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This note supplements the lecture notes of Optimisation. The statement of the funda-
mental theorem of linear programming and the proof of weak duality is examinable. The
proof of strong duality and the existence of optimisers is not.

1 Statement and proof

Given dimensions m,n ≥ 1, let A be a m × n matrix, column vectors b ∈ Rm and c ∈ Rn.
Let

p = sup{c>x : x ∈ Rn, Ax ≤ b, x ≥ 0}

and
d = inf{b>λ : λ ∈ Rm, A>λ ≥ c, λ ≥ 0}

with the convention that sup ∅ = −∞ and inf ∅ = +∞.

Theorem.(Fundamental theorem of linear programming)

Weak duality. p ≤ d.

Strong duality. If either p > −∞ or d < +∞ then p = d.

Existence of optimisers. If both p > −∞ and d <∞, then there exist vectors

x ∈ Rn and λ ∈ Rm such that p = c>x = b>y = d, satisfying

primal feasibility. Ax ≤ b, x ≥ 0,

dual feasibility. A>λ ≥ c, λ ≥ 0,

complementary slackness. λ>(Ax− b) = 0 = x>(A>λ− c).

Before giving the proof, we pause to make some observations.

Remark. Two consequences of weak duality are that

d = −∞ implies {x : Ax ≤ b, x ≥ 0} = ∅.
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and
p = +∞ implies {λ : A>λ ≥ c, λ ≥ 0} = ∅.

Remark. Strong duality fails only in the case where both p = −∞ and d = +∞; that is,
when both

{x : Ax ≤ b, x ≥ 0} = ∅ and {λ : A>λ ≥ c, λ ≥ 0} = ∅.

An example of this situation is when A = 0 is the m× n matrix of zeros, b = (−1, . . . ,−1)>

and c = (+1, . . . ,+1)>.

Our proof of the fundamental theorem of linear programming will use the following basic
results of convex analysis:

Theorem. (Separating hyperplane theorem) Given a closed convex set C ⊆ Rk and a point
ξ ∈ Rk. If ξ is not in C, then there exists a vector λ ∈ Rk and a constant δ > 0 such that

λ>(x− ξ) ≥ δ for all x ∈ C.

The separating hyperplane theorem is illustrated below. The details of the proof are
given in the next section.

The next theorem seems rather obvious.

Theorem. (Linear image of a closed orthant is closed) Let M be a k × h matrix, and

C = {Mx : x ∈ Rh, x ≥ 0} ⊆ Rk.

Then C is a closed and convex set.

The convexity of C follows directly from the definition. In the case where the columns of
the matrix M are linearly independent, the closedness of C is easy to show. However, while
the proof in the general case is not extremely difficult, it does require more than a few lines.
See section 3.
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Proof of weak duality. If either p = −∞ or d = +∞, there is nothing to show since the
inequality holds trivially. Therefore, we may suppose p > −∞ and d < +∞. Fix x ≥ 0 such
that Ax ≤ b and λ ≥ 0 such that A>λ ≥ c. Then

c>x ≤ c>x+ λ>(b− Ax)

= x>(c− A>λ) + b>λ

≤ b>y.

The conclusion now follows by taking the supremum over such all x and infimum over all
such λ.

Proof of strong duality. As remarked above, strong duality is implied by weak duality in the
cases p = +∞ and d = −∞. Hence, we may suppose −∞ < p ≤ d < +∞. In particular, we
are assuming that both sets {x : Ax ≤ b, x ≥ 0} and {λ : A>λ ≥ c, λ ≥ 0} are not empty.

Fix ε > 0. Note that

{x : Ax ≤ b, c>x = p+ ε, x ≥ 0} = ∅.

That is to say, the point

ξ =

(
b

p+ ε

)
is not a member of the closed convex set

C =

{(
Ax+ z
c>x

)
: x ≥ 0, z ≥ 0

}
Define an auxiliary function L by

L(x, z, λ, µ) = λ>(Ax+ z − b) + µ(c>x− p− ε)

By the separating hyperplane theorem, there is a vector
(
λ
µ

)
∈ Rm+1 such that

L(x, z, λ, µ) > 0

for all x ≥ 0 and z ≥ 0.
Letting x ≥ 0 be such that Ax ≤ b and setting z = b− Ax ≥ 0, we have

L(x, z, λ, µ) = µ(c>x− p− ε) > 0

Since c>x ≤ p < p + ε for all such x by the definition of p, we conclude that µ < 0. By
homogeneity, we may take µ = −1.

