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REVERSAL, COUPLING, RENEWAL

GEOFFREY R. GRIMMETT

Abstract. A neat question involving coin flips surfaced on X, and generated an intensive
‘storm’ of ‘social mathematics’. In a sequence of flips of a fair coin, Alice wins a point
at each appearance of two consecutive heads, and Bob wins a point whenever a head is
followed immediately by a tail. Who is more likely to win the game? The subsequent
discussion illustrated conflicting intuitions, and concluded with the correct answer (it is a
close thing). It is explained here why the context of the question is interesting and how it
may be answered in a quantitative manner using the probabilistic techniques of reversal,
coupling, and renewal.

1. The problem

Question 1.1. A fair coin is tossed n times. Alice scores one point at each appearance of
two consecutive heads, and Bob scores one point each time a head is followed immediately
by a tail. The winner is the player who accumulates more points. Who is the more likely
to win?

Here are some intuitive arguments in order of decreasing naiveté.

(a) In any pair of consecutive coin tosses, Alice wins a point with probability 1
4
, and

Bob wins a point with the same probability. Therefore, each has a mean total score
of 1

4
(n− 1). Since these means are equal, the game is fair and each player has the

same probability of winning.
(b) Alice’s points tend to arrive in clusters, whereas Bob’s are isolated. That favours

Alice, so she is more likely to win.
(c) When Alice wins a point, she has an increased chance of winning again. Therefore,

when she wins, she tends to do so by a wider margin than does Bob. However, her
mean total is the same as Bob’s. It follows that Bob has a greater probability of
winning.

This question (with n = 100) was posed by Daniel Litt on his X feed [9] on 16 March
2024. At the current time of writing, his post has attracted 1.2M views. First responders
tended to favour Alice above Bob on the grounds of argument (b), and a vote was reported
as placing Alice (26.3%) over Bob (10.2%), with 42.8% of the 51,588 voters supporting
equality. Later simulations appeared to show that Bob has a slight advantage.

ChatGPT has changed its position on the question over the intervening months. Initially
it favoured Alice on the grounds given in (b) above. At the time of writing it has veered
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towards (a), with the conclusion that “The game is fair to both players in terms of expected
outcomes.” Fair enough, but not very helpful. There remains hope for mathematicians.

More complete answers began to surface on Litt’s X feed fairly soon after the original
post, and suggestions were made for rigorous proof. It is not easy to convey the details
and to check the correctness of a mathematical argument within the confined format of X,
and hence this note. We present three conclusions.

Theorem 1.2. Consider n flips of a fair coin.

(a) Bob is (strictly) more likely than Alice to win when n ≥ 3.
(b) P(Bob wins)− P(Alice wins) ∼ c/

√
n as n→∞, where

c =
1

2
√
π
≈ 0.282.

(c) The probability of a tie is asymptotically 1/
√
πn.

Explicit representations for the probabilities in (b) and (c) are given in equations (4.12)–
(4.13). Parts (b) and (c) imply that

1

2
− P(B wins) ∼ 1

4
√
πn

,
1

2
− P(A wins) ∼ 3

4
√
πn

. (1.1)

It is immediate that Alice and Bob are equally likely to win when n = 1, 2. By consid-
ering the eight possible outcomes when n = 3, we have P(Bob wins) − P(Alice wins) = 1

8
in this case.

The methods of proof may be summarised as reversal, coupling, and renewal, and the
proof of Theorem 1.2 illustrates these standard techniques. Reversing a random sequence is
a long-established activity which has contributed enormously to probability and especially
to the theory of random walks (see, for example, [7, Sect. 3.10]). The coupling approach
enables us to study the ‘pathwise’ relationship between winning sequences for Alice and
for Bob, rather than by simply calculating probabilities (see, for example, [7, Sect. 4.12]).
Renewal theory is the study of random processes that renew themselves at random times
(see for example, [7, Chap. 10]).

We make two intuitive remarks about the problem (see also the next section). Let Sn

denote Bob’s score minus Alice’s score after n flips.

(a) Certainly, Sn has mean 0, but that does not imply that its distribution is symmetric,
and it is precisely such asymmetry that skews the game towards Bob. One measure
of asymmetry is termed ‘skewness’ (denoted ‘skw’), and is defined in terms of the
so-called third central moment (see [7, p. 163]). The sign of the skewness (positive
or negative) is an indicator of the more likely winner.

