Optimization and Control: Examples Sheet 3
Continuous-time models

1. Consider the continuous-time system with scalar state and control variables given by
%y = uy, with cost function Q fOT u?dt + z%. Write down and solve the associated HJB
equation. Hence show that the minimal cost starting from z is Qz?/(Q + T') and find an
optimal control.

2. Consider the control problem for an inertial particle given by given by &; = us, ¥ = x,
with cost function @) fOT u?dt + y2. Re-express this problem in terms of the scalar variable
2z = y; + sz, where s = T — t. Write down and solve the HJB equation for the new
problem. Hence show that the optimal control at time ¢ = 0 is given by

3. Miss Prout holds the entire remaining stock of Cambridge elderberry wine for the vintage
year 1959. If she releases it at rate u (in continuous time) she realises a unit price p(u). She
holds an amount z at time 0 and wishes to release this in such a way as to maximize her
total discounted return, fooo e *up(u) dt. Consider the particular case p(u) = u ™7, where
the constant -y is positive and less than one. Determine her maximal total discounted return
and the optimal initial release rate.

4. Suppose that a particle moves in R¢ with a speed which is a given function v(z) of
its position z, but in a direction u which we can choose. The equation of motion is thus
%y = v(x¢)uy, where the control u, is a unit vector. Let F'(z) denote the minimal time taken
for the particle to reach a set D from a point = outside it. Show that after minimizing
over u the optimality equation for F implies that |VF(z)| = v(z)™*. (This is the eikonal
equation of geometric optics, a short-wavelength form of the wave equation.) How is the
optimal direction at a given point determined from F?

5. Let a be a C* function on R? with values in the set of d x d positive-definite matrices.
Consider the controllable dynamical system in R?

Ty = a(33t)pt

where the control p; also takes values in R?. We seek to minimize, for given z,y € R¢, the
time 7 to get from x to y, subject to the constraint

pia(z)p <1, t>0.
Obtain the following differential equation for the optimal control

p;' = —ptT(aa/axi)(a:t)pt, 0<t<



6. Consider the optimal control problem
T
minimize 5/ u(t)’dt subject to iy = —x1+ Ty, T9=—2T9+u,
0

where u is unrestricted, x1(0), z2(0) and T are given, and x1(7T) and z2(T) are to be made to
vanish. By introducing new variables z; = (z1+2z2)e’ and 2o = z9€?!, show that the optimal
control takes the form u = \je’ + \oe?, for some constants \; and \o. Find equations for
21(0), z2(0) in terms of A1, Ao, and 7', and show that these equations determine \; and A,
in terms of z,(0), z(0) and 7.

Compare the standard linear feedback controller which sets u(t) to —kyz1(t) — koza(t),
where k; and ky are constants. Show that by this method z; and x, cannot be made
to vanish in finite time. Discuss the choice of optimal control with a quadratic perfor-
mance criterion as opposed to linear feedback control, indicating which is likely to be more
appropriate in given circumstances.

7. A princess is jogging with speed r in the counterclockwise direction around a circular
running track of radius r, and so has a position whose horizontal and vertical components
at time t are (rcost,rsint), t > 0. A monster who is initially located at the centre of the
circle can move with velocity u; in the horizontal direction and u, in the vertical direction,
where both velocities have a maximum magnitude of 1. The monster wishes to catch the
princess in minimal time.

Analyse the monster’s problem using Pontryagin’s maximum principle. By considering
feasible values for the adjoint variables, show that whatever the value of r» the monster
should always set at least one of |ui| or |us| equal to 1. Show that if » = 7/+/8 then
the monster catches the princess in minimal time by adopting the uniquely optimal policy
uy = 1, up = 1. Is the optimal policy always unique?

[Hint: Let z; and x5 be the differences in the horizontal and vertical directions between
the positions of the monster and princess.|

It is not difficult to analyse this problem using ad hoc methods. The point here is to see how
easily the maximum principle gives the correct answers without requiring any specially clever
argument.