Again, the separating hyperplane theorem implies that

L(x, z, λ,−1) = z>λ+ x>(A>λ− c) + p+ ε− b>λ > 0
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for all x ≥ 0 and z ≥ 0. In order for the inequality to hold for all z ≥ 0, we must have λ ≥ 0.
Similarly, for the inequality to hold for all x ≥ 0, we must have A>λ ≥ c.

Note by the definition of d that b>λ ≥ d. Setting x = 0 and z = 0 implies

0 < L(0, 0, λ,−1) = p+ ε− b>λ ≤ p+ ε− d.

and hence
d < p+ ε.

Since ε > 0 is arbitrary and since we have d ≥ p by weak duality, we conclude that d = p as
desired.

Proof of the existence of optimisers. This time we would like to show that the point

ξ =

(
b
p

)
is a member of the set

C =

{(
Ax+ z
c>x

)
: x ≥ 0, z ≥ 0

}
.

By the definition of p, there is a sequence (xn)n such that Axn ≤ b, xn ≥ 0 and c>xn → p.
Letting zn = b− Axn ≥ 0, we see that(

Axn + zn
c>xn

)
→
(
b
p

)
.

Since C is closed, there must exist a point
(
x
z

)
∈ Rn+m with x ≥ 0, z ≥ 0 such that(

Ax+ z
c>x

)
=

(
b
p

)
.

meaning Ax ≤ b, x ≥ 0 and c>x = p.
The proof of the existence of λ ≥ 0 such that A>λ ≥ c and b>λ = d is analogous.

2 Proof of the separating hyperplane theorem

We now fill in some of the details used in the proof of the fundamental theorem of linear
programming.

Theorem. (Projection onto a closed, convex set) Let C ⊆ Rk be closed and convex, and
suppose ξ ∈ Rk is not in C. Then there exists a point x∗ ∈ C such that

‖x∗ − ξ‖ ≤ ‖x− ξ‖ for all x ∈ C.
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Proof. Let δ = infx∈C ‖x − ξ‖2. Let (xn)n be a sequence in C such that ‖xn − ξ‖2 → δ.
Applying the parallelogram law ‖a+ b‖2 + ‖a− b‖2 = 2‖a‖2 + 2‖b‖2 we have

‖xm − xn‖2 =2‖xm − ξ‖2 + 2‖xn − p‖2 − 4
∥∥1
2
(xm + xn)− ξ

∥∥2
≤2‖xm − ξ‖2 + 2‖xn − ξ‖2 − 4δ → 0

as m,n → ∞, where we have used the convexity of C to assert that 1
2
(xm + xn) ∈ C and

hence
∥∥1
2
(xm + xn)− ξ

∥∥2 ≥ δ. We have established that the sequence (xn)n is Cauchy, and
thus converges to some point x∗. Since C is closed, we have x∗ ∈ C as claimed.

Proof of the separating hyperplane theorem. Let x∗ be the point in C closest to ξ. Let
λ = x∗ − ξ and δ = ‖λ‖2. Fix a point x ∈ C and 0 < θ < 1, and note that the point
(1− θ)x∗ + θx is in C by convexity. Then

0 =‖x∗ − ξ‖2 − δ
≤‖(1− θ)x∗ + θx− ξ‖2 − δ
=‖θ(x− x∗) + λ‖2 − δ
=θ2‖x− x∗‖2 + 2θλ>(x− x∗).

By first dividing by θ and then taking the limit as θ ↓ 0 in the above inequality, we conclude
λ>(x− x∗) ≥ 0. Hence

λ>(x− ξ) = λ>(x− x∗) + λ>(x∗ − ξ) ≥ δ

as desired.

3 Proof that a linear image of a closed orthant is closed

Consider the set
C = {Mx : x ∈ X} ⊆ Rk

where X ⊆ Rh and M is a k × h matrix. In this section we will show that C is closed when
X = {x ∈ Rh : x ≥ 0} is the non-negative orthant.