(b) The term
√
n of Theorem 1.2 originates in the fact that Sn is the sum of independent

summands. Their number is random but it has order n. Intuition based on the
central limit theorem suggests that Sn has an approximately Gaussian distribution
with mean 0 and variance of order n. In particular, one may guess that P(Sn = 0)
has order 1/

√
n, in line with the so-called local central limit theorem (see [7, p.

219]). As further evidence, the skewness of the sum of n independent copies of a
random variable X is skw(X)/

√
n.
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2. Remarks on related problems

One may phrase the problem addressed here as ‘HT vs HH’, and we shall write ‘HT >
HH’ in paraphrase of Theorem 1.2(a). This implies that TH > HH for the following
reason. Take a sequence ω of heads/tails and reverse it in time to obtain ρ(ω) — so that,
for example, the sequence ω = HTHHHT (sometimes abbreviated in the natural way to
HTH3T) becomes the reversed sequence ρ(ω) = THHHTH (abbreviated to TH3TH). Then
ω and ρ(ω) have the same probability distribution, and the same count of consecutive head
pairs HH. However, every HT in ω becomes TH in ρ(ω). Such reversal is a technique used
heavily in the current paper. Another simple technique is the interchange of heads and
tails, whereby one deduces immediately that TH > TT.

Further questions spring easily to mind, involving sequences of length greater than 2,
and indeed sets of sequences. There is a general method for determining the likely winner
for sufficiently large n, and it can be applied to more general problems than HH vs HT.
This is not the subject of the current article, but we outline it here for completeness. The
aggregate score process S evolves as the number of flips increases, and it does so in the
manner of a stochastic process with finite-range dependence (that is, there exists r < ∞
such that the increments in S are independent when they are separated in time by r or
more). Such processes have many of the properties of random walk, and in particular they
satisfy a central limit theorem (CLT), in which the rate of convergence to the Gaussian
distribution is determined (in the main) by the so-called third central moment. The last
can be calculated explicitly in specific cases, and this yields the identity of the likely winner
when n is large. Some technicalities must be overcome to complete this argument, and the
nice arguments of Feller [6, Sect. XVI.4] may be useful in this regard. Mention is made of
the preprint of Basdevant et al. [1]. A full account of this approach is expected in [8].

This CLT argument yields a general solution to such problems, but only for sufficiently
large values of n. Since it relies on asymptotics and error estimates, it cannot be expected
to answer such questions for all values of n. In addition, it does not reveal detailed aspects
of structure such as those described in the current work for the case HT vs HH. In a
sense, Litt’s question was a lucky shot (though fortune favours the well prepared) — it
was simple, captivating, and has a beautiful answer. There is a limited number of other
cases that are at least partially susceptible to the methods of the current article.

As mathematicians we insist on unambiguous definitions of the objects of our study.
One may capture pretty well all of probability theory by defining it as the theory of a
countably infinite sequence of tosses of a fair coin. Perhaps not everything worth knowing
is yet known about this primeval experiment.

The target of the current note is to obtain Theorem 1.2 using exact probabilistic methods
to illuminate structure. The associated literature is slightly complex, owing to the nature
and speed of communication of X. The idea of reversal has arisen independently in certain
contributions on X to Litt’s post (see [12], for example, for some nice ideas). Mention is
made of [5], which uses computational tools to explore the quantities in Theorem 1.2, and
[13], which obtains the theorem by applying analytic tools to generating functions.
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k : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ωk : T H T H T H H H H T T H T T H T H H H T
Sk : 0 1 2 1 0 −1 0 1 2 1 0 −1

←−−−−−−−−−−−→
lB

←−→
lA

←−−−−−−−−−−−−−−−−−→

Figure 3.1. A sequence ω = THTHTH4T2HT2HTH3T of 20 coin flips. The
scores Sk are stated only when they change. Bob enters a winning period
from epoch 3 to epoch 8, then Alice from 9 to 10, and then Bob from 13 to
19.

3. Notation and basic observations

Here is some notation. Abbreviate Alice to A, and Bob to B; write H for a head and T for
a tail. Let N denote the natural numbers, and let Ω∞ = {H,T}N be the set of all sequences
ω = (ω1, ω2, . . . ) each element of which is either H or T. We shall normally express such
sequences as ω = ω1ω2 · · · . Similarly, let Ωn := {H,T}n, the set of all sequences of n coin
tosses.

Let ω ∈ Ω∞. Player A scores −1 at each appearance of HH; player B scores 1 at each
appearance of HT. The score Sk(ω) is the aggregate score after k steps of ω, that is,
Sk(ω) is the number of appearances of HT minus the number of appearances of HH in the
subsequence ω1ω2 · · ·ωk.

