STOCHASTIC FINANCIAL MODELS

Example Sheet 3

1. Consider a multi-period asset price model with numéraire $\left(S_{n}^{0}, S_{n}\right)_{0 \leq n \leq T}$. Write X_{n} for the discounted price S_{n} / S_{n}^{0}. Let $\tilde{\mathbb{P}}$ be an equivalent probability measure such that $\tilde{\mathbb{E}}\left(\left|X_{n}\right|\right)<\infty$ for all n. Show that the following are equivalent:
(a) $\tilde{\mathbb{P}}$ is an equivalent martingale measure,
(b) for any previsible self-financing portfolio $\left(\theta_{n}^{0}, \theta_{n}\right)_{1 \leq n \leq T}$ with $\left(\theta_{n}\right)_{1 \leq n \leq T}$ bounded, the discounted final value V_{T} satisfies $\tilde{\mathbb{E}}\left(V_{T}\right)=V_{0}$.

Hence show that if there exists any equivalent martingale measure then the model has no bounded arbitrage.
2. Let $\left(S_{n}\right)_{0 \leq n \leq T}$ be a binomial model with parameters $a<b$ and interest rate $r \in(a, b)$. Assume that $(1+a)(1+b)=1$ and set $p^{*}=(r-a) /(b-a)$. Show that the fair price at time 0 for the contingent claim

$$
C=\min _{0 \leq n \leq T} S_{n}
$$

is given by

$$
V_{0}=\sum_{k=0}^{T} p^{* T-k}\left(1-p^{*}\right)^{k} \sum_{\substack{m=0 \\ m \geq 2 k-T}}^{k}\left(\binom{T}{k-m}-\binom{T}{k-m-1}\right) \frac{S_{0}(1+a)^{m}}{(1+r)^{T}}
$$

3. A gambler has the opportunity to bet on a sequence of N coin tosses. The outcomes of these tosses are independent, the nth toss landing heads with probability p_{n}. Starting from an initial wealth $W_{0}=1$, the gambler may bet any amount in the interval $\left[0, W_{n-1}\right]$ on the outcome of the nth toss, where W_{n-1} is his wealth after $n-1$ tosses. If the gambler calls on the right side, he receives back double his stake, while if he gets it wrong he loses his stake. The gambler wishes to maximize $\mathbb{E}\left(\log W_{N}\right)$. Compute the value function $(V(n, x): x \in(0, \infty))$ of the gambler, first for $n=N-1$ and then generally. Hence find the optimal strategy and the maximal value of $\mathbb{E}\left(\log W_{N}\right)$.
4. An investor may choose at the start of day n to invest an amount, x say, in a risky asset. The investor would then receive back a random amount $\xi_{n} x$ at the end of day n. Any funds which remain uninvested or which are borrowed attract an interest rate of r each day. Assume that the random variables $\left(\xi_{n}\right)_{1 \leq n \leq N}$ are non-negative, integrable, independent and identically distributed. Suppose that the investor has CRRA utility function

$$
U(x)= \begin{cases}\frac{x^{1-R}}{1-R}, & x \in(0, \infty) \\ -\infty, & \text { otherwise }\end{cases}
$$

for some $R \in(0,1)$ and seeks to maximize expected utility at the end of day N. Assume for now that, for some constants $0<\varepsilon<\lambda<\infty$ we have

$$
\begin{equation*}
\xi \in[\varepsilon, \lambda] \quad \text { almost surely. } \tag{1}
\end{equation*}
$$

(a) Consider first the case where the investor chooses to invest each day a proportion $\theta \in[0,1]$ of her current wealth x. Denote by $(V(n, x): x \in(0, \infty))$ the investor's value function at the end of day n. Find the form of $V(n,$.$) , first for n=N-1$ and then generally.
(b) Show that the investor can achieve a better return by borrowing or shortselling if and only if

$$
1+r<\frac{\mathbb{E}\left(\xi^{1-R}\right)}{\mathbb{E}\left(\xi^{-R}\right)} \quad \text { or } \quad \mathbb{E}(\xi)<1+r
$$

(c) Comment on the merits of borrowing or shortselling in the absence of condition (1).
5. Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion and let $c \in(0, \infty)$ and $s \in[0, \infty)$. Show that the following processes are also Brownian motions: (a) $\left(-B_{t}\right)_{t \geq 0}$, (b) $\left(c^{-1} B_{c^{2} t}\right)_{t \geq 0}$, (c) $\left(B_{s+t}-B_{s}\right)_{t \geq 0}$.
6. Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion and let $\theta \in \mathbb{R}$. Define $Q_{t}=B_{t}^{2}-t$ and $Z_{t}=e^{\theta B_{t}-\theta^{2} t / 2}$. Show directly that the processes $\left(Q_{t}\right)_{t \geq 0}$ and $\left(Z_{t}\right)_{t \geq 0}$ are continuous martingales, in a suitable filtration, to be specified.
7. Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion and let $a \geq 0$. Set $T_{a}=\inf \left\{t \geq 0: B_{t}=a\right\}$. Use the optional stopping theorem to show that, for all $\lambda \geq 0$,

$$
\mathbb{E}\left(e^{-\lambda T_{a}}\right)=e^{-a \sqrt{2 \lambda}}
$$

8. Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion and set

$$
M_{t}=\sup _{0 \leq s \leq t} B_{s}, \quad Z_{t}=M_{t}-B_{t}
$$

(a) Show that $\left(M_{t}, Z_{t}\right)$ has the same distribution as $\sqrt{t}\left(M_{1}, Z_{1}\right)$.
(b) Use the reflection principle to find the joint density of $\left(B_{1}, M_{1}\right)$.
(c) Find the joint density of $\left(M_{1}, Z_{1}\right)$.
(d) Show that, for $u \neq v$,

$$
\mathbb{E}\left(e^{u M_{t}+v Z_{t}}\right)=\frac{u \Psi(\sqrt{t} u)-v \Psi(\sqrt{t} v)}{u-v}, \quad \Psi(u)=2 e^{u^{2} / 2} \Phi(u)
$$

Suppose now, more generally, that $\left(B_{t}\right)_{t \geq 0}$ is a Brownian motion with drift $c \in \mathbb{R}$. Thus, $B_{t}=W_{t}+c t$ for some Brownian motion $\left(W_{t}\right)_{t \geq 0}$.
(e) Show that, for $u \neq-2 c$,

$$
\mathbb{E}\left(e^{u M_{t}}\right)=2\left(\frac{c+u}{2 c+u}\right) \Phi((c+u) \sqrt{t}) e^{c u t+u^{2} t / 2}+2\left(\frac{c}{2 c+u}\right) \Phi(-c \sqrt{t})
$$