We first consider the case there the columns of M are linearly independent. In this case,
the map sending x to Mx is a bijection from Rh to the range of M ⊆ Rk with a continuous
inverse sending y to (M>M)−1M>y. In particular, the set C is closed if and only if the set
X is closed. So theorem really is obvious in this case.

Remark. It is routine linear algebra to conclude that the square matrix M>M is invertible
when the columns of M are linearly independent. Indeed, if M>Mx = 0 for some x ∈ Rh,
we have then 0 = x>M>Mx = ‖Mx‖2 and hence Mx = 0. But if the columns of M are
linearly independent, this implies x = 0.
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To start to see why things are more subtle in the general case, note that the set C is not
necessarily closed even if X is closed and convex. For example, let

X =

{(
x1
x2

)
: |x1| ≤

√
1− 1

x2
, x2 ≥ 1

}
⊆ R2

which is closed and convex. Consider the 1× 2 matrix M = (1 0). In this case, the linear

image {Mx : x ∈ X} = {x1 : −1 < x1 < 1} is open! We will see that we must exploit the
extra structure of the non-negative orthant {x : x ≥ 0} ⊆ Rh in our proof.

Theorem. (Carathéodory’s theorem) Let M be a k × h matrix with columns m1, . . . ,mh.
Fix a point x ∈ Rh with x ≥ 0, and let

y = Mx.

There is a set
B = {i1, . . . , ir} ⊆ {1, . . . , h}

and a point xB ∈ Rr with xB > 0 such that

y = MBxB

where MB is a k × r matrix with linearly independent columns mi1 , . . . ,mir .
Furthermore, xB can recovered from y by the formula

xB = (M>
BMB)−1M>

B y

when B is not empty.

Proof. We will construct the basis B by the following algorithm:

(1) If the columns of M are linearly independent, we set simply take B = {i : xi > 0}.

6



(2) Suppose the columns of M are linearly dependent, so there exist constants α1, . . . , αh
such that

α1m1 + . . .+ αhmh = 0,

and without loss of generality we may assume at least one of coefficients αi is strictly positive.
Notice that for any real λ we have

y = x1m1 . . .+ xhmh

= x1m1 . . .+ xhmh − λ(α1m1 + . . .+ αhmh)

= (x1 − λα1)m1 + . . .+ (xh − λαh)mh.

Now let

λ = min

{
xi
αi

: αi > 0

}
.

For this choice of λ we have
xi − λαi ≥ 0 for all i

and there exists at least one i∗ such that

xi∗ − λαi∗ = 0.

Notice that we have shown that
y = M̂x̂

where M̂ is the k × h− 1 matrix

M̂ =


...

...
...

...
m1 . . . mi∗−1 mi∗+1 . . . mh
...

...
...

...


and x̂ ∈ Rh−1 is given by

x̂ =



x1 − λα1
...

xi∗−1 − λαi∗−1
xi∗+1 − λαi∗+1

...
xh+1 − λαh


.

Now return to step (1) but now with M̂ playing the role of M and x̂ that of x.

In each iteration of the algorithm, the number of columns of the matrix M is reduced by
one. The algorithm terminates when the remaining columns are linearly independent.

Proof that the linear image of a closed orthant is closed. Let y be a limit point of C. That
means there is a sequence (xn)n in Rh with xn ≥ 0 such that Mxn = yn → y. We must show
that there is a point x ∈ Rh with x ≥ 0 such that y = Mx.
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By Carathéodory’s theorem there is a sequence of bases Bn of cardinality rn and vectors
xBn,n of dimension rn with xBn,n > 0 such that

MBnxBn,n = yn.

Since there are only a finite number of such bases, one basis B must appear an infinite
number of times in the sequence (Bn)n. Therefore, we can pass to a subsequence where all
the bases Bn = B are equal, so that

MBxB,n = yn.

Hence we have the convergence
xB,n → ξ

where
ξ = (M>

BMB)−1M>
B y.

Since xB,n > 0 for each n, we have ξ ≥ 0. Create a new vector x ∈ Rh by

xi =

{
ξs if i = is ∈ B
0 otherwise

Note that
Mxn →Mx and x ≥ 0.

This shows that the set C is closed.
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