IB Optimisation: Lecture 1

Mike Tehranchi

University of Cambridge

24 April 2020

Our typical problem is of the form

minimise f(x) subject to g(x) = b, $x \in X$.

- $f : \mathbb{R}^n \to \mathbb{R}$ is the objective function.
- $X \subseteq \mathbb{R}^n$ defines a regional constraint.
- ▶ $g : \mathbb{R}^n \to \mathbb{R}^m$ and $b \in \mathbb{R}^m$ defines *m* functional constraints.

We will use the terminology:

- A feasible solution is any $x \in X$ such that g(x) = b.
- An optimal solution is a feasible solution x^{*} such that f(x^{*}) ≤ f(x) for all feasible x.
- The problem is *feasible* if there exists at least one feasible solution.
- ► The problem is *bounded* if

$$\inf\{f(x): g(x) = b, x \in X\} > -\infty$$

We also consider problems of the form

P: maximise f(x) subject to g(x) = b, $x \in X$.

Feasibility of a solution is defined as before

An optimal solution is a feasible solution x^{*} such that f(x^{*}) ≥ f(x) for all feasible x.

This problem is equivalent to

P': minimise -f(x) subject to g(x) = b, $x \in X$.

Problems P and P' have the same set of optimal solutions.

Consider the problem

```
minimise f(x) subject to a \le x \le b
```

in the case where $f:\mathbb{R}\to\mathbb{R}$ is twice differentiable..

Theorem (Necessary conditions for optimality) Let x^* be optimal for the problem, and suppose $a < x^* < b$ then $f'(x^*) = 0$

Proof. Let $\varepsilon > 0$ be small enough that both $x^* - \varepsilon$ and $x^* + \varepsilon$ are feasible. Since

$$rac{f(x^*)-f(x^*-arepsilon)}{arepsilon} \leq 0 \leq rac{f(x^*+arepsilon)-f(x)}{arepsilon}$$

Sending $\varepsilon \searrow 0$ yields $f'(x^*) \le 0 \le f'(x^*)$ as desired.

イロン イヨン イヨン

æ

Theorem (Sufficient conditions for optimality) Suppose that x^* is feasible and $f'(x^*) = 0$. If $f''(x) \ge 0$ for all feasible x, then x^* is optimal.

Proof. Let x be a feasible solution. By Taylor's theorem

$$f(x) = f(x^*) + f'(x^*)(x - x^*) + \frac{1}{2}f''(\xi)(x - x^*)^2.$$

where ξ is some point between x and x^* . Since $f'(x^*) = 0$ and $f''(\xi) \ge 0$ by assumption, we have $f(x) \ge f(x^*)$.

Notational conventions

- a point in \mathbb{R}^n is an *n*-dimensional *column* vector
- If f is differentiable, then Df(x) ∈ ℝⁿ is the gradient of the function f at the point x
- ► If f is twice differentiable, then D²f(x) is the n × n Hessian matrix of second order partial derivatives.

Definition

A set $X \subseteq \mathbb{R}^n$ is *convex* if for every pair of points $x, y \in X$ and number 0 we have

$$px + (1 - p)y \in X$$

・ロト ・回ト ・ヨト ・ヨト

臣

Let $X \subseteq \mathbb{R}^n$ be convex.

Definition

A function $f : X \to \mathbb{R}$ is *convex* if for every pair of points $x, y \in X$ and number 0 we have

$$f(px+(1-p)y) \leq pf(x)+(1-p)f(y)$$

イロン イヨン イヨン イヨン

æ

Theorem (Supporting hyperplane)

Let $X \subseteq \mathbb{R}^n$ be convex. The function $f : X \to \mathbb{R}$ is convex \Leftrightarrow for every $x \in X$ there exists a vector $\lambda(x) \in \mathbb{R}^n$ such that

$$f(y) - f(x) \ge \lambda(x)^{\top}(y - x)$$

for all $y \in X$.

Proof of \Leftarrow . First suppose $\lambda(x)$ exists for all x. Fix $y, z \in X$ and 0 , and let <math>x = py + (1 - p)z. Then

$$f(y) - f(x) \ge \lambda(x)^{\top}(y - x)$$

 $f(z) - f(x) \ge \lambda(x)^{\top}(z - x)$

Hence

$$pf(y) + (1-p)f(z) - f(x) \ge \lambda(x)^{\top}(py + (1-p)z - x) = 0$$

so f is convex.

Proof of \Rightarrow *when f is differentiable*. Now suppose *f* is convex. By definition, for 0 we have

$$\frac{f(x+p(y-x))-f(x)}{p} \leq f(y)-f(x).$$

Now send $p \searrow 0$ and simplify the left-hand side using vector calculus. The vector $\lambda(x) = Df(x)$ satisfies the desired inequality.

Consider the problem

```
minimise f(x) subject to x \in X
```

where $f : X \to \mathbb{R}$ is differentiable.

Theorem (Sufficient conditions for optimality)

Suppose that x^* is feasible and that $Df(x^*) = 0$. If f is convex, then x^* is optimal.

Proof. Let x be feasible. By the supporting hyperplane theorem

$$f(x) - f(x^*) \ge (x - x^*)^\top Df(x^*)$$

But the right-hand side is zero by assumption, hence $f(x) \ge f(x^*)$.

Definition

A symmetric $n \times n$ matrix is *non-negative definite* if for every $x \in \mathbb{R}^n$ we have $x^\top A x \ge 0$.

Let $X \subseteq \mathbb{R}^n$ be convex and suppose $f : X \to \mathbb{R}^n$ is twice-differentiable.

Theorem (Hessian of a convex function) If the matrix $D^2f(x)$ is non-negative definite for all x, then the function f is convex.

Proof. For any two $x, y \in X$ we have by Taylor's theorem that

$$f(y) = f(x) + (y - x)^{\top} Df(x) + \frac{1}{2} (y - x)^{\top} D^2 f(\xi) (y - x)$$

where $\xi = px + (1 - p)y$ for some 0 . Hence

$$f(y) - f(x) \ge \lambda(x)^{\top}(y - x)$$

for all $x, y \in X$, where $\lambda(x) = Df(x)$. Then f is convex by the supporting hyperplane theorem.