IB Optimisation: Lecture 3

Mike Tehranchi

University of Cambridge

29 April 2020

We now consider the general constrained optimisation problem

minimise f(x) subject to g(x) = b, $x \in X$.

No convexity assumptions are made now.

イロン 不同 とくほと 不良 と

Introduce a new function $L: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ defined by

$$L(x,\lambda) = f(x) + \lambda^{\top}(b - g(x))$$

This function is called the *Lagrangian* of the problem. For a vector $\lambda = (\lambda_1, \dots, \lambda_m)^{\top}$, the component λ_i is called the *Lagrange multiplier* for the *i*-th functional constraint.

Theorem (The Lagrangian sufficiency theorem)

Let x^* be feasible for the problem. Suppose there exists a $\lambda^* \in \mathbb{R}^m$ such that

$$L(x^*, \lambda^*) \leq L(x, \lambda^*)$$
 for all $x \in X$.

Then x^* is optimal.

Proof: For any feasible x and any λ we have

$$L(x,\lambda) = f(x) + \lambda^{\top}(b - g(x)) = f(x)$$

since g(x) = b. Hence if x^* is feasible, then

$$\begin{split} f(x^*) &= L(x^*, \lambda^*) \\ &\leq L(x, \lambda^*) \text{ for all } x \in X \text{ by assumption} \\ &= f(x) \text{ for all feasible } x. \end{split}$$

Example. Consider

minimise $x_1^2 + 3x_2^2$ subject to $4x_1 + x_2 = 7$ Claim: $(x_1^*, x_2^*) = (\frac{12}{7}, \frac{1}{7})$ is optimal.

Consider the Lagrangian

$$L(x_1, x_2, \lambda) = x_1^2 + 3x_2^2 + \lambda(7 - 4x_1 - x_2)$$

Note that

$$L(x_1, x_2, \frac{6}{7}) = (x_1 - \frac{12}{7})^2 + 3(x_2 - \frac{1}{7})^2 + 3$$

so

$$L(x_1, x_2, \frac{6}{7}) \ge L(\frac{12}{7}, \frac{1}{7}; \frac{6}{7})$$

for all (x_1, x_2) . We're done by the Lagrangian sufficiency theorem.

イロン 不同 とくほと 不良 と

First interpretation of the Lagrange multiplier $\lambda^*:$ a certificate of optimality.

For a general optimisation problem, is it always possible find numbers $(\lambda_1, \ldots, \lambda_m)$ to serve as a certificate of optimality?

If x^* and λ^* exist as in the Lagrangian sufficiency theorem, we have

$$\inf_{x\in X} L(x,\lambda^*) = f(x^*) > -\infty$$

Step (1). Identify the set of feasible Lagrange multipliers

$$\Lambda = \{\lambda \in \mathbb{R}^m : \inf_{x \in X} L(x, \lambda) > -\infty\}.$$

Step (2). For each $\lambda \in \Lambda$ find the optimal solution to the unconstrained problem to

minimise $L(x, \lambda)$ subject to $x \in X$.

Let $x(\lambda)$ be the minimiser.

Step (3). Find a $\lambda^* \in \Lambda$ such that $x^* = x(\lambda^*)$ is feasible for the original problem, that is, $g(x^*) = b$.

In general, it might not be possible to do steps (1) through (3). But, if it is possible, the resulting x^* is optimal by the Lagrangian sufficiency theorem. (By step (2) we have that $L(x^*, \lambda^*) \le L(x, \lambda^*)$ for all $x \in X$, and by step (3) we have that x^* is feasible.)

Example. (Maximum likelihood estimator of the multinomial distribution)

Given constants $n_1, \ldots, n_k > 0$, consider the problem to

maximise
$$\sum_{i=1}^{k} n_i \log p_i$$
 subject to $\sum_{i=1}^{k} p_i = 1$, $p_i > 0$ for all i .

