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A linear program can have

I Functional constraint: equality or inequality or a mixture

I Regional constraint: fixed sign or no constraint or a mixture

For formulationg nice looking theorems on duality, we have seen
that it is helpful to pose the linear program with an inequality
functional constraint and a fixed sign regional constraint.
But for discussing the simplex method, another formulation is
preferred....
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Definition
A linear program is in standard form if the constraint can be
written

Ax = b, x ≥ 0
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All linear programs can be put in standard form. For instance

I Ax ≤ b, x ≥ 0 becomes Ax + z = b, x , z ≥ 0.

I Ax = b becomes A(x − y) = b, x , y ≥ 0.

I Ax ≤ b becomes A(x − y) + z , x , y , z ≥ 0.
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Definition
Given an m × n matrix A with n > m, and b ∈ Rm. A solution
x ∈ Rn of the equation Ax = b is called basic if if at most m
entries of x are non-zero, that is, xi 6= 0 for at most m indices
i ∈ {1, . . . , n}.
If x is a basic solution and x ≥ 0, then x is called a basic feasible
solution, abbreviated b.f.s.
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Now fix A and b as above, and let C = {x ∈ Rn : Ax = b, x ≥ 0}.

Theorem (Extreme points are b.f.s.)

Suppose x is an extreme point of C . Then x is a b.f.s.
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Proof. Let x be a point in C that is not basic, i.e. at least m + 1
indices i are such that xi > 0. Let xik > 0 for indices i1, . . . , ir .
The set {Ai1 , . . . ,Air } of columns of the matrix A is linearly
dependent, since r > m. Hence, there exists a non-trivial linear
combination equal to zero

w1Ai1 + . . .+ wrAir = 0.
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Construct a vector z ∈ Rn by

zi =

{
wk if i = ik , for k = 1, . . . , r
0 otherwise.

Then by construction

Az = A1z1 + . . .Anzn = w1Ai1 + . . .+ wrAir = 0

Mike Tehranchi IB Optimisation: Lecture 6



Standardisation of linear programs
Basic feasible solutions

The simplex algorithm in theory

Hence A(x ± εz) = Ax = b for any ε. Now, choose ε > 0 small
enough that x ± εz ≥ 0. For such ε we have x ± εz ∈ C . But since

x = 1
2(x + εz) + 1

2(x − εz)

the point x is not extreme.
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Theorem (b.f.s. are extreme points)

Suppose that every set of m columns of A is linearly independent.
Let x be a b.f.s. Then x is an extreme point of C .
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Proof. By definition, there are at most m indices i are such that
xi > 0. Suppose x = py + (1− p)z for y , z ∈ C and 0 < p < 1.
Since y ≥ 0 and z ≥ 0 we conclude that if xi = 0 for some index i
then yi = zi = 0. Hence, there are at least n −m indices i such
that yi = zi = 0.
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The equation Ay = b = Az implies

A(y − z) = 0 =
∑
i

wiAi

where w = y − z . Since at most m entries of w are non-zero, and
any set of m columns of A is linearly independent, we have w = 0
or equivalently x = y = z .
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In summary, we can find the optimal solution of a linear program
by checking each of the basic feasible solutions. Since there are an
infinite number of feasible solutions, but a finite number of basic
feasible solutions, we have made a lot of progress!
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Consider a linear program in standard form

P : maximise c>x subject to Ax = b, x ≥ 0.

where c ∈ Rn, b ∈ Rm and A is a m × n matrix.

I Assume assume that n > m and that every set of m columns
of A is linearly independent.

I Assume non-degeneracy : each b.f.s. x is such that there are
exactly m indices i such that xi 6= 0.
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Our goal is to find a mechanical method of finding the optimal
solution of P. We will do this by introducing methods of increasing
efficiency.
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Method 1. (somewhat naive) We know that if a convex function f
takes its maximum on a convex set C , it is maximised at one of
the extreme points of C . In our case the function f (x) = c>x and
the set C = {x : Ax = b, x ≥ 0} are convex, so it is enough to
consider the extreme points of C .

But we also know that the extreme points of the set of a feasible
solutions of a linear program are precisely the basic feasible
solutions.
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I Fix a set B ⊂ {1, . . . , n} with cardinality |B| = m,

I let N = {1, . . . , n}\B with cardinality |N| = n −m.

I If B = {i1, . . . , im}, we will let

AB = (Ai1 . . . Aim)

be the m ×m matrix formed by taking the columns of A
indexed by i ∈ B.

I Note by assumption that AB is invertible.

I For a point x ∈ Rn, let

xB = (xi1 . . . xim)>.

I Define the notation cB , AN , xN , and cN similarly.
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We first aim to find a basic solution of Ax = b.

I This equation is ABxB + ANxN = b.

I Setting xN = 0 yields xB = A−1B b. S

I Rearranging the coordinates if necessary, we may write the

basic point as x =
(xB
xN

)
=
(A−1

B b
0

)
.
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I Check that this x is feasible. That is, we need A−1B b ≥ 0.

