],B> b,J0 ∈N and δ > 0, there exists C(s,δ) > 0 such that

limsup
n→∞

sup
f ∈Ss

ε(s)(b,B,J0)

Pr f (|Cn|2 ≥ C(s,δ)B1/(2s+1)n−s/(2s+1))≤ δ.

Proof As a first step in the proof, we investigate the estimator of the optimal resolution
level j̄n balancing out the bias and variance terms in the estimation. The linear estimator
fn(j) defined in (8.93) has bias and variance such that

‖E1 fn(j)− f ‖2
2 ≤ ‖ f ‖2

s,22
−2js ≡ B(j, f ) (8.99)
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and, recalling that by sample splitting the gk are i.i.d. N(0,2),

E1‖ fn(j)−E1 fn(j)‖2
2 =

1

n
E1

2j∑
k=1

g2
k =

2j+1

n
. (8.100)

Our goal is to find an estimator which balances out these two terms. For this we use
Lepski’s method in (8.94). For f ∈ Ss(B), we define

j∗n = j∗n( f )= min{j ∈J : B(j, f )≤ 2j+1/n}, (8.101)

which implies, by monotonicity, that

B(j, f )= 2−2js‖ f ‖2
s,2 ≤

2j+1

n
, ∀j ≥ j∗n, j ∈J , (8.102)

B(j, f )= 2−2js‖ f ‖2
s,2 >

2j+1

n
, ∀j< j∗n, j ∈J .

We note that, for n large enough (depending only on b and B, and recalling the definition of
σ ), the inequalities j∗n < 'log2 n( and j∗n > 6(log2 n)/(2s′ + 1)7 hold; hence, we also have

22s+12−2j∗ns‖ f ‖2
s,2 ≥

2j∗n+1

n
. (8.103)

Therefore, we can represent j∗n and the given value of s as

j∗n =
log2 n+ 2(log2(‖ f ‖s,2)+ cn)

2s+ 1
(8.104)

and

s = log2 n

2j∗n
+ log2(‖ f ‖s,2)+ cn

j∗n
− 1

2
, (8.105)

respectively, where cn ∈ [−1/2,smax].
The following lemma shows that j̄n is a good estimator for the optimal resolution level j∗n

in the sense that with probability approaching 1, it lies between (1−ε(s))j∗n and j∗n whenever
f is a self-similar function in the sense of (8.90).

Lemma 8.3.17 Assume that f ∈ Ss(B) for some s ∈ [smin,smax] and any B> 0.

(a) We have, for all n ∈N and some universal constant C> 0,

Pr1(j̄n ≥ j∗n)≤ Cexp{−2j∗n/8}.
(b) Furthermore, if the self-similarity condition (8.90) holds, we also have, for all n ∈ N

such that j∗n ≥ J0, that

Pr1

(
j̄n < j∗n(1− ε(s))

)≤ j∗n exp{−(9/8)2j∗n}.
Proof Part (a) is effectively the same as Lemma 8.2.1 and hence left to the reader. For part
(b), fix j ∈J such that j< j∗n(1− ε), where ε = ε(s). Then, by definition of j̄n,

Pr1(j̄n = j)≤ Pr1

(
‖ fn(j)− fn(j

∗
n)‖2 ≤ 2

√
2j∗n+1/n

)
. (8.106)
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652 Adaptive Inference

Now, using the triangle inequality,

‖ fn(j)− fn(j
∗
n)‖2 = ‖ fn(j)− fn(j

∗
n)−E1( fn(j)− fn(j

∗
n))+E1( fn(j)− fn(j

∗
n))‖2

≥ ‖E1( fn(j)− fn(j
∗
n))‖2 −‖ fn(j)− fn(j

∗
n)−E1( fn(j)− fn(j

∗
n))‖2

=

√√√√√ 2j∗n∑
k=2j+1

f 2
k − 1√

n

√√√√√ 2j∗n∑
k=2j+1

g2
k .

Since j< j∗n(1− ε), we have, from the definition of self-similarity (8.90) and (8.103), that√√√√√ 2j∗n∑
k=2j+1

f 2
k ≥

√√√√√ 2j∗n∑
k=2j∗n(1−ε)

f 2
k ≥ 4× 2s+1/2‖ f ‖s,22

−j∗ns ≥ 4×
√

2j∗n+1

n
,

so the probability on the right-hand side of (8.106) is less than or equal to

Pr1

⎛⎜⎝ 1√
n

√√√√√ 2j∗n∑
k=2j+1

g2
k ≥

√√√√√ 2j∗n∑
k=2j+1

f 2
k − 2

√
2j∗n+1

n

⎞⎟⎠≤ Pr1

⎛⎝ 2j∗n∑
k=1

g2
k > (4− 2)22j∗n+1

⎞⎠

= Pr1

⎛⎝ 2j∗n∑
k=1

(gk/
√

2)2 − 1) > 3× 2j∗n

⎞⎠ .

This probability is bounded by exp{−(9/8)2j∗n} using (3.29). The overall result follows by
summing the preceding bound in j< (1− ε)j∗n < j∗n, j ∈J .

We note that by definition j∗n ≥ logn/(2s′ +1)→∞ and, hence for n large enough, j∗n ≥ J0

holds uniformly over f ∈ S(ε,b,B,J0).
As a next step we examine the new (undersmoothed) estimator of the resolution level Ĵn.

Assuming that f ∈ Ss
ε(s)(b,B,J0), the estimate j̄n of j∗n can be converted into an estimate

of s. We note that a given f does not necessarily belong to a unique self-similar class
Ss
ε(s)(b,B,J0), but the following results hold for any class to which f belongs. We estimate s

simply by

s̄n = log2 n

2j̄n
− 1

2
,

ignoring lower-order terms in (8.105). We then have from (8.105) that

s̄n − s = log2 n

2j̄n
− 1

2
− log2 n

2j∗n
− log2(‖ f ‖s,2)+ cn

j∗n
+ 1

2

= log2 n

2

(
j∗n − j̄n
j∗nj̄n

)
− log2(‖ f ‖s,2)+ cn

j∗n
.

