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1 Utility and mean-variance analysis

1.1 Contingent claims and utility functions

We can model the opportunities available to an investor, and subject to chance, by random
variables defined on some probability space (Ω,F ,P). In this interpretation, we often refer
to random variables as contingent claims. A contingent claim X delivers for consumption
an amount X(ω) which is determined by chance ω ∈ Ω. The probability measure P is
thought of as encoding the beliefs of the investor about the avaliable contingent claims.
By a utility function we mean a non-decreasing function

U : R→ [−∞,∞).

We think of U(x) as quantifying the satisfaction obtained by the investor on consuming
an amount x. For a contingent claim, we will sometimes consider its expected utility.
Whenever we mention the expected utility E(U(X)) of a contingent claim X, it is to be
understood that X has the property that E(U(X)+) <∞, so that E(U(X)) is well defined
and E(U(X)) < ∞. We will often assume that the investor acts to maximize expected
utility. Thus

Y is preferred to X if and only if E(U(X)) 6 E(U(Y )).

Note that the case of equality is included. If E(U(X)) = E(U(Y )), then we say that the
investor is indifferent between X and Y . We say that the investor is risk neutral if, for
any integrable random variable X, the investor is indifferent between E(X) and X. We
say that the investor is risk averse if, for any integrable random variable X, the investor
prefers E(X) to X.

Recall that U is concave if, for all x, y ∈ R and all p ∈ (0, 1),

(1− p)U(x) + pU(y) 6 U((1− p)x+ py).

If this relation holds with < in place of 6 whenever x 6= y, then U is said to be strictly
concave.

Proposition 1.1. An investor with utility function U is risk averse if and only if U is
concave.

Proof. Suppose that the investor is risk averse. Consider a random variable X taking the
value x with probability 1 − p and y with probability p. Then the investor prefers E(X)
to X, that is to say,

(1− p)U(x) + pU(y) = E(U(X)) 6 U(E(X)) = U((1− p)x+ py).

Hence U is concave.
On the other hand, suppose that U is concave. Let X be an integrable random variable

with mean E(X). Then, by Jensen’s inequality, E(U(X)+) <∞ and

E(U(X)) 6 U(E(X))

so E(X) is preferred to X. Hence the investor is risk averse.
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For γ ∈ (0,∞), the CARA utility function of parameter γ is given by

U(x) = CARAγ(x) = − exp(−γx).

For R ∈ (0, 1) ∪ (1,∞), the CRRA utility function of parameter R is given by

U(x) = CRRAR(x) =


x1−R

1−R
, if x > 0,

−∞, otherwise.

The CRRA utility function of parameter 1 is given by

U(x) = CRRA1(x) =

{
log x, if x > 0,

−∞, otherwise.

Here CARA stands for constant absolute risk aversion and CRRA stands for constant
relative risk aversion. These names are explained by the following calculations, which we
do not attempt to make rigorous.

Consider an investor with utility function U and a small contingent claim X. For a
given constant w, we seek to determine whether the investor prefers w or w+X. Since X
is small, by Taylor’s theorem,

U(w +X) ≈ U(w) + U ′(w)X +
1

2
U ′′(w)X2

so

E(U(w +X)) ≈ U(w) + U ′(w)E(X) +
1

2
U ′′(w)E(X2)

and so w +X is preferred to w if and only if

2E(X)

E(X2)
> −U

′′(w)

U ′(w)
.

The right-hand side −U ′′(w)/U ′(w) is called the Arrow–Pratt coefficient of absolute risk
aversion. Note that this coefficient takes the constant value γ when U = CARAγ.

By the same argument, the investor prefers w(1 +X) to w if and only if

2E(X)

E(X2)
> −wU

′′(w)

U ′(w)
.

The new right-hand side −wU ′′(w)/U ′(w) is called the Arrow–Pratt coefficient of relative
risk aversion. This takes the constant value R when U = CRRAR.
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1.2 Reservation prices and marginal prices

Consider an investor with concave utility function U . Fix a set A of available claims such
that E(U(X)+) > ∞ for all X ∈ A. Suppose that the investor is able to choose any
contingent claim in A, and that E(U(X)) is maximized over A at X∗. Let Y be another
contingent claim and let π ∈ R. The investor will wish to buy the claim Y for price π if,
for some X ∈ A,

E(U(X + Y − π)) > E(U(X∗)).

The reservation bid price πb(Y ) for Y is defined to be the supremum of such prices π. On
the other hand, the investor will wish to sell the claim Y for price π if, for some X ∈ A,

E(U(X − Y + π)) > E(U(X∗)).

The reservation ask price πa(Y ) for Y is defined to be the infimum of such prices π.

Proposition 1.2 (Ask above, bid below). Assume that the set of available claims A is
convex. Then, for any contingent claim Y ,

πb(Y ) 6 πa(Y ).

Proof. It will suffice to show that there is no price π at which the investor will both buy
and sell. To show this, suppose for a contradiction that there exist Xa, Xb ∈ A such that

E(U(Xa − Y + π)) > E(U(X∗)), E(U(Xb + Y − π)) > E(U(X∗)).

Since A is convex, X = (Xa +Xb)/2 ∈ A. Since U is concave,

U(Xa − Y + π) + U(Xb + Y − π)

2
6 U(X).

On taking expectations, we obtain the following contradiction

E(U(X∗)) <
E(U(Xa − Y + π)) + E(U(Xb + Y − π))

2
6 E(U(X)) 6 E(U(X∗)).

Assume now A is an affine space and that U is differentiable and strictly concave. Then
the minimizing contingent claim X∗ ∈ A is almost surely unique. We define the marginal
price πm(Y ) of a contingent claim Y by

πm(Y ) =
E(U ′(X∗)Y )

E(U ′(X∗))
.

The following calculation, which we do not make rigorous, explains this definition.
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First note that, for any contingent claim ξ ∈ A − A, the map t 7→ E(U(X∗ + tξ))
achieves it minimum at X∗. Hence

0 =
d

dt

∣∣∣∣
t=0

E(U(X∗ + tξ)) = E(U ′(X∗)ξ).

It is plausible that there is a differentiable path t 7→ X∗(t) in A such that

E(U(X∗(t) + tY − πb(tY ))) = E(U(X∗)).

Then X∗(0) = X∗. Set

ξ =
d

dt

∣∣∣∣
t=0

X∗(t), π =
d

dt

∣∣∣∣
t=0

πb(tY ).

It is plausible that ξ ∈ A−A and that we can differentiate in t to obtain

0 =
d

dt

∣∣∣∣
t=0

E(U(X∗(t) + tY − πb(tY ))) = E(U ′(X∗)(ξ + Y − π)) = E(U ′(X∗)(Y − π)).

The same calculation can be done for ask prices. Hence we obtain

πm(Y ) =
d

dt

∣∣∣∣
t=0

πa(tY ) =
d

dt

∣∣∣∣
t=0

πb(tY ).

The marginal price is thus the unique price above which the investor will sell, and below
which the investor will buy, a small multiple of the claim Y .

1.3 Single-period asset price model

By a single-period asset price model we mean a pair of random variables (S0, S1) in Rd. For
n = 0, 1 and i = 1, . . . , d, we interpret Sin as the price of (a unit of) asset i at time n. We
often add to the model a numéraire, that is to say a pair of random variables (S0

0 , S
0
1) in

(0,∞), interpreted as a further asset whose price is always positive. Write S̄n = (S0
n, Sn).

We call (S̄0, S̄1) a single-period asset price model with numéraire. We will assume that S0

and S0
0 are non-random unless otherwise stated. We usually consider the special case where

the numéraire is a riskless bond, that is, when S0
0 = 1 and S0

1 = 1 + r for some constant
r > −1. Then r is called the interest rate. It may be that there is a random variable ρ > 0
with the property that Si0 = E(Si1ρ) for all i. In this case, we call ρ a state-price density.

We consider the problem of an investor with wealth w0 at time 0. In the case without
numéraire, for each θ ∈ Rd, the investor is able to buy θi units of asset i at time 0, subject
to the constraint θ.S0 = w0. The components θi are allowed to be negative. Having chosen
such a portfolio θ, the investor will then have wealth θ.S1 at time 1.

In the case with numéraire, the portfolio is described by a vector θ̄ = (θ0, θ) ∈ Rd+1,
which is chosen subject to the constraint θ̄.S̄0 = w0. The investor’s wealth at time 1 is
then given by θ̄.S̄1.
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1.4 Portfolio selection using the mean-variance criterion

Consider first a single-period asset price model (S0, S1). Assume that S0 is non-random
and that S1 has mean µ and variance V , with S0, µ linearly independent and V invertible.
Let w0 and w1 be given. We seek a portfolio θ ∈ Rd to satisfy the following mean-variance
criterion

minimize var(θ.S1)

subject to θ.S0 = w0, E(θ.S1) = w1.

We have
E(θ.S1) = θ.µ, var(θ.S1) = θ.(V θ)

so our problem is to

minimize θ.(V θ)

subject to θ.S0 = w0, θ.µ = w1.

We use the method of Lagrange multipliers. Fix λ0, λ1 ∈ R and minimize

L(θ, λ) =
1

2
θ.(V θ)− λ0θ.S0 − λ1θ.µ.

The minimizing θ satisfies

0 =
∂

∂θi
L(θ, λ) = (V θ)i − λ0S

i
0 − λ1µ

i

so
θ = A(λ0S0 + λ1µ), A = V −1.

We then choose λ0, λ1 to satisfy the constraints

w0 = θ.S0 = aλ0 + bλ1, w1 = θ.µ = bλ0 + cλ1

where
a = S0.(AS0), b = S0.(Aµ) = µ.(AS0), c = µ.(Aµ).

Set

∆ = det

(
a b
b c

)
= ac− b2.

Then the minimizing portfolio is given by

θ∗ = θ∗(w1) =
cw0 − bw1

∆
AS0 +

aw1 − bw0

∆
Aµ

with variance

var(θ∗.S1) =
aw2

1 − 2bw0w1 + cw2
0

ac− b2
.
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The set
{θ∗(w1) : w1 ∈ R}

is called the mean-variance-efficient frontier. Note that the minimal variance is quadratic
in the target wealth w1. This is further minimized over w1 at w1 = (b/a)w0, with minimal
variance w2

0/a. We will denote this minimum variance portfolio by

θ∗min =
w0

a
AS0.

Now let us add to the model a riskless bond of interest rate r. This allows the investor
to keep some wealth in the bond, investing less in the market, or to borrow using the bond
and invest more in the market. We again seek the portfolio which minimizes the variance
of wealth at time 1, subject to the constraints of given wealth w0 at time 0 and expected
wealth w1 at time 1. The problem is now to find θ̄ = (θ0, θ) ∈ Rd+1 to

minimize θ.(V θ)

subject to θ0 + θ.S0 = w0, θ0(1 + r) + θ.µ = w1.

On eliminating θ0 using the first constraint, we are left with the single constraint

θ.(µ− (1 + r)S0) = w1 − (1 + r)w0.

Hence, by Lagrange multipliers, or otherwise, the minimizing portfolio θ̄∗ is given by

θ∗ = λθ∗m, θ∗m = A(µ− (1 + r)S0), A = V −1

with λ and θ∗0 determined by the constraints. In particular, we find that

λ =
w1 − (1 + r)w0

(1 + r)2a− 2(1 + r)b+ c
.

The portfolio θ∗m is called the market portfolio.

1.5 Portfolio selection using a CARA utility function

We use the same asset price models as in the preceding section, but now make the additional
assumption that S1 is Gaussian. Fix γ ∈ (0,∞) and consider the CARA utility function

U(x) = CARAγ(x) = − exp{−γx}.

We discuss first the case without riskless asset. An investor with wealth w0 at time 0 may
choose from the set of contingent claims

A = {θ.S1 : θ ∈ Rd, θ.S0 = w0}.
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Thus, to maximize expected utility, we seek a portfolio θ ∈ Rd to

maximize E(U(θ.S1))

subject to θ.S0 = w0.

Since S1 is Gaussian, we have

E(U(θ.S1)) = − exp{−γθ.µ+ γ2θ.(V θ)/2}

so our problem is to

maximize θ.µ− 1

2
γθ.(V θ)

subject to θ.S0 = w0.

We use the method of Lagrange multipliers. Fix λ ∈ R and maximize

L(θ, λ) = θ.µ− 1

2
γθ.(V θ)− λθ.S0.

The maximizing portfolio θ∗ satisfies

0 =
∂

∂θi
L(θ, λ) = µi − γ(V θ)i − λSi0

so
θ∗ = γ−1A(µ− λS0), A = V −1.

On choosing λ to fit the constraints, we obtain

θ∗ = θ∗min + (Aµ− (b/a)AS0)/γ

where a and b are as in the preceding subsection.
We turn to the case with riskless asset S0

0 = 1 and S0
1 = 1 + r. The investor now seeks

a portfolio θ̄ ∈ Rd to

maximize E(U(θ̄.S̄1))

subject to θ̄.S̄0 = w0.

Now
θ̄.S̄0 = θ0 + θ.S0

and
E(U(θ̄.S̄1)) = − exp{−γ(θ0(1 + r) + θ.µ) + γ2θ.(V θ)/2}

so our problem is to

maximize θ0(1 + r) + θ.µ− 1

2
θ.(V θ)

subject to θ0 + θ.S0 = w0.

