Advanced Probability 2

3.5 Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with state-space E and transition matrix P. Let $f: E \rightarrow \mathbb{R}$ be a bounded function. Show that $\left(f\left(X_{n}\right)\right)_{n \geq 0}$ is a submartingale for all possible initial states $X_{0}=x$ if and only if f is subharmonic, that is to say $f \leq P f$.
3.6 Your winnings per unit stake on game n are ε_{n}, where $\varepsilon_{1}, \varepsilon_{2}, \ldots$ are independent random variables with

$$
\mathbb{P}\left(\varepsilon_{n}=1\right)=p, \quad \mathbb{P}\left(\varepsilon_{n}=-1\right)=q,
$$

where $p \in(1 / 2,1)$ and $q=1-p$. Your stake C_{n} on game n must lie between 0 and Z_{n-1}, where Z_{n-1} is your fortune at time $n-1$. Your object is to maximize the expected 'interest rate' $\mathbb{E} \log \left(Z_{N} / Z_{0}\right)$, where N is a given integer representing the length of the game, and Z_{0}, your fortune at time 0 , is a given constant. Let $\mathcal{F}_{n}=\sigma\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$. Show that if C is any previsible strategy, that is C_{n} is \mathcal{F}_{n-1}-measurable for all n, then $\log Z_{n}-n \alpha$ is a supermartingale, where

$$
\alpha=p \log p+q \log q+\log 2
$$

so that $\mathbb{E} \log \left(Z_{N} / Z_{0}\right) \leq N \alpha$, but that, for a certain strategy, $\log Z_{n}-n \alpha$ is a martingale. What is the best strategy?
3.7 Let $\left(A_{n}: n \in \mathbb{N}\right)$ be a sequence of independent events all having probability $p>0$. Fix $N \in \mathbb{N}$ and write T for the first time we achieve a run of N consecutive successes. Thus

$$
T=\inf \left\{n \geq N: 1_{A_{n}}+\cdots+1_{A_{n-N+1}}=N\right\}
$$

Show that $\mathbb{P}(T \geq n) \leq C \alpha^{n}$ for some constants $C<\infty$ and $\alpha \in(0,1)$ and hence that $\mathbb{E}(T)<\infty$.
3.8 Wald's identities. Let $\left(S_{n}\right)_{n \geq 0}$ be a random walk in \mathbb{R}, starting from 0 , with steps of mean μ and variance $\sigma^{2} \in(0, \infty)$. Fix $a, b \in \mathbb{R}$ with $a<0<b$ and set

$$
T=\inf \left\{n \geq 0: S_{n} \leq a \text { or } S_{n} \geq b\right\}
$$

Show that $\mathbb{E}(T)<\infty$ and $\mathbb{E}\left(S_{T}\right)=\mu \mathbb{E}(T)$. Show further that, in the case $\mu=0$, we have $\mathbb{E}\left(S_{T}^{2}\right)=\sigma^{2} \mathbb{E}(T)$. Show also that, for any $\lambda \in \mathbb{R}$ such that $\mathbb{E}\left(e^{\lambda S_{1}}\right)=1$, we have $\mathbb{E}\left(e^{\lambda S_{T}}\right)=1$. In the case of the simple random walk on \mathbb{Z}, and for $a, b \in \mathbb{Z}$, use these identities to find $\mathbb{E}(T)$ and $\mathbb{P}\left(S_{T}=a\right)$.
3.9 Azuma-Hoeffding Inequality. Let Y be a random variable of mean zero, such that $|Y| \leq c$ for some constant $c<\infty$. Use the convexity of $y \mapsto e^{\theta y}$ on $[-c, c]$ to show that, for all $\theta \in \mathbb{R}$,

$$
\mathbb{E}\left(e^{\theta Y}\right) \leq \cosh \theta c \leq e^{\theta^{2} c^{2} / 2}
$$