Now choose a constant κ3 ∈ (κ2,1) such that

0<
1+ κ1

2κ2
< κ2 < κ3 < 1,
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which is possible, recalling (8.95). From Lemma 8.3.17, part (a), we have

Pr f (j̄n − j∗n < 0)→ 1

uniformly over f ∈ ∪s∈[smin,smax]Ss(B); hence, from the inequality j∗n ≥ (log2 n)/(2s′ + 1), we
have, for some constant C = C(B,s′),B ≥ ‖ f ‖s,2,

Pr f (s̄n ≤ κ3s)= Pr f (s̄n − s ≤ (κ3 − 1)s)

≤ Pr f

(
log2 n

2

(
j̄n − j∗n
j∗nj̄n

)
+ log2(‖ f ‖s,2)+ cn

j∗n
≥ (1− κ3)smin

)
≤ Pr f

(
C/ log2 n> (1− κ3)smin

)+ o(1)→ 0,

as n →∞. However, we also have from Lemma 8.3.17, (8.104) and 0< ε(s)≤ 1 that

Pr f (s̄n ≥ (1+ κ1)s)= Pr f (s̄n − s ≥ κ1s)

≤ Pr f

(
log2 n

2

(
j∗n − j̄n
j∗nj̄n

)
− log2(‖ f ‖s,2)+ cn

j∗n
≥ κ1s

)
≤ Pr f

(
j∗n − j̄n
j∗nj̄n

≥ 2κ1s

log2 n
+ 2(log2(‖ f ‖s,2)+ cn)

j∗n log2 n

)
≤ Pr f

(
ε(s)j∗n >

2κ1s(1− ε(s))(j∗n)2
log2 n

+ 2(1− ε(s))j∗n(log2(‖ f ‖s,2)+ cn)

log2 n

)
+ o(1)

= Pr f

(
ε(s) >

2κ1s(1− ε(s))
2s+ 1

+ 2κ1s(1− ε(s))
log2 n

× 2(log2(‖ f ‖s,2)+ cn)

2s+ 1
+ 2(1− ε(s))(log2(‖ f ‖s,2)+ cn)

log2 n

)
+ o(1)

≤ Pr f

(
ε(s) >

2κ1s(1− ε(s))
2s+ 1

+ 2(κ1 + 1)s+ 1

2s+ 1
×2log2(b/2)∧ 0

log2 n

)
+ o(1)

= Pr f

(
ε(s) >

κ1s

(1+ κ1)s+ 1/2
+ 2log2(b/2)∧ 0

log2 n

)
+ o(1).

The probability on the right-hand side tends to zero for n large enough (depending only on
b) because

ε(s)≤ m
s

2s+ 1/2
<

κ1(2smin + 1/2)

(1+ κ1)smin + 1/2
× s

2s+ 1/2
≤ κ1s

(1+ κ1)s+ 1/2

by definition of κ1 given in (8.95) and the monotone increasing property of the function
g(s) = (2s + 1/2)/[(1 + κ1)s + 1/2]. Therefore, we see that on an event of probability
approaching 1, we have

s̄n ∈ (κ3s,(1+ κ1)s) , (8.107)

and, hence, if we define

ŝn = s̄n/(2κ2),
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we see that

Pr f

(
ŝn ∈

(
κ3

2κ2
s,

1+ κ1

2κ2
s

))
→ 1, (8.108)

as n→∞. By choice of the κi, we see that ŝn systematically underestimates the smoothness
s and is contained in a closed subinterval of (s/2,s) with probability approaching 1. The
resolution level J corresponding to ŝn is Ĵn: easy algebraic manipulations imply that

2n1/(2ŝn+1/2) > 2Ĵn ≥ n1/(2ŝn+1/2) (8.109)

(where Ĵn was defined in (8.96)). Furthermore, we note that from (8.96) and since j̄n ∈ J ,
we have

Ĵn ∈
[

2κ2

2s′ + κ2
log2 n,62log2 n7

]
. (8.110)

Next, we turn our attention to an analysis of the confidence set Cn given in (8.98). First of
all, note that

Un( f̂n)−E2Un( f̂n)= 1

n

∑
k≤2Ĵn

(
(g′k)

2 − 2
)+ 2√

n

∑
k≤2Ĵn

( fk − f̂n,k)g
′
k

≡−An −Bn. (8.111)

We deal with the two random sums An and Bn on the right-hand side separately. First, we
show that Bn =OPr f (n

−(2s+1/2)/(2s+1)). Note that conditionally on the first sample, the random
variable Bn has Gaussian distribution with mean zero and variance

8

n

∑
k≤Ĵn

( fk − f̂n,k)
2 ≤ 8

n
‖ f − f̂n‖2

2.

Furthermore, note that ‖ f − f̂n‖2
2 = OPr1(n

−(2s)/(2s+1)) by adaptivity of the estimator f̂n.
Hence, we can conclude, by independence of the samples y and y′, that for every δ > 0 there
exists a large enough constant K such that Bn ≥ Kn−(2s+1/2)/(2s+1) with Pr f probability less
than δ.

It remains to deal with An. In view of sample splitting, the centred variables (2− (g′k)2)
are independent of Ĵn and have variance σ 2 = 8 and finite skewness ρ > 0. From the law
of total probability, (8.107), (8.110) and Berry-Esseen’s theorem (see Exercise 8.3.5), we
deduce that∣∣∣Pr f

(
An ≤ σγα2

Ĵn/2

n

)
− (1−α)

∣∣∣
≤

62log2 n7∑
j=2κ2 log2 n/(2s′+κ2)

∣∣∣Pr2

( 1

σ2j/2

2j∑
k=1

(2− (g′k)2)≤ γα
)
− (1−α)

∣∣∣Pr1(Ĵn = j) (8.112)

≤ (3ρ/σ 3)2−κ2 log2 n/(2s′+κ2) = o(1).

Next, note that in view of f ∈ Ss(B), and since for f̂n = fn(j̄n) we have KĴn
( f̂n) = f̂n as

Ĵn > j̄n, the bias satisfies

‖KĴn
( f − f̂n)− ( f − f̂n)‖2

2 = O(2−2Ĵns)= o(2−2Ĵnŝn) (8.113)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.009
http:/www.cambridge.org/core


8.3 Adaptive Confidence Sets 655

using also

s> [(κ1 + 1)/(2κ2)]s> ŝn.

