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Given an i.i.d. sample from a distribution F on R with uniformly continuous density p0, purely data-driven
estimators are constructed that efficiently estimate F in sup-norm loss and simultaneously estimate p0 at
the best possible rate of convergence over Hölder balls, also in sup-norm loss. The estimators are obtained
by applying a model selection procedure close to Lepski’s method with random thresholds to projections of
the empirical measure onto spaces spanned by wavelets or B-splines. The random thresholds are based on
suprema of Rademacher processes indexed by wavelet or spline projection kernels. This requires Bernstein-
type analogs of the inequalities in Koltchinskii [Ann. Statist. 34 (2006) 2593–2656] for the deviation of
suprema of empirical processes from their Rademacher symmetrizations.

Keywords: adaptive estimation; Lepski’s method; Rademacher processes; spline estimator; sup-norm loss;
wavelet estimator

1. Introduction

If X1, . . . ,Xn are i.i.d. with unknown distribution function F on R, then classical results of math-
ematical statistics establish optimality of the empirical distribution function Fn as an estimator
of F . That is to say, if we assume no a priori knowledge whatsoever on F and equip the set
of all probability distribution functions with some natural loss function such as sup-norm loss,
then Fn is asymptotically sharp minimax for estimating F . (The same is true even if more is
known about F , for instance, if F is known to have a uniformly continuous density.) However,
this does not preclude the existence of other estimators that are also asymptotically minimax for
estimating F in sup-norm loss, but which improve upon Fn in other respects. What we have in
mind is a purely data-driven estimator that is efficient for F , but, at the same time, also estimates
the density f of F at the best rate of convergence in some relevant loss function over some
prescribed classes of densities. More precisely, our goal in the present article is to construct es-
timators that satisfy the functional central limit theorem (CLT) for the distribution function and
which adapt to the unknown smoothness of the density in sup-norm loss. Whereas this article is
concerned with the mathematical problem of the existence and construction of such estimators,
it does not deal with the practical implementation of estimation procedures.
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To achieve adaptation, one can opt for several approaches, all of which are related. Among
them, we mention the penalization method of Barron, Birgé and Massart [1], wavelet thresh-
holding [7] and Lepski’s [26] method. Our choice for the goal at hand consists of using Lepski’s
method, with random thresholds, applied to wavelet and spline projection estimators of a density.

The linear estimators underlying our procedure are projections of the empirical measure onto
spaces spanned by wavelets, and wavelet theory is central to some of the derivations of this arti-
cle. The wavelets most commonly used in statistics are those that are compactly supported (for
example, Daubechies wavelets), and our results readily apply to these. However, for computa-
tional and other purposes, projections onto spline spaces are also interesting candidates for the
estimators. Density estimators obtained by projecting the empirical measure onto Schoenberg
spaces spanned by B-splines were studied by Huang and Studden [19]. As is well known in
wavelet theory, the Schoenberg spline spaces with equally spaced knots have an orthonormal
basis consisting of the Battle–Lemarié wavelets so that the spline projection estimator is, in fact,
exactly equal to the wavelet estimator based on Battle–Lemarié wavelets. These wavelets do not
have compact support, but they are exponentially localized. Although we cannot, in general, han-
dle exponentially decaying wavelets, we can still work with Battle–Lemarié wavelets because the
B-spline expansion of the projections allows us to show that the relevant classes of functions are
of Vapnik–Chervonenkis type so that empirical process techniques can be applied. In particular,
the adaptive estimators we devise in Theorem 3 may be based either on spline projections or on
compactly supported wavelets. In the process of proving the main theorem, we also provide new
asymptotic results for spline projection density estimators similar to those for wavelet estimators
in [14].

We need to use Talagrand’s exponential inequality with sharp constants [3,21] in the proofs,
but to do this, we have to estimate the expectation of suprema of certain empirical processes that
appear in the centering of Talagrand’s inequality. The use of entropy-based moment inequalities
for empirical processes typically results in too conservative constants (for example, in [13]). In
order to remedy this problem, we adapt recent ideas due to Koltchinskii [22,23] and Bartlett,
Boucheron and Lugosi [2] to density estimation: the entropy-based moment bounds are replaced
by the sup-norm of the associated Rademacher averages, which are, with high probability, better
estimates of the expected value of the supremum of the empirical process. We derive a Bernstein-
type analog of an exponential inequality in [23] that shows how the supremum of an empirical
process deviates from the supremum of the associated Rademacher processes. This Bernstein-
type version allows one to use partial knowledge of the variance of the empirical processes in-
volved, which is crucial for applications in our context of adaptive density estimation. Moreover,
we show that one can use, instead of the supremum of the Rademacher process, its conditional
expectation given the data.

Adaptive estimation in sup-norm loss is a relatively recent subject. We should mention the re-
sults in Tsybakov [34], Golubev, Lepski and Levit [16] – who only considered Sobolev-type
smoothness conditions – and [15]. All of these results were obtained in the Gaussian white
noise model. If one is interested in adapting to a Hölder-continuous density in sup-norm loss
in the i.i.d. density model on R, this simplifying Gaussian structure is not available and novel
techniques are needed. In the i.i.d. density model on R, a direct ‘competitor’ to the estimators
constructed in this article is the hard thresholding wavelet density estimator introduced in [7]:
as proved in [14], its distribution function satisfies the functional CLT and it is adaptive in the
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sup-norm over Hölder balls; however, the proofs there seem to require the additional assumption
that dF integrates |x|δ for some δ > 0, and the constants appearing in the threshold and the risk
become quite large for δ small. The results in the present article hold under no moment condition
whatsoever.

2. Wavelet expansions and estimators

We start with some basic notation. If (S, S) is a measurable space, then for Borel-measurable
functions h :S → R and Borel measures μ on S, we set μh := ∫

S
hdμ. We will denote by

Lp(Q) := Lp(S,Q), 1 ≤ p ≤ ∞, the usual Lebesgue spaces on S with respect to a Borel mea-
sure Q, and if Q is Lebesgue measure on S = R, then we simply denote this space by Lp(R), and
its norm by ‖ ·‖p , if p < ∞. We will use ‖h‖∞ to denote supx∈R |h(x)| for h : R → R. For s ∈ N,
denote by Cs(R) the spaces of functions f : R → R that are s-times differentiable with bounded
uniformly continuous Drf , 0 < r ≤ s, equipped with the norm ‖f ‖s,∞ = ∑

0≤α≤s ‖Dαf ‖∞,

with the convention that D0 =: id and that C(R) := C0(R) is then the space of bounded uni-
formly continuous functions. For non-integer s > 0 and [s] the integer part of s, set

Cs(R) =
{
f ∈ C[s](R) :‖f ‖s,∞ :=

∑
0≤α≤[s]

‖Dαf ‖∞ + sup
x �=y

|D[s]f (x) − D[s]f (y)|
|x − y|s−[s] < ∞

}
.

2.1. Multiresolution analysis and wavelet bases

We recall here a few well-known facts about wavelet expansions; see, for example, Sections 8
and 9 in [17]. Let φ ∈ L2(R) be a scaling function, that is, φ is such that {φ(· − k) :k ∈ Z} is
an orthonormal system in L2(R) and, moreover, the linear spaces V0 = {f (x) = ∑

k ckφ(x −
k) : {ck}k∈Z ∈ �2}, V1 = {h(x) = f (2x) :f ∈ V0}, . . . , Vj = {h(x) = f (2j x) :f ∈ V0}, . . . are
nested (Vj−1 ⊆ Vj for j ∈ N) and their union is dense in L2(R). In the case where φ is a bounded
function that decays exponentially at infinity (that is, |φ(x)| ≤ Ce−γ |x| for some C,γ > 0) –
which we assume for the rest of this subsection – the kernel of the projection onto the space Vj

has certain properties. First, the series

K(y,x) := K(φ,y, x) =
∑
k∈Z

φ(y − k)φ(x − k) (1)

converges pointwise and we set Kj(y, x) := 2jK(2j y,2j x), j ∈ N ∪ {0}. Furthermore, we have

|K(y,x)| ≤ �(|y − x|) and sup
x∈R

∑
k

∣∣φ(x − k)
∣∣ < ∞, (2)

where � : R → R
+ is bounded and has exponential decay (cf. Lemma 8.6 in [33]). For any j

fixed, if f ∈ Lp(R), 1 ≤ p ≤ ∞, then the series

Kj(f )(y) :=
∫

Kj(x, y)f (x)dx =
∑
k∈Z

2jφ(2j y − k)