We use the constraint to eliminate θ0 in the objective function and then differentiate to
see that the maximizing portfolio θ̄∗ is given by

θ∗ = γ−1θ∗m, θ∗m = A(µ− (1 + r)S0), A = V −1, θ∗0 = w0 − θ∗.S0.
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1.6 Capital-asset pricing model

We continue our study of the single-period asset price model with riskless bond. Define

βi =
cov(Si1, θ

∗
m.S1)

var(θ∗m.S1)
, µm = θ∗m.µ, Sm

0 = θm.S0.

We call βi the beta or sensitivity of asset i.

Proposition 1.3. For i = 1, . . . , d, we have

µi − (1 + r)Si0 = βi(µm − (1 + r)Sm
0 ).

Proof. For θ = θm = A(µ− (1 + r)S0), we have

µm − (1 + r)Sm
0 = θ.(µ− (1 + r)S0) = θ.(V θ) = var(θ.S1)

so

µi − (1 + r)Si0 = ei.(V θ) = cov(Si1, θ.S1) = βi var(θ.S1) = βi(µm − (1 + r)Sm
0 ).

We might suppose, given the appearance of the market portfolio θ∗m as optimal, that
the aggregate of all portfolios held by all investors, namely the capitalization-weights of
the relevant market index, offers an observable version of θ∗m. Write

Si1 = (1 +Ri)Si0, Sm
1 = (1 +Rm)Sm

0 .

We can write the formula just shown in terms of the returns Ri and Rm as

E(Ri) = r + β̃i(E(Rm)− r), β̃i =
cov(Ri, Rm)

var(Rm)
.

The sensitivities β̃i could be estimated from historical data, which would give a pricing
formula for the expected returns E(Ri). If we could also estimate E(Ri), this might in-
dicate where the market was undervaluing or overvaluing an asset. However, the precise
estimation of expected returns is generally agreed to be infeasible.
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2 Martingales

2.1 Conditional probabilities and expectations

Let (Ω,F ,P) be a probability space. Recall that, given an event B of positive probability,
we define the conditional probability P(.|B) by

P(A|B) =
P(A ∩B)

P(B)
, A ∈ F .

The associated expectation is written E(.|B). If a random variable X is integrable (with
respect to P), then X is also integrable with respect to P(.|B) and the following formula
holds

E(X|B) =
E(X1A)

P(B)
.

In this course we will use also some further notions of conditional probability and condi-
tional expectation. These are associated not to an event B but to a sub-σ-algebra G of F .
In general, these notions have to be approached indirectly, by the following theorem.

Theorem 2.1. Let G be a sub-σ-algebra of F and let X be an integrable random variable.
Then there exists an integrable random variable Y with the following properties:

(a) Y is G-measurable,

(b) E(Y 1A) = E(X1A) for all A ∈ G.

Moreover, if Y ′ is another integrable random variable satisfying (a) and (b), then Y ′ = Y
almost surely. Moreover, the same statements are valid if we replace ‘integrable’ by ‘non-
negative’, meaning [0,∞]-valued, throughout.

We call any such random variable Y (a version of ) the conditional expectation of X
given G and we write

Y = E(X|G) almost surely.

In the case where G = σ(Z) for some random variable Z, we also write Y = E(X|Z) almost
surely. In the case where X = 1A for some event A, we also write Y = P(A|G) almost
surely.

The following argument proves the uniqueness statement in Theorem 2.1, and also
establishes a useful monotonicity property. Let X ′ be another integrable random variable
such that X 6 X ′ almost surely. Suppose that Y ′ is an integrable random variable which
satisfies (a) and (b) with respect to X ′. Set A = {Y > Y ′} and consider the non-negative
random variable Z = (Y − Y ′)1A. Then, since A ∈ G,

E(Y 1A) = E(X1A) 6 E(X ′1A) = E(Y ′1A)

so E(Z) = E(Y 1A)− E(Y ′1A) 6 0 and so Z = 0 almost surely, which implies that Y 6 Y ′

almost surely. In the case X = X ′, we deduce by symmetry that Y = Y ′ almost surely, as
claimed.
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We will omit proof of the existence statement in Theorem 2.1. A proof may be found
in lecture notes for Advanced Probability. However, in the case where G is discrete, we can
construct a suitable random variable Y directly, as we now show. Consider the case where

G = σ(Bn : n ∈ N) =

{⋃
n∈I

Bn : I ⊆ N

}
for some sequence (Bn : n ∈ N) of disjoint events whose union is Ω. Given an integrable
random variable X, set

Y =
∑
n∈N

E(X|Bn)1Bn

where we make the convention that E(X|Bn) = 0 whenever P(Bn) = 0. Then Y is G-
measurable and, by monotone convergence,

E(|Y |) = E

(∑
n∈N

|E(X|Bn)|1Bn

)
=
∑
n∈N

E(|E(X|Bn)|1Bn) 6
∑
n∈N

E(|X|1Bn) = E(|X|) <∞.

so Y is integrable. Moreover, for A = ∪n∈IBn ∈ G, by dominated convergence,

E(Y 1A) = E

(
Y
∑
n∈I

1Bn

)
=
∑
n∈I

E(Y 1Bn) =
∑
n∈I

E(X|Bn)P(Bn) =
∑
n∈I

E (X1Bn) = E(X1A)

where we used |Y | and |X| as dominating random variables for the second and last equalities
respectively. Hence Y has both properties (a) and (b) of Theorem 2.1, and we have shown
that

E(X|G) =
∑
n∈N

E(X|Bn)1Bn almost surely.

We now examine some general properties of conditional expectation.

Proposition 2.2. Let G be a sub-σ-algebra of F and let X and W be integrable random
variables. Then

(i) E(E(X|G)) = E(X),

(ii) if X is G-measurable, then E(X|G) = X almost surely,

(iii) if X is independent of G, then E(X|G) = E(X) almost surely,

(iv) if X > 0 almost surely, then E(X|G) > 0 almost surely,

(v) E(αX + βW |G) = αE(X|G) + βE(W |G) almost surely, for all α, β ∈ R.

Proof. Properties (i) to (iii) follow easily from the defining properties (a) and (b), while
(iv) follows from the monotonicity property shown above (take X = 0 and X ′ = X). To
show (v), set Y = αE(X|G) + βE(W |G). Then Y is G-measurable and, for all A ∈ G,

E(Y 1A) = αE(E(X|G)1A) + βE(E(W |G)1A) = αE(X1A) + βE(W1A) = E((αX + βW )1A).

Hence Y = E(αX + βW |G) almost surely, as claimed.
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Proposition 2.3 (Tower property). Let G and H be sub-σ-algebras of F with H ⊆ G. Let
X be an integrable random variable. Then

E(E(X|G)|H) = E(X|H) almost surely.

Proof. Choose a version Y of E(E(X|G)|H). Then Y is integrable and H-measurable.
Moreover, for all A ∈ H,

E(Y 1A) = E(E(X|G)1A) = E(X1A)

where the second equality holds because A ∈ G. Hence Y = E(X|H) almost surely.

Proposition 2.4 (Taking out what is known). Let G be a sub-σ-algebra of F . Let X be
an integrable random variable and let Z be a G-measurable random variable such that ZX
is integrable. Then

E(ZX|G) = ZE(X|G) almost surely.

Proof (not examinable in this course). Assume for now that X > 0. Choose a version
Y > 0 of E(X|G). Consider first the case when Z = 1B for some B ∈ G. Then ZY is
G-measurable and, for all A ∈ G,

E(ZY 1A) = E(Y 1A∩B) = E(X1A∩B) = E(ZX1A).

This extends to all simple G-measurable random variables by linearity. Suppose now that
Z is any non-negative G-measurable random variable. Define, for n > 1,

Zn =
(
2−nb2nZc

)
∧ n.

Then Zn is simple and G-measurable for all n so, for all A ∈ G,

E(ZnY 1A) = E(ZnX1A).

Also 0 6 Zn ↑ Z as n → ∞. Since X > 0 and Y > 0, we can pass to the limit n → ∞
using monotone convergence to deduce that, for all A ∈ G

E(ZY 1A) = E(ZX1A).

In particular, by taking A = Ω, we see that if ZX is integrable then so is ZY . For a general
G-measurable Z with ZX integrable, we can apply the preceding to Z± = (±Z)∨ 0 to see
that ZY is integrable and, by subtraction, for all A ∈ G,

E(ZY 1A) = E(ZX1A).

Hence ZY = E(ZX|G) almost surely, as claimed.
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Proposition 2.5 (Averaging over independent variables). Let X1, X2 be random variables
taking values in the measurable spaces (E1, E1), (E2, E2) respectively. Let G be a sub-σ-
algebra of F and suppose that X1 is G-measurable, while X2 is independent of G. Let F
be a non-negative measurable function on E1 × E2. Then we can define a non-negative
measurable function f on E1 by f(x) = E(F (x,X2)) and we have

E(F (X1, X2)|G) = f(X1), almost surely.

Proof (not examinable in this course). Define

A = {B1 ×B2 : B1 ∈ E1 and B2 ∈ E2}.

ThenA is a π-system (see Probability and Measure) andA generates the product σ-algebra
E = E1⊗E2. It is straightforward to check the desired conclusion when F = 1B with B ∈ A.
Denote by D the set of elements of E such that the conclusion holds for F = 1B. Then
A ⊆ D and it can be checked that D is a d-system. Hence D is the whole of E . The
conclusion extends to the case where F is a simple function by linearity, and then to the
case where F is any non-negative measurable function by monotone convergence.

2.2 Definitions

Suppose given a measurable space (Ω,F). A filtration is a family of σ-algebras (Fn)n>0 on
Ω such that Fn ⊆ Fn+1 ⊆ F for all n. A random process is a family of random variables
(Xn)n>0 on (Ω,F). We say that (Xn)n>0 is adapted (to (Fn)n>0) if Xn is Fn-measurable
for all n. Define

FXn = σ(Xk : 0 6 k 6 n).

We call (FXn )n>0 the natural filtration of (Xn)n>0. We think of a filtration as representing
the emergence of information over time. In particular FXn contains all the events deter-
mined by the process (Xn)n>0 up to time n.

Suppose now that (Ω,F ,P) is a probability space, which is equipped with a filtration
(Fn)n>0. We say that a random process (Xn)n>0 is a martingale if, for all n,

(a) Xn is Fn-measurable,

(b) E(|Xn|) <∞,

(c) E(Xn+1|Fn) = Xn almost surely.

When (b) holds, we say that (Xn)n>0 is integrable. Condition (c) is known as the martingale
property. Thus, in short, a martingale is an adapted integrable process which satisfies the
martingale property.

If conditions (a) and (b) hold and, for all n,

E(Xn+1|Fn) 6 Xn almost surely
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then we say that (Xn)n>0 is a supermartingale. Similarly, if conditions (a) and (b) hold
and, for all n,

E(Xn+1|Fn) > Xn almost surely

then we say that (Xn)n>0 is a submartingale.
Any martingale is also a martingale in its natural filtration. When we refer to a mar-

tingale without specifying a filtration, the natural filtration is understood by default.
All the above notions have continuous-time analogues, which are mostly obtained simply

by writing t for n, with the convention that t ∈ [0,∞) where we had n ∈ Z+. Given a
filtration (Ft)t>0, we say that (Xt)t>0 is a martingale if it is adapted, integrable and satisfies,
for all s, t > 0 with s 6 t,

E(Xt|Fs) = Xs almost surely.

The supermartingale and submartingale properties are modified similarly. We say that
(Xt)t>0 is continuous if the map

t 7→ Xt(ω) : [0,∞)→ R

is continuous for all ω. These notions will be relevant when we come to look at Brownian
motion, which is itself a continuous martingale.

2.3 Examples

Let (Xn)n>1 be a sequence of independent identically distributed random variables. Set
F0 = {∅,Ω} and for n > 1 set Fn = σ(X1, . . . , Xn). Set S0 = 0 and Z0 = 1 and define for
n > 1

Sn =
n∑
k=1

Xk, Zn =
n∏
k=1

Xk.

In the case where X1 is integrable with E(X1) = 0, the process (Sn)n>0 is a martingale.
On the other hand, in the case where X1 > 0 with E(X1) = 1, the process (Zn)n>0 is a
martingale. We call (Sn)n>0 an additive martingale and (Zn)n>0 a multiplicative martingale.

Further examples arise in connection with Markov chains. Let (Xn)n>0 be a Markov
chain with countable state-space S and transition matrix P . Set Fn = σ(X0, . . . , Xn).
Given a bounded or non-negative function f on S, we set

Pf(x) =
∑
y∈S

pxyf(y).

Then
E(f(Xn+1)|Fn) = Pf(Xn) almost surely.

We say that f is subharmonic if f(x) 6 Pf(x) for all x.
Suppose that f is subharmonic and define Mn = f(Xn). Then

E(Mn+1|Fn) = Pf(Xn) > f(Xn) = Mn almost surely

so (Mn)n>0 has the submartingale property.
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2.4 Optional stopping

We say that a random time T : Ω→ {0, 1, . . . } ∪ {∞} is a stopping time if, for all n,

{T 6 n} ∈ Fn.

Theorem 2.6 (Optional stopping). Let (Mn)n>0 be a martingale and let T be a bounded
stopping time. Then E(MT ) = E(M0).

Proof. We can choose n so that T 6 n. Then

MT = (MT −MT−1) + · · ·+ (M1 −M0) +M0 = M0 +
n∑
k=1

(Mk −Mk−1)1{k6T}.

Since T is a stopping time, {k 6 T} = {T 6 k− 1}c ∈ Fk−1 for all k. Then, since (Mn)n>0

is a martingale,
E(Mk1{k6T}) = E(Mk−11{k6T}).

Hence

E(MT ) = E(M0) +
n∑
k=1

E((Mk −Mk−1)1{k6T}) = E(M0).

