Advanced Probability 1

1.1 Let $X, Y \in L^{1}(\mathbb{P})$ and let \mathcal{G} be a σ-algebra. Show that

$$
\mathbb{E}(X+Y \mid \mathcal{G})=\mathbb{E}(X \mid \mathcal{G})+\mathbb{E}(Y \mid \mathcal{G}) \quad \text { almost surely. }
$$

1.2 Let X be a non-negative random variable and let Y be a version of $\mathbb{E}(X \mid \mathcal{G})$. Show that $\{X>0\} \subseteq\{Y>0\}$ almost surely, that is, $1_{\{X>0\}} \leq 1_{\{Y>0\}}$ almost surely. Show further that, for all $A \in \mathcal{G}$, if $\{X>0\} \subseteq A$ almost surely then $\{Y>0\} \subseteq A$ almost surely.
1.3 Let $X, Y \in L^{2}(\mathbb{P})$. Show that if

$$
\mathbb{E}(X \mid Y)=Y \quad \text { and } \quad \mathbb{E}(Y \mid X)=X \quad \text { almost surely }
$$

then $X=Y$ almost surely. Show that this holds also for $X, Y \in L^{1}(\mathbb{P})$.
1.4 Let X be an integrable random variable and let $x \in \mathbb{R}$. Show that

$$
\mathbb{E}(X \mid X \leq x) \leq \mathbb{E}(X)
$$

Here and below, it is to be assumed that the conditioning event has positive probability. Let Y be another random variable, independent of X, and let f be a non-decreasing function such that $f(X+Y)$ is integrable. Show that

$$
\mathbb{E}(f(X+Y) \mid X \leq x) \leq \mathbb{E}(f(X+Y))
$$

Let $S_{n}=X_{1}+\cdots+X_{n}$, where X_{1}, \ldots, X_{n} are independent, and let $x_{1}, \ldots, x_{n} \in \mathbb{R}$. Show that

$$
\mathbb{P}\left(S_{n} \geq x \mid X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right) \leq \mathbb{P}\left(S_{n} \geq x\right)
$$

1.5 Show that, for any sequence of non-negative random variables $\left(X_{n}: n \in \mathbb{N}\right)$ and any σ-algebra \mathcal{G},

$$
\mathbb{E}\left(\liminf X_{n} \mid \mathcal{G}\right) \leq \liminf \mathbb{E}\left(X_{n} \mid \mathcal{G}\right) \quad \text { almost surely } .
$$

1.6 Let X and Y be random variables and let $\lambda \in(0, \infty)$. Show that, if X and $Y-X$ are independent exponential random variables of parameter λ, then Y has density $\lambda^{2} y e^{-\lambda y}$ on $(0, \infty)$ and, for all $x \geq 0$, almost surely,

$$
\mathbb{P}(X \leq x \mid Y)=(x / Y) \wedge 1
$$

Show that the converse also holds.
2.1 Let $\left(X_{n}\right)_{n \geq 0}$ be an integrable process, taking values in a countable set $E \subseteq \mathbb{R}$. Show that $\left(X_{n}\right)_{n \geq 0}$ is a martingale in its natural filtration if and only if, for all n and for all $x_{0}, \ldots, x_{n} \in E$, whenever the conditioning event has positive probability, we have

$$
\mathbb{E}\left(X_{n+1} \mid X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right)=x_{n}
$$

2.2 Let $\left(X_{n}\right)_{n \geq 0}$ be a martingale and let f be a convex function on \mathbb{R} such that $f\left(X_{n}\right)$ is integrable for all n. Show that $\left(f\left(X_{n}\right)\right)_{n \geq 0}$ is a submartingale.
2.3 Let $\left(X_{n}\right)_{n \geq 0}$ be a martingale and let T be a stopping time. Consider the following conditions
(a) $T \leq n$ for some $n \geq 0$,
(b) there is a constant $C<\infty$ such that $\left|X_{n}\right| \leq C$ for all $n \leq T$ almost surely,
(c) $\mathbb{E}(T)<\infty$ and there is a constant $C<\infty$ such that $\left|X_{n+1}-X_{n}\right| \leq C$ for all $n<T$ almost surely.