∫
φ(2j x − k)f (x)dx, y ∈ R,
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converges pointwise and, for f ∈ L2(R), Kj(f ) coincides with the orthogonal projection
πj :L2(R) → Vj of f onto Vj . For f ∈ L1(R), which is the main case in this article, the con-
vergence of the series in fact takes place in Lp(R), 1 ≤ p ≤ ∞. This still holds true if f (x)dx is
replaced by dμ(x), where μ is any finite signed measure. If, now, φ is a scaling function and ψ

the associated mother wavelet so that {φ(·−k),2l/2ψ(2l(·)−k) :k ∈ Z, l ∈ N} is an orthonormal
basis of L2(R), then any f ∈ Lp(R) admits the formal expansion

f (y) =
∑

k

αk(f )φ(y − k) +
∞∑
l=0

∑
k

βlk(f )ψlk(y), (3)

where ψlk(y) = 2l/2ψ(2ly − k), αk(f ) = ∫
f (x)φ(x − k)dx, βlk(f ) = ∫

f (x)ψlk(x)dx. Since
(Kl+1 − Kl)f = ∑

k βlk(f )ψlk , the partial sums of the series (3) are in fact given by

Kj(f )(y) =
∑

k

αk(f )φ(y − k) +
j−1∑
l=0

∑
k

βlk(f )ψlk(y) (4)

and if φ,ψ are bounded and have exponential decay, then convergence of the series (4) holds
pointwise; it also holds in Lp(R), 1 ≤ p ≤ ∞, if f ∈ L1(R) or if f is replaced by a finite signed
measure. Now, using these facts, one can furthermore show that the wavelet series (3) converges
in Lp(R), p < ∞, for f ∈ Lp(R) and we also note that if p0 is a uniformly continuous density,
then its wavelet series converges uniformly.

2.2. Density estimation using wavelet and spline projection kernels

Let X1, . . . ,Xn be i.i.d. random variables with common law P and density p0 on R, and denote
by Pn = 1

n

∑n
i=1 δXi

the associated empirical measure. A natural first step is to estimate the
projection Kj(p0) of p0 onto Vj by

pn(y) := pn(y, j) = 1

n

n∑
i=1

Kj(y,Xi) =
∑

k

α̂kφ(y − k) +
j−1∑
l=0

∑
k

β̂lkψlk(y), y ∈ R, (5)

where K is as in (1), j ∈ N, and where α̂k = ∫
φ(x − k)dPn(x), β̂lk = ∫

ψlk(x)dPn(x) are
the empirical wavelet coefficients. We note that for φ, ψ compactly supported (for example,
Daubechies wavelets), there are only finitely many k’s for which these coefficients are non-
zero. This estimator was first studied by Kerkyacharian and Picard [20] for compactly supported
wavelets.

If the wavelets φ and ψ do not have compact support, it may be impossible to compute the esti-
mator exactly since the sums over k consist of infinitely many summands. However, in the special
case of the Battle–Lemarié family φr, r ≥ 1 (see, for example, Section 6.1 in [17]) – which is a
class of non-compactly supported but exponentially decaying wavelets – the estimator has a sim-
ple form in terms of splines: the associated spaces Vj,r = {∑k ck2j/2φr(2j (·)− k) :

∑
k c2

k < ∞}
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are, in fact, equal to the Schoenberg spaces generated by the Riesz basis of B-splines of order r

so that the sum in (5) can be computed by

pn(y, j) := 1

n

n∑
i=1

κj (y,Xi) = 2j

n

n∑
i=1

∑
k

∑
l

bklNj,k,r (Xi)Nj,l,r (y), y ∈ R, (6)

where the Nj,k,r are (suitably translated and dilated) B-splines of order r , the kernel κ is as
in (29) below and the bkl’s are the entries of the inverse of the matrix defined in (28) below. An
exact derivation of this spline projection, its wavelet representation and detailed definitions are
given in Section 3.2. It turns out that for every sample point Xi and for every y, each of the last
two sums extends over only r terms. We should note that this ‘spline projection’ estimator was
first studied (outside the wavelet setting) by Huang and Studden [19], who derived pointwise
rates of convergence; see also [18], where some comparison between Daubechies and spline
wavelets can be found.

In the course of proving the main theorem of this article, we will derive some basic results for
the linear spline projection estimator (6), which we now state. For classical kernel estimators,
results similar to those that follow were obtained in [5,11,13], and for wavelet estimators based
on compactly supported wavelets, this was done in [14].

Theorem 1. Suppose that P has a bounded density p0. Assume that jn → ∞, n/(jn2jn) → ∞,
jn/ log logn → ∞ and j2n − jn ≤ τ for some τ positive. Let pn(y) = pn(y, jn) be the estimator
from (6) for some r ≥ 1. Then

lim sup
n

√
n

2jnjn

sup
y∈R

|pn(y) − Epn(y)| = C a.s.

and, for 1 ≤ p < ∞,

sup
n

√
n

2jnjn

(
E sup

y∈R

|pn(y) − Epn(y)|p
)1/p ≤ C′,

where C and C′ depend only on ‖p0‖∞ and on r,p, τ ... and on r , p, τ . Moreover, if p0 ∈ Ct(R),
then

sup
y∈R

|pn(y) − p0(y)| = O

(√
2jnjn

n
+ 2−tjn

)
a.s. and in Lp(P ).

For rates of convergence in probability, the conditions on jn can be weakened (see Propo-
sition 3 below). The last bound in this theorem gives, for p0 ∈ Ct (R) with t ≤ r and 2jn �
(n/ logn)1/(2t+1), that

sup
y∈R

|pn(y) − p0(y)| = O

((
logn

n

)t/(2t+1))
, both a.s. and in Lp(P ).
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For the following central limit theorem, we denote by ��∞(R) convergence in law for sample-
bounded processes in the Banach space of bounded functions on R, and by GP the usual P -
Brownian bridge (for example, Chapter 3 in [8]). We should emphasize that the optimal band-
width choice 2−jn � n−1/(2t+1) (if sup-norm loss is being considered, replace n by n/ logn) is
admissible for every t > 0 in the theorem below.

Theorem 2. Assume that the density p0 of P is a bounded function (t = 0) or that p0 ∈ Ct (R)

for some t , 0 < t ≤ r . Let jn satisfy n/(2jnjn) → ∞ and
√

n2−jn(t+1) → 0 as n → ∞. If F is
the distribution function of P and we set FS

n (s) := ∫ s

−∞ p(y, jn)dy, then

√
n(FS

n − F) ��∞(R) GP .

Proof. Given ε > 0, apply Proposition 4 below with λ = ε so that ‖FS
n − Fn‖∞ = oP (1/

√
n)

follows and use the fact that
√

n(Fn − F) converges in law in �∞(R) to GP . �

3. The adaptive estimation procedures

In this section, we construct data-driven choices of the resolution level j and state the main
adaptation results. As mentioned in the Introduction, we will use Rademacher symmetrization
for this. Generate a Rademacher sequence εi , i = 1, . . . , n, independent of the sample (that is, εi

takes values 1,−1 with probability 1/2) and set, for j < l,

R(n, j) = 2

∥∥∥∥∥1

n

n∑
i=1

εiKj (Xi, ·)
∥∥∥∥∥∞

and

(7)

T (n, j, l) = 2

∥∥∥∥∥1

n

n∑
i=1

εi(Kj − Kl)(Xi, ·)
∥∥∥∥∥∞

,

where Kj is the kernel of the wavelet projection πj onto Vj (both for Battle–Lemarié and com-
pactly supported wavelets). In both cases, these are suprema of fixed random functions that de-
pend only on known quantities that can be computed in a numerically effective way. For more
details on Rademacher processes, see Section 3.1.1.

To construct the estimators, we first need a grid indexing the spaces Vj onto which we
project Pn. For r ≥ 1, n > 1, choose integers jmin := jmin,n and jmax := jmax,n such that
0 < jmin < jmax,

2jmin �
(

n

logn

)1/(2r+1)

and 2jmax � n

(logn)2
, (8)

and set

J := Jn = [jmin, jmax] ∩ N.