This is also called Doob’s optional sampling theorem. We have stated the basic form
of the result. We now show an extension to unbounded stopping times under additional
conditions.

Theorem 2.7. Let (Mn)n>0 be a martingale and let T be an almost surely finite stopping
time. Suppose that, for some constant C <∞, one of the following two conditions holds:

(a) |Mn| 6 C for all n 6 T ,

(b) E(T ) <∞ and |Mn −Mn−1| 6 C for all n ∈ {1, . . . , T}.

Then E(MT ) = E(M0).

Proof. Since T is a stopping time, T ∧ n is a bounded stopping time for all n so, by the
optional stopping theorem,

E(MT∧n) = E(M0).

Hence, it will suffice to show that E(MT∧n) → E(MT ) as n → ∞. Since T is almost
surely finite, we have MT∧n → MT almost surely as n → ∞. Condition (a) implies that
|MT∧n| 6 C for all n, so the desired limit holds by bounded convergence. On the other
hand, condition (b) implies that |MT∧n| 6 |M0| + CT for all n, so the desired limit holds
by dominated convergence.
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It is instructive to consider two simple examples where the optional stopping theorem
does not apply. Consider first the additive martingale Sn =

∑n
k=1Xk associated to a

sequence of independent identically distributed random variables (Xn)n>1, with

P(X1 = 1) = P(X1 = −1) = 1/2.

Set
T = min{n > 0 : Sn = 1}.

Then (Sn)n>0 is a simple symmetric random walk, which is recurrent, so T < ∞ almost
surely. But

E(ST ) = 1 6= 0 = S0

so the conclusion of the optional stopping theorem is false.
Consider now the multiplicative martingale Zn =

∏n
k=1 Xk associated to a sequence of

independent identically distributed random variables (Xn)n>1, with

P(X1 = 0) = P(X1 = 2) = 1/2.

Set
T = min{n > 0 : Zn = 0}.

Then E(T ) = 2. But
E(ZT ) = 0 6= 1 = Z0

so the conclusion of the optional stopping theorem is again false. In this and the preceding
example, one of the conditions in hypothesis (b) above holds, but not the other.

Here is a further variant of the optional stopping theorem.

Theorem 2.8. Let (Mn)n>0 be a martingale and let T be a stopping time. Then the stopped
process (MT∧n)n>0 is also a martingale.

Proof. Note that

MT∧n = M0 +
n∑
k=1

(Mk −Mk−1)1{T>k}

and, since T is a stopping time, {T > k} = {T 6 k−1}c ∈ Fk−1. Since (Mn)n>0 is adapted
and integrable, this makes it clear that MT∧n is Fn-measurable and integrable for all n.
Now

MT∧(n+1) −MT∧n = (Mn+1 −Mn)1{T>n+1}

so, by taking out what is known,

E(MT∧(n+1) −MT∧n|Fn) = 1{T>n+1}E(Mn+1 −Mn|Fn) = 0.

Hence (MT∧n)n>0 has the martingale property.

We say that a random process (Hn)n>1 is previsible if Hn is Fn−1-measurable for all n.

18



Theorem 2.9 (Martingale transform). Let (Mn)n>0 be a martingale and let (Hn)n>1 be a
bounded previsible process. Define a new random process (Yn)n>0 by

Y0 = 0, Yn =
n∑
k=1

Hk(Mk −Mk−1), n > 1.

Then (Yn)n>0 is also a martingale.

Proof. Since (Mn)n>0 is adapted and integrable, it is clear from the definition that (Yn)n>0

is also adapted and integrable. Now

Yn+1 − Yn = Hn+1(Mn+1 −Mn)

and Hn+1 is Fn-measurable so, by taking out what is known,

E(Yn+1 − Yn|Fn) = Hn+1E(Mn+1 −Mn|cFn) = 0.

Hence (Yn)n>0 also has the martingale property.

The process (Yn)n>0 is called the martingale transform of (Mn)n>0 by (Hn)n>1. The
proof follows the same argument as the preceding result, noting that it remains valid on
substituting 1{T>k} by Hk.

The optional stopping theorem and its variants may be interpreted in terms of an
investor who is able to buy and sell a risky asset. We model the price of the asset by
the martingale (Mn)n>0. Suppose that the investor holds one unit of the asset at time 0
and wishes to sell it by time n. The investor is free to choose when to sell, based on the
information available at the present time, that is, at any stopping time T of the filtration
(Fn)n>0. Then the optional stopping theorem shows that the expected return E(MT ) is
the same no matter what stopping time is chosen. More generally, we may suppose that
the investor is free to buy or sell any number of units in each time period, again based on
information available at the start of the period. The amount Hk held between times k− 1
and k will then be Fk−1-measurable, so defining a previsible process, and the total gain by
time n is then given by Yn. Theorem 2.9 shows that no bounded previsible strategy results
in an expected gain or loss.
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3 Pricing contingent claims

3.1 Multi-period asset price model

Consider a discrete-time random process (S̄n)06n6T in Rd+1, defined on some probability
space (Ω,F ,P) and adapted to a filtration (Fn)06n6T . Write

S̄n = (S0
n, S

1
n, . . . , S

d
n) = (S0

n, Sn).

We assume that (S0
n)06n6T is a numéraire, that is to say, S0

n > 0 for all n. Then we call
(S̄n)06n6T an asset price model.

We use this set-up to model the evolution over time of d+ 1 assets, interpreting Sin as
the price at time n of the ith asset. There are T time periods: 0 to 1, 1 to 2 and finally
T −1 to T . Thus Sin−Sin−1 is the change in price of the ith asset over the nth time period.

We will be interested not so much in the absolute prices Sin, but in the discounted prices
X i
n, given by

X i
n = Sin/S

0
n

and we write
X̄n = (X0

n, X
1
n, . . . , X

d
n) = (1, Xn).

Often, (S0
n)06n6T will be interpreted as a bond or bank account. In this case, we will write

S0
n = (1 + rn)S0

n−1

and call rn the interest rate.
We often take (Fn)06n6T to be the filtration generated by (S̄n)06n6T and take F = FT .

In that case, if say (S0
n)06n6T is a given deterministic process, and the prices of the other

risky assets take only a countable set of values, then we will be able to specify P completely
by specifying the probabilities P(S0 = s0, S1 = s1, . . . , ST = sT ) for all possible sequences
(sn)06n6T in Rd.

Let (θ̄n)16n6T be a random process in Rd+1. Write

θ̄n = (θ0
n, θ

1
n, . . . , θ

d
n) = (θ0

n, θn).

We use such a process to model a portfolio held by an investor, where θin is the number of
units of asset i held in the nth time period, allowing the possibility that this number may
take any real value. We say that a portfolio is self-financing if

θ̄n.S̄n = θ̄n+1.S̄n for n = 1, . . . , T − 1.

This expresses that no funds are added or withdrawn from the portfolio at time n, it is
simply rebalanced between the d + 1 assets. We associate to a self-financing portfolio its
value process (Vn)06n6T given by

V0 = θ̄1.X̄0, Vn = θ̄n.X̄n for n = 1, . . . , T .
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Thus Vn is the total (discounted) value of the portfolio at time n.
We say that a portfolio is previsible if θ̄n is Fn−1-measurable for all n. This is a natural

condition, since it expresses that θ̄n depends only on what is known at the start of the nth
period, that is, at time n− 1.

Proposition 3.1. Let (θn)16n6T be a previsible process in Rd and let V0 ∈ R. Then there is
a unique previsible process (θ0

n)16n6T in R such that (θ̄n)16n6T is a self-financing portfolio
with initial value V0. Moreover, the value process of this portfolio is given by

VT = V0 +
T∑
n=1

θn.(Xn −Xn−1).

Proof. The equations θ̄1.X̄0 = V0 and θ̄n.S̄n = θ̄n+1.S̄n for n = 1, . . . , T − 1, which express
that the portfolio (θ̄n)16n6T has initial value V0 and is self-financing, may be written in the
form

θ0
1 + θ1.X0 = V0, θ0

nS
0
n + θn.Sn = θ0

n+1S
0
n + θn+1.Sn, for n = 1, . . . , T − 1

and then solved uniquely to obtain a previsible process (θ0
n)16n6T . Then, since X0

n = 1
for all n, the value of the resulting portfolio changes by θn.(Xn −Xn−1) over the nth time
period, giving the claimed formula for VT by induction.

3.2 Examples of contingent claims

By a contingent claim of maturity T we mean any non-negative FT -measurable random
variable. We think of the contingent claim C as a contract which pays the investor the
amount C at time T . The fact that the contract can be exercised only at the given time
T can be emphasised by referring to it as a European option.

Here are some simple examples in the case d = 1 of one risky asset:

(a) (ST −K)+ is the call with strike price K, which can be understood as the right but
not the obligation to buy one unit of the asset at time T for price K,

(b) (ST −K)− is the put with strike price K, which can be understood as the right but
not the obligation to sell one unit of the asset at time T for price K.

Calls and puts are also called options, emphasising the option to buy or sell. The following
are examples of exotic options, depending on the entire path (Sn)06n6T . They are both
examples of barrier options which are knocked out or knocked in when the price hits or
passes a given barrier B.

(c) The up-and-out call is a call which is knocked out at level B, given by

C =

{
(ST −K)+, if max06n6T Sn < B,

0, otherwise.
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(d) The down-and-in put is a put which is knocked in at level B, given by

C =

{
(ST −K)−, if min06n6T Sn 6 B,

0, otherwise.

3.3 Equivalent probability measures

We say that a probability measure P̃ on (Ω,F) is equivalent to P, and we write P̃ ∼ P, if
there exists a non-negative random variable ρ such that

(a) P(ρ > 0) = 1,

(b) P̃(A) = E(ρ1A) for all A ∈ F .

Note that P̃(A) = 0 whenever P(A) = 0. We leave as an exercise to check that any two
non-negative random variables satisfying (b) are equal P-almost surely. We call ρ a density
for P̃ with respect to P and write

dP̃/dP = ρ almost surely.

By a standard argument of measure theory, the expectation Ẽ associated with P̃ is given
by

Ẽ(X) = E(ρX)

for all non-negative random variables X. We leave as an exercise to check that the relation
P̃ ∼ P is symmetric and transitive, with

dP/dP̃ = 1/ρ almost surely.

3.4 Arbitrage

By an arbitrage for (S̄n)06n6T we mean a previsible self-financing portfolio (θ̄n)16n6T with
initial value V0 = 0 such that

VT > 0 almost surely

and
VT > 0 with positive probability.

An arbitrage thus delivers a positive return with no downside risk. The value process
(Vn)06n6T depends on (S̄n)06n6T only through (Xn)06n6T , and it depends on (θ̄n)16n6T

only through V0 and (θn)16n6T . We will therefore allow ourselves to refer to (θn)16n6T as
an arbitrage for (Xn)06n6T when VT satisfies the given conditions.

Note that the notion of arbitrage depends only on the equivalence class of the proba-
bility measure P.

If there is no arbitrage for (S̄n)06n6T , then we say that (S̄n)06n6T is arbitrage free.
This is considered a reasonable assumption, on the grounds that the other investors in the
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market would not collectively give away such a return, even if they held different views
about the evolution of the asset prices.

The following proposition shows a generic way in which an arbitrage-free asset price
model can arise.

Proposition 3.2. Let (Xn)06n6T be a martingale in Rd. Then (Xn)06n6T is arbitrage free.

Proof. Let (θn)16n6T be a previsible process in Rd and set

Vn =
n∑
k=1

θk.(Xk −Xk−1).

Suppose that VT > 0 almost surely. We have E(VT |FT ) = VT almost surely. Suppose in a
backwards induction for n 6 T that Vn = E(VT |Fn) almost surely. We have

Vn = Vn−1 + θn.(Xn −Xn−1).

Fix R <∞ and set A = {|θn| 6 R and |Vn−1| 6 R}. Then A ∈ Fn−1 and

1AVn = 1AVn−1 + 1Aθn.(Xn −Xn−1).

Since Vn = E(VT |Fn) > 0 almost surely and 1A|Vn−1| 6 R and 1A|θn| 6 R, we can take
the conditional expectation on Fn−1, taking out what is known, to obtain

1AE(Vn|Fn−1) = 1AVn−1 + 1AθnE(Xn −Xn−1|Fn−1) = 1AVn−1 almost surely.

But R was arbitrary and |θn| and |Vn−1| are almost surely finite, so we must have

Vn−1 = E(Vn|Fn−1) = E(VT |Fn−1) almost surely

and the induction proceeds. In particular, we see that E(VT |F0) = V0 = 0 almost surely,
so E(VT ) = 0 and so VT = 0 almost surely. Hence there is no arbitrage.

A simpler version of the preceding argument shows that there is no bounded arbitrage.
For, if (θn)16n6T is a bounded previsible process, then the martingale transform

VT =
T∑
n=1

θn.(Xn −Xn−1)

is integrable and E(VT ) = 0. Hence, if VT > 0 almost surely, then VT = 0 almost surely, so
(θn)16n6T is not an arbitrage. A more elaborate argument was used in the proof to show
that even unbounded processes cannot give an arbitrage.
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3.5 Characterization of a single-period model with no arbitrage

We explore the implications of the no arbitrage assumption in the special case T = 1. Thus
we consider a pair of random variables (S̄0, S̄1) in Rd+1. We make the usual assumption
that S0

0 > 0 and S1
0 > 0. A previsible self-financing portfolio with V0 = 0 is then specified

by the choice of a single F0-measurable random variable θ = θ1 in Rd, and then V1 = θ.Y ,
where Y = X1 − X0 and Xn = Sn/S

0
n for n = 0, 1. Then θ is an arbitrage if θ.Y > 0

almost surely and θ.Y > 0 with positive probability. When F0 = {∅,Ω}, the following
result characterizes the arbitrage free case.