There follows an outline of the method to be followed here, with an illustration in Figure
3.1. First, one defines epochs of renewal, at which the scoring process restarts. Neither
player scores until the first appearance of H.

(i) If the following flip is T then Bob enters a winning period (of some length lB),
which lasts until the next time that the aggregate score is 0; this must happen at
an appearance of HH.

(ii) If the following flip is H then Alice enters a winning period (of some length lA),
which lasts until the next time that the aggregate score is 0; this must happen at
an appearance of HT.

The process then restarts (subject to certain details to be made specific). After n coin
flips, Alice is winning if she is then in a winning period, and similarly for Bob. Ties occur
between winning periods. We will see that the representative periods lA, lB are such that
lA is (stochastically) smaller than lB (that is to say, P(lA > l) ≤ P(lB > l) for all l), and
Theorem 1.2(a) will follow.

The stochastic domination is proved by displaying a concrete coupling of lA and lB. The
above explanation is given in more detail in Section 5.

The asymptotic part (b) of Theorem 1.2 is of course connected to the local central limit
theorem (see, for example, [7, p. 219]). It suffices to use the earliest such theorem ever
proved, namely the 1733 theorem of de Moivre [3, 11] (see also [4, p. 243–254] and [14,
Thm 1.1]), although one may equally use the (de Moivre–)Stirling formula alone (see the
historical note [10]).
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We have assumed implicitly in the above that the lengths lA, lB are finite (almost surely),
and this requires proof. It follows from the next lemma.

Let P be the probability measure on Ω∞ under which the coin tosses are independent
random variables, each being H (respectively, T) with probability 1

2
. An event E is said

to occur almost surely if P(E) = 1.

Lemma 3.1. The number of times r at which the aggregate score satisfies Sr(ω) = 0 is
infinite almost surely.

Remark 3.2. Many of the arguments of this note are valid in the more general setting
where heads occurs with some probability p ∈ (0, 1). However, the conclusion of Lemma
3.1 is false when p ̸= 1

2
, and indeed P(A wins) approaches 1 if p > 1

2
, and approaches 0 if

p < 1
2
, in the limit as the number of coin flips grows to ∞.

Proof of Lemma 3.1. There are several ways to prove this, of which we feature the neat
argument of [12]. Let Z1, Z2, . . . be independent random variables taking the values ±1
each with probability 1

2
. The partial sums Tn := Z1 + Z2 + · · · + Zn are said to form a

simple random walk (SRW). It is a famous theorem that

P(Tn = 0 for some n ≥ 1) = 1

(see [7, Cor. 5.3.4]), and this is usually expressed by saying that the value 0 is ‘recurrent’.
Having returned once, the walk will (with probability 1) return again, and so on. Therefore,

P(Tn = 0 for infinitely many n) = 1. (3.1)

The score process (Sr) is not a SRW, but instead a ‘time-changed’ SRW. We view it as
follows. First wait until the first H. Exactly one of the two following events then occurs,
each having probability 1

2
,

(tail): the next flip is T and S increases by 1,

(head): the next flip is H and S decreases by 1.

In case (tail), we wait for the next H; in either case, the process is then iterated. Let Zi

be the ith change in value of the score process. By the above, the Zi are the steps of a
SRW, albeit delayed in time. Every return to 0 of this SRW marks a return to 0 of the
score, and the claim follows by (3.1). □

4. Proof of Theorem 1.2(a)

A finite sequence ω = ω1 · · ·ωk is called

a B-excursion if it starts HT and ends HH, and satisfies:

Sl(ω) > 0 for 1 < l < k, and Sk(ω) = 0,

an A-excursion if it starts HH and ends HT, and satisfies:

Sl(ω) < 0 for 1 < l < k, and Sk(ω) = 0,

an Â-excursion if it comprises an A-excursion followed by a (possibly empty)

run of tails and then a single head.
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We write B for the set of B-excursions, and Bk for those of length k, with similar notation
for A-excursions and Â-excursions (using the notation A and Â, respectively).

Â-excursions are introduced for the following reason. Players A and B can score only
at a coin flip that follows an appearance of H. It will be convenient that excursions finish
with a head. Since an A-excursion ends with a tail, we simply extend it to include any
following run of tails, followed by the subsequent head; this extension contains neither HH
nor HT and hence the score of the excursion is unchanged.