Note that the number of elements in this grid is of order logn. We will consider two preliminary
estimators, j̄n and j̃n, of the resolution level (of course, only one is needed, but we offer a choice
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between two, as discussed below). Let pn(j) be as in (5) or (6). First, we set

j̄n = min

{
j ∈ J : ‖pn(j) − pn(l)‖∞

(9)

≤ T (n, j, l) + 7‖�‖2‖pn(jmax)‖1/2∞

√
2l l

n
,∀l > j, l ∈ J

}
,

where the function � is as in (2), and we discuss an explicit way to construct � in Remark 2
below. If the minimum does not exist, then we set j̄n equal to jmax. An alternative estimator of
the resolution level is

j̃n = min

{
j ∈ J : ‖pn(j) − pn(l)‖∞ ≤ (

B(φ) + 1
)
R(n, l)

(10)

+ 7‖�‖2‖pn(jmax)‖1/2∞

√
2l l

n
,∀l > j, l ∈ J

}
,

where B(φ) is a bound, uniform in j , for the operator norm in L∞(R) of the projection πj ; see
Remark 3 below. Again, if the minimum does not exist, we set j̃n equal to jmax.

Before we state the main result, we briefly discuss these procedures. The data-driven resolu-
tion level j̃n in (10) is based on tests that use Rademacher-type analogs of the usual thresholds
in Lepski’s method: starting with jmin, the main contribution to ‖pn(j) − pn(l)‖∞ is the bias
‖Epn(j)−p0‖∞. The procedure should stop when the ‘variance term’ ‖pn(l)−Epn(l)‖∞ starts
to dominate. Since this is an unknown quantity and since we know no good non-random upper
bound for it, we estimate it by the supremum of the associated Rademacher process, that is, by
R(n, l). The constant B(φ) is necessary in order to correct for the lack of monotonicity of the
R(n, l)’s in the resolution level l.

The estimator j̄n in (9) is somewhat more refined: it attempts to take advantage of the fact that
in the ‘small bias’ domain, and using the results from Section 3.1.1,

‖pn(j) − pn(l)‖∞ =
∥∥∥∥∥1

n

n∑
i=1

(Kj − Kl)(Xi, ·)
∥∥∥∥∥∞

should not exceed its Rademacher symmetrization

T (n, j, l) = 2

∥∥∥∥∥1

n

n∑
i=1

εi(Kj − Kl)(Xi, ·)
∥∥∥∥∥∞

.

We now state the main result, whose proof is deferred to the next section. As usual, we say that
a wavelet basis is s-regular, s ∈ N ∪ {0}, if either the scaling function φ has s weak derivatives
contained in Lp(R) for some p ≥ 1 or if the mother wavelet ψ satisfies

∫
xαψ(x)dx = 0 for α =

0, . . . , s. Note that any compactly supported element of Cs(R),0 < s ≤ 1, is of bounded (1/s)-
variation so that the p-variation condition in the following theorem is satisfied, for example,
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for all Daubechies wavelets. The estimators below achieve the optimal rate of convergence for
estimating p0 in sup-norm loss in the minimax sense (over Hölder balls); see, for example, [24]
for optimality of these rates.

Theorem 3. Let X1, . . . ,Xn be i.i.d. on R with common law P that possesses a uniformly con-
tinuous density p0. Let pn(j) := pn(y, j) be as in (5), where φ is either compactly supported,
of bounded p-variation (p ≥ 1) and (r − 1)-regular or φ = φr equals a Battle–Lemarié wavelet.
Let the sequence {ĵn}n∈N be either {j̄n}n∈N or {j̃n}n∈N and let Fn(ĵn)(t) = ∫ t

−∞ pn(y, ĵn)dy.
Then

√
n
(
Fn(ĵn) − F

)
��∞(R) GP , (11)

the convergence being uniform over the set of all probability measures P on R with densities p0
bounded by a fixed constant, in any distance that metrizes convergence in law. Furthermore, if C

is any precompact subset of C(R), then

sup
p0∈C

E sup
y∈R

|pn(y, ĵn) − p0(y)| = o(1). (12)

If, in addition, p0 ∈ Ct (R) for some 0 < t ≤ r , then we also have

sup
p0 : ‖p0‖t,∞≤D

E sup
y∈R

|pn(y, ĵn) − p0(y)| = O

((
logn

n

)t/(2t+1))
. (13)

Remark 1 (Relaxing the uniform continuity assumption). The assumption of uniform continu-
ity of the density of F can be relaxed by modifying the definition of j̄n (or j̃n) along the lines
of [13]. The idea is to constrain all candidate estimators to lie in a ball of size o(1/

√
n) around

the empirical distribution function Fn so that (11) holds automatically. Formally, this can be done
by adding the requirement

sup
t∈R

∣∣∣∣
∫ t

−∞
pn(y, j)dy − Fn(t)

∣∣∣∣ ≤ 1√
n logn

to each test in (9) or (10). If this requirement does not even hold for jmax, then it can be seen
as evidence that F has no density and one just uses Fn as the estimator so as to obtain at least
the functional CLT. If F has a bounded density, then one can use the exponential bound in
Proposition 4 in the proof to control rejection probabilities of these test in the ‘small bias’ domain
ĵn > j∗ and Theorem 3 can then still be proven for this procedure without any assumptions on F .
See Theorem 2 in [13] for more details on this procedure and its proof.

Remark 2 (The constant ‖�‖2). Once the wavelet φ have been chosen, ĵn is purely data-driven
since the function � depends only on φ. For the Haar basis (φ = I[0,1)), we can take � = φ

because, in this case, K(x,y) ≤ I[0,1)(|x − y|) so that ‖�‖2 = 1. A general way to obtain ma-
jorizing kernels � is described in Section 8.6 of [17]. For Battle–Lemarié wavelets, the spline
representation of the projection kernel is again useful for estimating ‖�‖2. See [19] for explicit
computations.
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Remark 3 (The constant B(φ)). To construct j̃n, one requires knowledge of the constant B(φ)

that bounds the operator norm ‖πj‖′∞ of πj , viewed as an operator L∞(R). A simple way of
obtaining a bound is as follows: for any f ∈ L∞(R), we have, by (2),

|πj (f )(x)| =
∣∣∣∣
∫

Kj(x, y)f (y)dy

∣∣∣∣ ≤ ‖�‖1‖f ‖∞,

that is, ‖πj‖′∞ ≤ ‖�‖1. In combination with the previous remark, one readily obtains possible
values for B(φ). For instance, for the Haar wavelet, B(φ) ≤ 1. For spline wavelets, other methods
are available. For example, for Battle–Lemarié wavelets arising from linear B-splines, ‖πj‖′∞
is bounded by 3, and [30], page 135, conjectures the bound 2r − 1 for general order r . See [6],
Chapter 13.4, [30] and references therein for more information.

We also note that – as the results in Section 3.1.1, in particular Proposition 2, show – all of our
proofs go through if one replaces R(n, j), T (n, j, l) by their respective Rademacher expectations
EεR(n, j), EεT (n, j, l) in the definitions of j̃n, j̄n.