Furthermore, from (8.109), we have 22Ĵnŝn ≥ n2−Ĵn/2. Then, by using Pythagoras’ theorem,
(8.113) and (8.111), we deduce

‖ f − f̂n‖2
2 = ‖KĴn

( f − f̂n)‖2
2 +‖KĴn

( f − f̂n)− ( f − f̂n)‖2
2

= E2Un( f̂n)+ o(2Ĵn/2/n)

= Un( f̂n)+An +Bn + o(2Ĵn/2/n). (8.114)

Following from (8.108) and (8.109), we obtain that (uniformly over S(ε,b,B,J0)) with Pr f

probability tending to 1,

2Ĵn/2/n � n−(s(1+κ1)/κ2)/(s(1+κ1)/(κ2)+1/2)5 n−2s/(2s+1/2).

Furthermore, by Bn = OPr f (n
−(2s+1/2)/(2s+1)) and n−(2s+1/2)/(2s+1) 3 n−2s/(2s+1/2), we see that

the right-hand side of (8.114) can be rewritten as

Un( f̂n)+An + o(2Ĵn/2/n). (8.115)

Therefore, following from (8.114), (8.115) and (8.112), we deduce that the confidence set
Cn given in (8.98) has exact asymptotic coverage 1−α

Pr f ( f ∈ Cn)= Pr f

(
‖ f − f̂n‖2

2 ≤ Un( f̂n)+ 2γα
2Ĵn/2

n

)
= Pr f

(
An ≤

(
2γα+ o(1)

)2Ĵn/2

n

)
→ 1−α.

Finally, we show that the radius of the confidence set is rate adaptive. First, we note that

2Ĵn/4/
√

n ≤ 21/4n−ŝn/(2ŝn+1/2) = oPr1(n
−s/(2s+1)),

by ŝn > sκ3/(2κ2) > s/2 and (8.109). Then, following from (8.97) and adaptivity of f̂n (as
in Theorem 8.2.3), we conclude that

E f Un( f̂n)= E1‖KĴn
( f − f̂n)‖2

2 ≤ E1‖ f − f̂n‖2
2 ≤ K(s)B1/(1+2s)n−s/(1+2s),

so the second claim of Theorem 8.3.16 follows from Markov’s inequality.

Minimality of Self-Similarity Conditions

The main results for adaptive confidence sets presented so far in this subsection
(Theorems 8.3.15 and 8.3.16) show that assuming self-similarity is an alternative to
requiring an a priori bound on the Sobolev norm as in Theorem 8.3.8. From Theorem 8.3.11,
we already know that certain additional conditions will be necessary if the a priori norm
bound is dropped, but once self-similarity conditions are introduced, we can reasonably ask
for the weakest possible ones.

In the �2 setting, the proof of Theorem 8.3.11 can be adapted to imply the following
result – similar lower bounds in the L∞ setting are discussed in the notes at the end of this
chapter.
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Theorem 8.3.18 Fix α ∈ (0,1/2), 0 < ε(·) ≡ ε < 1, 0 < r′ < r < r′/(1 − ε), and let s ∈
(r,r′/(1−ε)) be arbitrary. Then there does not exist a confidence set Cn in �2 which satisfies,
for every 0< b< B,J0 ∈N,

liminf
n→∞ inf

f ∈Sr′
ε (b,B,J0)∪Ss

ε(b,B,J0)

Pr f ( f ∈ Cn)≥ 1−α, (8.116)

sup
f ∈Ss

ε(b,B,J0)

Pr f (|Cn|> rn)→n→∞ 0, (8.117)

for any sequence rn = o(n−r/(2r+1/2)).

Proof We follow the proof of Theorem 8.3.11 and mimic a wavelet basis: partition N into
sets of the form Z0

i = {2i,2i+1, . . . ,2i+2i−1−1} and Z1
i = {2i+2i−1,2i+2i−1+1, . . . ,2i+1−

1}. Let us choose a parameter s′> s satisfying r′> s′(1−ε)> s(1−ε) and define self-similar
sequences fm = ( fm,k), for m ∈N,

fm,k =

⎧⎪⎨⎪⎩
2−(s′+1/2)l, for l ∈N∪{0} and k ∈ Z0

l ,

2−(r+1/2)jiβji,k, for i ≤ m and k ∈ Z1
ji
,

0, else,

for some monotone increasing sequence ji and coefficients βji,k = ±1 to be defined later.
First, we show that independent of the choice of the sequence ji and of the coefficients
βji,k =±1, the signals fm and f∞ = �2 − limm fm satisfy the self-similarity condition.

Using the definition of fm and the monotone decreasing property of the function f (x)=
x−1−2(s′−s), we can see that

‖ fm‖2
s,2 =

∞∑
k=1

f 2
m,kk

2s ≤ 22s′+1
∞∑

k=1

k−1−2(s′−s)+ 22s
m∑

i=1

∑
k∈Z1

ji

2ji(2s−2r−1)

≤ 22s′+1(1+
∫ ∞

1
x−1−2(s′−s)dx)+ 22s−1

m∑
i=1

2ji(2s−2r)

≤ 22s′+1(1+ 1

2(s′ − s)
)+ 22s−1 2jm(2s−2r)

1− 2−(2s−2r)
≡ B(s,s′,r, jm), (8.118)

for some constant B(s,s′,r, jm) depending only on s,s′,r and jm. Furthermore, for J ≥ J0,

2J∑
k=2(1−ε)J

f 2
m,k ≥

∑
k∈Z06(1−ε)J7

f 2
m,k = 2−(2s′+1)6(1−ε)J7 × 26(1−ε)J7−1 = 2−2s′6(1−ε)J7/2. (8.119)

Then, in view of the upper bound on the norm (8.118) and the inequalities s′(1−ε) < r′ < s,
the right-hand side of (8.119) is further bounded from below by

