IB Optimisation: Lecture 1

Mike Tehranchi
University of Cambridge

24 April 2020

资 CANIVERSITY OF

Our typical problem is of the form minimise $f(x)$ subject to $g(x)=b, \quad x \in X$.

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the objective function.
- $X \subseteq \mathbb{R}^{n}$ defines a regional constraint.
- $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $b \in \mathbb{R}^{m}$ defines m functional constraints.

We will use the terminology:

- A feasible solution is any $x \in X$ such that $g(x)=b$.
- An optimal solution is a feasible solution x^{*} such that $f\left(x^{*}\right) \leq f(x)$ for all feasible x.
- The problem is feasible if there exists at least one feasible solution.
- The problem is bounded if

$$
\inf \{f(x): g(x)=b, \quad x \in X\}>-\infty
$$

We also consider problems of the form

$$
\text { P: maximise } f(x) \text { subject to } g(x)=b, \quad x \in X
$$

- Feasibility of a solution is defined as before
- An optimal solution is a feasible solution x^{*} such that $f\left(x^{*}\right) \geq f(x)$ for all feasible x.
This problem is equivalent to

$$
\mathrm{P}^{\prime}: \text { minimise }-f(x) \text { subject to } g(x)=b, \quad x \in X
$$

- Problems P and P^{\prime} have the same set of feasible solutions.
- Problems P and P^{\prime} have the same set of optimal solutions.

Consider the problem minimise $f(x)$ subject to $a \leq x \leq b$
in the case where $f: \mathbb{R} \rightarrow \mathbb{R}$ is twice differentiable..
Theorem (Necessary conditions for optimality)
Let x^{*} be optimal for the problem, and suppose $a<x^{*}<b$ then $f^{\prime}\left(x^{*}\right)=0$

Proof. Let $\varepsilon>0$ be small enough that both $x^{*}-\varepsilon$ and $x^{*}+\varepsilon$ are feasible. Since

$$
\frac{f\left(x^{*}\right)-f\left(x^{*}-\varepsilon\right)}{\varepsilon} \leq 0 \leq \frac{f\left(x^{*}+\varepsilon\right)-f(x)}{\varepsilon}
$$

Sending $\varepsilon \searrow 0$ yields $f^{\prime}\left(x^{*}\right) \leq 0 \leq f^{\prime}\left(x^{*}\right)$ as desired.

Theorem (Sufficient conditions for optimality)
Suppose that x^{*} is feasible and $f^{\prime}\left(x^{*}\right)=0$. If $f^{\prime \prime}(x) \geq 0$ for all feasible x, then x^{*} is optimal.

Proof. Let x be a feasible solution. By Taylor's theorem

$$
f(x)=f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)+\frac{1}{2} f^{\prime \prime}(\xi)\left(x-x^{*}\right)^{2} .
$$

where ξ is some point between x and x^{*}. Since $f^{\prime}\left(x^{*}\right)=0$ and $f^{\prime \prime}(\xi) \geq 0$ by assumption, we have $f(x) \geq f\left(x^{*}\right)$.

Notational conventions

- a point in \mathbb{R}^{n} is an n-dimensional column vector
- If f is differentiable, then $\operatorname{Df}(x) \in \mathbb{R}^{n}$ is the gradient of the function f at the point x
- If f is twice differentiable, then $D^{2} f(x)$ is the $n \times n$ Hessian matrix of second order partial derivatives.

Definition

A set $X \subseteq \mathbb{R}^{n}$ is convex if for every pair of points $x, y \in X$ and number $0<p<1$ we have

$$
p x+(1-p) y \in X
$$

Let $X \subseteq \mathbb{R}^{n}$ be convex.

Definition
A function $f: X \rightarrow \mathbb{R}$ is convex if for every pair of points $x, y \in X$ and number $0<p<1$ we have

$$
f(p x+(1-p) y) \leq p f(x)+(1-p) f(y)
$$

Theorem (Supporting hyperplane)
Let $X \subseteq \mathbb{R}^{n}$ be convex. The function $f: X \rightarrow \mathbb{R}$ is convex \Leftrightarrow for every $x \in X$ there exists a vector $\lambda(x) \in \mathbb{R}^{n}$ such that

$$
f(y)-f(x) \geq \lambda(x)^{\top}(y-x)
$$

for all $y \in X$.

Proof of \Leftarrow. First suppose $\lambda(x)$ exists for all x. Fix $y, z \in X$ and $0<p<1$, and let $x=p y+(1-p) z$. Then

$$
\begin{aligned}
& f(y)-f(x) \geq \lambda(x)^{\top}(y-x) \\
& f(z)-f(x) \geq \lambda(x)^{\top}(z-x)
\end{aligned}
$$

Hence

$$
p f(y)+(1-p) f(z)-f(x) \geq \lambda(x)^{\top}(p y+(1-p) z-x)=0
$$

so f is convex.

Proof of \Rightarrow when f is differentiable. Now suppose f is convex. By definition, for $0<p<1$ we have

$$
\frac{f(x+p(y-x))-f(x)}{p} \leq f(y)-f(x)
$$

Now send $p \searrow 0$ and simplify the left-hand side using vector calculus. The vector $\lambda(x)=D f(x)$ satisfies the desired inequality.

Consider the problem minimise $f(x)$ subject to $x \in X$
where $f: X \rightarrow \mathbb{R}$ is differentiable.
Theorem (Sufficient conditions for optimality)
Suppose that x^{*} is feasible and that $\operatorname{Df}\left(x^{*}\right)=0$. If f is convex, then x^{*} is optimal.

Proof. Let x be feasible. By the supporting hyperplane theorem

$$
f(x)-f\left(x^{*}\right) \geq\left(x-x^{*}\right)^{\top} D f\left(x^{*}\right)
$$

But the right-hand side is zero by assumption, hence $f(x) \geq f\left(x^{*}\right)$.

Definition

A symmetric $n \times n$ matrix is non-negative definite if for every $x \in \mathbb{R}^{n}$ we have $x^{\top} A x \geq 0$.

Let $X \subseteq \mathbb{R}^{n}$ be convex and suppose $f: X \rightarrow \mathbb{R}^{n}$ is twice-differentiable.

Theorem (Hessian of a convex function) If the matrix $D^{2} f(x)$ is non-negative definite for all x, then the function f is convex.

Proof. For any two $x, y \in X$ we have by Taylor's theorem that

$$
f(y)=f(x)+(y-x)^{\top} D f(x)+\frac{1}{2}(y-x)^{\top} D^{2} f(\xi)(y-x)
$$

where $\xi=p x+(1-p) y$ for some $0<p<1$. Hence

$$
f(y)-f(x) \geq \lambda(x)^{\top}(y-x)
$$

for all $x, y \in X$, where $\lambda(x)=\operatorname{Df}(x)$. Then f is convex by the supporting hyperplane theorem.