イロト イヨト イヨト イヨト

æ

The Lagrangian is

$$egin{split} L(p,\lambda) &= \sum_{i=1}^k n_i \log p_i + \lambda \left(1 - \sum_{i=1}^k p_i
ight) \ &= \lambda + \sum_{i=1}^k (n_i \log p_i - \lambda p_i) \end{split}$$

Ð,

Step (1). Note that if $\lambda \leq 0$ then $n_i \log p_i - \lambda p_i \to \infty$ as $p_i \to \infty$. Hence

$$\Lambda = \{\lambda \in \mathbb{R} : \sup_{p>0} L(p,\lambda) < \infty\} = \{\lambda : \lambda > 0\}$$

イロト イヨト イヨト イヨト

Step (2). We solve

$$\frac{\partial L}{\partial p_i} = \frac{n_i}{p_i} - \lambda = 0 \Rightarrow p_i(\lambda) = \frac{n_i}{\lambda}.$$

Since

$$D^{2}L = \begin{pmatrix} -\frac{n_{1}}{p_{1}^{2}} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & -\frac{n_{k}}{p_{k}^{2}} \end{pmatrix}$$

is non-positive definite for all p, we have found the maximum.

イロト イヨト イヨト イヨト

Step (3) The constraint
$$\sum_{i=1}^{k} p_i = \sum_{i=1}^{k} \frac{n_i}{\lambda} = 1$$
 yields $\lambda = \sum_{i=1}^{k} n_i$. By the Lagrangian sufficiency theorem,

$$p_i^* = \frac{n_i}{\sum_{j=1}^k n_j}$$

is optimal.

Ð,

Notation. If $x, y \in \mathbb{R}^n$ then we write $x \ge y$ if $x_i \ge y_i$ for all $1 \le i \le n$

・ロト ・回ト ・ヨト ・ヨト

A major focus of this course are problems with inequality constraints. Consider

P: minimise f(x) subject to $g(x) \leq b$, $x \in X$.

This problem can be put into equality form by introducing *slack variables*:

$$P'$$
: minimise $f(x)$ subject to $g(x) + z = b$, $x \in X, z \ge 0$.

Notice that $\binom{x}{z} \in \mathbb{R}^{n+m}$ is feasible for problem P' if and only if $x \in \mathbb{R}^n$ is feasible for problem P and z = b - g(x).

The Lagrangian is

$$L(x, z, \lambda) = f(x) + \lambda^{\top}(b - g(x) - z) = f(x) + \lambda^{\top}(b - g(x)) - \lambda^{\top}z$$

We now apply the Lagrangian method.

イロト イヨト イヨト イヨト

Step (1). Note that if $\lambda_i > 0$ for some *i* then

$$-\lambda^ op z = -\lambda_1 z_1 - \ldots - \lambda_i z_i - \ldots - \lambda_m z_m o -\infty$$
 as $z_i o \infty$.

Hence

$$\inf_{x\in X, z\geq 0} L(x, z, \lambda) > -\infty$$
 only if $\lambda \leq 0$

・ロト ・回 ト ・ヨト ・ヨト

æ

That is, the inequality constraint $g(x) \le b$ for the variable x introduces a sign constraint $\lambda \le 0$ for the Lagrange multiplier λ . In particular, we have

$$\Lambda = \{\lambda \in \mathbb{R}^m : \lambda \leq 0, \inf_{x \in X} [f(x) + \lambda^\top (b - g(x))] > -\infty\}$$

A (10) × (10) × (10) ×

Step (2). Note that for $\lambda \leq 0$ we have $\inf_{z\geq 0}(-\lambda^{\top}z) = 0$. That is to say, for each $\lambda \in \Lambda$, the optimal $z = z(\lambda)$ satisfies the complementary slackness condition $\lambda^{\top}z = 0$.