2−2r′J/2 ≥ 16× 22s+1B(s,s′,r, jm)2−2sJ ≥ 16× 22s+1‖ fm‖2
s,22

−2sJ,

for J > J0 (where J0 depends on s,s′,r,r′,ε and jm). (The reader should note that the
dependence of J0 on jm is harmless because jm will remain independent of n.) Finally, the
lower bound on the Sobolev norm can be obtained via

‖ fm‖2
s,2 ≥

∑
k∈Z0

1

f 2
m,kk

2s = 2−1−2(s′−s) > 2−1−2(s′−r′) ≡ b2. (8.120)
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Next, we show that f∞ is r′ self-similar. First, we note that the existence of f∞ follows
from the Cauchy property of the sequence ( fm) in �2. Furthermore, by definition, we have
that f∞,k = fm,k, for all k ≤ 2jm ,m ∈ N. Therefore, similar to (8.120) and (8.118), the signal
f∞ satisfies ‖ f∞‖r′,2 ≥ b, and

‖ f∞‖2
r′,2 =

∞∑
k=1

f 2
∞,kk

2r′ ≤ 22r′+1
∞∑

k=1

k−1−2(r−r′)

≤ 22r′+1(1+ 1

2(r′ − r)
)≡ B(r,r′); (8.121)

hence, it belongs to the Sobolev ball Sr′(B) with radius B = B(r,r′) depending only on r and
r′. Then, similar to (8.119), we deduce from (8.121) and the inequality (1− ε)s′ < r′ that

2J∑
k=2(1−ε)J

f 2
∞,k ≥ 2−2s′6(1−ε)J7/2 ≥ 16× 22r′+1B(r,r′)2−2r′J

≥ 16× 22r′+1‖ f∞‖2
r′,22

−2r′J,

for J> J0 (where J0 depends only on ε,r,s′ and r′).
The proof now proceeds similarly as in Theorem 8.3.11, with f0, fm, f∞ there replaced

by the current choices, which by the preceding arguments lie within the class of self-similar
functions. The details are hinted in Exercise 8.3.2.

Corollary 8.3.19 Assume that smax > 2smin and ε(·)≡ ε > 1/2. Then there does not exist a
confidence set Cn in �2 which satisfies, for every 0< b< B,J0 ∈N,

liminf
n→∞ inf

f ∈∪s∈[smin,smax]Ss
ε(b,B,J0)

Pr f ( f ∈ Cn)≥ 1−α, (8.122)

and, for all s ∈ [smin,smax], δ > 0 and some constant K> 0 depending on δ,

limsup
n→∞

sup
f ∈Ss

ε(b,B,J0)

Pr f (|Cn|> Kn−s/(1+2s))≤ δ. (8.123)

Proof Assume that there exists an honest confidence set Cn satisfying (8.122) and (8.123).
Then take any s ∈ (2smin,smax), and choose the parameters r,r′ such that they satisfy s/2 >
r> r′>max{(1−ε)s,smin}. Following from Theorem 8.3.18, if assertion (8.122) holds, then
(8.117) cannot be true; that is, the size of the confidence set for any f ∈ Ss

ε(b,B,J0) cannot be
of a smaller order than n−r/(2r+1/2). However, since r< s/2, we have n−s/(2s+1)3 n−r/(2r+1/2).
Hence, the size of the honest confidence set has to be of a polynomially larger order than
n−s/(2s+1), which contradicts (8.123).

8.3.4 Some Theory for Self-Similar Functions

We have argued in this chapter that adaptive testing and estimation are possible without any,
or at least without any substantial, price to pay for the statistician. For inference procedures
such as confidence sets, however, the theory is more subtle, and adaptation is not possible
over the entire parameter space. Classes of self-similar functions were shown to constitute
statistical models for which a unified theory of estimation, testing and confidence sets is
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possible, serving perhaps as a paradigm for an ‘honest’ nonparametric statistical model. In
this section we try to shed some more light on the classes of self-similar functions introduced
in (8.86) and (8.90): we shall show, from three different perspectives, that the essential
features and complexity of a nonparametric model for Sobolev or Hölder functions are
revealed already by the ‘restricted’ self-similar classes of Sobolev or Hölder functions.

More precisely, we will show that within a given Hölder or Sobolev ball of functions,

(a) The information-theoretic complexity of a model is not decreased by introducing a
self-similarity constraint;

(b) The non-self-similar functions are nowhere dense (and hence topologically negligible);
and

(c) Natural nonparametric prior probability distributions draw self-similar functions almost
surely.

Minimax Exhaustion for Self-Similar Functions

We start by showing that the minimax rates of convergence over a given Sobolev of Hölder
ball are not changed after adding a self-similarity constraint. Note that the reference rates of
convergence (without self-similarity) were derived in Theorems 6.3.5 and 6.3.8.

Theorem 8.3.20 Let r > 0,ε > 0, be arbitrary. For the self-similar classes 
̃(r,ε) and Sr
ε

from (8.86) and (8.90), respectively, the minimax convergence rates of estimation in L∞ and
�2-risk (in the sense of Definition 6.3.1) are of the order(

logn

n

)r/(2r+1)

, n−r/(2r+1),

respectively.

Proof Only the lower bound needs to be proved. The proof is similar to Theorems 6.3.5
and 6.3.8 after adding a self-similar base function f0 to the alternatives fm appearing in these
proofs. Let us give some details for the �2 case; the L∞ case is left as Exercise 8.3.3.

Take s > r such that r > (1− ε)s, and using the notations of Theorem 8.3.18, let Z0
i =

{2i,2i + 1, . . . ,2i + 2i−1 − 1} and Z1
i = {2i + 2i−1,2i + 2i−1 + 1, . . . ,2i+1 − 1}. Then we define

f0, fm,j ∈ �2 as

f0,k =
{

K12−(s+1/2)l, for l ∈N and k ∈ Z0
l ,

0, else,

and

fm,j,k =

⎧⎪⎨⎪⎩
K12−(s+1/2)l, for l ∈N and k ∈ Z0

l ,

δβm,j,k2−(r+1/2)j, for k ∈ Z1
j ,

0, else,

for some coefficients βm,j,k ∈ {−1,1} and K1,δ > 0 to be defined later. Next, we show that all
the preceding sequences f0 and fm,j are self-similar.
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First of all, we show that their ‖ · ‖r,2-norm is bounded from below by b. By definition,
we have

‖ fm,j‖2
r,2 ≥ ‖ f0‖2

r,2 = K2
1

∑
l∈N

∑
k∈Z0

l

2−(1+2s)lk2r,

where the right-hand side depends only on the choice of s and r. We choose K1 such that the
right-hand side of this display is equal to b2.