Remark 4.1. A headrun (respectively, tailrun) is a maximal consecutive sequence of heads
(respectively, tails). Any finite sequence ω comprises alternating headruns and tailruns.
Alice’s score equals the number of heads minus the number of headruns. Bob’s score equals
the number of tailruns having a preceding head. Let h be the total number of heads, and r
the total number of runs (each comprising either heads or tails). The aggregate score S(ω)
equals r − h if ω1 = H (respectively, r − 1− h if ω1 = T).

We define sequence-reversal next. Let Φ =
⋃∞

k=1Ωk be the set of all non-empty finite
sequences, and let ΦH be the subset of Φ containing all finite sequences that begin H. For
ω ∈ Φ, we write S(ω) for the aggregate score of ω. The score function is additive in the
sense that

S(ω1 · · ·ωm+n) = S(ω1 · · ·ωm) + S(ωm · · ·ωm+n), m, n ≥ 1. (4.1)

For a finite sequence ω = ω1ω2 . . . ωk ∈ Φ, define its reversal ρ(ω) by ρ(ω) = ωkωk−1 . . . ω1.

Lemma 4.2.

(a) If ω = ω1 · · ·ωk ∈ ΦH ends in H (so that ω1 = ωk = H), then S(ω) = S(ρ(ω)).

(b) Let k ≥ 2. The mapping ρ is a bijection between the sets Bk and Âk.

Proof. (a) Let ω ∈ ΦH end in H, so that ρ(ω) ∈ ΦH. By Remark 4.1, S(ω) equals the
number of runs minus the number of heads. These counts are invariant under ρ.

(b) A B-excursion b = b1b2 · · · bk ∈ Bk has the form b = HTrH · · ·HH for some r ≥ 1,
whence ρ(b) = bkbk−1 · · · b1 has the form HH · · ·HTrH. By part (a), S(ρ(b)) = S(b) = 0,
which implies, after removal of the final Tr−1H, that

S(bkbk−1 · · · br+1) = 0. (4.2)

We claim that

S(bkbk−1 · · · bj) < 0 for j ∈ [r + 2, k − 1]. (4.3)

Suppose, on the contrary, that j ∈ [r + 2, k − 1] is such that

S(bkbk−1 · · · bj) = 0, (4.4)

and pick j largest with this property. Since bkbk−1 · · · bj starts with HH, it must end with
HT. We now extend it to the next appearance in ρ(b) of H, thus obtaining bkbk−1 · · · bjTaH
(= bkbk−1 · · · bj−a−1) for some a ≥ 0. By (4.4),

S(bkbk−1 · · · bj−a−1) = S(bkbk−1 · · · bjTaH) = 0. (4.5)

By part (a), we have

S(bj−a−1 · · · bk−1bk) = S(bkbk−1 · · · bj−a−1) = 0.
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N←−−−−−−−−−−−−−−−−−−→

T T T H
{

T T H T H H H
H H T H T T H

}
· · ·

←−−−−−−−−→
M

←−−−−−−−−−−−−−→
Q

←−−−→
M ′

Figure 4.1. An illustration of the notation M , N , Q. Within the braces,
the upper sequence is a B-excursion, and the lower is an Â-excursion.

By the additivity of S, (4.1),

S(b1b2 · · · bj−a−1) = S(b1b2 · · · bk)− S(bj−a−1 · · · bk−1bk) = 0,

in contradiction of the assumption that b is a B-excursion, and (4.3) follows.

We illustrate the above argument with an example. Suppose k = 8 and b = HT2HTH3,
so that ρ(b) = H3THT2H. Note that bkbk−1 · · · br+1 = H3THT in agreement with (4.2).
Equation (4.3) amounts to the assertion that S(H3TH), S(H3T), S(H3), S(H2) < 0.

We return to the proof of the lemma. By (4.2)–(4.3), bkbk−1 · · · br+1 is an A-excursion,

and hence ρ(b) is an Â-excursion. Therefore, ρ is an injection. By the same argument
applied to ρ−1, we have that ρ is a surjection. □

We make three observations, in amplification of the remarks of the last section. Let
ω ∈ Ω∞, and observe the initial evolution of scores, as illustrated in Figure 4.1.

(a) There is no score until the first H appears. Let M be the position of the first H,
and note that

P(M = m) = (1
2
)m, m ≥ 1. (4.6)

That is, there is an initial sequence of tails of some random length M − 1 (≥ 0),
followed by a head (so that ω = TM−1H · · · ). Following this head, there is equal
probability of H or T.