8. In the neoclassical economic growth model, z is the existing capital per worker and u is
consumption of capital per worker. The plant equation is

Ty = f(ﬂﬁt) — YTt — Uy,

where f(z) is the production per worker, and —vyz represents depreciation of capital and
change in the size of the workforce. We wish to choose u; to maximize

T
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where g(u) measures utility, is strictly increasing and strictly concave, and 7' is prescribed.



Show that the optimal control satisfies ¢'(u;) = \e® (assuming the maximum is at a
stationary point) and

A= (v = f'(@e) M.

Hence show that the optimal consumption obeys

1 ! —a— where o(u) = _g”(u)
O'(Ut) [f (mt) 7]7 h ( )

ﬂt:

(The function o is called the elasticity of marginal utility.)
Characterise an equilibrium solution, that is, an (0) = Z such that the optimal trajec-
tory is z(t) = Z, t > 0, and show that this Z is independent of g.

9. An aircraft flies in straight and level flight at height h, so that lift L balances weight
mg. The mass rate of fuel consumption is proportional to the drag, and may be taken as
q = av?® + b(Lv) 2, where a and b are constants and v is the speed. Thus

b
m=—q=—av’—

o (a(szbm?)m

maximizes the total distance the plane can travel. (You do not need to compute the adjoint
path.)
At what speed should the plane fly in order to maximize the time in the air?

Show that flying at speed

10. In what is known as Zermelo’s problem, a straight river has current ¢(y), running
parallel to the banks, where y is the distance from the bank of departure. A boat then
crosses the river at constant speed v relative to the water, so that its position (z, y) satisfies
& =wcosf + c(y), y = vsinf, where 0 is the angle between the direction of the stream
and the direction in which the boat is headed. (i) Suppose c¢(y) > v for all y and the
boatman wishes to be carried downstream as little as possible in crossing. Show that he
should follow the heading
0 = cos™ (—v/c(y)).

(ii) Suppose the boatman wishes to reach a given point P on the opposite bank in minimal
time. Show that he should follow the heading

)\17)
6 = cos™? (7> ,
1= Ac(y)

where A is a parameter chosen to make his path pass through the target point.



11. Customers arrive at a queue as a Poisson process of rate A\. They are served at rate
u = u(z), where = denotes the current size of the queue. Suppose that cost is incurred
as rate ax + bu where a, b > 0. The service rate u is regarded as a control variable. The
dynamic programming equation in the infinite horizon limit is then

v = inf{az +bu(z) + A[f(z + 1) = f(2)] + u(@)lesol f(2 = 1) = f(2)]}

where v denotes the average rate at which cost is incurred under the optimal policy and
where f(x) denotes the extra cost associated with starting from state z. (Here 1,50 = 0 if
x=0,and 1,50 =1ifx =1,2,3,....) Give a brief justification of this equation.

Show that under the constraint that v is a fixed constant, independent of x, and greater
that A then, for some C, there is a solution of the form

ax(z + 1)

a\

Tu— )\

i.e., such that f(x) does not grow exponentially in z (which is needed to ensure that
(1/t)Ef(xt) — 0 as t — oo and hence, similarly as in the proof for a discrete time model,
that 7 can be shown to be the time-average cost.)

What is the optimal constant service rate?

Suppose now that we allow u to vary with z, subject to the constraint m < u < M,
where M > A. What is the policy which results if we carry out one stage of policy
improvement to the optimal constant service policy?

12. Consider a problem of movement on the unit interval 0 < x < 1 in continuous time,
T = u + €, where € is white noise of power v. The process terminates at time 7" when x
reaches one end or the other of the the interval. The cost is made up of an integral term
% fOT(L + Qu?)dt, penalising both control and time spent, and a terminal cost which takes
the value Cy or C; according as termination takes place at 0 or 1.

In the deterministic case v = 0 it is fairly clear that one will head straight for one of
the termination points (which?) at a constant rate (what?). The value function F'(z) then
has a piecewise linear form, with the possibility of a discontinuity at one of the boundary
points if that boundary point is the optimal target from no interior point of the interval.

Show, in the stochastic case, that the dynamic programming equation with the control
value optimized out can be linearised by a transformation F'(z) = alog ¢(x) for a suitable
constant «, and hence solve the problem.