As a next step, we verify that f0 and fm,j are in Sr(B):

‖ f0‖2
r,2 ≤ ‖ fm,j‖2

r,2 =
∞∑

k=1

f 2
m,j,kk

2r

�
∑

l

∑
k∈Z0

l

2−(1+2s)lk2r + 22rδ2
∑
k∈Z1

j

β2
m,j,k2

−j

� b2 + δ222r−1.

It is easy to see that for a small enough choice of the parameter δ > 0, the right-hand side is
bounded above by B2 (the choice δ2 < (B2 − b2)21−2r is sufficiently good); hence, both f0

and fm,j belong to the Sobolev ball Sr(B). Then we show that f0 satisfies the lower bound
(8.90) as well. Similar to the proof of Theorem 8.3.18, we have from s(1− ε) < r that

2J∑
k=2(1−ε)J

f 2
0,k ≥

∑
k∈Z06(1−ε)J7

f 2
0,k = K2

12
−2s6(1−ε)J7/2

≥ 16× 21+2rB22−2rJ ≥ 16× 21+2r‖ f0‖2
r,22

−2rJ,

for J> J0 (where the parameter J0 depends only on r,s,B and ε). The self-similarity of the
functions fm,j follows exactly the same way.

Next, we define the sequences fm (m ∈M) with the help of the sequences fm,j such that
the �2-distance between them is sufficiently large. It is easy to see that

‖ fm,j,k − fm′,j,k‖2
2 = 2−j(2r+1)δ2

∑
k∈Z1

j

(βm,j,k −βm′,j,k)
2.

Then, by the Varshamov-Gilbert bound, Example 3.1.4, there exists a subsetM⊂{−1,1}|Z1
j |

with cardinality M = 3c′2j
,c′ > 0, such that∑

k∈Z1
j

(βm,j,k −βm′,j,k)
2 ≥ 2j/8,

for any m 
= m′. Therefore,

‖ fm,j − fm′,j‖2
2 ≥ (δ2/8)2−2jr.

Then, choosing j = jn such that 2jn = n1/(1+2r), the fm ≡ fm,jn sequences are c(δ)n−r/(2r+1)

separated and are satisfying the self-similarity condition.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.009
http:/www.cambridge.org/core


660 Adaptive Inference

As in (6.16), the KL divergence is bounded by

K(PY
f0

,PY
fm
)= n

2
‖ fm − f0‖2

2 =
n

2
2−j(2r+1)δ2

∑
k∈Z1

jn

β2
m, jn,k =

2jδ2

4
� δ2 logM.

Therefore, we can conclude the proof by applying Theorem 6.3.2 with δ small enough.

Topological Genericity and Self-Similarity

The self-similarity constraints (8.78) and (8.90) pose an additional restriction on the
elements of a fixed Hölder ball in Bs

∞∞ or on a Sobolev ball Ss. It is thus natural to
investigate whether the exceptional set that was removed is ‘small’ in some sense. In the
absence of a volume measure on these infinite-dimensional sets, we can resort to topological
quantifications, and a natural topology to consider is the ‘norm’ topology which makes the
Hölder of Sobolev ball a ‘ball’ (open set). Notably, in the sense of Baire categories for this
topology, the exceptional sets are nowhere dense and, hence, in this sense negligible.

We shall now make these statements rigorous. It is somewhat easier to make topological
statements in the whole normed space (without the norm restriction ‖ f ‖ ≤ B). The proofs
carry over to the trace topology on balls as well, but to present the main ideas, we only
study self-similar functions as subsets of the full Hölder or Sobolev spaces. In this case, the
presence of the norms ‖ f ‖Bs∞∞ ,‖ f ‖s,2 in (8.78) and (8.90) is immaterial (as inspection of
the proofs shows).

For the next proposition, recall condition (8.78) with the norm in the lower bound
removed (as just discussed). The proof of the following result shows that for wavelet
projection kernels, the exceptional set of non-self-similar functions is contained in the
complement of an open and dense subset of the Hölder space Bs

∞∞.

Proposition 8.3.21 For f ∈ Bs
∞∞, let Kj( f ), j ∈ N, be the projection onto a wavelet basis

generating Bs
∞∞. Then the set of functions

Ns =
{

f ∈ Bs
∞∞ : there do not exist ε > 0 and J0 ∈N s.t. ‖Kj( f )− f ‖∞ ≥ ε2−js ∀j ≥ J0

}
is nowhere dense in (the norm topology of) the Banach space Bs

∞∞.

Proof Write βlk(g) for the wavelet coefficients 〈g,ψlk〉 of g. Since

|βlk(g)| =
∣∣∣∣2l/2

∫
ψ(2lx− k)g(x)dx

∣∣∣∣≤ 2−l/2‖ψ‖1‖g‖∞,

for every l,k and every bounded function g, we have, for g = Kj( f )− f , whose wavelet
coefficients are 0 for l< j, that

‖Kj( f )− f ‖∞ ≥ ‖ψ‖−1
1 sup

l≥j,k
|2l/2βlk( f )|. (8.124)

For k arbitrary, take

Em(k)= { f ∈ Bs
∞∞ : |βlk( f )| ≥ 2−l(s+1/2)2−m for every l ∈N},

and with wavelet norm ‖g‖Bs∞∞ = supl,k 2l(s+1/2)|βlk(g)|, define the neighbourhoods

Am(k)= {h ∈ Bs
∞∞ : ‖h− f ‖Bs∞∞ < 2−m−1 for some f ∈ Em(k)}
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so that, for every h ∈ Am(k) and every l, |βlk(h)| ≥ 2−l(s+1/2)2−m−1. Consequently, using
(8.124), we have

‖Kj(h)− h‖∞ ≥ ‖ψ‖−1
1 2−m−12−js, (8.125)

for every nonnegative integer j and every h ∈ Am(k). Define now

A =∪m≥0,kAm(k),

all of whose elements satisfy the desired lower bound for some m, and therefore, A ⊂N c
s

(with the complement taken in the ambient Banach space Bs
∞∞).