Proposition 3.3. Let Y be a random variable in Rd. Then the following are equivalent:

(a) there exists no θ ∈ Rd such that θ.Y > 0 almost surely and θ.Y > 0 with positive
probability,

(b) there is an equivalent probability measure P̃ for which Y is integrable with Ẽ(Y ) = 0.

Proof. Suppose that (a) holds. Then, for all θ ∈ Rd, if θ.Y 6= 0 with positive probability,
then θ.Y > 0 with positive probability.

It will suffice to consider the case where all exponential moments of Y are finite. In
general, we can replace P by the equivalent probability measure P̃ given by dP̃/dP ∝ e−|Y |

2
,

for which the exponential moments of Y are all finite. We will assume that this has been
done and drop the tildes.

Define φ : Rd → (0,∞) by φ(θ) = E(eθ.Y ). Then φ is differentiable and

φ′(θ) = E(Y eθ.Y ).

We will show that φ achieves a minimum value at some θ∗ ∈ Rd. We can define an
equivalent probability measure P̃ by dP̃/dP = eθ

∗.Y /Z, where Z = φ(θ∗). Then

Ẽ(|Y |) = E(|Y |eθ∗.Y )/Z <∞, Ẽ(Y ) = E(Y eθ
∗.Y )/Z = φ′(θ∗)/Z = 0.

Hence (b) holds.
Write Rd as an orthogonal direct sum E0 ⊕ E1, where

E0 = {θ ∈ Rd : θ.Y = 0 almost surely}.

Then φ(θ0 + θ1) = φ(θ1) for all θ0 ∈ E0 and θ1 ∈ E1. Hence it will suffice to show that φ
achieves a minimum on E1. Since φ(0) = 1, it will then suffice to show that φ(θ) > 1 for
all θ ∈ E1 with |θ| sufficiently large.

Set ψ(t) = 0∨ t∧ 1 and define f(θ) = E(ψ(θ.Y )). Then ψ is Lipschitz on R of constant
1 and f is continuous on Rd by bounded convergence. Define S = {θ ∈ E1 : |θ| = 1}. For
θ ∈ S, we have P(θ.Y 6= 0) > 0 so P(θ.Y > 0) > 0 and so f(θ) > 0. Set

ε =
1

2
inf{f(θ) : θ ∈ S}.
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Then ε > 0 because S is compact. Then, for all θ ∈ S,

P(θ.Y > ε) = P(θ.Y − ε > 0) > E(ψ(θ.Y − ε)) > E(ψ(θ.Y ))− ε = f(θ)− ε > ε

Hence we obtain φ(tθ) > εetε > 1 for all t > (1/ε) log(1/ε), as required.
Suppose on the other hand that (b) holds and let θ ∈ Rd. Then

Ẽ(θ.Y ) = θ.Ẽ(Y ) = 0

so, if θ.Y > 0 almost surely, then θ.Y = 0 almost surely. Hence (a) holds.

3.6 Fundamental theorem of asset pricing

Let (S̄n)06n6T be a standard asset price model in Rd+1. Recall that Xn = (X1
n, . . . , X

d
n)

where X i
n = Sin/S

0
n for all i. We say that a probability measure P̃ on F is an equivalent

martingale measure if P̃ ∼ P and (Xn)06n6T is a martingale under P̃. The term risk-neutral
measure is also used in this case.

Theorem 3.4. The following are equivalent:

(a) (S̄n)06n6T has no arbitrage,

(b) (S̄n)06n6T has an equivalent martingale measure.

The fact that (b) impies (a) follows from Proposition 3.2. A proof of the reverse
implication given in the Appendix.

3.7 Completeness

Let C be a time-T contingent claim. Write D = C/S0
T for its discounted value. We say

that C is attainable or replicable if there is a previsible self-financing portfolio (θ̄n)16n6T

such that C = θ̄T .S̄T . Equivalently, C (or we sometimes say D) is attainable if there exists
an F0-measurable random variable V0 and a previsible process (θn)16n6T in Rd such that

D = V0 +
T∑
n=1

θn.(Xn −Xn−1).

Then V0 is called the fair price for C and (θ̄n)16n6T is called a replicating portfolio. We
also call (θ̄n)16n6T a hedging portfolio: it allows the seller of the contingent claim C to
deliver it at time T by investing V0 suitably in the available assets at time 0, and shifting
the portfolio among the assets according to (θ̄n)16n6T until time T . Note that anyone who
sells the claim C at time 0 for a different price to V0 allows other investors to make risk-
free profits by replicating C or −C in the market. If all contingent claims are attainable,
then we say that the asset price model (S̄n)06n6T is complete. We will identify a class of
complete models in the next section.
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Proposition 3.5. Assume that F0 = {∅,Ω} and FT = σ(S̄1, . . . , S̄T ).

(a) Let C be a non-negative attainable time-T contingent claim and suppose that P̃ is an
equivalent martingale measure. Then the fair price V0 for C is given by

V0 = Ẽ(D), D = C/S0
T .

(b) If (S̄n)06n6T is complete, and the numéraire is non-random, then there is at most
one equivalent martingale measure.

Proof. Since C is attainable, there is a previsible process (θn)16n6T such that

D = V0 +
T∑
n=1

θn(Xn −Xn−1).

Then, by the argument used in the proof of Proposition 3.2,

Ẽ(D|F0) = V0 almost surely.

Since F0 is trivial, this proves (a). Then, if the numéraire is non-random, we have Ẽ(C) =
V0S

0
T , so Ẽ(C) does not depend on the choice of P̃. If (S̄n)06n6T is complete, then this is

true of all non-negative time-T contingent claims, in particular for C = 1A for all A ∈ FT .
Hence P̃ is unique.

3.8 Binomial model

Fix parameters r, a, b ∈ (−1,∞), p ∈ (0, 1) and S0 ∈ (0,∞), with a < b. We say that
(S0

n, Sn)06n6T is a binomial model with interest rate r and parameters a < b and p if

S0
n = (1 + r)n, Sn = S0

n∏
k=1

(1 +Rk)

where R1, . . . , RT are independent identically distributed random variables with

P(R1 = a) = 1− p, P(R1 = b) = p.

This is also called the Cox–Ross–Rubinstein model. Assume that F = FT = σ(R1, . . . , RT ).

Proposition 3.6. A binomial model with interest rate r and parameters a < b and p has
an arbitrage unless r ∈ (a, b).

Proof. Consider the self-financing portfolio (θ̄n)16n6T with V0 = 0, θ1 = 1 and θn = 0 for
n > 2. Then

VT = X1 −X0 =
S0(1 +R1)

1 + r
− S0 = S0

R1 − r
1 + r

.

If r 6 a, then VT > 0 and VT = S0(b − r)/(1 + r) > 0 with probability p, so (θ̄n)16n6T is
an arbitrage. On the other hand, if r > b, then VT 6 0 and VT = −S0(r − a)(1 + r) < 0
with probability 1− p, so (−θ̄n)16n6T is an arbitrage.
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Proposition 3.7. Let (S0
n, Sn)06n6T be a binomial model with interest rate r and parame-

ters a < b and p. Suppose that r ∈ (a, b) and define p∗ ∈ (0, 1) by

p∗ =
r − a
b− a

.

Consider the equivalent probability measure P∗ on F given by

dP∗

dP
=

(
p∗

p

)UT
(

1− p∗

1− p

)DT

where UT = (T + ST )/2 and DT = (T − ST )/2. Then, under P∗, the random variables
R1, . . . , RT are independent and identically distributed, with

P(R1 = a) = 1− p∗, P(R1 = b) = p∗.

Moreover, the discounted price process (Xn)06n6T is a martingale under P∗.

Proof. Note that r = (1− p∗)a+ p∗b. We have

Xn =
Sn
S0
n

= S0

n∏
k=1

(
1 +Rk

1 + r

)
and

E∗
(

1 +R1

1 + r

)
=

(1− p∗)(1 + a) + p∗(1 + b)

1 + r
=

1 + (1− p∗)a+ p∗b

1 + r
= 1.

Since the random variables R1, . . . , RT are independent and identically distributed under
P∗, this implies that (Xn)06n6T is a P∗-martingale.

Note that Propositions 3.2 and 3.7 show that the binomial model has no arbitrage for
r ∈ (a, b). We will show in Proposition 3.9 that the binomial model is also complete.
Hence, the fair price V0 of any contingent claim of the form C = f(ST ) is given by

V0 =
E∗(C)

(1 + r)T
= (1 + r)−T

T∑
k=0

(
T

k

)
(1− p∗)T−kp∗kf(S0(1 + a)T−k(1 + b)k).

More generally, given a contingent claim C = f(S0, S1, . . . , ST ), its fair price at time 0 is
given by

V0 =
E∗(C)

(1 + r)T
= (1 + r)−T

∑
f(s0, s1, . . . , sT )P∗(S1 = s1, . . . , ST = sT )

where we sum over the 2T possible paths (sn)06n6T starting from S0 and

P∗(S1 = s1, . . . , ST = sT ) = (1− p∗)T−kp∗k
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where k = |{n ∈ {1, . . . , T} : sn = (1 + b)sn−1}|. It is sometimes efficient to organize this
calculation over a tree. Set

fT (s0, . . . , sT ) = f(s0, . . . , sT )

and carry out the backwards recursion for n 6 T − 1

fn(s0, . . . , sn) = (1− p∗)fn+1(s0, . . . , sn, (1 + a)sn) + p∗fn+1(s0, . . . , sn, (1 + b)sn).

The nodes of the tree are the partial paths (s0, . . . , sn), each with two upward edges to
(s0, . . . , sn, (1 + a)sn) and (s0, . . . , sn, (1 + b)sn). We start with the values at the leaves
(s0, . . . , sT ) and compute down the tree to the root s0.

Proposition 3.8. For n = 0, 1, . . . , T , almost surely,

E∗(f(S0, . . . , ST )|Fn) = fn(S0, . . . , Sn)

and in particular
E∗(C) = f0(S0).

Proof. The claim holds for n = T . Let n 6 T − 1 and suppose for a reverse induction that
the claim holds for n+ 1. Fix s0, . . . , sn and define A = {S0 = s0, . . . , Sn = sn}. Then

E∗(f(S0, . . . , ST )|A) = E∗(fn+1(S0, . . . , Sn, Sn+1)|A)

= (1− p∗)fn+1(s0, . . . , sn, (1 + a)sn) + p∗fn+1(s0, . . . , sn, (1 + b)sn)

= fn(s0, . . . , sn) = E∗(fn(S0, . . . , Sn)|A).

Now fn(S0, . . . , Sn) is Fn-measurable, and every element of Fn is a finite union of such sets
A. Hence, almost surely,

E∗(f(S0, . . . , ST )|Fn) = fn(S0, . . . , Sn)

and the induction proceeds.

We now show completeness for the binomial model by identifying a replicating portfolio
for a general contingent claim C = f(S0, . . . , ST ). Define

∆n(s0, . . . , sn−1) =
fn(s0, . . . , sn−1, (1 + b)sn−1)− fn(s0, . . . , sn−1, (1 + a)sn−1)

(1 + r)T−n(b− a)sn−1

.

Proposition 3.9. The contingent claim C = f(S0, . . . , ST ) has a replicating portfolio
(θn)16n6T given by

θn = ∆n(S0, . . . , Sn−1).
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Proof. Define, for n = 0, 1, . . . , T ,

Vn =
E∗(C|Fn)

(1 + r)T
.

Fix a path (s0, s1, . . . , sn−1) starting from S0, set φ(x) = fn(s0, . . . , sn−1, (1 + x)sn−1) and
consider the events

Ω0 = {S1 = s1, . . . , Sn−1 = sn−1}, Ωa = Ω0 ∩ {Rn = a}, Ωb = Ω0 ∩ {Rn = b}.

On Ωa, we have

Vn =
φ(a)

(1 + r)T
, Vn−1 =

fn−1(s0, . . . , sn−1)

(1 + r)T
=

(1− p∗)φ(a) + p∗φ(b)

(1 + r)T

so

Vn − Vn−1 =
p∗(φ(a)− φ(b))

(1 + r)T

and

Xn −Xn−1 =
1 + a

1 + r
Xn−1 −Xn−1 =

(a− r)sn−1

(1 + r)n

so

θn(Xn −Xn−1) =

(
a− r
b− a

)
φ(b)− φ(a)

(1 + r)T
= Vn − Vn−1.

By a similar calculation, the same identity holds on Ωb, and hence everywhere, since
s1, . . . , sn−1 are arbitrary. On summing over n, we obtain

D = V0 +
T∑
n=1

θn(Xn −Xn−1).

showing that (θn)16n6T is a replicating portfolio for C, as claimed.

3.9 Joint distribution of a simple random walk and its maximum

A reflection trick allows to obtain the following result.

Proposition 3.10. Let (Wn)06n6T be a simple random walk on the integers starting from
0, with P(W1 = 1) = p. Set MT = max06n6T Wn. Then, for all integers m, k > 0, with
k 6 T and 2k − T 6 m 6 k,

P(MT = m and WT = 2k − T ) =

((
T

k −m

)
−
(

T

k −m− 1

))
pk(1− p)T−k.
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Proof. Write E for the set of paths taken by the random walk. Thus

E = {w = (wn)06n6T : w0 = 0 and wn = wn−1 ± 1 for n = 1, . . . , T}.