- If *i*-th Lagrange multiplier λ_i is non-zero, then z_i = 0 so the *i*-th functional constraint is *tight*, that is, holds with equality.
- If the *i*-th functional constraint is not tight so that z_i > 0 then *i*-th Lagrange multiplier λ_i is zero.

To find the $x = x(\lambda)$ we solve the unconstrained problem to

minimise
$$f(x) + \lambda^{\top}(b - g(x))$$

as usual.

・ロト ・回ト ・ヨト ・ヨト

Step (3). As usual, pick
$$\lambda^* \in \Lambda$$
 so that $x^* = x(\lambda^*)$ and $z^* = z(\lambda^*)$ are feasible, i.e. $g(x^*) \leq b$.

・ロト ・回ト ・ヨト ・ヨト 三日

Consider

$$\begin{array}{rll} P: \text{minimise} & x_1 - 3x_2 \text{ subject to } & x_1^2 + x_2^2 & \leq & 4 \\ & & x_1 + x_2 & \leq & 2 \end{array}$$

Introducing slack variables, the problem is

$$P': {\sf minimise} \quad x_1-3x_2 \; \; {\sf subject to} \quad x_1^2+x_2^2+z_1 \; = \; 4 \\ x_1+x_2 \; + z_2 \; = \; 2 \\ z_1,z_2 \geq 0 \;$$

イロト イヨト イヨト イヨト

The Lagrangian is

$$L = x_1 - 3x_2 + \lambda_1(4 - x_1^2 - x_2^2 - z_1) + \lambda_2(2 - x_1 - x_2 - z_2)$$

By the sign constraint, we consider Lagrange multipliers $\lambda_1, \lambda_2 \leq 0$. Note that

$$D^2L = \left(\begin{array}{cc} -2\lambda_1 & 0\\ 0 & -2\lambda_1 \end{array}\right)$$

so the Hessian is non-negative definite. Hence to find the minimum we need only solve $\frac{\partial L}{\partial x_1} = 0 = \frac{\partial L}{\partial x_2}$ yielding

$$1 - 2\lambda_1 x_1 - \lambda_2 = 0$$
$$-3 - 2\lambda_1 x_2 - \lambda_2 = 0$$

We now have to analyse cases.

• Case $\lambda_1 = 0$. This yields $\lambda_2 = 1$ and $\lambda_2 = -3$, a contradiction.

• Case $\lambda_1 < 0$, $\lambda_2 < 0$. Note that by complementary slackness $z_1 = z_2 = 0$ so both functional constraints are tight. Hence we have four equations and four unknowns:

$$1 - 2\lambda_1 x_1 - \lambda_2 = 0$$

-3 - 2\lambda_1 x_2 - \lambda_2 = 0
$$x_1^2 + x_2^2 = 4$$

$$x_1 + x_2 = 2.$$

Solving the bottom two equations yields the two solutions $(x_1, x_2) = (2, 0)$ and (0, 2). Plugging these into the first equations yields $(x_1, x_2, \lambda_1, \lambda_2) = (2, 0, 1, -3)$ and (0, 2, -1, 1). Unfortunately, neither solution works since the sign constraint $\lambda \leq 0$ is violated for both.

• Case $\lambda_1 < 0$, $\lambda_2 = 0$. Now by complementary slackness $z_1 = 0$ so the first functional constraints is tight. Hence we have three equations and three unknowns:

$$1 - 2\lambda_1 x_1 = 0$$

$$-3 - 2\lambda_1 x_2 = 0$$

$$x_1^2 + x_2^2 = 4$$

From the first equations we get $x_1 = \frac{1}{2\lambda_1}$, $x_2 = -\frac{3}{2\lambda_1}$ and from the third equation $\lambda_1 = \pm \frac{\sqrt{10}}{4}$. But $\lambda_1 < 0$, so the solution

$$(x_1,x_2)=\left(-\sqrt{\frac{2}{5}},3\sqrt{\frac{2}{5}}\right)$$

is optimal by the Lagrangian sufficiency theorem.