STOCHASTIC FINANCIAL MODELS

Example Sheet 1

1. An investor with strictly concave utility function U seeks to maximize expected utility $\mathbb{E}(U(X))$ over a convex set \mathcal{A} of available contingent claims X. Assume that U(X) is integrable for all $X \in \mathcal{A}$. Show that there is at most one maximizing contingent claim.

2. (a) Show that the utility function of a risk-neutral investor is affine.

(b) Suppose that the utility function U of an investor has the following property: the investor is indifferent between any two contingent claims having the same mean and variance. Show that U must be quadratic.

3. Let X be an $N(\mu, \sigma^2)$ random variable. Show that, for all $\theta \in \mathbb{R}$ and all suitable functions f, the following identity holds

$$\mathbb{E}(f(X+\theta\sigma)) = \mathbb{E}\left(\exp\left\{\theta(X-\mu)/\sigma - \theta^2/2\right\}f(X)\right)$$

and deduce that

$$\mathbb{E}((X - \mu)f(X)) = \sigma^2 \mathbb{E}(f'(X)).$$

Show further that, for all $\alpha, \beta \in \mathbb{R}$,

$$\mathbb{E}(\Phi(\alpha X + \beta)) = \Phi\left(\frac{\alpha \mu + \beta}{\sqrt{1 + \alpha^2 \sigma^2}}\right)$$

where Φ denotes the standard Gaussian distribution function.

4. Let (X, Y) be a bivariate normal random variable. Show that Y - aX is independent of X for some constant a, to be determined. Deduce that, for suitable functions f,

$$\operatorname{cov}(f(X), Y) = \mathbb{E}(f'(X)) \operatorname{cov}(X, Y).$$

5. Let $U : \mathbb{R} \to \mathbb{R}$ be a concave function. Given a constant $\mu \in \mathbb{R}$ and zero-mean random variable Z, set

$$\phi(t) = \mathbb{E}(U(\mu + tZ)).$$

Show that ϕ is concave on \mathbb{R} and is non-increasing on $[0, \infty)$. Show further that, if U is strictly concave and $\mathbb{P}(Z=0) < 1$, then ϕ is also strictly concave and is decreasing on $[0, \infty)$.

6. Let $U : \mathbb{R} \to \mathbb{R}$ be a strictly concave increasing function. Define, for $\mu \in \mathbb{R}$ and $\sigma \in (0, \infty)$,

$$u(\mu,\sigma) = \int_{\mathbb{R}} U(x) \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)} dx, \quad u(\mu,0) = U(\mu).$$

Show that u is strictly concave on $\mathbb{R} \times [0, \infty)$, increasing in μ and decreasing in σ .

Hence show, for a Gaussian single-period asset price model (S_0, S_1) , that an investor maximizing expected utility $\mathbb{E}(U(\theta,S_1))$, subject to given initial wealth θ,S_0 , will always choose a portfolio θ on the mean-variance-efficient frontier.

7. (a) Fix $\varepsilon > 0$ and consider an agent with 'utility function' $U(x) = x - \varepsilon x^2/2$. (While U is decreasing in x for $x > 1/\varepsilon$, so U is not a true utility function, nevertheless we can consider the pricing of contingent claims X by maximizing $\mathbb{E}(U(X))$.) Suppose that the agent has wealth x at time 0, and that he may invest any amount $\theta \in \mathbb{R}$ in a single stock having price $S_0 = 1$ at time 0 and a random price S_1 at time 1. His remaining wealth (or debt) is held in a bond whose value is constant. Set $Z = S_1 - S_0$ and define

$$u(x) = \sup_{\theta \in \mathbb{R}} \mathbb{E}(U(x + \theta Z))$$

Find the unique optimal investment $\theta^*(x)$ such that $u(x) = \mathbb{E}(U(X^*))$ for $X^* = x + \theta^*(x)Z$, and show that $\mathbb{E}(U'(X^*)Z) = 0$.

(b) Assume from now on that x is chosen so that u'(x) > 0. The agent is offered the possibility to buy some multiple tY of another contingent claim Y. Show that, for small t, the agent's bid price $\pi(t)$ for tY is determined uniquely by

$$u(x - \pi(t), t) = u(x)$$

where

$$u(x,t) = \sup_{\theta \in \mathbb{R}} \mathbb{E}(U(x + tY + \theta Z)).$$

(c) Hence show that $\pi(t)$ is differentiable at t = 0, with

$$\dot{\pi}(0) = \frac{\mathbb{E}(U'(X^*)Y)}{\mathbb{E}(U'(X^*))}.$$

8. (a) Consider a single period model with d risky assets. For n = 0, 1, write $S_n = (S_n^1, \ldots, S_n^d)$ for the vector of asset values at time n. We assume that S_0 is non-random and that $S_1 \sim N(\mu, V)$ for some $\mu \in \mathbb{R}^d$ and some invertible covariance matrix V. An agent, with C^2 concave utility function U, aims to maximize her expected utility $\mathbb{E}(U(\theta, S_1))$ at time 1 over portfolios $\theta \in \mathbb{R}^d$, subject to the constraint that $\theta S_0 = w_0$, where w_0 denotes her wealth at time 0. Show that the optimal portfolio has the form

$$\theta^* = \frac{A\mu}{\gamma} + \frac{\gamma w_0 - S_0 (A\mu)}{\gamma S_0 (AS_0)} AS_0$$

where

$$A = V^{-1}, \quad \gamma = -\frac{\mathbb{E}(U''(X_1^*))}{\mathbb{E}(U'(X_1^*))}, \quad X_1^* = \theta^*.S_1.$$

(This has the same form as the optimal portfolio for CARA utility function with coefficient of absolute risk aversion γ .) [*Hint: Question 4 may be useful.*]

(b) Suppose now that we add a riskless asset, having value $S_0^0 = 1$ at time 0 and having value $S_1^0 = 1 + r$ at time 1. Write \bar{S}_n for the augmented vector of asset values $(S_n^0, S_n^1, \ldots, S_n^d)$. The agent now aims to maximize $\mathbb{E}(U(\bar{\theta}.\bar{S}_1))$ over $\bar{\theta} \in \mathbb{R}^{d+1}$, subject to the constraint $\bar{\theta}.\bar{S}_0 = w_0$. Show that, for an analogous interpretation of γ , the optimal portfolio is again of the form associated with the CARA utility function with coefficient of absolute risk aversion γ .

9. Consider a single period model with one riskless asset and d risky assets. Assume that the riskless asset has value 1 at time 0 and has value 1 + r at time 1. Write S_0 and S_1 for the vectors of risky asset prices at time 0 and time 1 respectively. A market for the risky assets is formed of K agents, who hold between them α_i units of asset i before trading begins. Suppose, for $k = 1, \ldots, K$, that agent k has CARA utility function

$$U_k(x) = -e^{-\gamma(k)x}$$

with $\gamma(k) > 0$ for all k. At time 0, the agents share a common belief that $S_1 \sim N(\mu, V)$ for some $\mu \in \mathbb{R}^d$ and some invertible covariance matrix V. Determine the equilibrium price vector S_0 which clears the market, that is, which requires no net transfer of any risky asset into or out of the market. Show further that if $\alpha_i = 0$ for some *i*, then no agent takes a position in asset *i* after trading, and, for all *j*, the price of asset *j* at time 0 is unaffected by any correlation in prices of assets *i* and *j* at time 1.