Consider the map φ : E → E which reflects about level m the portion of the path (if any)
after it first hits level m. Then φ ◦ φ is the identity, so φ is a bijection. Define

A = {w ∈ E : max
06n6T

wn > m and wT = 2k − T}.

Then
φ(A) = {w ∈ E : wT = 2m− 2k + T}.

Hence

|A| = |φ(A)| =
(

T

k −m

)
.

But the walk takes every path in A with equal probability pk(1− p)T−k. Hence

P(MT > m and WT = 2k − T ) =

(
T

k −m

)
pk(1− p)T−k

and the result follows by subtracting the corresponding formula for m+ 1.

In the special case where (1 + a)(1 + b) = 1, we can realise the binomial model as a
function of a simple random walk (Wn)06n6T on the integers by setting

Sn = S0(1 + b)Wn .

Assume that the interest rate r ∈ (a, b) and set p∗ = (r − a)/(b− a) as usual. Proposition
3.10 then gives an explicit formula for the fair price at time 0 of any contingent claim of
the form

C = F

(
ST , max

06n6T
Sn

)
which is given by

V0 =
E∗(C)

(1 + r)T
=

T∑
k=0

k∑
m=0

m>2k−T

f(k,m)

(1 + r)T

((
T

k −m

)
−
(

T

k −m− 1

))
p∗k(1− p∗)T−k

where f(k,m) = F (S0(1 + b)2k−T , S0(1 + b)m).
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4 Dynamic programming

4.1 Bellman equation

The trees in an orchard are arranged in a rectangular grid. The numbers of apples on each
tree are shown in the following array.

2 5 6 1 9 4 3 3 2 9
5 3 8 2 1 4 7 7 1 1
4 9 2 1 4 5 5 7 4 3
1 5 3 3 3 2 4 5 3 7
8 3 4 5 1 2 1 4 1 1
0 2 5 7 8 1 3 1 9 2
3 1 5 6 2 9 4 1 1 1
7 2 3 2 4 5 1 6 5 9
4 3 5 6 1 1 1 2 2 3
8 8 4 5 2 5 7 7 4 2
3 4 2 4 1 9 9 7 1 1

You start in the leftmost column of the array, at the tree with no apples. You now move
one-by-one across the columns, from left to right. You may choose at each step whether
to go the tree in the same row or the tree in the row above, or the tree in the row below.
Thus at your first step, you can choose to go to a tree with 1 apple, 2 apples or 3 apples;
if you choose the tree with 3 apples, then next step you get to choose a tree with 3, 4 or
5 apples. Supposing that you keep all the apples from every tree that you visit in this
way, how many apples would you collect if you used the best route? If you were allowed
to select the tree that you started at, which one would it be?

55 53 46 39 38 29 21 14 11 9
63 51 48 40 31 29 25 18 10 1
62 58 42 35 34 30 23 18 11 3
59 57 49 37 33 25 22 16 10 7
65 56 52 46 26 24 17 15 8 1
56 55 53 48 41 25 18 12 11 2
58 54 53 47 35 33 24 15 10 1
62 55 50 39 37 29 21 20 14 9
61 53 49 44 33 26 21 16 11 3
65 57 48 43 38 32 25 18 7 2
60 52 45 42 37 36 27 14 3 1

A simple idea gives an efficient approach this problem. Label the tree in the nth column
and xth row by (n, x), and write a(n, x) for the number of apples on that tree. Write
V (n, x) for the maximal number of apples which can be collected starting from that tree
along any allowed path. Then V (10, x) = a(10, x) for all x and

V (n, x) = a(n, x) + max{V (n+ 1, x− 1), V (n+ 1, x), V (n+ 1, x+ 1)}, n = 1, . . . , 9
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where we set V (n, 0) = V (n, 12) = 0. Then we can compute V by a backwards recursion,
as shown in the second array. This not only tells us that the best route from (1, 6) collects
56 apples, but also reveals that route as +− 00− 0− 00, where ± means move up or down
and 0 means stay in the same row. Moreover, we see that the trees (1, 5) and (1, 10) are
the best starting points.

We now formulate the idea just used in a more general context. Fix a state-space E,
an action-space A and an integer T > 1. Suppose given a measurable map

F : {0, 1, . . . , T − 1} × E × A× [0, 1]→ E.

Let (εn)16n6T be a sequence of independent uniform random variables in [0, 1] and set
Fn = σ(ε1, . . . , εn). Fix an initial time k ∈ {0, 1, . . . , T}. By an adapted control, we mean
a sequence of random variables u = (un)k6n6T−1 in A such that un is Fn-measurable for all
n. Given, an initial state x ∈ E, and an adapted control u we can define a random process
(Xn)k6n6T by setting

Xk = x, Xn+1 = F (n,Xn, un, εn+1), n = k, . . . , T − 1.

We will sometimes write Xn = Xu
n(k, x) to make explicit the dependence on (k, x) and on

the control u.
Consider the problem of choosing u to optimize the expected reward

V u(k, x) = E

(
T−1∑
n=k

r(n,Xu
n(k, x), un) +R(Xu

T (k, x))

)
.

where r and R are given non-negative measurable functions on {0, . . . , T − 1}×E×A and
E respectively. Define the value function V on {0, 1, . . . , T} × E by

V (k, x) = sup
u
V u(k, x)

where the supremum is taken over all adapted controls. If V (k, x) = V u(k, x), then we say
that u is an optimal control from (k, x).

Proposition 4.1 (Bellman equation). Define a function v on {0, 1, . . . , T} × E by the
following backwards recursion

v(T, x) = R(x),

v(n, x) = sup
a∈A
{r(n, x, a) + Pv(n, x, a)}, n = 0, 1, . . . , T − 1 (1)

where
Pv(n, x, a) = E(v(n+ 1, F (n, x, a, εn+1))).

Suppose that there is a measurable function a : {0, 1, . . . , T − 1} × E → A such that

v(n, x) = r(n, x, a(n, x)) + Pv(n, x, a(n, x)), n = 0, 1, . . . , T − 1.

Then V = v. Moreover, for all k ∈ {0, 1, . . . , T − 1} and x ∈ E, we can define recursively
an optimal control from (k, x) by

u∗n = a(n,Xu∗

n (k, x)).
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Proof. It will suffice to consider the case k = 0. Fix an adapted control u = (un)06n6T−1

and a starting state x ∈ E. Write Xn = Xu
n(0, x). By Proposition 2.1,

E(v(n+ 1, Xn+1)|Fn) = Pv(n,Xn, un) almost surely.

Consider the process

Mn =
n−1∑
k=0

r(k,Xk, uk) + v(n,Xn).

Then, almost surely,

E(Mn+1|Fn) =
n−1∑
k=0

r(k,Xk, uk) + r(n,Xn, un) + Pv(n,Xn, un)

6
n−1∑
k=0

r(k,Xk, uk) + v(n,Xn) = Mn

with equality if u = u∗. Hence

V u(0, x) = E(MT ) 6M0 = v(0, x) = V u∗(0, x).

Since u was arbitrary, this shows also that V (0, x) = v(0, x).

A analogous result holds by a similar argument when we regard r and R as costs and
seek to minimize the expected total cost, and also when there are a mixture of costs and
rewards, with some additional care about integrability. It is sometimes convenient to allow
a time-dependent state-space En and a time-and-state-dependent action-space An,x. The
same argument applies. We used independent uniform random variables (εn)16n6T as a
source of randomness, but the argument applies equally with any sequence of independent
random variables.

4.2 American calls and puts

An American call of expiry T confers the right but not the obligation to buy one unit
of the underlying asset (St)06n6T for price K at any stopping time τ 6 T chosen by the
holder. An American put of expiry T confers the right but not the obligation to sell one
unit of the underlying asset (St)06n6T for price K at any stopping time τ 6 T chosen by
the holder. Let us assume an interest rate of r. Then the American call is the family of
time-T contingent claims

{Cτ : τ a stopping time , τ 6 T}

while the American put is the family

{Pτ : τ a stopping time , τ 6 T}
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where
Cτ = (1 + r)T−τ (Sτ −K)+, Pτ = (1 + r)T−τ (K − Sτ )+.

We will consider the pricing of these options when (Sn)06n6T is a binomial model of param-
eters a < b with interest rate r ∈ (a, b). Write, as usual, P∗ for the equivalent martingale
measure, corresponding to the parameter choice p∗ = (r − a)/(b − a). Since the binomial
model is complete, the investor can hedge all contingent claims C with E∗(C) = 0 in the
market. Hence he will choose from each of the families above the claim with maximal
expectation under P∗.

Consider first the American call. Fix a stopping time τ 6 T and fix n ∈ {0, 1, . . . , T}.
Note that

E∗(ST |Fn) = (1 + r)T−nSn, almost surely.

Consider the event
A = {Sτ > K and τ = n}.

Then

E∗(CT1{τ=n}) > E∗((ST −K)1A) = E∗(((1 + r)T−nSn −K)1A)

> E∗((1 + r)T−n(Sn −K)1A) = E∗(Cτ1{τ=n}).

On summing over n, we see that E∗(CT ) > E∗(Cτ ). Hence the choice τ = T is always
optimal, making the American and European calls equivalent.

In order to find the fair price V0 of the American put, we must solve the following
optimal stopping problem: maximize

E∗
(
(1 + r)T−τ (K − Sτ )+

)
over all stopping times τ 6 T . At each time n ∈ {0, . . . , T − 1}, the investor has two
possible actions: to stop, receiving reward (1 + r)T−n(K − Sn), or to continue. If he has
not already stopped, at time T he receives a reward of (K − ST )+. Define

En = {S0(1 + a)n−k(1 + b)k : k = 0, . . . , n}.

The Bellman equation for this problem is then

v(T, x) = (K − x)+, for x ∈ ET ,
v(n, x) = max{(1 + r)T−n(K − x), (1− p∗)v(n+ 1, x(1 + a)) + p∗v(n+ 1, x(1 + b))},

for x ∈ En and n = 0, . . . , T − 1.

This can be solved by backwards recursion to find v(0, S0). Then

V0 = sup
τ

E∗((1 + r)T−τ (K − Sτ )+) = v(0, S0)

and the optimal stopping time τ is the smallest n ∈ {0, 1, . . . , T} such that

(1 + r)T−n(K − Sn)+ = v(n, Sn).
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5 Brownian motion

5.1 Definition and basic properties

A real-valued random process (Bt)t>0 is said to be a Brownian motion if B0 = 0 and

(a) for all s, t > 0, the random variable Bs+t − Bs is Gaussian, of mean 0 and variance
t, and is independent of σ(Br : r 6 s),

(b) for all ω ∈ Ω, the map t 7→ Bt(ω) : [0,∞)→ R is continuous.

We sometimes replace the condition B0 = 0 by B0 = x, when we will refer to (Bt)t>0 as a
Brownian motion starting from x. We often write Px and Ex in this case as a reminder. If
the starting point is not mentioned, then the default is always to start at 0.

Proposition 5.1. Let (Bt)t>0 be a continuous random process starting from 0. Then the
following are equivalent:

(a) (Bt)t>0 is a Brownian motion,

(b) (Bt)t>0 is a zero-mean Gaussian process with E(BsBt) = s ∧ t for all s, t > 0.

Proof. Suppose (a) holds. To see that (Bt)t>0 is zero-mean Gaussian, it suffices to note
that, for 0 = t0 6 t1 6 . . . tn, the random variable (Bt1 , . . . , Btn) is a linear function of the
independent zero-mean Gaussian random variables (Bt1 −Bt0 , . . . , Btn −Btn−1) and hence
is Gaussian. For the covariance, we have, for s 6 t,

E(BsBt) = E(B2
s ) + E(Bs(Bt −Bs)) = s

since Bs ∼ N(0, s) and Bt −Bs is independent of Bs. Hence (b) holds.
Suppose on the other hand that (b) holds. Then, for s, t > 0, Bs+t−Bs is a zero-mean

Gaussian and
E((Bs+t −Bs)

2) = (s+ t)− 2s+ s = t

so Bs+t−Bs ∼ N(0, t). To show that Bs+t−Bs is independent of σ(Br : r 6 s), it suffices
by a result from Probability and Measure to show that it is independent of (Br1 , . . . , Brn)
for all n and all 0 6 r1 6 . . . 6 rn 6 s. Then, given that (Bt)t>0 is zero-mean Gaussian, it
suffices to note that

E(Brk(Bt+s −Bs)) = 0

for all k. Hence (Bt)t>0 is a Brownian motion.

The following proposition is left as an exercise.

Proposition 5.2 (Scaling property). Let (Bt)t>0 be a Brownian motion and let c ∈ (0,∞).
Set B̃t = c−1Bc2t. Then (B̃t)t>0 is also a Brownian motion.

Proposition 5.3. Let (Bt)t>0 be a Brownian motion. Then (Bt)t>0 exits every finite
interval almost surely.
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Proof. Fix an interval I, of length L say. Consider the sequence of independent events
(An)n>1 given by

An = {|Bn −Bn−1| > L}.

Then P(An) = P(|B1| > L) > 0 for all n. By independence, this implies that P(∪nAn) = 1.
But, on An, if (Bt)t>0 has not left I by time n− 1, it must do so by time n. Hence (Bt)t>0

leaves I almost surely.

Write Ft = σ(Bs : s ∈ [0, t]). A random time T : Ω→ [0,∞] is a stopping time if

{T 6 t} ∈ Ft for all t.

Write FT for the set of events A ∈ F∞ such that

A ∩ {T 6 t} ∈ Ft for all t.

We will need the following proposition which is proved in Advanced Probability.

