Standardisation of linear programs Basic feasible solutions The simplex algorithm in theory

IB Optimisation: Lecture 6

Mike Tehranchi

University of Cambridge

6 May 2020

イロト イヨト イヨト イヨト

臣

A linear program can have

Functional constraint: equality or inequality or a mixture

Regional constraint: fixed sign or no constraint or a mixture For formulationg nice looking theorems on duality, we have seen that it is helpful to pose the linear program with an inequality functional constraint and a fixed sign regional constraint. But for discussing the simplex method, another formulation is preferred....

Standardisation of linear programs Basic feasible solutions The simplex algorithm in theory

Definition

A linear program is in *standard form* if the constraint can be written

$$Ax = b, x \ge 0$$

イロン 不同 とくほど 不同 とう

臣

All linear programs can be put in standard form. For instance

- $Ax \le b, x \ge 0$ becomes $Ax + z = b, x, z \ge 0$.
- Ax = b becomes A(x y) = b, $x, y \ge 0$.
- $Ax \leq b$ becomes A(x y) + z, $x, y, z \geq 0$.

Definition

Given an $m \times n$ matrix A with n > m, and $b \in \mathbb{R}^m$. A solution $x \in \mathbb{R}^n$ of the equation Ax = b is called *basic* if if at most m entries of x are non-zero, that is, $x_i \neq 0$ for at most m indices $i \in \{1, \ldots, n\}$. If x is a basic solution and $x \ge 0$, then x is called a *basic feasible*

solution, abbreviated b.f.s.

Now fix A and b as above, and let $C = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$. Theorem (Extreme points are b.f.s.) Suppose x is an extreme point of C. Then x is a b.f.s.

Proof. Let x be a point in C that is not basic, i.e. at least m + 1 indices i are such that $x_i > 0$. Let $x_{i_k} > 0$ for indices i_1, \ldots, i_r . The set $\{A_{i_1}, \ldots, A_{i_r}\}$ of columns of the matrix A is linearly dependent, since r > m. Hence, there exists a non-trivial linear combination equal to zero

$$w_1A_{i_1}+\ldots+w_rA_{i_r}=0.$$

Construct a vector $z \in \mathbb{R}^n$ by

$$z_i = \left\{ egin{array}{ll} w_k & ext{if } i = i_k, ext{ for } k = 1, \dots, r \ 0 & ext{otherwise}. \end{array}
ight.$$

Then by construction

$$Az = A_1z_1 + \ldots + A_nz_n = w_1A_{i_1} + \ldots + w_rA_{i_r} = 0$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Hence $A(x \pm \varepsilon z) = Ax = b$ for any ε . Now, choose $\varepsilon > 0$ small enough that $x \pm \varepsilon z \ge 0$. For such ε we have $x \pm \varepsilon z \in C$. But since

$$x = \frac{1}{2}(x + \varepsilon z) + \frac{1}{2}(x - \varepsilon z)$$

the point x is not extreme.

Theorem (b.f.s. are extreme points)

Suppose that every set of m columns of A is linearly independent. Let x be a b.f.s. Then x is an extreme point of C.

Image: A match the second s

Proof. By definition, there are at most m indices i are such that $x_i > 0$. Suppose x = py + (1 - p)z for $y, z \in C$ and 0 . $Since <math>y \ge 0$ and $z \ge 0$ we conclude that if $x_i = 0$ for some index i then $y_i = z_i = 0$. Hence, there are at least n - m indices i such that $y_i = z_i = 0$.

The equation Ay = b = Az implies

$$A(y-z)=0=\sum_i w_i A_i$$

where w = y - z. Since at most *m* entries of *w* are non-zero, and any set of *m* columns of *A* is linearly independent, we have w = 0 or equivalently x = y = z.

In summary, we can find the optimal solution of a linear program by checking each of the basic feasible solutions. Since there are an infinite number of feasible solutions, but a finite number of basic feasible solutions, we have made a lot of progress! Consider a linear program in standard form

P : maximise
$$c^{\top}x$$
 subject to $Ax = b$, $x \ge 0$.

where $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ and A is a $m \times n$ matrix.