The set A is clearly open, and it is also dense in Bs
∞∞: let g ∈ Bs

∞∞ be arbitrary, and
define the function gm by its wavelet coefficients βlk(gm) equal to βlk(g) when |βlk(g)| >
2−l(s+1/2)2−m and equal to 2−l(s+1/2)2−m otherwise. Clearly, gm ∈ A, for every m, and for
ε > 0 arbitrary, we can choose m large enough such that

‖g− gm‖Bs∞∞ = sup
l,k

2l(s+1/2)
∣∣βlk(g)− 2−l(s+1/2)2−m

∣∣1|βlk(g)|≤2−l(s+1/2)2−m ≤ 2−m+1 < ε.

This proves that Ns is contained in the complement of an open and dense set and hence itself
must be nowhere dense.

The driving force in this result is a generic lower bound on the wavelet coefficients

max
k

|〈 f ,ψlk〉| ≥ ε2−l(s+1/2),

for all l (large enough) of ‘typical’ functions f ∈ Bs
∞∞. This can be compared to the �2

self-similarity assumption defined in (8.90). This condition, transposed into double-indexed
wavelet notation (by numbering the wavelet basis functions in lexicographic order), requires
the ‘energy packets’

∑
k〈 f ,ψlk〉2 accruing over windows of resolution levels l to be large

enough; more precisely, for some ε > 0,

J∑
l=J(1−ε)

∑
k

f 2
lk ≥ c(s)2−2Js ∀J ≥ J0, flk = 〈 f ,ψlk〉. (8.126)

In view of the adaptive estimation result (Theorem 8.2.2), the appropriate maximal topology
to study such �2-type self-similarity conditions in the wavelet setting is the Besov space Bs

2∞.
The result paralleling Proposition 8.3.21 is then the following:

Proposition 8.3.22 The set

Ms =
{

f ∈ Bs
2∞ : there do not exist ε > 0 and J0 ∈N s.t. (8.126) holds

}
is nowhere dense in (the norm topology) of the Banach space Bs

2∞.

Proof Consider the set of sequences

Em =
{

f ∈ Bs
2∞ :

∑
k

f 2
lk ≥ 2−2ls2−2m ∀l ∈N

}
, m ∈N,

and define, for δ > 0 to be chosen later, the open sets

Am = {h ∈ Bs
2∞ : ‖ f − h‖Bs

2∞ < δ2
−m, f ∈ Em},
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where we recall the definition of the norm ‖g‖Bs
2∞ = supl 2

ls
√∑

k g2
lk. For h ∈ Am and ε > 0,

we have, by the triangle inequality
√∑

l al ≤∑
l

√
al, for δ > 0 small enough and J large

enough, that √√√√ J∑
l=J(1−ε)

∑
k

h2
lk ≥

√√√√ J∑
l=J(1−ε)

∑
k

f 2
lk −

J∑
l=J(1−ε)

√∑
k

( flk − hlk)2

≥ 2−m

√√√√ J∑
l=J(1−ε)

2−2ls −
J∑

l=J(1−ε)
2−ls‖ f − h‖Bs

2∞

≥ c′(s)2−m−12−J(1−ε)s ≥√
c(s)2−Js.

Conclude that the elements of Am are all self-similar in the sense of (8.126) and that the
union A = ⋃

m∈N Am is open in Bs
2∞. To proof is completed as in Proposition 8.3.21 by

showing that A is also dense in Bs
2∞: we approximate g ∈ Bs

2∞ arbitrary by gm defined via
wavelet coefficients gm,lk = glk whenever

∑
k g2

lk > 2−2ls2−2m at level l and equal to gm,lk =
2−l(s+1/2)2−m otherwise. Then

‖g− gm‖Bs
2∞ = sup

l
2ls

√∑
k

(glk − 2−ls2−m)21∑
k g2

lk≤2−2ls2−2m ≤ 2−m+1

can be made as small as desired for m large enough.

A Bayesian Perspective on Self-Similarity

We finally take a Bayesian perspective and show that natural Bayesian nonparametric
priors for Hölder or Sobolev functions charge self-similar functions with probability 1.
Take a periodised wavelet basis {ψlk} of L2([0,1]). The wavelet characterisation of the
Hölder-Besov space Bs

∞∞ motivates us to distribute the basis functions ψlk randomly on a
fixed ball of radius B in Bs

∞∞ as follows: take ulk i.i.d. uniform random variables on [−B,B],
and define the random wavelet series

Us(x)=
∑

l

∑
k

2−l(s+1/2)ulkψlk(x), (8.127)

for which we have

‖Us‖Bs∞∞ ≤ sup
k,l

|ulk| ≤ B a.s.,

so its law is a natural prior on an s-Hölder ball.

Proposition 8.3.23 Let ε > 0,s> 0, j ∈N. Then

Pr
{‖Kj(Us)−Us‖∞ < εB2−js

}≤ e− log(1/ε)2j
;

in particular, the set Ns from Proposition 8.3.21 has probability 0 under the law of Us.

Proof We have

‖Kj(Us)−Us‖∞ ≥ ‖ψ‖−1
1 sup

l≥j,k
2l/2|〈ψlk,Us〉| ≥ ‖ψ‖−1

1 2−js max
k=1,...,2j

|ujk|.
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The variables ujk/B are i.i.d. U(−1,1), and so the Uk, Uk := |ujk/B|, are i.i.d. U(0,1) with
maximum equal to the largest order statistic U(2j). Since ‖ψ‖1 ≤ ‖ψ‖2 ≤ 1, we deduce

Pr
(‖Kj(Us)−Us‖∞ < εB2−js

)≤ Pr
(
U(2j) < ε

)= ε2j

to complete the proof of the first claim. For the second claim, suppose that the set Ns has
positive probability, say, p0 > 0. Then, choosing ε small enough such that ε2j

< p0, we have
a contradiction, completing the proof.

