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The barrier method. Given differentiable functions f : Rn → R
and g : Rn → Rm, consider the problem to

P : minimise f (x) subject to g(x) ≤ b

where f and gi are convex for all i . (note: no regional constraint)
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Now consider the family of unconstrained minimisation problems

Pε : minimise f (x)− ε
m∑
i=1

log(bi − gi (x))

(implicitly we have the constraint g(x) < b.)
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Theorem (Convergence of the barrier method)

Suppose x∗ is optimal for P and xε is optimal for Pε. Then

0 ≤ f (xε)− f (x∗) ≤ mε.
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Duality preliminaries. The Lagrangian for P is

L(x , z , λ) = f (x) + λ>(b − z − g(x))

and the feasible Lagrange multipliers are

Λ = {λ ∈ Rm : inf
x∈Rn,z≥0

L(x , z , λ) > −∞}
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Claim: Let λ ∈ Rm be such that λ ≤ 0 and such that there exists
a xλ ∈ Rn such that

Df (xλ) =
m∑
i=1

λiDgi (xλ).

then λ ∈ Λ and the dual objective function is
h(λ) = b>λ+ f (xλ)− λ>g(xλ).
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[Recall that if F : Rn → R is convex and differentiable and
DF (ξ) = 0, then ξ minimises F . ]
Proof of claim. For x ∈ Rn and z ≥ 0 we have the bound

L(x , z , λ) = b>λ+ f (x)− λ>g(x)− λ>z
≥ b>λ+ f (xλ)− λ>g(xλ)

since f (x)− λ>g(x) is convex and λ>z ≤ 0. There is equality if
x = xλ, and the pair (z , λ) satisfy complementary slackness.
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Proof of convergence of the barrier method.
[Recall that if F : X → R is differentiable, where X ⊆ Rn is open,
and ξ ∈ X minimises F , then DF (ξ) = 0.]
Since xε is optimal for Pε we necessarily have

Df (xε) = −ε
m∑
i=1

Dgi (xε)

bi − gi (xε)
.

Let

λi =
−ε

bi − gi (xε)
for 1 ≤ i ≤ m.

Note λ < 0 and

Df (xε) =
m∑
i=1

λiDgi (xε).

Hence λ ∈ Λ.
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By the optimality of x∗ and weak duality, we have

f (xε) ≥ f (x∗) ≥ h(λ)

= f (xε) + λ>(b − g(xε))

= f (xε)−mε.
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Remark. Note since f and gi are convex for all i , the value function

ϕ(b) = inf{f (x) : g(x) ≤ b}

is convex. Fixing b and assuming there exists an optimiser x∗ to
problem P, by Lagrangian necessity, there exists λ∗ such that

L(x∗, z∗) = inf{L(x , z , λ∗) : x ∈ Rn, z ≥ 0}

where z∗ = b − g(x∗).
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Compare:

x∗ optimal for P xε optimal for Pε
λ∗ ≤ 0 λε < 0
Df (x∗) =

∑m
i=1 λ

∗
i Dgi (x

∗) Df (xε) =
∑m

i=1 λi ,εDgi (xε)
(b − g(x∗))>λ∗ = 0 (b − g(xε))>λε = −mε

Mike Tehranchi IB Optimisation: Lecture 5



The barrier method
Fundamental theorem of linear programming

Extreme points

An algorithm

I Initial guess x0 ∈ Rn such that g(x0) < b.

I Initial ε0 > 0

I For k ≥ 0, solve Pεk approximately using your favourite
algorithm (for instance, the gradient descent algorithm or
Newton’s method) starting from xk .

I Let xk+1 be the approximate optimal solution.

I Let εk+1 = rεk where 0 < r < 1.
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Last time we saw that given the primal linear program

P : maximise c>x subject to Ax ≤ b, x ≥ 0,

the dual linear progam is

D : minimise b>λ subject to A>λ ≥ c , λ ≥ 0
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Theorem (Fundamental theorem of linear programming, i.e.
necessary and sufficient conditions for optimality)

Consider the problem to

P : maximise c>x subject to Ax ≤ b, x ≥ 0.

A vector x∗ ∈ Rn is optimal for problem P if and only if there
exists a vector λ∗ ∈ Rm such that

I Ax∗ ≤ b, x∗ ≥ 0 (primal feasibility)

I A>λ∗ ≥ c , λ∗ ≥ 0 (dual feasibility)

I (b − Ax∗)>λ∗ = 0 = (c − A>λ∗)>x∗ (complementary
slackness)

in which case λ∗ is optimal for the dual problem D, and the value
of the two problems c>x∗ = b>λ∗ agree.
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Proof of ‘if’. Note that if x and λ are feasible for the respective
problems, then by weak duality we have c>x ≤ b>λ. But if x∗ and
λ∗ satisfy complementary slackness, then c>x∗ = b>λ∗. This
shows c>x ≤ c>x∗ for all feasible x and b>λ ≥ b>λ∗ for all
feasible λ, proving the optimality of x∗ and λ∗.

Remark. The optimality of x∗ is just an application of the
Lagrangian sufficiency theorem as reformulated in Lecture 4.
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Definition
A function f : X → R is concave if the function −f is convex.
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Proof of ‘only if’. Note the objective function f (x) = c>x and the
function defining the functional constraint g(x) = Ax are linear. In
particular, f is concave and g is convex. This means the value
function of P is concave. By Lagrangian necessity, there exists an
optimal Lagrange multiplier λ∗.
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Motivation. Consider the problem to

maximise ψ(x) subject to x ∈ X .

Now suppose that the set X is convex and the function ψ is
convex. This means that if x , y ∈ X and 0 < p < 1 then

ψ(px + (1− p)y) ≤ pψ(x) + (1− p)ψ(y)

≤ max{ψ(x), ψ(y)}.

That is to say, the maximum of ψ on any segment
{z : z = px + (1− p)y , 0 ≤ p ≤ 1} occurs at one of the end points.
Hence to find the maximum of ψ over X , we need only consider
points of X that do not lie on a line segment contained in X .
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Definition
Let X ⊆ Rn be a convex set. A point x is an extreme point if

x = py + (1− p)z

for y , z ∈ X and 0 < p < 1 implies x = y = z .

The extreme points of the convex set above are in bold.
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For a linear maximisation program

I the objective function is concave, so we can characterise the
optimal solution via duality

I the objective function is convex and the set of feasible
solutions is convex, we can limit our search for optimal
solutions to the extreme points of the set of feasible solutions.

I In particular, if the linear program has an optimal solution,
then it must have an optimal solution that is an extreme point
of the set of feasible solutions.
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