Advanced Probability 2

3.5 Let $(X_n)_{n\geq 0}$ be a Markov chain with state-space E and transition matrix P. Let $f: E \to \mathbb{R}$ be a bounded function. Show that $(f(X_n))_{n\geq 0}$ is a submartingale for all possible initial states $X_0 = x$ if and only if f is subharmonic, that is to say $f \leq Pf$.

3.6 Your winnings per unit stake on game n are ε_n , where $\varepsilon_1, \varepsilon_2, \ldots$ are independent random variables with

$$\mathbb{P}(\varepsilon_n = 1) = p, \quad \mathbb{P}(\varepsilon_n = -1) = q,$$

where $p \in (1/2, 1)$ and q = 1 - p. Your stake C_n on game n must lie between 0 and Z_{n-1} , where Z_{n-1} is your fortune at time n-1. Your object is to maximize the expected 'interest rate' $\mathbb{E} \log(Z_N/Z_0)$, where N is a given integer representing the length of the game, and Z_0 , your fortune at time 0, is a given constant. Let $\mathcal{F}_n = \sigma(\varepsilon_1, \ldots, \varepsilon_n)$. Show that if Cis any *previsible* strategy, that is C_n is \mathcal{F}_{n-1} -measurable for all n, then $\log Z_n - n\alpha$ is a supermartingale, where

$$\alpha = p\log p + q\log q + \log 2,$$

so that $\mathbb{E} \log(Z_N/Z_0) \leq N\alpha$, but that, for a certain strategy, $\log Z_n - n\alpha$ is a martingale. What is the best strategy?

3.7 Let $(A_n : n \in \mathbb{N})$ be a sequence of independent events all having probability p > 0. Fix $N \in \mathbb{N}$ and write T for the first time we achieve a run of N consecutive successes. Thus

$$T = \inf\{n \ge N : 1_{A_n} + \dots + 1_{A_{n-N+1}} = N\}.$$

Show that $\mathbb{P}(T \ge n) \le C\alpha^n$ for some constants $C < \infty$ and $\alpha \in (0,1)$ and hence that $\mathbb{E}(T) < \infty$.

3.8 Wald's identities. Let $(S_n)_{n\geq 0}$ be a random walk in \mathbb{R} , starting from 0, with steps of mean μ and variance $\sigma^2 \in (0, \infty)$. Fix $a, b \in \mathbb{R}$ with a < 0 < b and set

 $T = \inf\{n \ge 0 : S_n \le a \text{ or } S_n \ge b\}.$

Show that $\mathbb{E}(T) < \infty$ and $\mathbb{E}(S_T) = \mu \mathbb{E}(T)$. Show further that, in the case $\mu = 0$, we have $\mathbb{E}(S_T^2) = \sigma^2 \mathbb{E}(T)$. Show also that, for any $\lambda \in \mathbb{R}$ such that $\mathbb{E}(e^{\lambda S_1}) = 1$, we have $\mathbb{E}(e^{\lambda S_T}) = 1$. In the case of the simple random walk on \mathbb{Z} , and for $a, b \in \mathbb{Z}$, use these identities to find $\mathbb{E}(T)$ and $\mathbb{P}(S_T = a)$.

3.9 Azuma-Hoeffding Inequality. Let Y be a random variable of mean zero, such that $|Y| \leq c$ for some constant $c < \infty$. Use the convexity of $y \mapsto e^{\theta y}$ on [-c, c] to show that, for all $\theta \in \mathbb{R}$,

$$\mathbb{E}(e^{\theta Y}) \le \cosh \theta c \le e^{\theta^2 c^2/2}.$$

Now let $(M_n)_{n\geq 0}$ be a martingale, starting from 0, such that $|M_n - M_{n-1}| \leq c_n$ for all $n \geq 1$, for some constants $c_n < \infty$. Set $v_n = c_1^2 + \cdots + c_n^2$. Show that, for all $\theta \in \mathbb{R}$,

$$\mathbb{E}(e^{\theta M_n}) \leq e^{\theta^2 v_n/2}$$

Show further that, for all $x \ge 0$,

$$\mathbb{P}\left(\sup_{k\leq n} M_k \geq x\right) \leq e^{-x^2/(2v_n)}$$

3.10 Let f be a Lipschitz function on [0, 1] of constant K. Thus, for all $x, y \in [0, 1]$,

$$|f(x) - f(y)| \le K|x - y|.$$

Denote by f_n the simplest piecewise linear function agreeing with f on $D_n = \{k2^{-n} : k = 0, 1, \ldots, 2^n\}$. Then f_n has a derivative f'_n on $[0, 1] \setminus D_n$. Set $M_n = f'_n \mathbb{1}_{[0,1] \setminus D_n}$. Show that M_n converges almost everywhere and in L^1 and deduce that there is a bounded Borel function f' on [0, 1] such that

$$f(x) = f(0) + \int_0^x f'(t)dt.$$

4.1 Show that the σ -algebra on $C([0,\infty),\mathbb{R})$ generated by the coordinate functions is the same as its Borel σ -algebra for the topology of uniform convergence on compacts.

4.2 Let S and T be stopping times and let $(X_t)_{t\geq 0}$ be a cadlag adapted process, associated to a continuous-time filtration $(\mathcal{F}_t)_{t\geq 0}$. Show that $S \wedge T$ is a stopping time, that \mathcal{F}_T is a σ -algebra, and that $\mathcal{F}_S \subseteq \mathcal{F}_T$ if $S \leq T$. Show also that $X_T \mathbb{1}_{\{T < \infty\}}$ is an \mathcal{F}_T -measurable random variable.

4.3 Let T be an exponential random variable of parameter 1. Set $X_t = e^t \mathbb{1}_{t < T}$. Describe the natural filtration of $(X_t)_{t \ge 0}$. Show that $\mathbb{E}(X_t \mathbb{1}_{\{T>r\}}) = \mathbb{E}(X_s \mathbb{1}_{\{T>r\}})$ for $r \le s \le t$, and hence deduce that $(X_t)_{t \ge 0}$ is a cadlag martingale. Determine whether $(X_t)_{t \ge 0}$ is uniformly integrable.

4.4 Let T be a random variable in $[0, \infty)$ having a positive and continuous density function f on $[0, \infty)$. Define the *hazard function* A on $[0, \infty)$ by

$$A(t) = \int_0^t \frac{f(s)ds}{1 - F(s)}$$

where F is the distribution function of T. Show that A(T) is an exponential random variable of parameter 1. Set $X_t = \mathbb{1}_{\{t \ge T\}} - A(T \land t)$. Show that $(X_t)_{t \ge 0}$ is a cadlag martingale.

4.5 Let $(\mathcal{F}_t)_{t\geq 0}$ be a filtration, satisfying the usual conditions, and let $(\xi_t)_{t\geq 0}$ be an adapted integrable process such that $\mathbb{E}(\xi_t|\mathcal{F}_s) = \xi_s$ almost surely, for all $s, t \geq 0$ with $s \leq t$. Show that there is a cadlag martingale $(X_t)_{t\geq 0}$ such that $\xi_t = X_t$ almost surely, for all $t \geq 0$.