3.1. Estimating suprema of empirical processes

Talagrand’s [33] exponential inequality for empirical processes (see also [25]), which is a uni-
form Prohorov-type inequality, is not specific about constants. Constants in its Bernstein-type
version have been specified by several authors [3,21,27]. Let Xi be the coordinates of the prod-
uct probability space (S, S,P )N, where P is any probability measure on (S, S) and let F be
a countable class of measurable functions on S that take values in [−1/2,1/2] or, if F is P -
centered, in [−1,1]. Let σ ≤ 1/2 and V be any two numbers satisfying

σ 2 ≥ ‖Pf 2‖F , V ≥ nσ 2 + 2E

∥∥∥∥∥
n∑

i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

, (14)

in which case V is also an upper bound for E‖∑
(f (Xi) − Pf )2‖F [21]. Then, noting that

supf ∈F ∪(−F )

∑n
i=1 f (Xi) = supF |∑n

i=1 f (Xi)|, Bousquet’s [3] version of Talagrand’s in-
equality is as follows: for every t > 0,

Pr

{∥∥∥∥∥
n∑

i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

≥ E

∥∥∥∥∥
n∑

i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

+ t

}
≤ exp

(
− t2

2V + (2/3)t

)
. (15)

In the other direction, the Klein and Rio [21] result is that for every t > 0,

Pr

{∥∥∥∥∥
n∑

i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

≤ E

∥∥∥∥∥
n∑

i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

− t

}
≤ exp

(
− t2

2V + 2t

)
. (16)

These inequalities can be applied in conjunction with an estimate of the expected value ob-
tained via empirical process methods. Here, we describe one such result for VC-type classes, that
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is, for F satisfying the uniform metric entropy condition

sup
Q

N(F ,L2(Q), τ ) ≤
(

A

τ

)v

, 0 < τ ≤ 1 (A ≥ e, v ≥ 2), (17)

with the supremum extending over all Borel probability measures on (S, S). We denote here by
N(G,L2(Q), τ ) the usual covering numbers of a class G of functions by balls of radius less than
or equal to τ in L2(Q)-distance. One then has, for every n,

E

∥∥∥∥∥
n∑

i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

≤ 2

[
15

√
2vnσ 2 log

5A

σ
+ 1350v log

5A

σ

]
; (18)

see Proposition 3 in [13] with a change obtained by using V as in (14) instead of an earlier bound
due to Talagrand for E‖∑

(f (Xi) − Pf )2‖F . Inequalities of this type also have some historical
precedents ([9,10,12,32] among others). The constants on the right-hand side of (18) may be far
from the best possible, but we prefer them over unspecified ‘universal’ constants.

As is the case of Bernstein’s inequality in R, Talagrand’s inequality is especially useful in the
Gaussian tail range and, combining (15) and (18), one can obtain such a ‘Gaussian tail’ bound
for the supremum of the empirical process that depends only on σ (similar to a bound in [10]).

Proposition 1. Let F be a countable class of measurable functions that satisfies (17) and is
uniformly bounded (in absolute value) by 1/2. Assume, further, that for some λ > 0,

nσ 2 ≥ λ2v

2
log

5A

σ
. (19)

Set c1(λ) = 2[15 + 1350λ−1] and let c2(λ) ≥ 1 + 120λ−1 + 10,800λ−2. Then, if

c1(λ)

√
2vnσ 2 log

5A

σ
≤ t ≤ 3

2
c2(λ)nσ 2, (20)

we have

Pr

{∥∥∥∥∥
n∑

i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

≥ 2t

}
≤ exp

(
− t2

3c2(λ)nσ 2

)
. (21)

Proof. In the light of (19), inequality (18) gives

E

∥∥∥∥∥
n∑

i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

≤ c1(λ)

√
2vnσ 2 log

5A

σ

and (14) implies that we can take V = c2(λ)nσ 2. The result now follows from (15), taking into
account that in the range of t ’s, E‖∑n

i=1(f (Xi) − Pf )‖F ≤ t ≤ 3V/2, (15) becomes

Pr

{∥∥∥∥∥
n∑

i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

≥ 2t

}
≤ exp

(
− t2

3V

)
.
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�

The constants here may be too large for some applications, but they are not so in situations
where λ can be taken very large, in particular, in asymptotic considerations. (Then c1(λ) → 30
and c2(λ) → 1 as λ → ∞.)

3.1.1. Estimating the size of empirical processes by Rademacher averages

The constants one could obtain from Proposition 1 are not satisfactory for the applications
to adaptive estimation which we have in mind. We now propose a remedy for this prob-
lem, inspired by a nice idea of Koltchinskii [22] and Bartlett, Boucheron and Lugosi [2]
which they used in other contexts, namely in risk minimization and model selection. This
consists of replacing the expectation of the supremum of an empirical process by the supre-
mum of the associated Rademacher process. An inequality of this type (see [23], page 2602)
is

Pr

{∥∥∥∥∥
n∑

i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

≥ 2

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

+ 3t

}
≤ exp

(
−2t2

3n

)
, (22)

where εi , i ∈ N, are i.i.d. Rademacher random variables, independent of the Xi ’s, all defined
as coordinates on a large product probability space. Note that this bound does not take the
variance V in (15) into account, but in the applications to density estimation that we have
in mind, V is much smaller than n (it is of order n2−jn , jn → ∞). We need a similar in-
equality, with the quantity n in the bound replaced by V , valid over a large enough range of
t ’s.

It will be convenient to use the following well-known symmetrization inequality (see, for
example, [8], page 343):

1

2
E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

−
√

n

2
‖Pf ‖F ≤ E

∥∥∥∥∥
n∑

i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

≤ 2E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

. (23)

The following exponential bound is the Bernstein-type analog of (22). Denote by Eε expectation
with respect to the Rademacher variables only.

Proposition 2. Let F be a countable class of measurable functions, uniformly bounded (in ab-
solute value) by 1/2. Then, for every t > 0,

Pr

{∥∥∥∥∥
n∑

i=1

(
f (Xi) − Ef (X)

)∥∥∥∥∥
F

≥ 2

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

+ 3t

}
≤ 2 exp

(
− t2

2V ′ + 2t

)
, (24)

as well as

Pr

{∥∥∥∥∥
n∑

i=1

(
f (Xi) − Ef (X)

)∥∥∥∥∥
F

≥ 2Eε

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

+ 3t

}
≤ 2 exp

(
− t2

2V ′ + 2t

)
, (25)
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where V ′ = nσ 2 + 4E‖∑n
i=1 εif (Xi)‖F .

Proof. We have

Pr

{∥∥∥∥∥
n∑

i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

≥ 2

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

+ 3t

}

≤ Pr

{∥∥∥∥∥
n∑

i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

≥ 2E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

+ t

}

+ Pr

{∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

≤ E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

− t

}
.

For the first term, combining (23) with (15) gives

Pr

{∥∥∥∥∥
n∑

i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

≥ 2E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

+ t

}
≤ exp

(
− t2

2V ′ + (2/3)t

)
.

For the second term, note that (16) applies to the randomized sums
∑n

i=1 εif (Xi) as well, by
just taking the class of functions

G = {g(τ, x) = τf (x) :f ∈ F },

τ ∈ {−1,1}, instead of F and the probability measure P̄ = 2−1(δ−1 + δ1) × P instead of P .
Hence,

Pr

{∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

≤ E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

− t

}
≤ exp

(
− t2

2V ′ + 2t

)
(26)

since V ′ ≥ nσ 2 + 2E‖∑n
i=1 εif (Xi)‖F . Combining the bounds completes the proof of (24).

It remains to prove (25). Let G , P̄ be as above, let Yi = (εi,Xi) and note that P̄ is the law
of Yi . By convexity,

Ee−tEε‖∑n
i=1 εif (Xi)‖F ≤ Ee−t‖∑n

i=1 εif (Xi)‖F = Ee−t‖∑n
i=1 g(Yi )‖G

for all t . The Klein and Rio [21] version (16) of Talagrand’s inequality is, in fact, established by
estimating the Laplace transform Ee−t‖∑n

i=1 g(Yi )‖G and Theorem 1.2a in [21] implies that

Ee−tEε‖∑n
i=1 εi (f (Xi)−Pf )‖F ≤ −tE

∥∥∥∥∥
n∑

i=1

g(Yi)

∥∥∥∥∥
G

+ V

9
(e3t − 3t + 1)
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for V ≥ nσ 2 + 2E‖∑n
i=1 g(Yi)‖G , which, by their proof of the implication (a) ⇒ (c) in that

theorem, gives

Pr

{
Eε

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

≤ E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

− t

}
≤ exp

(
− t2

2V ′ + 2t

)
.

The proof of (25) now follows as in the previous case. �

For F of VC-type, the moment bound (18) is usually proved as a consequence of a bound for
the Rademacher process. In fact, the proof of Proposition 3 in [13] shows that

E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

≤ 15

√
2vnσ 2 log

5A

σ
+ 1350v log

5A

σ
, (27)

where σ is as in (14), which we use in the following corollary, together with the previous propo-
sition. The constant c2(λ) in the exponent below is still potentially large, but tends to one if
λ → ∞.

Corollary 1. Let F be a countable class of measurable functions that satisfies (17) and assume
it to be uniformly bounded (in absolute value) by 1/2. Assume, further, (19) for some λ > 0.
Then, for 0 < t ≤ 1

20c2(λ)nσ 2 with c2(λ) as in Proposition 1, we have

Pr

{∥∥∥∥∥
n∑

i=1

(
f (Xi) − Ef (X)

)∥∥∥∥∥
F

≥ 2

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

+ 3t

}
≤ 2 exp

(
− t2

2.1c2(λ)nσ 2

)

and the same inequality holds if ‖∑n
i=1 εif (Xi)‖F is replaced by its Eε expectation.