Show that, under each one of these conditions, X_{T} is integrable and $\mathbb{E}\left(X_{T}\right)=\mathbb{E}\left(X_{0}\right)$.
2.4 Let $X \in L^{2}(\mathbb{P})$ and set

$$
X_{n}=\mathbb{E}\left(X \mid \mathcal{F}_{n}\right)
$$

where $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ is a given filtration. Show that, for all $m \leq n$,

$$
\left\|X_{m}\right\|_{2}^{2}+\left\|X_{m}-X_{n}\right\|_{2}^{2}=\left\|X_{n}\right\|_{2}^{2} .
$$

Hence show there exists $Y \in L^{2}(\mathbb{P})$ such that $X_{n} \rightarrow Y$ in L^{2}. Show further that $Y=X$ almost surely if and only if X is \mathcal{F}_{∞}-measurable, where $\mathcal{F}_{\infty}=\sigma\left(\mathcal{F}_{n}: n \geq 0\right)$.
2.5 Let $\left(X_{n}\right)_{n \geq 0}$ be a martingale, starting from 0 . Show that $\left(X_{n}\right)_{n \geq 0}$ is bounded in L^{2} if and only if $\sum_{n}\left\|X_{n+1}-X_{n}\right\|_{2}^{2}<\infty$.
3.1 Pólya's urn. At time 0, an urn contains two balls, one black, the other white. Suppose we repeatedly choose a ball at random from the urn and replace it together with a new ball of the same colour. Then, after n steps, there are $n+2$ balls in the urn, of which $B_{n}+1$ are black, where B_{n} is the number of steps in which a black ball was chosen. Let $M_{n}=\left(B_{n}+1\right) /(n+2)$ the proportion of black balls in the urn after n steps. Show that $\left(M_{n}\right)_{n \geq 0}$ is a martingale, relative to a filtration which you should specify. Show also that

$$
\mathbb{P}\left(B_{n}=k\right)=(n+1)^{-1}, \quad k=0,1, \ldots, n
$$

Deduce that there is a random variable Θ such that $M_{n} \rightarrow \Theta$ almost surely and find the distribution of Θ.

For $\theta \in[0,1]$, set

$$
N_{n}^{\theta}=\frac{(n+1)!}{B_{n}!\left(n-B_{n}\right)!} \theta^{B_{n}}(1-\theta)^{n-B_{n}} .
$$

Show that $\left(N_{n}^{\theta}\right)_{n \geq 0}$ is a martingale.
3.2 Bayes' urn. A random number Θ is chosen uniformly in $[0,1]$, and a coin with probability Θ of heads is minted. The coin is tossed repeatedly. Let B_{n} be the number of heads in n tosses. Show that the process $\left(B_{n}\right)_{n \geq 0}$ has the same distribution as the process $\left(B_{n}\right)_{n \geq 0}$ in Example 3.1. Show that N_{n}^{θ} is a conditional density function of Θ given B_{1}, \ldots, B_{n}.
3.3 Let X_{1}, X_{2}, \ldots be independent with $\mathbb{P}\left(X_{n}=1\right)=\mathbb{P}\left(X_{n}=-1\right)=1 / 2$ for all n. Show that the series $\sum_{n} X_{n} / n$ converges almost surely.
3.4 Let X_{1}, X_{2}, \ldots be independent with $\mathbb{P}\left(X_{n}=-1 / p_{n}\right)=p_{n}$ and $\mathbb{P}\left(X_{n}=1 / q_{n}\right)=q_{n}$, where $p_{n}=1 / n^{2}$ and $p_{n}+q_{n}=1$. Set $S_{n}=X_{1}+\cdots+X_{n}$. Show that $\left(S_{n}\right)_{n \geq 0}$ is a martingale and that S_{n} / n converges almost surely as $n \rightarrow \infty$. Deduce that $S_{n} \rightarrow \infty$ almost surely as $n \rightarrow \infty$.