Proposition 5.4 (Strong Markov property). Let (Bt)t>0 be a Brownian motion and let T
be an almost surely finite stopping time. Define (B̃t)t>0 by

B̃t = BT+t −BT .

Then (B̃t)t>0 is also a Brownian motion and is independent of FT .

Proposition 5.5. Let (Bt)t>0 be a Brownian motion and let a ∈ R. Define

Ta = inf{t > 0 : Bt = a}.

Then Ta is an almost surely finite stopping time.

Proof. It suffices to consider the case a > 0. Since (Bt)t>0 is continuous, we have

{Ta 6 t} = {Bt = a} ∪
⋂

r<a,r∈Q

⋃
s<t,s∈Q

{Bs > r} ∈ Ft.

Hence Ta is a stopping time. Set T = T1 ∧ T−1. Then T is a stopping time and, since
Brownian motion leaves every interval, T <∞ almost surely. By symmetry

P(BT = 1) = P(BT = −1) = 1/2.

Then, by the strong Markov property, the sequence of integers hit by (Bt)t>0, omitting
immediate repeats, is a simple symmetric random walk. Since the random walk is recurrent,
it follows that Ta <∞ almost surely.
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5.2 Brownian motion as a limit of random walks

Brownian motion can be understood as a limit object, associated to random walks having
steps of mean 0 and variance 1. We take a limit which scales down the time-step and the
spatial steps of the walk in a coordinated way, so that the variance of the walk at time
1 is always 1. It turns out that, in this limit, all such random walks ‘look almost the
same’ and all ‘approximate’ the behaviour of Brownian motion. The following theorem is
a combination of Wiener’s Theorem and Donsker’s Invariance Principle, which are both
proved in Advanced Probability.

Theorem 5.6. Assume that (Ω,F ,P) is not discrete. Let m be a probability measure on R
of mean 0 and variance 1. Then there exist a random process (Bt)t>0 and, for each k ∈ N,

a random process (W
(k)
t )t>0 such that:

(a) (Bt)t>0 is a Brownian motion,

(b) (W
(k)
n/k)n>0 is a random walk with step distribution m, and (W

(k)
t )t>0 is the linear

interpolation of its values on {n/k : n ∈ Z+},

(c) W
(k)
t /
√
k → Bt as k →∞ uniformly on compacts in t almost surely.

5.3 Change of probability measure

We now show that the distribution of a Brownian motion with constant drift is absolutely
continuous with respect to Wiener measure and we identify its density. This is a special
case of the Cameron–Martin theorem.

Proposition 5.7. Let T > 0 and c ∈ R. Let B = (Bt)t∈[0,T ] be a Brownian motion and

define B̃ = (B̃t)t∈[0,T ] by B̃t = Bt + ct. Then, for all measurable sets A ⊆ C[0, T ], we have

P(B̃ ∈ A) = E(1{B∈A}e
cBT−c2T/2).

Proof. Consider the set A of all subsets of C[0, T ] of the form

A = {x ∈ C[0, T ] : xtk − xtk−1
∈ Ik for k = 1, . . . , n}

where n ∈ N and 0 = t0 6 t1 6 . . . 6 tn = T and I1, . . . , In are intervals in R. By a
standard argument from Probability and Measure, it will suffice to prove the formula in
the case A ∈ A.

For X ∼ N(0, s) and X̃ = X + cs, we have X̃ ∼ N(cs, s) so, for any interval I,

P(X̃ ∈ I) =

∫
I

1√
2πs

e−(x−cs)2/(2s)dx

=

∫
I

1√
2πs

e−x
2/(2s)ecx−c

2s/2dx = E(1{X∈I}e
cX−c2s/2).
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Set sk = tk − tk−1 and Xk = Btk − Btk−1
and X̃k = B̃tk − B̃tk−1

. Then X1, . . . , Xn are

independent, with Xk ∼ N(0, sk) and X̃k = Xk + csk. Hence

P(B̃ ∈ A) = P

(
n∏
k=1

1{X̃k∈Ik}

)
=

n∏
k=1

P(X̃k ∈ Ik)

=
n∏
k=1

E(1{Xk∈Ik}e
cXk−c2sk/2) = E

(
n∏
k=1

1{Xk∈Ik}e
cXk−c2sk/2

)
= E

(
1{B∈A}e

cBT−c2T/2
)

where we used that X1 + · · ·+Xn = BT and s1 + · · ·+ sn = T .

5.4 Reflection principle

The reflection trick used in the proof of Proposition 3.10 has the following continuum
analogue.

Proposition 5.8 (Reflection principle). Let (Bt)t>0 be a Brownian motion and let a > 0.
Set

Ta = inf{t > 0 : Bt = a}
and define (B̃t)t>0 by

B̃t =

{
Bt, if t 6 Ta,

2a−Bt, if t > Ta.

Then (B̃t)t>0 is also a Brownian motion.

Proof. Write T for Ta in the proof. We know that T <∞ almost surely and T is a stopping
time. Define processes Y = (Yt)t>0 and Z = (Zt)t>0 by

Yt = BT∧t, Zt = BT+t −BT .

Then Yt is FT -measurable for all t and, by the strong Markov property, Z is a Brownian
motion independent of FT . So −Z is also a Brownian motion independent of FT . Hence
(Y, Z) and (Y,−Z) have the same distribution on C[0,∞)× C0[0,∞).

Consider the measurable map F : C[0,∞)× C0[0,∞)→ C[0,∞) given by

F (y, z) =

{
y(t), if t 6 τ(y),

y(τ(y)) + z(t− τ(y)), if t > τ(y)

where τ(y) = inf{t > 0 : y(t) = a}. Then F (Y, Z) = B and F (Y,−Z) = B̃, so B and B̃
have the same distribution.

The reflection principle facilitates some useful calculations for Brownian motion. For
example, consider the maximum process

Mt = sup
06s6t

Bs.
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Then, for all a > 0 and x 6 a,

{Mt > a and Bt 6 x} = {B̃t > 2a− x}

so
P(Mt > a and Bt 6 x) = P(Bt > 2a− x).

In particular, taking x = a, we see that

P(Mt > a) = P(Bt > a) + P(Mt > a and Bt 6 a) = 2P(Bt > a).

Hence Mt has the same distribution as |Bt|. We can moreover compute the moment
generating function. For

E(euM1) = 2

∫ ∞
0

eux
1√
2π
e−x

2/2dx = 2eu
2/2

∫ ∞
0

1√
2π
e−(x−u)2/2dx = 2eu

2/2Φ(u)

and so, by scaling,

E(euMt) = E(eu
√
tM1) = 2eu

2t/2Φ(u
√
t).

5.5 Hitting probabilities

Proposition 5.9. Let (Bt)t>0 be a Brownian motion and let a > 0. Then Ta has a density
function ha on [0,∞) given by

ha(t) =
a√
2πt3

e−a
2/(2t).

Proof. By the reflection principle,

P(Ta 6 t) = P(Mt > a) = 2P(Bt > a).

But

P(Bt > a) = P(
√
tB1 > a) =

∫ ∞
a/
√
t

1√
2π
e−y

2/2dy

and we can now differentiate in t to see that Ta has the claimed density.

5.6 Transition density for killed Brownian motion

Proposition 5.10. Let x, a ∈ R with x 6 a. Let (Bt)t>0 be a Brownian motion starting
from x. Then, for all non-negative measurable functions f ,

Ex(f(Bt)1{Ta>t}) =

∫ a

−∞
f(y)pat (x, y)dy

where
pat (x, y) = pt(x, y)− pt(x, 2a− y).
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Proof. By a standard argument, it suffices to consider the case where f = 1(−∞,b] for some
b 6 a. Set Mt = sups6tBs. Then, using the reflection principle,

Ex(f(Bt)1{Ta>t}) = Px(Mt < a and Bt 6 b)

= Px(Bt 6 b)− Px(Mt > a and Bt 6 b)

= Px(Bt 6 b)− Px(Bt > 2a− b)

=

∫ b

−∞
pt(x, y)dy −

∫ b

−∞
pt(x, 2a− y)dy =

∫ a

−∞
f(y)pat (x, y)dy.

By change of measure we can deduce an analogous result for Brownian motion with
drift. Fix c ∈ R and set

B̃t = Bt + ct, T̃a = inf{t > 0 : B̃t = a}.

Then

Ex(f(B̃t)1{T̃a>t}) = Ex(f(Bt)e
c(Bt−x)−c2t/21{Ta>t}) =

∫ a

−∞
f(y)p̃at (x, y)dy.

where
p̃at (x, y) = ec(y−x)−c2t/2pat (x, y).
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6 Black–Scholes model

6.1 Black–Scholes pricing formula

By a Black–Scholes model we mean any pair of processes (S0
t )t>0 and (St)t>0 of the form

S0
t = ert, St = S0e

σBt+µt

where (Bt)t>0 is a Brownian motion and where r, µ ∈ R and σ, S0 ∈ (0,∞). We interpret
(S0

t )t>0 as the price of a riskless bond of interest rate r. We interpret (St)t>0 as the price
of a risky asset. We call µ the drift and σ the volatility.

The process (eσBt−σ2t/2)t>0 is a martingale. Hence for the special choice of drift

µ∗ = r − σ2/2.

the discounted asset price (e−rtSt)t>0 is a martingale.

Proposition 6.1. Let (S0
t , St)t>0 be a Black–Scholes model of interest rate r, drift µ and

volatility σ. Fix T ∈ (0,∞) and consider the equivalent probability measure P∗ given by

dP∗

dP
= eλBT−λ2T/2, σλ = µ∗ − µ = r − σ2/2− µ.

Then, under P∗, the discounted asset price (e−rtSt)06t6T is a martingale.

Proof. Set B∗t = Bt − λt. By Proposition 5.7, under P∗, (Bt)06t6T is a Brownian motion
with drift λ, so (B∗t )06t6T is a Brownian motion. Now

σB∗t + µ∗t = σBt − σλt+ µ∗t = σBt + µt

so
e−rtSt = S0e

σBt+µt−rt = S0e
σB∗

t +µ∗t−rt = S0e
σB∗

t−σ2t/2.

Hence, under P∗, (e−rtSt)06t6T is a martingale.

We will abuse notation in writing P∗ instead of P when considering a Black–Scholes
model with drift µ∗.

By a time-T contingent claim, we mean an FT -measurable random variable C, consid-
ered as an amount payable to the investor at time T . Let us assume that an investor is free
to trade in the asset and the bond. The Black–Scholes price V0 for the claim C is defined
by

V0 = e−rTE∗(C). (2)

An argument which we will not develop shows that V0 is the unique fair price for C, in the
sense that any other price presents an opportunity to make risk-free profits by buying or
selling the claim and trading continuously in the asset and the bond. We have not made
precise what it means for the investor to trade freely in the asset and the bond. However,
the following examples give some plausibility to the assertion that V0 is the unique fair
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price for C. In the case C = ST , the investor can replicate C by buying one unit of the
asset at time 0, so ST must have time-0 price S0. On the other hand, in the case of a
constant claim C = K, the investor can replicate C by investing e−rTK in the bond at
time 0, so K (at time T ) must have time-0 price e−rTK. In both cases, the price is the
Black–Scholes price.

More generally, by a simple replicable claim we mean any claim C such that

e−rTC = C0 +
n∑
k=1

θk(Xtk −Xtk−1
)

for some constant C0, some n ∈ N and 0 = t0 6 t1 6 . . . 6 tn = T , with θk a bounded
Ftk−1

-measurable random variable for all k. Here Xt is the discounted asset price e−rtSt.
We leave as an exercise to show that any such claim C can be replicated at time T for cost
C0 at time 0. Since (Xt)06t6T is a martingale under P∗, we can take expectations to obtain

V0 = e−rTE∗(C) = C0.

Hence V0 is the unique fair price for C.
In fact, by the Brownian martingale representation theorem, every integrable FT -

measurable contingent claim is the limit in probability of simple replicable claims, and
this can be used to justify the validity of the pricing formula in general.

6.2 Black–Scholes PDE

For some simple types of option, the Black–Scholes pricing theory can be cast in terms
of PDE. In this section, we show how the stochastic theory reduces to a PDE for options
depending only on the final asset price. Consider a Black–Scholes model with interest rate
r and risky asset (St)t>0 having drift µ and volatility σ. We derive first the form of the
backward equation for the transition density of (St)t>0. Consider the case S0 = s. Then

logSt = log s+ σBt + µt

so logSt has density p(σ2t, x(t), .) on R, where

p(t, x, z) =
1√
2πt

e−|x−z|
2/(2t), x(t) = log s+ µt.

Write ρ(t, s, .) for the density function of St on (0,∞) when S0 = s. We will write ρ̇ and
ρ′ for derivatives in the first and second argument respectively. We have

yρ(t, s, y) = p(σ2t, x(t), z), z = log y

so
syρ′(t, s, y) = p′(σ2t, x(t), z), sy(ρ′ + sρ′′)(t, s, y) = p′′(σ2t, x(t), z)

and so

ρ̇(t, s, y) = y−1
(
σ2ṗ+ µp′

)
= y−1

(
1

2
σ2p′′ + µp′

)
=

1

2
σ2s2ρ′′(t, s, y)+

(
µ+

1

2
σ2

)
sρ′(t, s, y).
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Proposition 6.2. Let F be a continuous function on (0,∞) of polynomial growth. For
t ∈ [0, T ] and s ∈ (0,∞), write V (t, s) for the time-t value of the time-T contingent claim
F (ST ), conditional on St = s, as given by the Black–Scholes pricing formula

V (t, s) = e−r(T−t)E∗(F (ST )|St = s) = e−r(T−t)E(F (seσBT−t+µ
∗(T−t))).