Proof. By (19) and (27), we have V ′ ≤ c2(λ)nσ 2, and the condition on t together with (24) gives
the result. �

3.2. Projections onto spline spaces and their wavelet representation

In this section, we briefly review how the wavelet estimator (5) for Battle–Lemarié wavelets can
be represented as a spline projection estimator (6). We shall need the spline representation in
some proofs, while the wavelet representation will be useful in others.

Let T := Tj = {ti (j)}∞−∞ = 2−j
Z, j ∈ Z, be a bi-infinite sequence of equally spaced knots,

ti := ti (j). A function S is a spline of order r , or of degree m = r − 1, if, on each interval
(ti , ti+1), it is a polynomial of degree less than or equal to m (and of degree exactly m on at least
one interval) and, at each breakpoint ti , S is at least (m−1)-times differentiable. The Schoenberg
space Sr (T ) := Sr (T ,R) is defined as the set of all splines of order (less than or equal to) r and it
coincides with the space Sr (T ,1,R) in [6], page 135. The space Sr (Tj ) has a Riesz basis formed
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by B-splines {Nj,k,r }k∈Z that we now describe; see Section 4.4 in [31] and page 138f in [6] for
more details. Define

N0,r (x) = 1[0,1) ∗ · · · ∗ 1[0,1)(x), r-times :=
r∑

i=0

(−1)i
(
r
i

)
(x − i)r−1+

(r − 1)! .

For r = 2, this is the linear B-spline (the usual ‘hat’ function), for r = 3, it is the quadratic and
for r = 4, it is the cubic B-spline. Set Nk,r (x) := N0,r (x − k). The elements of the Riesz basis
are then given by

Nj,k,r (x) := Nk,r (2
j x) = N0,r (2

j x − k).

By the Curry–Schoenberg theorem, any S ∈ Sr (Tj ) can be uniquely represented as S(x) =∑
k∈Z

ckNj,k,r (x). The orthogonal projection πj (f ) of f ∈ L2(R) onto Sr (Tj ) ∩ L2(R) is de-
rived, for example, in [6], page 401f, where it is shown that πj (f ) = 2j/2 ∑

k∈Z
ckNj,k,r , with the

coefficients ck := ck(f ) satisfying (Ac)k = 2j/2
∫

Nj,k,r (x)f (x)dx, the matrix A being given by

akl =
∫

2jNj,k,r (x)Nj,l,r (x)dx =
∫

Nk,r (x)Nl,r (x)dx. (28)

The inverse A−1 of A exists (see Corollary 4.2 on page 404 in [6]) and if we denote its entries
by bkl so that ck = 2j/2

∫ ∑
l bklNj,l,r (x)f (x)dx, then we have

πj (f )(y) = 2j

∫ ∑
k

∑
l

bklNj,l,r (x)Nj,k,r (y)f (x)dx =
∫

κj (x, y)f (x)dx,

where κj (x, y) = 2j κ(2j x,2j y) with

κ(x, y) =
∑

k

∑
l

bklNl,r (x)Nk,r (y) (29)

is the spline projection kernel. Note that κ is symmetric in its arguments.
In fact, diagonalization of the kernel κ of the projection operator πj led to one of the first

examples of wavelets; see, for example, page 21f and Section 2.3 in [28], Section 5.4 in [4] or
Section 6.1 in [17]. There, it is shown that there exists an (r − 1)-times differentiable scaling
function φr with exponential decay, the Battle–Lemarié wavelet of order r , such that

Sr (Tj ) ∩ L2(R) = Vj,r =
{∑

k

ck2j/2φr

(
2j (·) − k

)
:
∑

k

c2
k < ∞

}
.

This necessarily implies that the kernels κ and K = K(φr) describe the same projections in
L2(R) and the following simple lemma shows that these kernels are, in fact, pointwise the same.

Lemma 1. Let {Nk,r}k∈Z be the Riesz basis of B-splines of order r ≥ 1 and let φr be the associ-
ated Battle–Lemarié scaling function. If K is as in (1) and κ is as in (29), then, for all x, y ∈ R,
we have

K(x,y) = κ(x, y).
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Proof. If r = 1, then N0,1 = φ1 since this is just the Haar basis. So, consider r > 1. Since
{φr(· − k) :k ∈ Z} is an orthonormal basis of Sr (Z) ∩ L2(R) (see, for example, Theorem 1 on
page 26 in [28]), it follows that K and κ are the kernels of the same L2-projection operator and,
therefore, for all f,g ∈ L2(R),

∫ ∫ (
K(x,y) − κ(x, y)

)
f (x)g(y)dx dy = 0.

By density in L2(R × R) of linear combinations of products of elements of L2(R), this implies
that κ and K are almost everywhere equal in R

2. We complete the proof by showing that both
functions are continuous on R

2. For K , this follows from the decomposition

|K(x,y) − K(x′, y′)| ≤
∑

k

|φr(x − k) − φr(x
′ − k)||φr(y − k)|

+
∑

k

|φr(y − k) − φr(y
′ − k)||φr(x

′ − k)|,

the uniform continuity of φr (r > 1) and relation (2). For κ , we use the relation (31) below,

|κ(x, y) − κ(x′, y′)| ≤
∑

i

|Ni,r (x) − Ni,r (x
′)||H(y − i)|

+
∑

i

|H(y − i) − H(y′ − i)||Ni,r (x
′)|,

which implies continuity of κ on R
2 since N0,r and H are uniformly continuous (as N0,r is, and∑

i |g(|i|)| < ∞) and since N0,r has compact support. �

3.3. An exponential inequality for the uniform deviations of the linear
estimator

To control the uniform deviations of the linear estimators from their means, one can use inequal-
ities for the empirical process indexed by classes of functions F contained in

K = {
2−jKj (·, y) :y ∈ R, j ∈ N ∪ {0}}, (30)

together with suitable bounds on the ‘weak’ variance σ .
If φ has compact support (and is of finite p-variation), it is proved in Lemma 2 of [14] that the

class K also satisfies the bound (17). However, the proof there does not apply to Battle–Lemarié
wavelets. A different proof, using the Toeplitz and band-limited structure of the spline projection
kernel, still enables us to prove that these classes of functions are of Vapnik–Chervonenkis type.
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Lemma 2. Let K be as in (30), where φr is a Battle–Lemarié wavelet for some r ≥ 1. There then
exist finite constants A ≥ 2 and v ≥ 2 such that

sup
Q

N(K,L2(Q), ε) ≤
(

A

ε

)v

for 0 < ε < 1 and where the supremum extends over all Borel probability measures on R.

Proof. In the case r = 1, φ1 is just the Haar wavelet, in which case the result follows from
Lemma 2 of [14]. Hence, we assume that r ≥ 2.

The matrix A is Toeplitz since, by a change of variables in (28), akl = ak+1,l+1 for all k, l ∈ Z,
and it is band-limited because N0,r has compact support. It follows that A−1 is also Toeplitz
and we denote its entries by bkl = g(|k − l|) for some function g. Furthermore, it is known (for
example, Theorem 4.3 on page 404 of [6]) that the entries of the inverse of any positive definite
band-limited matrix satisfy |bkl | ≤ cλ|k−l| for some 0 < λ < 1 and c finite. Now, following [19],
we write ∑

k

g(|l − k|)Nk,r (x) =
∑

k

g(|l − k|)Nk−l,r (x − l) =
∑

k

g(|k|)Nk,r (x − l),

so that

2−j κj (·, y) =
∑
l∈Z

Nj,l,r (y)H
(
2j (·) − l

)
, (31)

where H(x) = ∑
k∈Z

g(|k|)Nk,r (x) is a function of bounded variation. To see the last claim,
note that N0,r is of bounded variation and hence ‖Nk,r‖TV = ‖N0,r‖TV (where ‖ · ‖TV de-
notes the usual total variation norm) so that ‖H‖TV ≤ ‖N0,r‖TV × ∑