- Assume assume that n > m and that every set of m columns of A is linearly independent.
- Assume non-degeneracy: each b.f.s. x is such that there are exactly m indices i such that x_i ≠ 0.

Our goal is to find a mechanical method of finding the optimal solution of P. We will do this by introducing methods of increasing efficiency.

Method 1. (somewhat naive) We know that if a convex function f takes its maximum on a convex set C, it is maximised at one of the extreme points of C. In our case the function $f(x) = c^{\top}x$ and the set $C = \{x : Ax = b, x \ge 0\}$ are convex, so it is enough to consider the extreme points of C.

But we also know that the extreme points of the set of a feasible solutions of a linear program are precisely the basic feasible solutions.

Standardisation of linear programs Basic feasible solutions The simplex algorithm in theory

Fix a set
$$B \subset \{1, \ldots, n\}$$
 with cardinality $|B| = m$,

▶ let
$$N = \{1, ..., n\} \setminus B$$
 with cardinality $|N| = n - m$.
▶ If $B = \{i_1, ..., i_m\}$, we will let

$$A_B = (A_{i_1} \ldots A_{i_m})$$

be the $m \times m$ matrix formed by taking the columns of A indexed by $i \in B$.

- Note by assumption that A_B is invertible.
- For a point $x \in \mathbb{R}^n$, let

$$x_B = (x_{i_1} \ldots x_{i_m})^\top.$$

Define the notation c_B, A_N, x_N, and c_N similarly.

We first aim to find a basic solution of Ax = b.

- This equation is $A_B x_B + A_N x_N = b$.
- Setting $x_N = 0$ yields $x_B = A_B^{-1}b$. S
- ▶ Rearranging the coordinates if necessary, we may write the basic point as $x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} A_B^{-1}b \\ 0 \end{pmatrix}$.

- Check that this x is feasible. That is, we need $A_B^{-1}b \ge 0$.
- Assuming that x is a basic feasible solution, compute the objective function c[⊤]x = c[⊤]_Bx_B.
- Repeat this procedure for all $\binom{n}{m}$ possible choices of the set B.
- If the problem has a maximum value, it will be among the list of b.f.s. just computed.

The problems

- When n is reasonably large, we need to look at an extremely large number ⁿ/_m of candidate solutions.
- This method does not detect the possibility that no maximiser exists, i.e. the problem is unbounded

- 4 同 6 4 三 6 4 三 6

Standardisation of linear programs Basic feasible solutions The simplex algorithm in theory

Method 2. (a little better) We take the good idea of computing basic feasible solutions introduced above, but now try to avoid testing all of the large number of candidate solutions.

- The idea now is to use the fundamental theorem of linear programming.
- (example sheet) The dual problem is

$$D$$
: minimise $b^{\top}\lambda$ subject to $A^{\top}\lambda \ge c$.

The fundamental theorem tells us that a point x^{*} ∈ ℝⁿ is optimal for the primal problem P if and only if there exists a Lagrange multiplier λ^{*} ∈ ℝ^m such that

1.
$$Ax^* = b, x^* \ge 0$$
 (primal feasibility)

2.
$$A^{\top}\lambda^* \geq c$$
 (dual feasiblity)

3. $(c - A^{\top}\lambda^*)^{\top}x^* = 0$ (complementary slackness)

Consider the b.f.s. $x = \begin{pmatrix} A_B^{-1}b \\ 0 \end{pmatrix}$.

Associate to this b.f.s. a Lagrange multiplier λ by complementary slackness

$$0 = (c - A^{\top} \lambda)^{\top} x$$

= $(c_B - A_B^{\top} \lambda)^{\top} x_B + (c_N - A_N^{\top} \lambda)^{\top} x_N$
= $(c_B - A_B^{\top} \lambda)^{\top} x_B.$

• So we take $\lambda = (A_B^{\top})^{-1} c_B$.

