1.9 Time reversal

For Markov chains, the past and future are independent given the present. This
property is symmetrical in time and suggests looking at Markov chains with time
running backwards. On the other hand, convergence to equilibrium shows be-
haviour which is asymmetrical in time: a highly organised state such as a point
mass decays to a disorganised one, the invariant distribution. This is an example of
entropy increasing. It suggests that if we want complete time-symmetry we must
begin in equilibrium. The next result shows that a Markov chain in equilibrium,
run backwards, is again a Markov chain. The transition matrix may however be
different.

Theorem 1.9.1. Let P be irreducible and have an invariant distribution w. Sup-
pose that (Xy,)o<n<n s Markov(w,P) and set Y, = Xn_n. Then (Yn)o<n<n 8
Markov(w, P), where P = (p;;) is given by

71']']/)\]'1' = 7rz'pz'j fOT all i,j
and P is also irreducible with invariant distribution .
Proof. First we check that P is a stochastic matrix:

- 1
iji = - Zﬁz’pij =1
i€l i€l

since 7 is invariant for P. Next we check that 7 is invariant for P:

E TjPji = E TiPij = Ti
jeI jeI
since P is a stochastic matrix.
We have

P(Yy =ig, Y1 =i1,...,Yn = in)
=P(Xo=in, X1 =iN-1,-.- , XN =ig)
= 7Tiz\rpi]\riz\r_l .- -pi1i0 = Triopio‘h .- 'piN_l’iN

s0, by Theorem 1.1.1, (Y )o<n<n is Markov(ﬂ,ﬁ). Finally, since P is irreducible,
for each pair of states i, j there is a chain of states ig = 4,41,... ,9p—1,%, = j with
Digiy + + - Pin_1in, > 0. Then

Dinin_y - - Pivio = TigPigiy - - - Pin_1in [ Tin >0
so P is also irreducible. O

The chain (Y,,)o<n<n is called the time-reversal of (X,)o<n<n-
A stochastic matrix P and a measure A are said to be in detailed balance if

)\z’pz’j = /\jpj,' for all Z,j

Though obvious, the following result is worth remembering because, when a so-
lution A to the detailed balance equations exists, it is often easier to find by the
detailed balance equations than by the equation A = AP.

Typeset by ApS-TEX



2

Lemma 1.9.2. If P and A are in detailed balance, then A is invariant for P.
PTOOf. We have (/\P)z = EjEI /\jpjz' = Eje[ )\z'pz'j = )\z ]

Let (Xn)n>0 be Markov(A, P), with P irreducible. We say that (X,),>0 is
reversible if, for all N > 1, (Xn_pn)o<n<n is also Markov(A, P).

Theorem 1.9.3. Let P be an irreducible stochastic matrixz and let A be a distri-
bution. Suppose that (Xp)n>o0 is Markov(\, P). Then the following are equivalent:

(a) (Xn)n>o is reversible;
(b) P and )\ are in detailed balance.

Proof. Both (a) and (b) imply that A is invariant for P. Then both (a) and (b)
are equivalent to the statement that P = P in Theorem 1.9.1. O

We begin a collection of examples with a chain which is not reversible.

Example 1.9.4

Consider the Markov chain with diagram:

1
2 2
3 3
— =
3 2
2
3
The transition matrix is
0 2/3 1/3
P={(1/3 0 2/3
2/3 1/3 0

and 7 = (1/3,1/3,1/3) is invariant. Hence P = PT, the transpose of P. But P

is not symmetric, so P # P and this chain is not reversible. A patient observer
would see the chain move clockwise in the long run: under time-reversal the clock
would run backwards!

Example 1.9.5

Consider the Markov chain with diagram:
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where 0 < p =1 — g < 1. The non-zero detailed balance equations read
)\ipi,i+1 = )\i+1pi+1,i for i = 0, 1, e ,M —1.
So a solution is given by

A= ((p/g9)':i=0,1,...,M)

and this may be normalised to give a distribution in detailed balance with P. Hence
this chain is reversible.

If p were much larger than g, one might argue that the chain would tend to move
to the right and its time-reversal to the left. However, this ignores the fact that we
reverse the chain in equilibrium, which in this case would be heavily concentrated
near M. An observer would see the chain spending most of its time near M and
making occasional brief forays to the left, which behaviour is symmetrical in time.

Example 1.9.6 (Random walk on a graph)

A graph G is a countable collection of states, usually called vertices, some of which
are joined by edges, for example:

Thus a graph is a partially drawn Markov chain diagram. There is a natural way
to complete the diagram which gives rise to the random walk on G. The valency
v; of vertex 7 is the number of edges at i. We have to assume that every vertex has
finite valency. The random walk on G picks edges with equal probability:

ol

2
1
3
1 1
2 3
1
1 = 1
34 3 2
4 1 1 3
3 2
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Thus the transition probabilities are given by

_ { 1/v; if (4,7) is an edge
Pig = 0 otherwise.

We assume G is connected, so that P is irreducible. It is easy to see that P is in
detailed balance with v = (v; : i € G). So, if the total valency o = >, v; is
finite, then # = v/o is invariant and P is reversible.

Example 1.9.7 (Random chessboard knight)
A random knight makes each permissible move with equal probability. If it starts
in a corner, how long on average will it take to return?

This is an example of a random walk on a graph: the vertices are the squares of
the chessboard and the edges are the moves that the knight can take:

NS
pea e
GoaR ok
e oin oy
et

Q

The diagram shows a part of the graph. We know by Theorem 1.7.7 and the
preceding example that

E.(T.) = Ure = > (vi/ve)

%

so all we have to do is identify valencies. The four corner squares have valency 2,
and the eight squares adjacent to the corners have valency 3. There are 20 squares
of valency 4, 16 of valency 6, and the 16 central squares have valency 8. Hence

_ 8+24+80+96+128

= 168.
2 68

E.(T.)

Alternatively, if you enjoy solving sets of 64 simultaneous linear equations, you
might try finding = from 7P = m, or calculating E.(T.) using Theorem 1.3.5!



1.9 Time reversal 5

Exercises

1.9.1 In each of the following cases determine whether the stochastic matrix P,
which you may assume is irreducible, is reversible:

0 p 1-p
1—
@ ("7 0,) o (1 0 )
p 1l-p 0

(¢) I={0,1,...,N}and p;; =0if |j —i| > 2;
(d) I={0,1,2,...} and po1 =1, pi,i+1 = p, pi,i-1 =1 —pfori>1;
(e) Pij = Dji foralli,jeS.
1.9.2 Two particles X and Y perform independent random walks on the graph

shown in the diagram. So, for example, a particle at A jumps to B, C or D with
equal probability 1/3.

Find the probability that X and Y ever meet at a vertex in the following cases:
(a) X starts at A and Y starts at B;
(b) X starts at A and Y starts at E. For I = B, D let My denote the expected

time, when both X and Y start at I, until they are once again both at I.
Show that 9MD = 16MB



