Probability and Measure 4

8.1 Let $\mu \in \mathbb{R}$ and $\sigma>0$. Let X be a random variable with density function

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{(x-\mu)^{2} /\left(2 \sigma^{2}\right)}, \quad x \in \mathbb{R}
$$

Set $Z=(X-\mu) / \sigma$. Show that Z has the standard normal density function. Deduce that $\mathbb{E}(X)=\mu, \operatorname{var}(X)=\sigma^{2}$ and $\phi_{X}(u)=e^{i u \mu-u^{2} \sigma^{2} / 2}$. Show that, for $a \neq 0$ and $b \in \mathbb{R}$, the random variable $Y=a X+b$ has a density function of a similar form, for suitable μ_{Y} and σ_{Y}, to be determined.
8.2 Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a Gaussian random variable in \mathbb{R}^{n} with mean μ and covariance matrix V. Assume that V is invertible and set $Y=\left(Y_{1}, \ldots, Y_{n}\right)=$ $V^{-1 / 2}(X-\mu)$. Show that Y_{1}, \ldots, Y_{n} are independent $N(0,1)$ random variables. Show further that we can write X_{2} in the form $X_{2}=a X_{1}+Z$ where Z is independent of X_{1} and determine the distribution of Z.
8.3 Let X_{1}, \ldots, X_{n} be independent $N(0,1)$ random variables. Show that

$$
\left(\bar{X}, \sum_{m=1}^{n}\left(X_{m}-\bar{X}\right)^{2}\right) \quad \text { and } \quad\left(\frac{X_{n}}{\sqrt{n}}, \sum_{m=1}^{n-1} X_{m}^{2}\right)
$$

have the same distribution, where $\bar{X}=\left(X_{1}+\cdots+X_{n}\right) / n$.
9.1 Let (E, \mathcal{E}, μ) be a measure space and $\theta: E \rightarrow E$ a measure-preserving transformation. Show that $\mathcal{E}_{\theta}:=\left\{A \in \mathcal{E}: \theta^{-1}(A)=A\right\}$ is a σ-algebra, and that a measurable function f is \mathcal{E}_{θ}-measurable if and only if it is invariant, that is $f \circ \theta=f$.
9.2 Show that, if θ is an ergodic measure-preserving transformation and f is a θ-invariant function, then there exists a constant $c \in \mathbb{R}$ such that $f=c$ a.e..
9.3 For $x \in[0,1)$, set $\theta(x)=2 x \bmod 1$. Show that θ is a measure-preserving transformation of $([0,1), \mathcal{B}([0,1)), d x)$, and that θ is ergodic. Identify the invariant function \bar{f} corresponding to each integrable function f.
9.4 Fix $a \in[0,1)$ and define, for $x \in[0,1), \theta(x)=x+a \bmod 1$. Show that θ is also a measure-preserving transformation of $([0,1), \mathcal{B}([0,1)), d x)$. Determine for which values of a the transformation θ is ergodic. Hint: you may use the fact that any integrable function f on $[0,1)$ whose Fourier coefficients all vanish must itself vanish a.e.. Identify, for all values of a, the invariant function \bar{f} corresponding to an integrable function f.
9.5 Call a sequence of random variables $\left(X_{n}: n \in \mathbb{N}\right)$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ stationary if for each $n, k \in \mathbb{N}$ the random vectors $\left(X_{1}, \ldots, X_{n}\right)$ and $\left(X_{k+1}, \ldots, X_{k+n}\right)$ have the same distribution: for $A_{1}, \ldots, A_{n} \in \mathcal{B}$,

$$
\mathbb{P}\left(X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right)=\mathbb{P}\left(X_{k+1} \in A_{1}, \ldots, X_{k+n} \in A_{n}\right)
$$

Show that, if ($X_{n}: n \in \mathbb{N}$) is a stationary sequence and $X_{1} \in L^{p}$, for some $p \in[1, \infty)$, then

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow X \quad \text { a.s. and in } L^{p}
$$

for some random variable $X \in L^{p}$ and find $\mathbb{E}(X)$.
10.1 Let $\left(X_{n}: n \in \mathbb{N}\right)$ be a sequence of independent random variables, such that $\mathbb{E}\left(X_{n}\right)=\mu$ and $\mathbb{E}\left(X_{n}^{4}\right) \leq M$ for all n, for some constants $\mu \in \mathbb{R}$ and $M<\infty$. Set $P_{n}=X_{1} X_{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}$. Show that P_{n} / n converges a.s. as $n \rightarrow \infty$ and identify the limit.
10.2 Let f be a bounded continuous function on $(0, \infty)$, having Laplace transform

$$
\hat{f}(\lambda)=\int_{0}^{\infty} e^{-\lambda x} f(x) d x, \quad \lambda \in(0, \infty)
$$

Let $\left(X_{n}: n \in \mathbb{N}\right)$ be a sequence of independent exponential random variables, of parameter λ. Show that \hat{f} has derivatives of all orders on $(0, \infty)$ and that, for all $n \in \mathbb{N}$, for some $C(\lambda, n) \neq 0$ independent of f, we have

$$
(d / d \lambda)^{n-1} \hat{f}(\lambda)=C(\lambda, n) \mathbb{E}\left(f\left(S_{n}\right)\right)
$$

where $S_{n}=X_{1}+\cdots+X_{n}$. Deduce that if $\hat{f} \equiv 0$ then also $f \equiv 0$.
10.3 For each $n \in \mathbb{N}$, there is a unique probability measure μ_{n} on the unit sphere $S^{n-1}=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$ such that $\mu_{n}(A)=\mu_{n}(U A)$ for all Borel sets A and all orthogonal $n \times n$ matrices U. Fix $k \in \mathbb{N}$ and, for $n \geq k$, let γ_{n} denote the probability measure on \mathbb{R}^{k} which is the law of $\sqrt{n}\left(x^{1}, \ldots, x^{k}\right)$ under μ_{n}. Show
(i) if $X \sim N\left(0, I_{n}\right)$ then $X /|X| \sim \mu_{n}$,
(ii) if $\left(X_{n}: n \in \mathbb{N}\right)$ is a sequence of independent $N(0,1)$ random variables and if $R_{n}=\sqrt{X_{1}^{2}+\cdots+X_{n}^{2}}$ then $R_{n} / \sqrt{n} \rightarrow 1$ a.s.,
(iii) for all bounded continuous functions f on $\mathbb{R}^{k}, \gamma_{n}(f) \rightarrow \gamma(f)$, where γ is the standard Gaussian distribution on \mathbb{R}^{k}.