A similar result can be proved for self-similarity conditions in the �2 setting, and for sake
of exposition, let us again only analyse the wavelet version of condition (8.90) given in
(8.126). We now consider Gaussian product priors

�s =
⊗

k,l

γk,l, γk,l ∼ N(0,2−2l(s+1/2)), s> 0.

Just as in the proof of Theorem 4.4.3, we show that a signal p = (pk : k ∈ N) drawn from
�s lies in Bs

2∞ almost surely. Moreover, any such draw concentrates almost surely on the
self-similar elements of the space Bs

2∞, as the following proposition shows.

Proposition 8.3.24 For s> 0, consider the Gaussian probability measure �s on Bs
2∞, and

let Ms be as in Proposition 8.3.22. Then

�s(Ms)= 0.

Proof We realise that p ∼ �s as (plk) = (2−l(s+1/2)glk) for i.i.d. standard normals glk. For
ε > 0 fixed, the probability Pr(AJ) that p does not satisfy (8.126) at scale J ∈N equals

Pr(AJ)≡ Pr

⎛⎝ J∑
l=J(1−ε)

∑
k

2−l(2s+1)g2
lk < c(s)2−2Js

⎞⎠ (8.128)

= Pr

⎛⎝ J∑
l=J(1−ε)

∑
k

2−l(2s+1)(g2
lk − 1) < c(s)2−2Js − c′(s)2−2Js(1−ε)

⎞⎠ (8.129)

≤ Pr

⎛⎝∣∣∣∣∣∣
J∑

l=J(1−ε)

∑
k

2−l(2s+1)(g2
lk − 1)

∣∣∣∣∣∣> c′′2−2Js(1−ε)

⎞⎠ , (8.130)

for J ≥ J0 large enough depending on s,ε, and some constants c′(s),c′′ > 0. Using
independence in the variance bound

Var

⎛⎝ J∑
l=J(1−ε)

∑
k

2−l(2s+1)(g2
lk − 1)

⎞⎠�
J∑

l=J(1−ε)
2−l(4s+1) � 2−J(4s+1)(1−ε)

and Chebyshev’s inequality, the preceding probabilities satisfy
∑

J≥J0
Pr(AJ) <∞. By the

Borel-Cantelli lemma, we conclude that Pr(AJ i.o.)= 0 and hence that (8.126) holds almost
surely.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.009
http:/www.cambridge.org/core


664 Adaptive Inference

Exercises

8.3.1 Consider the Haar wavelet estimator fn(j) from (6.120), and evaluate it at the bandwidth j =
j̄n + un, where j̄n is as in Lemma 8.3.13, computed from a sample of a Gaussian white noise
independent of the sample used for the construction of fn(j) (e.g., by sample splittling). Show
that (6.121) holds true uniformly in self-similar classes of functions, and deduce a confidence
band as in Theorem 8.3.15 (see Giné and Nickl (2010)). Hint: For suitable random variables
Zn(j), use Lemma 8.3.13 and independence to show that

PY
f (Zn(j̄n)≤ t)=

∑
j∈[j∗−m,j∗]

PY
f (Zn(j)≤ t)PY

f (j̄n = j)+ o(1),

and deduce the limit distribution from Theorem 2.7.1. For i.i.d. data, we can construct similar
results by appealing to Propositions 5.1.22 and 5.1.23.

8.3.2 Complete the proof of Theorem 8.3.18. Hint: Proceed as in Theorem 8.3.11, with the function
f0 representing the first half of the functions fm in Theorem 8.3.18 (see also Nickl and Szabo
(2014)).

8.3.3 Prove the L∞ case of Theorem 8.3.20.
8.3.4 Prove a version of Proposition 8.3.24 for uniform wavelet priors as in (8.127).
8.3.5 (Berry-Esseen bound.) For X1, . . . ,Xn i.i.d. random variables with EXi = 0,EX2

i = 1,E|Xi|3 =
ρ <∞ and � the standard normal c.d.f., prove that∣∣∣∣∣Pr

(
n∑

i=1

Xi ≤ t
√

n

)
−�(t)

∣∣∣∣∣� Cρ√
n

,

where C > 0 is a universal constant. Hint: Adapt the proof of Lemma 3.7.45 or see Durrett
(1996).

8.4 Notes

Section 8.1 Theorem 8.1.1 and the key ideas that derive from it are due to Spokoiny (1996).
Related approaches are studied, for instance, in Baraud (2002) and Baraud, Huet and Laurent (2003).
Results comparable to Theorem 8.1.2 in the setting of sampling models (in fact, in the more general
deconvolution model) are obtained in Butucea, Matias and Pouet (2009). A multi-scale approach
to certain adaptive testing problems is studied in Dümbgen and Spokoiny (2001). Exact minimax
constants for adaptive tests are studied in Lepski and Tsybakov (2000). The monograph by Ingster
and Suslina (2003) contains various materials on adaptive testing problems, and multiple testing
corrections such as the ones encountered here are a large subject in statistics on its own, which we
cannot survey here.

Section 8.2 Adaptive function estimation is by now a classical and well-studied topic. This section
only contains some main ideas, and the following references are by no means complete.

Early key contributions to adaptive estimation from a minimax point of view are Efromovich
and Pinsker (1984), Golubev (1987), Lepski (1990), Golubev and Nussbaum (1992) – see also
Tsybakov (1998), Cavalier and Tsybakov (2001) and Tsybakov (2003), including also a discussion
of the relationships to Stein’s phenomenon and exact adaptation to Pinsker’s minimax constant. The
general purpose adaptation principle known as Lepski’s method was introduced in Lepski (1990), see
also Lepski, Mammen and Spokoiny (1997). Lepski also noted that in some situations a penalty for
adaptive estimation can occur (for instance, when estimating a linear functional adaptively, such as
in pointwise loss – see Tsybakov (1998) and Cai and Low (2005)). Wavelet thresholding ideas were
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introduced in the influential papers Donoho and Johnstone (1995) as well as Donoho, Johnstone,
Kerkyacharian and Picard (1995, 1996). Another related approach to adaptation (that works best in the
case of L2-loss) is based on model selection, see Barron, Birgé and Massart (1999), Birgé and Massart
(2001). More sophisticated versions of Lepski’s method that are compatible also with (‘anisotropic’)
multivariate situations have recently been suggested in Goldenshluger and Lepski (2011, 2014), and
another popular method of adaptation is known as aggregation, see, for instance Tsybakov (2003),
Bunea, Tsybakov and Wegkamp (2007) and Juditsky, Rigollet and Tsybakov (2008).

