IB Optimisation: Lecture 7

Mike Tehranchi
University of Cambridge
8 May 2020

We are still considering the problem to

$$
\text { maximise } c^{\top} x \text { subject to } A x=b, x \geq 0
$$

Suppose we know one basic feasible solution x_{0}. Before implementing the simplex algorithm, we need to do some pre-processing of the problem.

- Let $B \subset\{1, \ldots, n\}$ the set of basic indices and N the set of non-basic indices of x_{0}
- For $x \in \mathbb{R}^{n}$, use the notation $x=\binom{x_{B}}{x_{N}}$ like last time.
- Furthermore, the objective function can be written

$$
c^{\top} x=c^{\top} x_{0}+\mu_{N, 0}^{\top} x_{N}
$$

where $\mu_{0}=c-A^{\top} \lambda_{0}$ and $\lambda_{0}=\left(A_{B}^{\top}\right)^{-1} c_{B}$ is the Lagrange multiplier matched to the b.f.s. x_{0} by complementary slackness.

- The set of feasible solutions becomes

$$
x_{B}+A_{B}^{-1} A_{N} x_{N}=x_{B, 0}, x_{B}, x_{N} \geq 0
$$

Step (0). The initial simplex tableau is

$$
\Gamma=\begin{array}{|cc|c|}
\hline I & A_{B}^{-1} A_{N} & x_{B, 0} \\
\hline 0 & \mu_{N, 0}^{1} & -c^{\prime} x_{0} \\
\hline
\end{array}
$$

where I is the $m \times m$ identity.
(1) Test for optimality. If $\mu_{0} \leq 0$ then STOP! The current b.f.s. is optimal. Otherwise go to step (2).
(2) Choose the pivot column. Pick a $j \in N$ such that $\mu_{j, 0}>0$. (Rule of thumb: Pick j such that $\mu_{j, 0}$ is largest)
(3) Choose the pivot row. Look within the pivot column j and find the $i \in B$ which minimises $x_{i, 0} / \Gamma_{i, j}$ over all $i \in B$ such that $\Gamma_{i, j}>0$. If $\Gamma_{i, j} \leq 0$ for all i, then STOP! the problem is unbounded
(4) Perform the pivot operation. Move to the next b.f.s. as follows:

- Replace row i with (old row i) $/ \Gamma_{i, j}$.
- Replace row k with (old row k) - (old row $i) \times \Gamma_{k, j} / \Gamma_{i, j}$, for all $k \neq i$
Now return to step (1).

Remarks.

1. For the initial b.f.s we have $x_{i, 0}>0$ and $x_{j, 0}=0$. For the next b.f.s we have $x_{i, 1}=0$ and $x_{j, 1}=x_{i, 0} / \Gamma_{i, j}>0$.
2. Indeed, the pivot operation is simply Gaussian elimination, rewriting the problem in terms of the new basis $B_{1}=B_{0} \cup\{j\} \backslash\{i\}$.
3. After the pivot, the first m rows of the ($n+1$)-th (far-right) column of the tableau is just the basic part of the new b.f.s. x_{1}. The bottom right entry $\Gamma_{m+1, n+1}$ is now $-c^{\top} x_{1}$, i.e. minus the value of the ojective function at the new b.f.s.

Remark 4. Suppose $\Gamma_{i, j} \leq 0$ for all $i \in B$ in step (3). Then picking one $i \in B$ and for $r>0$ let $x_{r}=x_{0}+r\left(\delta_{j}-\Gamma_{i, j} \delta_{i}\right)$ where where $\delta_{k, \ell}=1$ if $k=\ell$ and 0 otherwise.
That is, x_{r} replaces $x_{i, 0}$ with $x_{i, r}=x_{i, 0}-r \Gamma_{i, j}$, replaces $x_{j, 0}=0$ with $x_{j, r}=r$, and leaves all other entries unchanged.
Note x_{r} is feasible since $x_{r} \geq 0$ and

$$
\left(\begin{array}{ll}
l & A_{B}^{-1} A_{N}
\end{array}\right) x_{r}=x_{0}
$$

However, $c^{\top} x_{r}=c^{\top} x_{0}+r \mu_{j, 0} \rightarrow \infty$ as $r \rightarrow \infty$. In particular, the problem is unbounded.
(This proves the claim from last lecture.)