k∈Z
|g(|k|)| < ∞ because∑

k |bl,l−k| ≤ ∑
k cλ|k| < ∞. The last fact implies that

H = {
H

(
2j (·) − l

)
: l ∈ Z, j ∈ N ∪ {0}}

satisfies, for finite constants B > 1 and w ≥ 1,

sup
Q

N(H,L2(Q), ε) ≤
(

B‖H‖TV

ε

)w

for 0 < ε < ‖H‖∞,

as proved in [29]. Since Nj,0,r is zero if y is not contained in [0,2−j r], the sum in (31),
for fixed y and j , extends over only those l’s such that 2j y − r ≤ l < 2j y, hence it con-
sists of at most r terms. This implies that K is contained in the set Hr of linear com-
binations of at most r functions from H, with coefficients bounded in absolute value by
‖Nj,l,r‖∞ = ‖N0,r‖∞ < ∞. Given ε, let ε′ = ε/(2r max(‖H‖∞,‖N0,r‖∞)). Let α1, . . . , αn1

be an ε′-dense subset of [−‖N0,r‖∞,‖N0,r‖∞] which, for ε′ < ‖N0,r‖∞, has cardinal-
ity n1 ≤ 3‖N0,r‖∞/ε′. Furthermore, let h1, . . . , hn2 be a subset of H of cardinality n2 =
N(H,L2(Q), ε′) which is ε′-dense in H in the L2(Q)-metric. It follows that for ε′ <

min(‖H‖∞,‖N0,r‖∞), every
∑

l∈Z
Nj,l,r (y)H(2j (·) − l) is at L2(Q)-distance at most ε from
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∑r
l=1 αi(l)hi′(l) for some 1 ≤ i(l) ≤ n1 and 1 ≤ i′(l) ≤ n2. The total number of such linear

combinations is dominated by (n1n2)
r ≤ (B ′/ε)(w+1)r . This shows that the lemma holds for

ε < 2r min{‖H‖∞,‖N0,r‖∞}max{‖H‖∞,‖N0,r‖∞} = 2r‖H‖∞‖N0,r‖∞ = U , which com-
pletes the proof by taking A = max(B ′,U, e) (for ε ∈ [U,A], one ball covers the whole set). �

Proposition 3. Let K be as in (1) and assume either that φ has compact support and is of
bounded p-variation (p < ∞) or that φ is a Battle–Lemarié scaling function for some r ≥ 1.
Suppose that P has a bounded density p0. Given C,T > 0, there exist finite positive constants
C1 = C1(C,K,‖p0‖∞) and C2 = C2(C,T ,K,‖p0‖∞) such that, if

n

2j j
≥ C and C1

√
2j j

n
≤ t ≤ T ,

then

Pr
{

sup
y∈R

|pn(y, j) − Epn(y, j)| ≥ t
}

≤ exp

(
−C2

nt2

2j

)
. (32)

Proof. We first prove the Battle–Lemarié wavelet case. If r > 1, then the function K is continu-
ous (see the proof of Lemma 1) and therefore the supremum in (32) is over a countable set. That
this is also true for r = 1 follows from Remark 1 in [14]. We apply Proposition 1 and Lemma 2
to the supremum of the empirical process indexed by the classes of functions

Kj := {2−jKj (·, y)/(2‖�‖∞) :y ∈ R},
where � is a function majorizing K (as in (2)) so that Kj is uniformly bounded by 1/2. We next
bound the second moments E(2−2jK2

j (X,y)). We have, using (2), that

∫
2−2jK2

j (x, y)p0(x)dx ≤
∫

�2(|2j (x − y)|)p0(x)dx

(33)

≤ 2−j

∫
�2(|u|)p0(y + 2−j u)du ≤ 2−j‖p0‖∞‖�‖2

2.

We may hence take σ =
√

2−j‖�‖2
2‖p0‖∞/(2‖�‖∞) and the result is then a direct consequence

of Proposition 1, which applies by Lemma 2. For compactly supported wavelets, the same proof
applies, using Lemma 2 (and Remark 1) in [14]. �

Proof of Theorem 1. Using Lemma 2, the first two claims of the theorem follow by the same
proof as in [14], Theorem 1 and Remark 4. For the bias term, we argue as in Theorem 8.1 in [17]
– using the fact that φr is (r − 1)-times differentiable – and obtain, for p0 ∈ Ct (R),

|Epn(x) − p0(x)| ≤ 2−j t‖p0‖t,∞C, (34)

where C := C(�) = ∫
�(|u|)|u|t du. �
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3.4. An exponential inequality for the distribution function of the linear
estimator

The quantity of interest in this subsection is the distribution function FS
n of the linear projection

estimator pn from (6). More precisely, we will study the stochastic process

√
n
(
FS

n (s) − F(s)
) = √

n

∫ s

−∞
(
pn(y, j) − p0(y)

)
dy, s ∈ R.

To prove a functional CLT for this process, it turns out that it is easier to compare FS
n to Fn rather

than to F . With F = {1(−∞,s] : s ∈ R}, the decomposition

(F S
n − Fn)(s) = (Pn − P)

(
πj (f ) − f

) +
∫ (

πj (p0) − p0
)
f, f ∈ F , (35)

will be useful, since it splits the quantity of interest into a deterministic ‘bias’ term and an em-
pirical process.

Lemma 3. Assume that p0 is a bounded function (t = 0) or that p0 ∈ Ct (R) for some 0 < t ≤ r .
Let F = {1(−∞,s] : s ∈ R}. We then have∣∣∣∣

∫
R

(
πj (p0) − p0

)
f

∣∣∣∣ ≤ C2−j (t+1) (36)

for some constant C depending only on r and ‖p0‖t,∞.

Proof. Let ψ := ψr be the mother wavelet associated with φr . Since the wavelet series of p0 ∈
L1(R) converges in L1(R), we have πj (p0) − p0 = −∑∞

l=j

∑
k βlk(p0)ψlk in the L1(R)-sense

and then, since f = 1(−∞,s] ∈ L∞(R),

−
∫

R

(
πj (p0) − p0

)
f =

∫
R

( ∞∑
l=j

∑
k

βlk(p0)ψlk(x)

)
f (x)dx =

∞∑
l=j

∑
k

βlk(p0)βlk(f ).

The lemma now follows from an estimate for the decay of the wavelet coefficients of p0 and f ,
namely, the bounds

sup
f ∈F

∑
k

|βlk(f )| ≤ c2−l/2 and sup
k

|βlk(p0)| ≤ c′2−l(t+1/2). (37)

The first bound is proved as in the proof of Lemma 3 in [14], noting that the identity before
equation (37) in that proof also holds for spline wavelets by their exponential decay property.
The second bound follows from

sup
k

|βlk(p0)| ≤ c′′2−l/2‖Kl+1(p0) − Kl(p0)‖∞

≤ c′′2−l/2(‖Kl(p0) − p0‖∞ + ‖Kl+1(p0) − p0‖∞
) ≤ c′2−l/22−lt ,
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where we used (9.35) in [17] for the first inequality and (34) in the last. �

To control the fluctuations of the stochastic term, one applies Talagrand’s inequality to the
empirical process indexed by the ‘shrinking’ classes of functions {πj (f ) − f :f ∈ F }. These
classes consist of differences of elements in F and in

K′
j :=

{∫ t

−∞
Kj(·, y)dy : t ∈ R

}
,

and we have to show that for each j , this class satisfies the entropy condition (17). Again, for φ

with compact support (and of finite p-variation), this result was proven in Lemma 2 of [14] and
we now extend it to the Battle–Lemarié wavelets considered here.

Lemma 4. Let K′
j be as above, where φr is a Battle–Lemarié wavelet for r ≥ 1. There then exist

finite constants A ≥ e and v ≥ 2, independent of j and such that

sup
Q

N(K′
j ,L

2(Q), ε) ≤
(

A

ε

)v

, 0 < ε < 1,

where the supremum extends over all Borel probability measures on R.

Proof. In analogy to the proof of Lemma 2, one can write

∫ t

−∞
Kj(·, y)dy =

∑
l∈Z

∫ t

−∞
2jNj,l,r (y)dy H

(
2j (·) − l

)

since the series (31) converges absolutely (in view of

∑
l

|H(2j x − l)| ≤
∑

k

|g(|k|)|
∑

l

Nk,r (2
j x − l) ≤ r‖N0,r‖∞

∑
k

|g(|k|)| < ∞).