Most of the original adaptive estimation results were in the Gaussian white noise model and results
in the i.i.d. sampling model are, with a few exceptions, more recent, e.g., Efromovich (1985, 2008),
Golubev (1992), Giné and Nickl (2009, 2009a), Goldenshluger and Lepski (2011, 2014) and Lepski
(2013). The global thresholding result Theorem 8.2.8 is due to Lounici and Nickl (2011). (Although
an essential precursor, with some unnecessary moment conditions, was proved in Giné and Nickl
(2009).)

A critical problem not addressed here in much detail is the choice of the thresholding constant τ .
Resampling and symmetrisation approaches have been suggested, see for instance Giné and Nickl
(2010a). Another approach is based on the idea of ‘minimal penalties’ in model selection, see Birgé
and Massart (2007). In practice some kind of numerical calibration or cross-validation procedure can
be advocated as well.

Section 8.3 That adaptive estimators do not automatically translate into adaptive confidence sets
was noticed in the paper by Low (1997) in the setting of density estimation – he essentially proved
Theorem 8.3.1 (for pointwise loss instead of uniform loss) – in fact, he showed the stronger result
that the worst-case diameter can occur at any given function f ∈ 
(s). See also Cai and Low
(2004), where these findings are cast into a general decision-theoretic framework, and Genovese and
Wasserman (2008). The main observation behind Theorem 8.3.5, part (b)(i), is due, independently, to
Juditsky and Lambert-Lacroix (2003), Cai and Low (2006) and Robins and van der Vaart (2006),
with important ideas already implicit in Li (1988), Lepski (1999), Beran and Dümbgen (2003),
Hoffmann and Lepski (2002) and Baraud (2004). As discussed in Robins and van der Vaart (2006),
the connection to nonparametric testing problems is lurking in the background of many of these
results – the explicit equivalence of adaptive confidence sets with smoothness testing problems as
highlighted by Theorem 8.3.2 is from Hoffmann and Nickl (2011) and is further investigated in
Bull and Nickl (2013) in the L2 setting and in Carpentier (2013) in the Lp setting. The mechanism
behind applies more generally as discussed in the subsection surrounding Proposition 8.3.6 – see
Nickl and van de Geer (2013) for an application of these ideas to high-dimensional sparse regression.
Moreover, the proof of theorem 3.5 in Carpentier (2013) can be adapted to show that a converse
to Proposition 8.3.6 holds true in the sense that when ρ∗n = O(rn(
0)), then adaptive and honest
confidence sets can be constructed without any removal of parameters.

Honest inference for continuous smoothness parameters and unbounded radius is a more
challenging task. The results from Section 8.3.2 are due to Bull and Nickl (2013) in the i.i.d. sampling
model, and the respective positive results are inspired by Robins and van der Vaart (2006). In
particular, the lower bound theorem 8.3.11 from Bull and Nickl (2013) (somewhat refined in Nickl
and Szabó (2014)) shows how the nonparametric testing connection can be exploited to give rather
strong negative results even for ‘pointwise in f ’ confidence sets. Some further interesting positive
results in this direction are found in Cai, Low and Ma (2014).

The approach to adaptive inference via self-similar functions was developed in Giné and Nickl
(2010) in the L∞ setting, with ideas going back to Picard and Tribouley (2000). The �2-theory for
self-similar functions as presented here is due to Nickl and Szabò (2014). Minimal self-similarity
assumptions in the L∞ setting (paralleling Theorem 8.3.18) are studied in Bull (2012), who also gives
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a construction of a confidence band that adapts to possibly unbounded Hölder norm in the L∞ setting
if self-similarity parameters are known.

The theory about the genericity of self-similar functions was developed in Giné and Nickl
(2010) and Hoffmann and Nickl (2011) in the i.i.d. sampling model, where Propositions 8.3.21
and 8.3.23 were proved, with some ideas going back to conjectures in mathematical physics and
multifractal analysis (Jaffard (2000)). Further recent references that employ notions of self-similarity
are Chernozhukov, Chetverikov and Kato (2014a) and Szabò, van der Vaart and van Zanten (2015).
Another possibility to construct adaptive confidence sets for certain ranges of smoothness levels – not
discussed in this book – is to assume shape constraints (such as monotonicity) of the function
involved; see Dümbgen (2004) and Cai, Low and Xia (2013).
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les mésures stables. Lecture Notes in Math. 381 (1974), 78–9.
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Ann. Inst. H. Poincaré Prob. Stat. 38 (2002), 907–21.
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Giné, E., and Nickl, R. A simple adaptive estimator of the integrated square of a density. Bernoulli 14
(2008a), 47–61.
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Giné, E., and Zinn, J. Lectures on the central limit theorem for empirical processes (probability and Banach

spaces). Lecture Notes in Math. 1221 (1986), 50–113.
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Loève, M. Probability Theory (Graduate Texts in Mathematics 46), Vol. II, 4th ed. Springer-Verlag, Berlin,
1978.

Lorentz, G. G., Golitscheck, M. V., and Makovoz, Y. Constructive Approximation: Advanced Problems.
Springer, Berlin, 1996.

Lounici, K., and Nickl, R. Global uniform risk bounds for wavelet deconvolution estimators. Ann. Stat. 39
(2011) 201–31.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337862.010
http:/www.cambridge.org/core


678 References

Love, E. R., and Young, L. C. Sur une classe de fonctionelles linéaires. Fund. Math. 28 (1937), 243–57.
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Giné, E., 102, 106, 285, 287–290, 387, 388, 463,

464, 538, 604, 664–666
Glivenko, V.I., 13, 228
Goldenshluger, A., 665, 674
Golitscheck, M.V., 387
Golubev, G.K., 14, 664, 674
Golubev, Y., 665
Grama, I., 14
Groeneboom, P., 604
Gross, L., 105, 287
Guillou, A., 288, 463
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