Example. Consider the linear program to

$$
P: \text { maximise } 3 x_{1}+2 x_{2} \text { subject to } \begin{aligned}
2 x_{1}+x_{2} & \leq 4, \quad x_{1}, x_{2} \geq 0 \\
2 x_{1}+3 x_{2} & \leq 6 .
\end{aligned}
$$

Before using the simplex algorithm, we do some side computations to see what is going on. The dual problem is to
$D:$ minimise $4 \lambda_{1}+6 \lambda_{2}$ subject to $2 \lambda_{1}+2 \lambda_{2} \geq 3, \quad \lambda_{1}, \lambda_{2} \geq 0$ $\lambda_{1}+3 \lambda_{2} \geq 2$

We introduce slack variables as usual to both problems, and list all of the basic solutions, paired by complementary slackness:

$$
x_{1} v_{1}=x_{2} v_{2}=z_{1} \lambda_{1}=z_{2} \lambda_{2}=0 .
$$

The graph and table shows the set of feasible solutions of both problems.

We see that the optimal solution is at point D where $\left(x_{1}, x_{2}\right)=(3 / 2,1)$ corresponding to the dual solution $\left(\lambda_{1}, \lambda_{2}\right)=(5 / 4,1 / 4)$. Note that at this point both the primal and dual solutions are feasible.
(0) Start with an initial b.f.s. $\left(x_{1}, x_{2}, z_{1}, z_{2}\right)=(0,0,4,6)$ and put the problem in the simplex tableau.

			$*$	$*$	
	x_{1}	x_{2}	z_{1}	z_{2}	
z_{1}	2	1	1	0	4
z_{2}	2	3	0	1	6
payoff	3	2	0	0	0

Notice that we are now at point A.
(1) Test for optimality. Not optimal, since the payoff row $(3,2,0,0)$ is not non-positive.
(2) Choose the pivot column. Since $3>2$, the rule of thumb says let x_{1} enter basis.
(3) Choose the pivot row. There are two choices. Choosing the first row sends x_{1} to $4 / 2=2$, corresponding to point B. If we tried the second row, sending x_{2} to $6 / 2=3$, we would go to the infeasible point C.

			$*$	$*$	
	x_{1}	x_{2}	z_{1}	z_{2}	
z_{1}	2	1	1	0	4
z_{2}	2	3	0	1	6
payoff	3	2	0	0	0

(4) Perform the pivot operation.

| | $*$ | | | $*$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | x_{1} | x_{2} | z_{1} | z_{2} | |
| x_{1} | 1 | $\frac{1}{2}$ | $\frac{1}{2}$ | 0 | 2 |
| z_{2} | 0 | 2 | -1 | 1 | 2 |
| payoff | 0 | $\frac{1}{2}$ | $-\frac{3}{2}$ | 0 | -6 |

The new b.f.s is $\left(x_{1}, x_{2}, z_{1}, z_{2}\right)=(2,0,0,2)$, which is point B.
(1) Still not optimal since the payoff row is not non-positive. Equivalently, the point B is not feasible for the dual problem.
(2) The only possibility is to choose the second column about which to pivot. The means that x_{2} will enter the basis.
(3) Since $2 /(1 / 2)=4>2 / 2=1$, we pivot about the second row. In the diagram, this means we go to the point D, rather than to the point F which is infeasible for the primal problem.

| | $*$ | | | $*$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | x_{1} | x_{2} | z_{1} | z_{2} | |
| x_{1} | 1 | $\frac{1}{2}$ | $\frac{1}{2}$ | 0 | 2 |
| z_{2} | 0 | 2 | -1 | 1 | 2 |
| payoff | 0 | $\frac{1}{2}$ | $-\frac{3}{2}$ | 0 | -6 |

(4) Perform the pivot.

	$*$	$*$			
	x_{1}	x_{2}	z_{1}	z_{2}	
x_{1}	1	0	$\frac{3}{4}$	$-\frac{1}{4}$	$\frac{3}{2}$
x_{2}	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	1
payoff	0	0	$-\frac{5}{4}$	$-\frac{1}{4}$	$-\frac{13}{2}$

The new b.f.s is $\left(x_{1}, x_{2}, z_{1}, z_{2}\right)=\left(\frac{3}{2}, 1,0,0\right)$ which is point D.
(1) Our latest b.f.s. is optimal since the payoff row is non-positive. STOP!

