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Our typical problem is of the form

minimise f (x) subject to g(x) = b, x ∈ X .

I f : Rn → R is the objective function.

I X ⊆ Rn defines a regional constraint.

I g : Rn → Rm and b ∈ Rm defines m functional constraints.
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We will use the terminology:

I A feasible solution is any x ∈ X such that g(x) = b.

I An optimal solution is a feasible solution x∗ such that
f (x∗) ≤ f (x) for all feasible x .

I The problem is feasible if there exists at least one feasible
solution.

I The problem is bounded if

inf{f (x) : g(x) = b, x ∈ X} > −∞
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We also consider problems of the form

P: maximise f (x) subject to g(x) = b, x ∈ X .

I Feasibility of a solution is defined as before

I An optimal solution is a feasible solution x∗ such that
f (x∗) ≥ f (x) for all feasible x .

This problem is equivalent to

P’: minimise − f (x) subject to g(x) = b, x ∈ X .

I Problems P and P’ have the same set of feasible solutions.

I Problems P and P’ have the same set of optimal solutions.
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Consider the problem

minimise f (x) subject to a ≤ x ≤ b

in the case where f : R→ R is twice differentiable..

Theorem (Necessary conditions for optimality)

Let x∗ be optimal for the problem, and suppose a < x∗ < b then
f ′(x∗) = 0
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Proof. Let ε > 0 be small enough that both x∗ − ε and x∗ + ε are
feasible. Since

f (x∗)− f (x∗ − ε)

ε
≤ 0 ≤ f (x∗ + ε)− f (x)

ε

Sending ε↘ 0 yields f ′(x∗) ≤ 0 ≤ f ′(x∗) as desired.

Mike Tehranchi IB Optimisation: Lecture 1



Introduction
Optimisation on an interval

Convex sets and convex functions
Non-negative definite matrices

Theorem (Sufficient conditions for optimality)

Suppose that x∗ is feasible and f ′(x∗) = 0. If f ′′(x) ≥ 0 for all
feasible x , then x∗ is optimal.
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Proof. Let x be a feasible solution. By Taylor’s theorem

f (x) = f (x∗) + f ′(x∗)(x − x∗) +
1

2
f ′′(ξ)(x − x∗)2.

where ξ is some point between x and x∗. Since f ′(x∗) = 0 and
f ′′(ξ) ≥ 0 by assumption, we have f (x) ≥ f (x∗).
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Notational conventions

I a point in Rn is an n-dimensional column vector

I If f is differentiable, then Df (x) ∈ Rn is the gradient of the
function f at the point x

I If f is twice differentiable, then D2f (x) is the n × n Hessian
matrix of second order partial derivatives.
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Definition
A set X ⊆ Rn is convex if for every pair of points x , y ∈ X and
number 0 < p < 1 we have

px + (1− p)y ∈ X
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Let X ⊆ Rn be convex.

Definition
A function f : X → R is convex if for every pair of points x , y ∈ X
and number 0 < p < 1 we have

f (px + (1− p)y) ≤ pf (x) + (1− p)f (y)
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Theorem (Supporting hyperplane)

Let X ⊆ Rn be convex. The function f : X → R is convex ⇔ for
every x ∈ X there exists a vector λ(x) ∈ Rn such that

f (y)− f (x) ≥ λ(x)>(y − x)

for all y ∈ X .
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Proof of ⇐. First suppose λ(x) exists for all x . Fix y , z ∈ X and
0 < p < 1, and let x = py + (1− p)z . Then

f (y)− f (x) ≥ λ(x)>(y − x)

f (z)− f (x) ≥ λ(x)>(z − x)

Hence

pf (y) + (1− p)f (z)− f (x) ≥ λ(x)>(py + (1− p)z − x) = 0

so f is convex.
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Proof of ⇒ when f is differentiable. Now suppose f is convex. By
definition, for 0 < p < 1 we have

f (x + p(y − x))− f (x)

p
≤ f (y)− f (x).

Now send p ↘ 0 and simplify the left-hand side using vector
calculus. The vector λ(x) = Df (x) satisfies the desired
inequality.
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Consider the problem

minimise f (x) subject to x ∈ X

where f : X → R is differentiable.

Theorem (Sufficient conditions for optimality)

Suppose that x∗ is feasible and that Df (x∗) = 0. If f is convex,
then x∗ is optimal.
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Proof. Let x be feasible. By the supporting hyperplane theorem

f (x)− f (x∗) ≥ (x − x∗)>Df (x∗)

But the right-hand side is zero by assumption, hence
f (x) ≥ f (x∗). .
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Definition
A symmetric n × n matrix is non-negative definite if for every
x ∈ Rn we have x>Ax ≥ 0.
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Let X ⊆ Rn be convex and suppose f : X → Rn is
twice-differentiable.

Theorem (Hessian of a convex function)

If the matrix D2f (x) is non-negative definite for all x , then the
function f is convex.
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Proof. For any two x , y ∈ X we have by Taylor’s theorem that

f (y) = f (x) + (y − x)>Df (x) +
1

2
(y − x)>D2f (ξ)(y − x)

where ξ = px + (1− p)y for some 0 < p < 1. Hence

f (y)− f (x) ≥ λ(x)>(y − x)

for all x , y ∈ X , where λ(x) = Df (x). Then f is convex by the
supporting hyperplane theorem.
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