Then V is continuous on [0, T ]×(0,∞) and C1,2 on [0, T )×(0,∞) and satisfies the Black–
Scholes PDE

LV = V̇ +
1

2
σ2s2V ′′ + rsV ′ − rV = 0

with terminal value V (., T ) = F .

Proof. Set
v(t, s, y) = e−r(T−t)ρ(T − t, s, y)

where ρ is the transition density for the case of drift µ∗ = r − σ2/2. Then

v̇(t, s, y) = e−r(T−t)(rρ− ρ̇)(T − t, s, y)

and

ρ̇ =
1

2
σ2s2ρ′′ + rsρ′

so

v̇ = rv − 1

2
σ2s2v′′ − rsv′

and so

Lv = v̇ +
1

2
σ2s2v′′ + rsv′ − rv = 0.

Now

V (t, s) =

∫ ∞
0

F (y)v(t, s, y)dy

and the growth condition on F , combined with super-polynomial decay in v(t, s, .), allows
to differentiate under the integral sign to obtain

LV (t, s) =

∫ ∞
0

F (y)Lv(t, s, y)dy = 0.

Finally, continuity of V on [0, T ]× (0,∞) follows from continuity of Brownian motion by
dominated convergence.

6.3 Binomial approximation to Black–Scholes

Recall Theorem 5.6 on the convergence of random walks to Brownian motion. In the
special case where the step distribution m of the random walk is uniform on {−1, 1}, this

guarantees the existence of random processes (Bt)t>0 and, for each k ∈ N, (W
(k)
t )t>0 such

that:
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(a) (Bt)t>0 is a Brownian motion,

(b) (W
(k)
n/k)n>0 is a simple symmetric random walk on the integers, and (W

(k)
t )t>0 is the

linear interpolation of its values on {n/k : n ∈ Z+},

(c) W
(k)
t /
√
k → Bt as k →∞ uniformly on compacts in t almost surely.

Given µ, r ∈ R and σ ∈ (0,∞), for k sufficiently large, we can define ak < rk < bk by

1 + ak = exp

(
− σ√

k
+
µ

k

)
, 1 + bk = exp

(
σ√
k

+
µ

k

)
, 1 + rk = exp

( r
k

)
.

Then, given S0 ∈ (0,∞), set

S
(k)
t = S0 exp

(
σW

(k)
t√
k

+ µt

)
, St = S0 exp(σBt + µt), S

(k)0
t = S0

t = exp(rt).

Then

(a) (S0
t , St)t>0 is a Black–Scholes model of drift µ, volatility σ and interest rate r,

(b) (S
(k)0
n/k , S

(k)
n/k)n>0 is a binomial model of parameters ak < rk < bk and p = 1/2,

(c) S
(k)
t → St as k →∞ uniformly on compacts in t almost surely.

Hence we can obtain the Black–Scholes model as a limit of binomial models. Moreover, as
we now show, the equivalent martingale measure for the binomial model converges to that
for the Black–Scholes model.

Fix a time interval [0, T ] and a convergent sequence λk → λ in R. For convenience, we
will assume now that T is an integer. Set

pk =
1

2

(
1 +

λk√
k

)
.

We can and do choose k sufficiently large that pk ∈ (0, 1). Set

U
(k)
T =

kT +W
(k)
T

2
, D

(k)
T =

kT −W (k)
T

2

and define

Z
(k)
T =

(
1− λk√

k

)D(k)
T
(

1 +
λk√
k

)U(k)
T

, ZT = exp

(
λBT −

λ2T

2

)
.

We can define equivalent probability measures P̃(k) and P̃ on F by

dP̃(k)

dP
= Z

(k)
T ,

dP̃
dP

= ZT .

Then, by Proposition 5.7,
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(a) under P̃, (S0
t , St)06t6T is a Black–Scholes model of drift µ + λσ, volatility σ and

interest rate r,

(b) under P̃(k), (S
(k)0
n/k , S

(k)
n/k)06n6kT is a binomial model of parameters ak < rk < bk and

pk.

The convergence W
(k)
T /
√
k → BT allows us to show that Z

(k)
T → ZT almost surely. Then,

since Z
(k)
T > 0 and ZT > 0 and E(Z

(k)
T ) = E(ZT ) = 1, we have also Z

(k)
T → ZT in L1(P). It

follows that, for any bounded continuous map G on C[0, T ], as k →∞,

Ẽ(k)
(
G(S(k))

)
→ Ẽ (G(S)) .

Define λ∗k and λ∗ by

1

2

(
1 +

λ∗k√
k

)
= p∗k =

rk − ak
bk − ak

, µ+ σλ∗ = µ∗ = r − σ2

2

and write P(k)∗ and P∗ for the corresponding equivalent measures, which are the martingale
measures for the binomial model and the Black–Scholes model, respectively. It is left as
an exercise to check that λk → λ, so

E(k)∗ (G(S(k))
)
→ Ẽ∗ (G(S))

giving an exact tie-up between the discrete-time and continuous-time theories.

6.4 Computational methods for option prices

The Black–Scholes pricing formula

V0 = e−rTE∗(C)

expresses a quantity we need to know for trading in terms of an integral with respect to
Wiener measure. For some important options, there is a closed form expression for V0.
We will derive some such expressions in later sections. For now, we consider some general
ways to compute numerically the value of the integral. It will be convenient to assume
throughout that µ = µ∗ = r − σ2/2 and drop the stars.

Note first that, while C is typically expressed in terms of the asset price process
(St)06t6T , this can be written in the form St = S0e

σBt+µt, where (Bt)t>0 is a Brownian
motion. So, we can assume that C = F (B) for some function F on C[0, T ]. Indeed, for
terminal-value options, we can assume that C = f(BT ) for some function f on R. Hence,
in the simplest case, we have

V0 = e−rT
∫
R
f(
√
Ty)

1√
2π
e−y

2/2dy

and we could compute V0 by a trapezoidal approximation.
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There are at least two contexts where this will not be an efficient way to proceed. First,
going beyond the scope of our prior discussion, we may have multiple assets, leading to a
multi-dimensional integral

V0 = e−rT
∫
Rd

f(
√
Ty)

1

(2π)d/2
e−|y|

2/2dy.

The computational cost for such integrals grows exponentially in d. Second, it may be of
interest to compute not just the time-0 price for a single initial asset price, but the pricing
surface

V (t, s) = e−r(T−t)E∗(C|St = s), 0 6 t 6 T, s ∈ (0,∞).

As we will now show, this can often be done using computational methods for the heat
equation.

Consider the case of a terminal-value option C = g(ST ). Then

V (t, s) = e−r(T−t)E
(
g(seσBT−t+µ(T−t))

)
= e−r(T−t)u(T − t, (log s+ µ(T − t))/σ)

where
u(t, x) = Ex(f(Bt)), f(x) = g(eσx).

Assume that g is continuous on (0,∞) and of no more than linear growth. Then, by
continuity of Brownian motion and dominated convergence, u is continuous on [0, T ]×R.
Also

u(t, x) =

∫
R
pt(x, y)f(y)dy, pt(x, y) =

1√
2πt

e−(y−x)2/(2t)

and
∂p

∂t
=

1

2

∂2p

∂x2

so, by differentiation under the integral sign, u is C1,2 on (0, T ]× R with

∂u

∂t
=

1

2

∂2u

∂x2
.

Hence we can attempt to compute u by any standard numerical scheme for the heat
equation, such as we will now describe.

Fix some L sufficiently large, chosen so that we can approximate accurately the values
u(t,±L) for all t, by some other means, assuming this to be possible. Then use a grid

{(ik, jh) : i = 0, 1, . . . , N and j = −M, . . . ,M} ⊆ [0, T ]× [−L,L]

where k = T/N and h = L/M . We compute values U i
j at the grid points with the aim

that U i
j ≈ u(ik, jh). The values at the inital grid points (0, jh) and the upper and lower

boundary grid points are assumed given.
The FTCS (forward-in-time, central-in-space) method uses

U i+1
j − U i

j

k
=
U i
j−1 − 2U i

j + U i
j+1

2h2
, i = 0, 1, . . . N − 1, |j| 6M − 1
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while the BTCS (backward-in-time, central-in-space) method uses

U i+1
j − U i

j

k
=
U i+1
j−1 − 2U i+1

j + U i+1
j+1

2h2
, i = 0, 1, . . . N − 1, |j| 6M − 1.

The Crank–Nicolson method uses the average of these two equations

U i+1
j − U i

j

k
=

1

2

(
U i
j−1 − 2U i

j + U i
j+1

2h2
+
U i+1
j−1 − 2U i+1

j + U i+1
j+1

2h2

)
Note that the FTCS method is explicit, while BTCS and Crank–Nicolson require to solve
a 2M × 2M matrix inversion in each time-step. The second two methods have better
stability properties than FTCS, while Crank-Nicolson has the merit of being second-order
in time, both FTCS and BTCS methods being first order in time.

A second type of computational approach to the pricing formula is Monte Carlo. Having
chosen a time-step k = T/N , the restriction of (Bt)06t6T to {ik : i = 0, 1, . . . , N} is a

random walk with step distribution N(0, k). Write (B
(N)
t )06t6T for the linear interpolation

of (Bt : t = ik, i = 0, 1, . . . , N). By Theorem 5.6, for any continuous function F on C[0, T ],
as N →∞,

E
(
F (B(N))

)
→ E (F (B))

as N →∞. On the other hand, we can generate a random sample (B(N),m : m = 1, . . . , n)
of random walk paths. Then, provided F (B(N)) is integrable, by the law of large numbers,
as n→∞,

1

n

n∑
m=1

F (B(N),m)→ E
(
F (B(N))

)
almost surely.

This is the basis of a computational method for general path-dependent options, and with-
out the need to chose a finite interval [−L,L] and approximate boundary values. We have
not addressed how the (approximate) evaluation of F (B(N)) could be done numerically.

The same argument applies if we use, in place of (Bt : t = ik, i = 0, 1, . . . , N), simple
symmetric random walk paths (Xt : t = ik, i = 0, 1, . . . , N) of step-size h =

√
k. For the

variance of each step is still k, so Theorem 5.6 still applies. Then, for suitable functions f ,
we can compute E(f(XT )) by Monte-Carlo as above. On the other hand, if we set

U i
j = Ejh(f(Xik)), i = 0, 1, . . . , N, j ∈ Z

then, by conditioning on the first step, we have

U i+1
j =

U i
j−1 + U i

j+1

2
, i = 0, 1, . . . N − 1, j ∈ Z.

This system of linear equations provides another way to compute E(f(XT )). In fact these
equations can be rewritten as

U i+1
j − U i

j

k
=
U i
j−1 − 2U i

j + U i
j+1

2h2
.

Hence, in fact this simply the FTCS method for the heat equation in the case h =
√
k.
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6.5 Black–Scholes formula for the price of a European call

The European call of maturity T and strike K > 0 is the contingent claim (ST −K)+. This
may be thought of as conferring the right but not the obligation to buy one unit of stock
at time T at price K. We will compute a formula for the fair value of this claim at time 0,
in the Black–Scholes model. The fair value is given by

EC(x,K, σ, r, T ) = E∗
(
e−rT (ST −K)+

)
.

Recall that we write Φ for the standard normal distribution function, given by

Φ(a) =

∫ a

−∞
φ(y)dy, φ(y) =

1√
2π
e−y

2/2

and that
Φ̄(a) = 1− Φ(a) = Φ(−a).

Proposition 6.3 (Black–Scholes formula). We have

EC(x,K, σ, r, T ) = xΦ(d+)− e−rTKΦ(d−)

where

d± =
log(x/K) + rT

σ
√
T

± σ
√
T

2
.

Proof. It suffices to consider the case µ = µ∗, when P∗ = P. Then BT ∼
√
TB1 and

B1 ∼ N(0, 1). We compute

EC(x,K, σ, r, T ) = E
(
e−rT (ST −K)+

)
= E

(
(xeσBT−σ2T/2 − e−rTK)+

)
=

∫ ∞
a

(xeσ
√
Ty−σ2T/2 − e−rTK)

1√
2π
e−y

2/2dy

where a is given by xeσ
√
Ta−σ2T/2 = e−rTK so

log(x/K) + σ
√
Ta+ rT = σ2T/2

and so a = −d−. Hence

EC(x, T, σ, r, T ) =x

∫ ∞
a

1√
2π
e−(y−σ

√
T )2/2dy − e−rTK

∫ ∞
a

1√
2π
e−y

2/2dy

=xΦ̄(a− σ
√
T )− e−rTKΦ̄(a)

=xΦ(−a+ σ
√
T )− e−rTKΦ(−a)

=xΦ(d+)− e−rTKΦ(d−).
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The European put of maturity T > 0 and strike K > 0 on (St)t>0 is the contingent
claim (ST −K)−. This may be thought of as conferring the right but not the obligation
to sell one unit of stock at time T at price K. In the Black–Scholes model (S0

t , St)t>0 the
fair value of this claim at time 0 is given by

EP (x,K, σ, r, T ) = E∗
(
e−rT (ST −K)−

)
.

Note the put-call parity equation

(ST −K)+ − (ST −K)− = ST −K.

Thus a portfolio long in the call and short in the put is equivalent to the forward contract
ST −K of maturity T and strike K. The fair value of the forward contract is

E∗
(
e−rT (ST −K)

)
= x− e−rTK.

