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STOCHASTIC FINANCIAL MODELS

Example Sheet 2

1. The trees in an orchard are arranged in a rectangular grid. The numbers of apples on each tree
are shown in the following array.

2 5 6 1 9 4 3 3 2 9
5 3 8 2 1 4 7 7 1 1
4 9 2 1 4 5 5 7 4 3
1 5 3 3 3 2 4 5 3 7
8 3 4 5 1 2 1 4 1 1
0 2 5 7 8 1 3 1 9 2
3 1 5 6 2 9 4 1 1 1
7 2 3 2 4 5 1 6 5 9
4 3 5 6 1 1 1 2 2 3
8 8 4 5 2 5 7 7 4 2
3 4 2 4 1 9 9 7 1 1

You start at the tree in the leftmost column of the array, at the tree with no apples. You now move
one-by-one across the columns, from left to right. You may choose at each step whether to go the
tree in the same row or the tree in the row above, or the tree in the row below. Thus at your first
step, you can choose to go to a tree with 1 apple, 2 apples or 3 apples; if you choose the tree with 3
apples, then next step you get to choose a tree with 3, 4 or 5 apples. Supposing that you keep all the
apples from every tree that you visit in this way, how many apples would you collect if you used the
best route? If you were allowed to select the tree that you started at, which one would it be?

2. Consider the probability space (Ω,F ,P) where Ω = [0, 1), F is the Borel σ-algebra on [0, 1) and
P is Lebesgue measure. Each x ∈ Ω has a binary expansion x = 0.x1x2x3 . . . where xn ∈ {0, 1} for
all n. We make this expansion unique by insisting that, when x is a dyadic rational, we choose the
expansion terminating in zeros. Define

X(x) = x, Xn(x) = xn, Fn = σ(X1, . . . , Xn).

(a) Show that (Xn : n ∈ N) is a sequence of independent random variables.

(b) Show that Fn is generated by a finite measurable partition of Ω.

(c) Show that

E(X|Fn) =
n∑
k=1

2−kXk + 2−n−1 almost surely.
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3. Let (Xn)n≥1 be a sequence of independent identically distributed random variables, having finite
mean µ and variance σ2. Set

S0 = 0, Sn = X1 + · · ·+Xn, Mn = Sn − µn, Qn = M2
n − σ2n.

Fix θ ∈ R and assume that
ψ(θ) = logE(eθX1) <∞.

Set
Zn = eθSn−ψ(θ)n.

Show that the processes (Mn)n≥0, (Qn)n≥0 and (Zn)n≥0 are all martingales, with respect to a common
filtration, to be specified.

4. Let (Xn)n≥0 be a simple random walk on the integers starting from 0, with

p = P(X1 = 1) = 1− P(X1 = −1) ∈ (0, 1).

Fix integers a, b ≥ 1 and set
T = min{n ≥ 0 : Xn ∈ {−a, b}}.

You may assume throughout that T <∞ almost surely, as you know from Markov Chains. Set

Mn = Xn − (2p− 1)n, Qn = M2
n − 4p(1− p)n, Zn = λXn , λ =

1− p
p

.

(a) Show that the processes (Mn)n≥0, (Qn)n≥0 and (Zn)n≥0 are all martingales.

(b) Consider the case p = 1/2. Use the optional stopping theorem to show that, for all n ≥ 0,

E(XT∧n) = 0, E(X2
T∧n) = E(T ∧ n).

Hence find P(XT = b) and E(T ), being careful to justify any limit arguments you use.

(c) Consider the case p 6= 1/2. Use the optional stopping theorem to show that

P(XT = b) =
1− λ−a

λb − λ−a

and

E(T ) =
(1− λ−a)b− (λb − 1)a

(2p− 1)(λb − λ−a)
.

5. Let (Xn)n≥0 be a Markov chain with finite state-space E and transition matrix P . Set Fn =
σ(X0, . . . , Xn). Given a function f on E, we define the function Pf on E by

Pf(x) =
∑
y∈E

pxyf(y).

(a) Show that E(f(Xn+1)|Fn) = Pf(Xn) almost surely.
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(b) Show that the following process is a martingale

Mn = f(Xn)− f(X0)−
n−1∑
k=0

(P − I)f(Xk).

6. Let (Xn)n≥1 be a sequence of independent identically distributed random variables, such that

P(X1 = 0) < 1, E(|X1|) <∞, E(X1) = 0.

Set Sn = X1 + · · ·+Xn.

(a) Let A ∈ σ(Sn). Show that A = {Sn ∈ B} for some Borel set B.

(b) Find E(Sn|X1) and show that E(X1|Sn) = Sn/n almost surely.

(c) Set M0 = 0, M1 = S1 and M2 = S2. Use (b) to find random variables (Mn)n≥3 such that, for
all n ≥ 0,

E(Mn+1|Mn) = Mn almost surely

but also such that (Mn)n≥0 is not a martingale in any filtration.

7. Let Y be a random variable in Rd and let F0 be a sub-σ-algebra of F . Assume that F0 is generated
by a countable partition (Bn : n ∈ N) of Ω. Show that the following are equivalent:

(a) there exists no F0-measurable random variable Θ in Rd such that Θ.Y ≥ 0 almost surely and
Θ.Y > 0 with positive probability,

(b) there exists an equivalent probability measure P̃ such that P̃ = P on F0 and, almost surely,

Ẽ(|Y ||F0) <∞, Ẽ(Y |F0) = 0.

You may assume the equivalence of (a) and (b) in the case F0 = {∅,Ω}.

8. Consider the single-period asset price model S0
0 = S0 = 1 and S0

1 = 1 + r, with

S1 =

{
1 + a, with probability 1− p,
1 + b, with probability p

for some a < b and some p ∈ (0, 1). Show that if r ≤ a or r ≥ b then this model has an arbitrage.

9. Consider a single-period model with two assets: a riskless bond for which S0
0 = 1 and S0

1 = 1 + r,
and a risky asset for which S0 = 1 and S1 takes three values a < b < c with positive probability.
Assume that a < 1 + r < c.

(a) Determine all equivalent martingale measures for this model.

(b) Find all functions f such that the contingent claim C = f(S1) has a replicating portfolio θ.

(c) Show directly that the initial value of the replicating portfolio in (b) is given by E(C)/(1 + r)
for all equivalent martingale measures P.
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10. Consider the binomial model obtained as the degenerate case of the model in Example 9 where
the risky asset S1 can no longer take the value b. Assume that the interest rate r = 0 and a < 1 < c.

(a) Find the optimal investment θ in the risky asset of a utility-maximizing investor with initial
wealth w and utility function U(x) =

√
x.

(b) Show that θ is positive if and only if E(S1) > 1.

11. Consider a single-period model with riskless bond S0
0 = S0

1 = 1 and risky asset given by S0 = 1
and S1 = eσZ+µ where Z ∼ N(0, 1) under P for some µ ∈ R and σ > 0. Fix α > 0 and define P̃
by dP̃/dP ∝ eαZ . Show that P̃ is an equivalent martingale measure for the model for some α, to be
determined.
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