I Assuming that x is a basic feasible solution, compute the
objective function c>x = c>B xB .

I Repeat this procedure for all
(n
m

)
possible choices of the set B.

I If the problem has a maximum value, it will be among the list
of b.f.s. just computed.
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The problems

I When n is reasonably large, we need to look at an extremely
large number

(n
m

)
of candidate solutions.

I This method does not detect the possibility that no maximiser
exists, i.e. the problem is unbounded
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Method 2. (a little better) We take the good idea of computing
basic feasible solutions introduced above, but now try to avoid
testing all of the large number of candidate solutions.

I The idea now is to use the fundamental theorem of linear
programming.

I (example sheet) The dual problem is

D : minimise b>λ subject to A>λ ≥ c.

I The fundamental theorem tells us that a point x∗ ∈ Rn is
optimal for the primal problem P if and only if there exists a
Lagrange multiplier λ∗ ∈ Rm such that

1. Ax∗ = b, x∗ ≥ 0 (primal feasibility)
2. A>λ∗ ≥ c (dual feasiblity)
3. (c − A>λ∗)>x∗ = 0 (complementary slackness)
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Consider the b.f.s. x =
(A−1

B b
0

)
.

I Associate to this b.f.s. a Lagrange multiplier λ by
complementary slackness

0 = (c − A>λ)>x

= (cB − A>Bλ)>xB + (cN − A>Nλ)>xN

= (cB − A>Bλ)>xB .

I So we take λ = (A>B )−1cB .
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A method

I Check that the b.f.s. x =
(A−1

B b
0

)
(primal feasibility)

I The multiplier λ = (A>B )−1cB satisfies complementary
slackness by construction.

I If A>λ ≥ c then STOP! since x would be optimal.

I Otherwise, choose another basis set B ⊂ {1, . . . , n} and start
again.
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This is better than the first method since it is now not always
necessary to search through all of the possible basic solutions of
the problem. Of course, we might be unlucky and have to search
through all of the other solutions until we find one with a
corresponding Lagrange multiplier λ satisfying dual feasibility.
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Method 3 (The simplex algorithm) Recapping, given a b.f.s. we
found a way of determining whether or not is is optimal. Assuming
that our b.f.s. is not optimal, the remaining challenge is to find a
clever way of another b.f.s. In particular, we would like to find a
new b.f.s. that increases the objective function.
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I Start with an initial b.f.s. x0 corresponding to a basis B0. Let
N0 = {1, . . . , n}\B0.

I Associate a Lagrange multiplier λ0 by complementary
slackness (c − A>λ0)i = 0 for all i ∈ B0. In particular,
(c − A>λ0)>x0 = 0⇒ c>x0 = b>λ0.

I Let µ0 = c − A>λ0. If µ0 ≤ 0 then we are done and x0 is
optimal. Otherwise continue.
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Claim. Suppose that

I There is a j ∈ N0 such that µj ,0 > 0.

I There is an i ∈ B0 such that there is a basic feasible solution
x1 with basis

B1 = B0 ∪ {j}\{i}.

Then

c>x1 = c>x0 + µj ,0xj ,1

> c>x0.
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Proof of claim.

I If x is any feasible solution then

c>x = c>x + λ>0 (b − Ax)

= b>λ0 + (c − A>λ0)>x

= c>x0 +
∑
k∈N0

µk,0xk

I We have summed only over N0 since µk,0 = 0 for k ∈ B0 by
construction.
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I The new basis B1 is formed from B0 by replacing previously
basic index i and with previously non-basic index j .

I The new set of non-basic indices is

N1 = N0 ∪ {i}\{j}.

I ∑
k∈N0

µk,0xk,1 =
∑
k∈N1

µk,0 xk,1︸︷︷︸
=0

+ µj ,0︸︷︷︸
>0

xj ,1︸︷︷︸
>0

− µi ,0︸︷︷︸
=0

xi ,1

> 0

I We have used the assumption of non-degeneracy to assert
xj ,1 > 0.
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Claim. Suppose that

I There is a j ∈ N0 such that µj ,0 > 0.

I For every i ∈ B0 the basic solution x1 with basis

B1 = B0 ∪ {j}\{i}.

is infeasible (that is, xk,1 < 0 for some k ∈ B1. )

Then the problem is unbounded.

Proof. Next time
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If no x1 feasible exists, then STOP! the problem is unbounded.
Otherwise, test the optimality of x1 and repeat if necessary. Stop
when we come to a b.f.s. whose corresponding Lagrange multiplier
satisfies dual feasibility (or say the problem is unbounded if no
such b.f.s. exists)

We may be unlucky and have to search through all possible b.f.s.
However, by choosing the sequence of b.f.s. as described here, we
know at least that we are always marching up hill – every iteration
of the algorithm strictly increases the value of the objective
function.
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