IB Optimisation: Lecture 7

Mike Tehranchi

University of Cambridge

8 May 2020

・ロト ・回ト ・ヨト ・ヨト

We are still considering the problem to

maximise
$$c^{\top}x$$
 subject to $Ax = b, x \ge 0$.

Suppose we know one basic feasible solution x_0 . Before implementing the simplex algorithm, we need to do some pre-processing of the problem.

.

- Let B ⊂ {1,...,n} the set of basic indices and N the set of non-basic indices of x₀
- ▶ For $x \in \mathbb{R}^n$, use the notation $x = \begin{pmatrix} x_B \\ x_N \end{pmatrix}$ like last time.
- Furthermore, the objective function can be written

$$c^{\top}x = c^{\top}x_0 + \mu_{N,0}^{\top}x_N$$

where $\mu_0 = c - A^{\top} \lambda_0$ and $\lambda_0 = (A_B^{\top})^{-1} c_B$ is the Lagrange multiplier matched to the b.f.s. x_0 by complementary slackness.

The set of feasible solutions becomes

$$x_B + A_B^{-1}A_N x_N = x_{B,0}, \ x_B, x_N \ge 0,$$

伺下 イヨト イヨト

Step (0). The initial simplex tableau is

$$\Gamma = \begin{bmatrix} I & A_B^{-1}A_N & x_{B,0} \\ 0 & \mu_{N,0}^{\top} & -c^{\top}x_0 \end{bmatrix}$$

where I is the $m \times m$ identity.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

臣

(1) Test for optimality. If $\mu_0 \leq 0$ then STOP! The current b.f.s. is optimal. Otherwise go to step (2).

(2) Choose the pivot column. Pick a $j \in N$ such that $\mu_{j,0} > 0$. (Rule of thumb: Pick j such that $\mu_{j,0}$ is largest)

(3) Choose the pivot row. Look within the pivot column j and find the $i \in B$ which minimises $x_{i,0}/\Gamma_{i,j}$ over all $i \in B$ such that $\Gamma_{i,j} > 0$. If $\Gamma_{i,j} \leq 0$ for all i, then STOP! the problem is unbounded

・ 同 ト ・ ヨ ト ・ ヨ ト

(4) *Perform the pivot operation.* Move to the next b.f.s. as follows:

- Replace row *i* with (old row *i*)/ $\Gamma_{i,j}$.
- ▶ Replace row k with (old row k) (old row i) × Γ_{k,j}/Γ_{i,j}, for all k ≠ i

Now return to step (1).

回 とう モン・モン

Remarks.

- 1. For the initial b.f.s we have $x_{i,0} > 0$ and $x_{j,0} = 0$. For the next b.f.s we have $x_{i,1} = 0$ and $x_{j,1} = x_{i,0}/\Gamma_{i,j} > 0$.
- 2. Indeed, the pivot operation is simply Gaussian elimination, rewriting the problem in terms of the new basis $B_1 = B_0 \cup \{j\} \setminus \{i\}.$
- After the pivot, the first *m* rows of the (*n*+1)-th (far-right) column of the tableau is just the basic part of the new b.f.s. *x*₁. The bottom right entry Γ_{*m*+1,*n*+1} is now −*c*^T*x*₁, i.e. minus the value of the ojective function at the new b.f.s.

イロト イポト イヨト イヨト

Remark 4. Suppose $\Gamma_{i,j} \leq 0$ for all $i \in B$ in step (3). Then picking one $i \in B$ and for r > 0 let $x_r = x_0 + r(\delta_j - \Gamma_{i,j}\delta_i)$ where where $\delta_{k,\ell} = 1$ if $k = \ell$ and 0 otherwise. That is, x_r replaces $x_{i,0}$ with $x_{i,r} = x_{i,0} - r\Gamma_{i,j}$, replaces $x_{j,0} = 0$ with $x_{j,r} = r$, and leaves all other entries unchanged. Note x_r is feasible since $x_r \geq 0$ and

$$\left(\begin{array}{cc}I & A_B^{-1}A_N\end{array}\right)x_r = x_0$$

However, $c^{\top}x_r = c^{\top}x_0 + r\mu_{j,0} \to \infty$ as $r \to \infty$. In particular, the problem is unbounded.

(This proves the claim from last lecture.)

イロト イヨト イヨト イヨト

Example. Consider the linear program to

Before using the simplex algorithm, we do some side computations to see what is going on. The dual problem is to

$$\begin{array}{rrrr} D: \mbox{ minimise } 4\lambda_1+6\lambda_2 & \mbox{ subject to } & 2\lambda_1+2\lambda_2 & \geq & 3, & \lambda_1, \lambda_2 \geq 0 \\ & & \lambda_1+3\lambda_2 & \geq & 2 \end{array}$$

通 と く ヨ と く ヨ と

We introduce slack variables as usual to both problems, and list all of the basic solutions, paired by complementary slackness:

$$x_1v_1 = x_2v_2 = z_1\lambda_1 = z_2\lambda_2 = 0.$$

The graph and table shows the set of feasible solutions of both problems.

• • = • • = •

We see that the optimal solution is at point D where $(x_1, x_2) = (3/2, 1)$ corresponding to the dual solution $(\lambda_1, \lambda_2) = (5/4, 1/4)$. Note that at this point both the primal and dual solutions are feasible.

・ 回 ト ・ ヨ ト ・ ヨ ト

(0) Start with an initial b.f.s. $(x_1, x_2, z_1, z_2) = (0, 0, 4, 6)$ and put the problem in the *simplex tableau*.

			*	*	
	x_1	<i>x</i> ₂	z_1	<i>z</i> ₂	
<i>z</i> 1	2	1	1	0	4
<i>z</i> ₂	2	3	0	1	6
payoff	3	2	0	0	0

Notice that we are now at point A.

_

イロン 不同 とくほど 不同 とう

臣

(1) Test for optimality. Not optimal, since the payoff row (3, 2, 0, 0) is not non-positive.

(2) Choose the pivot column. Since 3 > 2, the rule of thumb says let x_1 enter basis.

.

(3) Choose the pivot row. There are two choices. Choosing the first row sends x_1 to 4/2 = 2, corresponding to point *B*. If we tried the second row, sending x_2 to 6/2 = 3, we would go to the infeasible point *C*.

(4) Perform the pivot operation.

	*			*	
	x_1	<i>x</i> ₂	z_1	<i>z</i> ₂	
<i>x</i> ₁	1	$\frac{1}{2}$	$\frac{1}{2}$	0	2
<i>z</i> ₂	0	2	-1	1	2
payoff	0	$\frac{1}{2}$	$-\frac{3}{2}$	0	-6

The new b.f.s is $(x_1, x_2, z_1, z_2) = (2, 0, 0, 2)$, which is point B.

イロン イヨン イヨン イヨン

3

(1) Still not optimal since the payoff row is not non-positive. Equivalently, the point B is not feasible for the dual problem.

(2) The only possibility is to choose the second column about which to pivot. The means that x_2 will enter the basis.

• • = • • = •

(3) Since 2/(1/2) = 4 > 2/2 = 1, we pivot about the second row. In the diagram, this means we go to the point D, rather than to the point F which is infeasible for the primal problem.

(4) Perform the pivot.

The new b.f.s is $(x_1, x_2, z_1, z_2) = (\frac{3}{2}, 1, 0, 0)$ which is point D.

イロン 不同 とうほう 不同 とう

크

(1) Our latest b.f.s. is optimal since the payoff row is non-positive. STOP!

イロト イヨト イヨト イヨト

臣