Recall that Nj,l,r is supported in the interval [2−j l,2−j (r + l)]. Hence, if l > 2j t , then the
last integral is zero. For l ≤ 2j t − r , the integral equals the constant c = ∫

R
N0,r (y)dy and for

l ∈ [2j t − r,2j t], the integral cj,l,r is bounded by c, so this sum, in fact, equals

c
∑

l≤2j t−r

H
(
2j (·) − l

) +
∑

2j t−r<l<2j t

cj,l,rH
(
2j (·) − l

)
.

The second sum is contained in the set Hr from the proof of Lemma 2, which satisfies the
required entropy bound independent of j . For the first sum, decompose H into its positive and
negative parts, so that the two resulting collections of functions are linearly ordered (in t ) by
inclusion and are hence a VC-subgraph of index 1; see Theorems 4.2.6 and 4.8.1 in [8]. Moreover,
we can take the envelope r‖N0,r‖∞

∑
k |g(|k|)| independent of j . Combining entropy bounds,

this proves the lemma. �
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Combining these observations, one can prove the following inequality, which parallels The-
orem 1 of [13] for the classical kernel density estimator, and Lemma 4 of [13] for the wavelet
density estimator (with φ compactly supported).

Proposition 4. Let Fn(s) = ∫ s

−∞ dPn and FS
n (s) := FS

n (s, j) = ∫ s

−∞ pn(y, j)dy, where pn is
as in (6). Assume that the density p0 of P is a bounded function (t = 0) or that p0 ∈ Ct (R) for
some t , 0 < t ≤ r . Let j ∈ Z satisfy 2−j ≥ d(logn/n) for some 0 < d < ∞. There then exist
finite positive constants L := L(‖p0‖∞,K,d), �0 := �0(‖p0‖t,∞,K,d) such that for all n ∈ N

and λ ≥ �0 max(
√

j2−j ,
√

n2−j (t+1)), we have

Pr
(√

n‖FS
n − Fn‖∞ > λ

) ≤ L exp

{
−min(2j λ2,

√
nλ)

L

}
.

Proof. Given the preceding lemmas, the proposition follows from Talagrand’s inequality applied
to the class {πj (1(−∞,x]) − 1(−∞,x]} in the same way as in the proof of Lemma 4 in [14], so we
omit it. �

3.5. Proof of Theorem 3

We can now prove the main result, Theorem 3. We will prove it only for Battle–Lemarié wavelets.
For compactly supported wavelets, the proof is exactly the same, replacing the results from
steps (I) and (II) below and from Sections 3.3 and 3.4 for spline wavelets by the correspond-
ing ones for compactly supported wavelets obtained in [14]. Also, uniformity in p0 – which is
proved by controlling the respective constants – is left implicit in the derivations. We start with
some preliminary observations.

(I) Since, uniformly in j ∈ J , we have n/(2j j) > c logn for some c > 0 independent of n, we
have from Theorem 1 that

E‖pn(j) − Epn(j)‖p∞ ≤ Dp

(
2j j

n

)p/2

:= Dpσp(j,n) (38)

for every j ∈ J , 1 ≤ p < ∞ and some 0 < D < ∞ depending only on ‖p0‖∞ and �.
For the bias, we recall from (34) that for 0 < t ≤ r ,

|Epn(y, j) − p0(y)| ≤ 2−j t‖p0‖t,∞C(�) := B(j,p0). (39)

If the density p0 is only uniformly continuous, then one still has from (2) and integrability of �

that, uniformly in y ∈ R,

|Epn(y, j) − p0(y)| ≤
∣∣∣∣
∫

|�(|u|)||p0(y − 2−ju) − p0(y)|du

∣∣∣∣ := B(j,p0) = o(1). (40)

(II) Define M̃ := M̃n = C‖pn(jmax)‖∞ and set C = 49‖�‖2
2. Also, define M = C‖p0‖∞ for

the same C. We need to control the probability that M̃ > 1.01M or M̃ < 0.99M if p0 is uniformly
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continuous. For some 0 < L < ∞ and n large enough, we have

Pr(|M̃ − M| > 0.01C‖p0‖∞)

= Pr
(|‖pn(jmax)‖∞ − ‖p0‖∞| > 0.01‖p0‖∞

)
≤ Pr

(‖pn(jmax) − p0‖∞ > 0.01‖p0‖∞
)

≤ Pr
(‖pn(jmax) − Epn(jmax)‖∞ > 0.01‖p0‖∞ − B(jmax,p0)

)
≤ Pr

(‖pn(jmax) − Epn(jmax)‖∞ > 0.009‖p0‖∞
)

≤ exp

{
− (logn)2

L

}
,

by Proposition 3 and step (I). Furthermore, there exists a constant L′ such that EM̃ ≤ L′ for
every n, in view of

E‖pn(jmax)‖∞ ≤ E‖pn(jmax) − Epn(jmax)‖∞ + ‖Epn(jmax)‖∞ ≤ c + ‖�‖1‖p0‖∞,

where we have used (2) and (38).
(III) We need some observations on the Rademacher processes used in the definition of ĵn.

First, for the symmetrized empirical measure P̃n = 2n−1 ∑n
i=1 εiδXi

, we have

R(n, j) = ‖πj (P̃n)‖∞ = ‖πj (πl(P̃n))‖∞ ≤ ‖πj‖′∞R(n, l) ≤ B(φ)R(n, l) (41)

for every l > j . Here, ‖πj‖′∞ is the operator norm in L∞(R) of the projection πj , which admits
bounds B(φ) independent of j . (Clearly, πj acts on finite signed measures μ by duality, tak-
ing values in L∞(R) since |πj (μ)| = | ∫ Kj(·, y)dμ(y)| ≤ 2j‖�‖∞|μ|(R).) See Remark 3 for
details on how to obtain B(φ). Furthermore, for j < l,

T (n, j, l) ≤ R(n, j) + R(n, l) ≤ (
1 + B(φ)

)
R(n, l) (42)

and the same inequality holds for the Rademacher expectations of T (n, j, l). We also record
the following bound for the (full) expectation of R(n, l), l ∈ J : using inequality (27) and the
variance computation (33), we have that there exists a constant L depending only on ‖p0‖∞ and
� such that, for every l ∈ J , ER(n, l) ≤ L

√
2l l/n.

Proof of (11). Let F = {1(−∞,s] : s ∈ R} and let f ∈ F . We have

√
n

∫ (
pn(ĵn) − p0

)
f = √

n

∫ (
pn(jmax) − p0

)
f + √

n

∫ (
pn(ĵn) − pn(jmax)

)
f.

The first term satisfies the CLT from Theorem 2 for the linear estimator with jn = jmax. We now
show that the second term converges to zero in probability. First, observe that

pn(ĵn)(y) − pn(jmax)(y) = Pn

(
K

ĵn
(·, y) − Kjmax(·, y)

) = −
jmax−1∑
l=ĵn

∑
k

β̂lkψlk(y),
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with convergence in L1(R). Next, we have, by (9.35) in [17], for all l ∈ [ĵn, jmax − 1] and all k,
by the definition of ĵn, that for some 0 < D′ < ∞,

(1/D′)2l/2|β̂lk| ≤ sup
y∈R

|Pn(Kl+1(·, y)) − Pn(Kl(·, y))| = ‖pn(l + 1) − pn(l)‖∞

≤ ‖pn(l + 1) − pn(ĵn)‖∞ + ‖pn(l) − pn(ĵn)‖∞

≤ (
1 + B(φ)

)(
R(n, l + 1) + R(n, l)

) + 3
√

M̃2l l/n,

in the case ĵn = j̄n, also using the inequality T (n, j̄n, l) ≤ (1 +B(φ))R(n, l) for l ≥ j̄n; see (42).
Consequently, uniformly in f ∈ F ,

E

∣∣∣∣
∫ (

pn(ĵn) − pn(jmax)
)
f

∣∣∣∣
= E

∣∣∣∣∣
jmax−1∑
l=ĵn

∑
k

β̂lk

∫
ψlk(y)f (y)dy

∣∣∣∣∣

≤ E

jmax−1∑
l=jmin

D′2−l/2((B(φ) + 1
)(

R(n, l + 1) + R(n, l)
) + 3

√
M̃2l l/n

)∑
k

|βlk(f )|

≤
(

D′′
√

n

) jmax−1∑
l=jmin

2−l/2
√

l = o

(
1√
n

)
,

using the moment bounds in (II) and (III), ĵn ≥ jmin → ∞ as n → ∞ (by definition of J ) and
the fact that supf ∈F