Now let $\left(M_{n}\right)_{n \geq 0}$ be a martingale, starting from 0 , such that $\left|M_{n}-M_{n-1}\right| \leq c_{n}$ for all $n \geq 1$, for some constants $c_{n}<\infty$. Set $v_{n}=c_{1}^{2}+\cdots+c_{n}^{2}$. Show that, for all $\theta \in \mathbb{R}$,

$$
\mathbb{E}\left(e^{\theta M_{n}}\right) \leq e^{\theta^{2} v_{n} / 2}
$$

Show further that, for all $x \geq 0$,

$$
\mathbb{P}\left(\sup _{k \leq n} M_{k} \geq x\right) \leq e^{-x^{2} /\left(2 v_{n}\right)}
$$

3.10 Let f be a Lipschitz function on $[0,1]$ of constant K. Thus, for all $x, y \in[0,1]$,

$$
|f(x)-f(y)| \leq K|x-y|
$$

Denote by f_{n} the simplest piecewise linear function agreeing with f on $D_{n}=\left\{k 2^{-n}: k=\right.$ $\left.0,1, \ldots, 2^{n}\right\}$. Then f_{n} has a derivative f_{n}^{\prime} on $[0,1] \backslash D_{n}$. Set $M_{n}=f_{n}^{\prime} 1_{[0,1] \backslash D_{n}}$. Show that M_{n} converges almost everywhere and in L^{1} and deduce that there is a bounded Borel function f^{\prime} on $[0,1]$ such that

$$
f(x)=f(0)+\int_{0}^{x} f^{\prime}(t) d t
$$

4.1 Show that the σ-algebra on $C([0, \infty), \mathbb{R})$ generated by the coordinate functions is the same as its Borel σ-algebra for the topology of uniform convergence on compacts.
4.2 Let S and T be stopping times and let $\left(X_{t}\right)_{t \geq 0}$ be a cadlag adapted process, associated to a continuous-time filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$. Show that $S \wedge T$ is a stopping time, that \mathcal{F}_{T} is a σ-algebra, and that $\mathcal{F}_{S} \subseteq \mathcal{F}_{T}$ if $S \leq T$. Show also that $X_{T} 1_{\{T<\infty\}}$ is an \mathcal{F}_{T}-measurable random variable.
4.3 Let T be an exponential random variable of parameter 1 . Set $X_{t}=e^{t} 1_{t<T}$. Describe the natural filtration of $\left(X_{t}\right)_{t \geq 0}$. Show that $\mathbb{E}\left(X_{t} 1_{\{T>r\}}\right)=\mathbb{E}\left(X_{s} 1_{\{T>r\}}\right)$ for $r \leq s \leq t$, and hence deduce that $\left(X_{t}\right)_{t \geq 0}$ is a cadlag martingale. Determine whether $\left(X_{t}\right)_{t \geq 0}$ is uniformly integrable.
4.4 Let T be a random variable in $[0, \infty)$ having a positive and continuous density function f on $[0, \infty)$. Define the hazard function A on $[0, \infty)$ by

$$
A(t)=\int_{0}^{t} \frac{f(s) d s}{1-F(s)}
$$

where F is the distribution function of T. Show that $A(T)$ is an exponential random variable of parameter 1. Set $X_{t}=1_{\{t \geq T\}}-A(T \wedge t)$. Show that $\left(X_{t}\right)_{t \geq 0}$ is a cadlag martingale.
4.5 Let $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ be a filtration, satisfying the usual conditions, and let $\left(\xi_{t}\right)_{t \geq 0}$ be an adapted integrable process such that $\mathbb{E}\left(\xi_{t} \mid \mathcal{F}_{s}\right)=\xi_{s}$ almost surely, for all $s, t \geq 0$ with $s \leq t$. Show that there is a cadlag martingale $\left(X_{t}\right)_{t \geq 0}$ such that $\xi_{t}=X_{t}$ almost surely, for all $t \geq 0$.