A method

- Check that the b.f.s. $x = \begin{pmatrix} A_B^{-1}b \\ 0 \end{pmatrix}$ (primal feasibility)
- The multiplier λ = (A[⊤]_B)⁻¹c_B satisfies complementary slackness by construction.
- If $A^{\top}\lambda \ge c$ then STOP! since x would be optimal.
- Otherwise, choose another basis set B ⊂ {1,..., n} and start again.

This is better than the first method since it is now not always necessary to search through all of the possible basic solutions of the problem. Of course, we might be unlucky and have to search through all of the other solutions until we find one with a corresponding Lagrange multiplier λ satisfying dual feasibility.

Method 3 (The simplex algorithm) Recapping, given a b.f.s. we found a way of determining whether or not is is optimal. Assuming that our b.f.s. is not optimal, the remaining challenge is to find a clever way of another b.f.s. In particular, we would like to find a new b.f.s. that increases the objective function.

- Start with an initial b.f.s. x₀ corresponding to a basis B₀. Let N₀ = {1,..., n}\B₀.
- ► Associate a Lagrange multiplier λ_0 by complementary slackness $(c A^T \lambda_0)_i = 0$ for all $i \in B_0$. In particular, $(c A^T \lambda_0)^T x_0 = 0 \Rightarrow c^T x_0 = b^T \lambda_0$.
- Let µ₀ = c − A^Tλ₀. If µ₀ ≤ 0 then we are done and x₀ is optimal. Otherwise continue.

Claim. Suppose that

- There is a $j \in N_0$ such that $\mu_{j,0} > 0$.
- There is an $i \in B_0$ such that there is a basic feasible solution x_1 with basis

$$B_1 = B_0 \cup \{j\} \setminus \{i\}.$$

Then

$$c^{\top}x_1 = c^{\top}x_0 + \mu_{j,0}x_{j,1}$$
$$> c^{\top}x_0.$$

Proof of claim.

If x is any feasible solution then

$$c^{\top}x = c^{\top}x + \lambda_0^{\top}(b - Ax)$$

= $b^{\top}\lambda_0 + (c - A^{\top}\lambda_0)^{\top}x$
= $c^{\top}x_0 + \sum_{k \in N_0} \mu_{k,0}x_k$

▶ We have summed only over N_0 since $\mu_{k,0} = 0$ for $k \in B_0$ by construction.

Standardisation of linear programs Basic feasible solutions The simplex algorithm in theory

- The new basis B₁ is formed from B₀ by replacing previously basic index i and with previously non-basic index j.
- The new set of non-basic indices is

$$N_1 = N_0 \cup \{i\} \setminus \{j\}.$$

$$\sum_{k \in N_0} \mu_{k,0} x_{k,1} = \sum_{k \in N_1} \mu_{k,0} \underbrace{x_{k,1}}_{=0} + \underbrace{\mu_{j,0}}_{>0} \underbrace{x_{j,1}}_{>0} - \underbrace{\mu_{i,0}}_{=0} x_{i,1}$$
$$> 0$$

► We have used the assumption of non-degeneracy to assert x_{j,1} > 0.

Claim. Suppose that

- There is a $j \in N_0$ such that $\mu_{j,0} > 0$.
- For every $i \in B_0$ the basic solution x_1 with basis

$$B_1 = B_0 \cup \{j\} \setminus \{i\}.$$

is infeasible (that is, $x_{k,1} < 0$ for some $k \in B_1$.) Then the problem is unbounded.

Proof. Next time

If no x_1 feasible exists, then STOP! the problem is unbounded. Otherwise, test the optimality of x_1 and repeat if necessary. Stop when we come to a b.f.s. whose corresponding Lagrange multiplier satisfies dual feasibility (or say the problem is unbounded if no such b.f.s. exists)

We may be unlucky and have to search through all possible b.f.s. However, by choosing the sequence of b.f.s. as described here, we know at least that we are always marching up hill – every iteration of the algorithm strictly increases the value of the objective function.