∑
k |βlk(f )| ≤ c2−l/2 by (37) for some constant c. �

Proof of (12) and (13). The proof of the case t = 0 follows from a simple modification of the
arguments below as in Theorem 2 of [13], so we omit it. (In this case, one defines j∗ as jmax if
t = 0 so that only the case ĵn ≤ j∗ has to be considered.) For t > 0, define j∗ := j (p0) by the
balance equation

j∗ = min
{
j ∈ J :B(j,p0) ≤ √

2 log 2‖p0‖1/2∞ ‖�‖2σ(j,n)
}
. (43)

Using the results from (I), it is easily verified that 2j∗ � (n/ logn))1/(2t+1) if p0 ∈ Ct (R) for
some 0 < t ≤ r and that

σ(j∗, n) = O

((
logn

n

)t/(2t+1))

is the rate of convergence required in (13).
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We will consider the cases {ĵn ≤ j∗} and {ĵn > j∗} separately. First, if ĵn is j̄n, then we have,
by the definition of j̄n, (42), the definitions of M and j∗, (38) and the moment bound in (III),

E‖pn(j̄n) − p0‖∞I{j̄n≤j∗}∩{M̃≤1.01M}
≤ E

(‖pn(j̄n) − pn(j
∗)‖∞ + E‖pn(j

∗) − p0‖∞
)
I{j̄n≤j∗}∩{M̃≤1.01M}

(44)
≤ (

B(φ) + 1
)
ER(n, j∗) + √

1.01Mσ(j∗, n) + ‖pn(j
∗) − p0‖∞

≤ B ′
√

2j∗
j∗

n
+ B ′′σ(j∗, n) = O(σ (j∗, n)).

If ĵn is j̃n, then one has the same bound (without even using (42)).
Also, by the results in (I) and (II), we have

E‖pn(ĵn) − p0‖∞I{ĵn≤j∗}∩{M̃>1.01M}

≤
∑

j∈J :j≤j∗
E

([‖pn(j) − Epn(j)‖∞ + B(j,p0)]I{ĵn=j}I{M̃>1.01M}
)

≤ c logn[Dσ(j∗, n) + B(jmin,p0)] ·
√

E1{M̃>1.01M}

= o

(
(logn)

√
exp

{
− (logn)2

L

})
= o(σ (j∗, n)).

We now turn to {ĵn > j∗}. First,

E‖pn(ĵn) − p0‖∞I{ĵn>j∗}∩{M̃<0.99M}

≤
∑

j∈J : j>j∗
E

([‖pn(j) − Epn(j)‖∞ + B(j,p0)]I{ĵn=j}I{M̃<0.99M}
)

≤ c′ logn[Dσ(jmax, n) + B(j∗,p0)] ·
√

EI{M̃<0.99M}

= O

(√
(logn) exp

{
− (logn)2

L

})
= o(σ (j∗, n)),

again by the results in (I) and (II), and, second, for any 1 < p < ∞, 1/p + 1/q = 1, using (38)
and the definition of j∗, we have

E‖pn(ĵn) − p0‖∞I{ĵn>j∗}∩{0.99M≤M̃}
≤

∑
j∈J :j>j∗

(
E‖pn(j) − p0‖p∞

)1/p(
EI{ĵn=j}∩{0.99M≤M̃}

)1/q

≤
∑

j∈J :j>j∗
D′σ(j,n) · Pr({ĵn = j} ∩ {0.99M ≤ M̃})1/q .
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We show below that for n large enough, some constant c, some δ > 0 and some q > 1,

Pr({ĵn = j} ∩ {0.99M ≤ M̃}) ≤ c2−j (q/2+δ), (45)

which gives the bound

∑
j∈J : j>j∗

D′′σ(j,n) · 2−j/2−jδ/q = O

(
1√
n

)
= o(σ (j∗, n)),

completing the proof, modulo verification of (45).
To verify (45), we split the proof into two cases. Pick any j ∈ J such that j > j∗ and denote

by j− the previous element in the grid (that is, j− = j − 1).
Case I: ĵn = j̄n. We have

Pr({j̄n = j} ∩ {0.99M ≤ M̃})
≤

∑
l∈J : l≥j

Pr
(‖pn(j

−) − pn(l)‖∞ > T (n, j−, l) + √
0.99Mσ(l, n)

)
.

We first observe that

‖pn(j
−) − pn(l)‖∞

(46)
≤ ‖pn(j

−) − pn(l) − Epn(j
−) + Epn(l)‖∞ + B(j−,p0) + B(l,p0),

where, setting
√

2 log 2‖p0‖1/2∞ ‖�‖2 =: U(p0,�),

B(j−,p0) + B(l,p0) ≤ 2B(j∗,p0) ≤ 2U(p0,�)σ (j∗, n) ≤ 2U(p0,�)σ (l, n),

by definition of j∗ and since l > j− ≥ j∗. Consequently, the lth probability in the last sum is
bounded by

Pr
(‖pn(j

−) − pn(l) − Epn(j
−) + Epn(l)‖∞

(47)
> T (n, j−, l) + (√

0.99M − 2U(p0,�)
)
σ(l, n)

)
and we now apply Corollary 1 to this bound. Define the class of functions

F := Fj−,l = {
2−l

(
Kj−(·, y) − Kl(·, y)

)
/(4‖�‖∞)

}
,

which is uniformly bounded by 1/2 and satisfies (17) for some A and v independent of l and j−,
by Lemma 2 (and a computation on covering numbers). We compute σ , using (33) and l > j−:

(
2−lE(Kj− − Kl)(X,y)

)2 ≤ 2−2l+1(EK2
j−(X,y) + EK2

l (X,y)
)

≤ 2−2l+1‖�‖2
2‖p0‖∞(2j− + 2l) ≤ 3 · 2−l‖�‖2

2‖p0‖∞,
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so that we can take σ 2 = 3 · 2−l‖�‖2
2‖p0‖∞/(16‖�‖2∞). The probability in (47) is then equal to

Pr

(
2l4‖�‖∞

n

∥∥∥∥∥
n∑

i=1

f (Xi) − Pf

∥∥∥∥∥
F

>
2l4‖�‖∞

n
2

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

+ (√
0.99M − 2U(p0,�)

)
σ(l, n)

)

= Pr

(∥∥∥∥∥
n∑

i=1

f (Xi) − Pf

∥∥∥∥∥
F

> 2

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

+ 3
n(

√
0.99M − 2U(p0,�))σ (l, n)

3 · 2l · 4‖�‖∞

)
.

Since nσ 2/ log(1/σ) � n/(2l l) → ∞ uniformly in l ∈ J , there exists λn → ∞ independent of l

such that (19) is satisfied and the choice

t = n(
√

0.99M − 2U(p0,�))σ (l, n)

3 · 2l · 4‖�‖∞

is admissible in Corollary 1 for c2(λn) = 1 + 120λ−1
n + 10,800λ−2

n . Hence, using Corollary 1,
the last probability is bounded by

≤ 2 exp

(
−n2(

√
0.99M − 2U(p0,�))2(2l l/n)16‖�‖2∞

9 · 6.3 · c2(λn)22ln2−l‖�‖2
2‖p0‖∞16‖�‖2∞

)
≤ 2−l((q/2)+δ) (48)

for some δ > 0 and q > 1, by the definition of M . Since
∑

l∈J :l≥j 2−l(q/2)+δ) ≤ c2−j ((q/2)+δ),
we have proven (45).

Case II: ĵn = j̃n. The proof reduces to the previous case since, by inequality (42), one has

Pr({j̃ ε
n = j} ∩ {0.99M ≤ M̃})

≤
∑

l∈J :l≥j

Pr
(‖pn(j

−) − pn(l)‖∞ >
(
B(φ) + 1

)
R(n, l) + √

0.99Mσ(l, n)
)

≤
∑

l∈J :l≥j

Pr
(‖pn(j

−) − pn(l)‖∞ > T (n, j−, l) + √
0.99Mσ(l, n)

)
.

�
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