Hence we obtain

EP (x,K, σ, r, T ) = EC(x,K, σ, r, T )− x+ e−rTK = e−rTKΦ̄(d−)− xΦ̄(d+).

6.6 Sensitivities for contingent claims in the Black–Scholes model

Recall that the value of a contingent claim C at time T in the Black–Scholes model
(S0

t , St)t>0 is given by
v(x) = v(x,C, σ, r, T ) = E∗(e−rTC).

where E∗ denotes expectation with respect to the equivalent martingale measure P∗. The
derivatives of v with respect to parameters of the model are known as sensitivities. The
following terminology is widely used

Delta = ∆ =
∂v

∂x
, Gamma = Γ =

∂2v

∂x2
, Vega = V =

∂v

∂σ
, Rho = ρ =

∂v

∂r
.

These and other sensitivities are also known as Greeks.
In the case of a European call of maturity T and strike K, the Black–Scholes formula

can be differentiated explicitly to obtain

∆ = Φ(d+), V = xφ(d+)
√
T .

6.7 Implied volatility

Proposition 6.4. The map σ 7→ EC(x,K, σ, r, T ) is an increasing bijection (0,∞) →
((x− e−rTK)+, x).
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Proof. It is straightforward to check that, for all values of x,K, r and T , we have

lim
σ→0

EC(x,K, σ, r, T ) = (x− e−rT )+, lim
σ→∞

EC(x,K, σ, r, T ) = x.

Since
∂

∂σ
EC(x,K, σ, r, T ) = V = xφ(d+)

√
T > 0

this implies the claim.

European calls are widely traded in financial markets, so the actual market price may
be observed, for a range of maturities T and strikes K. Since the current stock price S0

and interest rate r are also known, if we accept the Black–Scholes model, this determines
a unique implied volatility σimplied(K,T ) such that

EC(S0, K, σimplied(K,T ), r, T ) = ECmarket(K,T ).

In principle, σimplied(K,T ) should be independent of K and T . In practice, the implied
volatility surface is not flat, indicating that the Black–Scholes model is not an exact fit.
However, implied volatility, acting as an encoding of the call price ECmarket(K,T ), is a
convenient and widely used means to quote these market prices.

6.8 Pricing of exotic options in the Black–Scholes model

The reflection principle allows us to obtain pricing formulas for certain barrier options in
the Black–Scholes model. We illustrate this by the case of the up-and-out call

C = h(ST )1{sup06t6T St<A}, h(s) = (s−K)+

where A > max{S0, K}. The fair price at time 0 for C is given by the Black–Scholes
pricing formula

V0 = e−rTE∗(C)

where P∗ is the equivalent martingale measure, corresponding to drift µ∗ = r − σ2/2. In
calculating V0, we will assume that µ = µ∗ and drop the stars. Then

St = S0e
σBt+rt−σ2t/2 = S0e

σB̃t , B̃t = Bt + ct, c = (r − σ2/2)/σ

so {
sup

06t6T
St < A

}
=

{
sup

06t6T
B̃t < a

}
= {T̃a > t}, T̃a = inf{t > 0 : B̃t = a}

where a > 0 is determined by S0e
σa = A. We showed in Section 5.6 that

E
(
f(B̃t)1{T̃a>t}

)
=

∫ a

−∞
f(y)ecy−c

2t/2pat (0, y)dy

where
pat (0, y) = pt(0, y)− pt(0, 2a− y).
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Hence

V0 = e−rT
∫ a

−∞
h(S0e

σy)ecy−c
2T/2paT (0, y)dy.

In the special case h(s) = (s−K)+, the right-hand side can be expressed in terms of the
normal distribution function Φ by using the identity∫ b

a

eλypt(0, y)dy = eλ
2t/2

(
Φ

(
b− λt√

t

)
− Φ

(
a− λt√

t

))
.
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7 Appendix

Recall the statement of Theorem 3.4 for an asset price model (S̄n)06n6T . The following are
equivalent:

(a) (S̄n)06n6T has no arbitrage,

(b) (S̄n)06n6T has an equivalent martingale measure.

This is the discrete-time version of the fundamental theorem of asset pricing. We will now
prove this statement – the proof is not examinable. The main step is to show the following
conditional version of Proposition 3.3.

Proposition 7.1. Let Y be a random variable in Rd and let F0 be a sub-σ-algebra of F .
Then the following are equivalent:

(a) there exists no F0-measurable random variable Θ in Rd such that Θ.Y > 0 almost
surely and Θ.Y > 0 with positive probability,

(b) there exists an equivalent probability measure P̃ such that P̃ = P on F0 and, almost
surely,

Ẽ(|Y ||F0) <∞, Ẽ(Y |F0) = 0.

Morever, given any finite non-negative random variable U , we can choose P̃ in (b) so that
Ẽ(U |F0) <∞ almost surely.

Proof. Suppose that (a) holds. It will suffice to consider the case where, almost surely, for
all θ ∈ Rd,

E(eθ.Y |F0) <∞, E(Ueθ.Y |F0) <∞.

For the general case, we can replace P by the equivalent probability measure P̃ given by
dP̃/dP = W/E(W |F0) where W = e−|Y |

2
e−U for which P̃ = P on F0 and, almost surely,

Ẽ(eθ.Y |F0) <∞, Ẽ(Ueθ.Y |F0) <∞.

We will assume that this has been done and drop the tildes.
There are F0-measurable kernels M and N on Ω×B(Rd) such that, for all B ∈ B(Rd),

almost surely,
M(B) = P(Y ∈ B|F0), N(B) = E(U1{Y ∈B}|F0).

We write here M(B) for the random variable M(., B) and will use similar notation else-
where. Define F0-measurable fields of subspaces of Rd by

E0(ω) = {θ ∈ Rd : M(ω, {θ.y = 0}) = 1}, E1(ω) = span(suppM(ω, .)) = E0(ω)⊥.

Write P (ω) for the orthogonal projection Rd → E1(ω). Fix θ ∈ Rd and consider the event

B(θ) = {Pθ 6= 0} = {θ 6∈ E0}.
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Fix B ∈ F0 with B ⊆ B(θ) and P(B) > 0. Consider the F0-measurable random variable
Θ = 1Bθ. Define

W = M({y ∈ Rd : θ.y 6= 0}), W ′ = M({y ∈ Rd : θ.y > 0}).

Then, almost surely,

W = P(θ.Y 6= 0|F0), W ′ = P(θ.Y > 0|F0).

Now W > 0 on B(θ), so P(Θ.Y 6= 0) = E(1BW ) > 0. Condition (a) then implies that
E(1BW

′) = P(Θ.Y > 0) > 0 so, since B is arbitrary, W ′ > 0 almost surely on B(θ).
Set ψ(t) = 0 ∨ t ∧ 1 and define F : Ω× Rd → [0,∞) by

F (ω, θ) =

∫
Rd

ψ(θ.y)M(ω, dy).

Then F (ω, .) is continuous on Rd for all ω, F (θ) = E(ψ(θ.Y )|F0) almost surely, and F (θ) >
0 almost surely on B(θ) for all θ. Hence, by Fubini’s theorem, F (θ) > 0 for Lebesgue almost
all θ ∈ Rd \E0, almost surely. Since F is continuous on Rd and Rd \E0 is open, this implies
that F (θ) > 0 for all θ ∈ Rd \ E0 almost surely. Set S(ω) = {θ ∈ E1(ω) : |θ| = 1}. Then
S(ω) is compact. Define

ε(ω) =
1

2
inf{F (ω, θ) : θ ∈ S(ω)}, Ω0 = {ω ∈ Ω : ε(ω) > 0}.

Then ε is F0-measurable, P(Ω0) = 1 and, for all ω ∈ Ω0 and θ ∈ S(ω),∫
Rd

1{θ.y>ε(ω)}M(ω, dy) >
∫
Rd

ψ(θ.y − ε(ω))M(ω, dy)

>
∫
Rd

ψ(θ.y)M(ω, dy)− ε(ω) = F (ω, θ)− ε(ω) > ε(ω).

Define functions Φ : Ω× Rd → (0,∞) and Ψ : Ω× Rd → [0,∞) by

Φ(ω, θ) =

∫
Rd

eθ.yM(ω, dy), Ψ(ω, θ) =

∫
Rd

eθ.yN(ω, dy).

Then Φ is F0-measurable on Ω, differentiable on Rd, and strictly convex on E1, with

Φ′(ω, θ) =

∫
Rd

yeθ.yM(ω, dy)

and, almost surely,
Φ(θ) = E(eθ.Y |F0), Φ′(θ) = E(Y eθ.Y |F0).

Similarly, Ψ is F0-measurable on Ω, continuous on Rd and, almost surely,

Ψ(θ) = E(Ueθ.Y |F0).
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Then, for ω ∈ Ω0, θ0 ∈ E0(ω), θ1 ∈ S(ω) and t > (1/ε(ω)) log(1/ε(ω)),

Φ(ω, θ0 + tθ1) = Φ(ω, tθ1) > εetε > 1 = Φ(ω, 0).

Hence, for all ω ∈ Ω0, there exists a unique Θ∗(ω) ∈ E1(ω) such that Φ(ω, θ) > Φ(ω,Θ∗(ω))
for all θ ∈ Rd. Then Φ′(ω,Θ∗(ω)) = 0. Set Φ∗(ω) = 0 for ω 6∈ Ω0. Define recursively a
sequence of F0-measurable random variables (Θn : n > 0) in Rd by

Θ0 = 0, Θn+1 = Θn − γΦ′(Θn).

Then Θn ∈ E1 for all n almost surely, so by the properties of gradient descent, for γ
sufficiently small, we have Θn → Θ∗ almost surely. Hence Θ∗ is an F0-measurable random
variable.

Define an equivalent probability measure P̃ by dP̃/dP ∝ eΘ∗.Y . Then, almost surely,

Ẽ(U |F0) = E(UeΘ∗.Y |F0) = Ψ(Θ∗) <∞

and similarly Ẽ(|Y ||F0) < ∞ almost surely. For ω ∈ Ω0, since Φ(ω, .) is minimized at
Θ∗(ω), we have Φ′(ω,Θ∗(ω)) = 0. So, for all B ∈ F0,

E(Y 1Be
Θ∗.Y |F0) = 1BE(Y eΘ∗.Y |F0) = 1BΦ′(Θ∗) = 0

and so

Ẽ(Y 1B) =
E(Y 1Be

Θ∗.Y )

E(eΘ∗.Y )
= 0.

Hence Ẽ(Y |F0) = 0 almost surely and (b) holds.
Suppose on the other hand that (b) holds and let Θ be an F0-measurable random

variable in Rd. Then, almost surely,

Ẽ(Θ.Y |F0) = Θ.Ẽ(Y |F0) = 0

and so Ẽ(Θ.Y ) = 0. Hence, if Θ.Y > 0 almost surely, then Θ.Y = 0 almost surely. Hence
(a) holds.

Proof of Theorem 3.4. Suppose that (a) holds. Write Yn = Xn − Xn−1. Consider the
following hypothesis: there is a random variable ρn such that, almost surely, ρn > 0 and
E(ρn|Fn−1) = 1 and Un < ∞ and E(Ykρn|Fk−1) = 0 for k = n, . . . , T , where we write Un
for a version of

T∑
k=n

E(|Yk|ρn|Fn−1).

The hypothesis holds for n = T + 1 with ρT+1 = 1, the third and fourth conditions holding
vacuously. Suppose, for a reverse induction, that the hypothesis holds for n+ 1. Given an
Fn−1-measurable random variable Θ in Rd such that Θ.Yn > 0 almost surely, we obtain a
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previsible process (θ1, . . . , θT ) in Rd by setting θk = Θ1{k=n}. The associated value process
satisfies

VT =
T∑
k=1

θk.Yk = Θ.Yn > 0.

The no-arbitrage condition (a) then forces Θ.Yn = 0 almost surely. Hence, condition (a)
of Proposition 7.1 holds for the Fn-measurable random variable Yn and the sub-σ-algebra
Fn−1. Then, by Proposition 7.1, there is an Fn-measurable random variable αn such that,
almost surely, αn > 0 and E(αn|Fn−1) = 1 and

E(|Yn|αn|Fn−1) <∞, E(Ynαn|Fn−1) = 0

and moreover we can choose αn so that E(Unαn|Fn−1) <∞ amost surely. Define

ρn = αnρn+1.

Then, almost surely, ρn > 0 and

E(ρn|Fn−1) = E(αnE(ρn+1|Fn)|Fn−1) = E(αn|Fn−1) = 1

and
Un = E(Un+1αn|Fn−1) + E(|Yn|αn|Fn−1) <∞

and, for k = n+ 1, . . . , T ,

E(Ykρn|Fk−1) = ρnE(Yk|Fk−1) = 0

while
E(Ynρn|Fn−1) = E(YnαnE(ρn+1|Fn)|Fn−1) = E(Ynαn|Fn−1) = 0.

Hence the hypothesis holds for n and the induction proceeds.
Since the random variables E(|Yk|ρ1|F0) are all finite-valued and F0-measurable, and

so is X0, there is an F0-measurable random variable α0 such that α0 > 0 almost surely,
E(α0) = 1 and

α0

(
|X0|+

T∑
k=1

E(|Yk|ρ1|F0)

)
is integrable. We can define an equivalent probability measure P̃ by dP̃/dP = α0ρ1. Then,
under P̃, the random variable |X0|+ |Y1|+ · · ·+ |YT | is integrable and and Ẽ(Yk|Fk−1) = 0
for k = 1, . . . , T . Hence (Xn)06n6T is a martingale under P̃. Hence (b) holds. The reverse
implication is the content of Proposition 3.2.
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