(b) If the next toss is T (which is to say that ωM+1 = T), then Bob scores one point. He
remains in the lead until the next epoch, M +N say, at which the aggregate score
equals 0. It must be the case that ωM+N−1ωM+N = HH, and thus the sequence
ωM · · ·ωM+N is a B-excursion. The process restarts from H at time M +N .

(c) Suppose the next toss is H (i.e., ωM+1 = H). The situation is slightly more compli-
cated in this case. At time M + 1, Alice leads by 1, and she continues in the lead
until the next epoch, M +Q say, when the aggregate score equals 0, and moreover
ωM+Q−1ωM+Q = HT. Thus the sequence ω1 · · ·ωM+Q is an A-excursion. Whereas
in (b) the process restarts from the state ωM+N = H, this time we have ωM+Q = T,
and we wait a random period of time for the next H. As in (a), there is a run
of tails before the next head, which is to say that the process restarts from the
head at epoch M +Q+M ′ where M ′ is an independent copy of M . The sequence
ωM · · ·ωM+N+M ′ is an Â-excursion.

We shall adjoin certain sequences by placing them in tandem, and we write either ψ1ψ2

or ψ1 · ψ2 for ψ1 followed by ψ2. When scoring ψ2, viewed as a subsequence of ψ1ψ2, one
takes account of the final character of ψ1, which will typically be H in the cases studied
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here. In order to do the necessary book-keeping we introduce the following notation: for a
sequence ψ beginning with H, we write H−1ψ for the sequence obtained from ψ by removing
its initial H.

We construct next a random sequence of excursions drawn from the setA of A-excursions.
Consider a random sequence of flips beginning HH, and let τ be the initial A-excursion of
this sequence; we term τ a random A-excursion; a similar definition holds for a random
B-excursion. Let (τi : i ≥ 1) be a sequence of independent copies of τ (that is, they are
independent and each has the same distribution as τ). Let Qi + 1 be the length of τi (so
that H−1τi has length Qi). The τi are almost surely finite, by Lemma 3.1. Let (Mi : i ≥ 0)
be independent copies of M (see (4.6)), also independent of the Qi. Let Ni = Qi +Mi,
and let Li be the sequence TMi−1H.

We have that τiLi is a random element of Â of length Qi +Mi + 1. By Lemma 4.2,
ρ(τiLi) is a random element of B of length Qi +Mi + 1. We define

the Â-excursion αi := τiLi,

the B-excursion βi := ρ(τiLi).
(4.7)

Thus βi is simply a reversal of αi, and this fact will provide a coupling of Â-excursions and
B-excursions which is length-conserving (in that αi and βi have the same length).

Both αi and βi start and end with H; when placing them in tandem we shall strip the
initial H. Another way of expressing (a)–(c) is as follows.

(i) A random sequence of coin tosses begins with L0.
(ii) This is followed by

γ1 :=

{
H−1α1 with probability 1

2
,

H−1β1 with probability 1
2
.

(iii) Let k ≥ 2, and suppose αi, βi have been constructed for i = 1, 2, . . . , k. We then
let

γk+1 :=

{
H−1αk+1 with probability 1

2
,

H−1βk+1 with probability 1
2
.

(4.8)

Note that the length of γi is Qi +Mi.

Lemma 4.3. The sequence X = L0γ1γ2 · · · is an independent sequence of fair coin tosses.

This does not require proof beyond the above remarks. The lemma provides a represen-
tation of a random sequence in terms of an initial tailrun, followed by independent copies
of γ1 in tandem. Each γi occupies a time-slot, and within this slot there appears a sequence
of coin-tosses; according to the flip of another fair coin, we either retain this sequence or
we reverse it (see (4.8)). (Some minor details concerning initial and final heads are omitted
from this overview).

The sequence X may be expressed as follows:

X = L0 ·
{

H−1α1 = H−1τ1L1

H−1β1 = H−1ρ(τ1L1)

}
·
{

H−1α2 = H−1τ2L2

H−1β2 = H−1ρ(τ2L2)

}
· · · . (4.9)
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There are two possibilities within each matched pair of braces, and one chooses between
them at random. More precisely, let Z1, Z2, . . . be independent random variables taking
values in {a, b}, with each value chosen with probability 1

2
. We pick the upper element of

the ith matched pair if Zi = a and the lower element if Zi = b.

Let X = (Xk : k ≥ 1) be as in Lemma 4.3, so that X may be expressed in the form of
(4.9). We shall explore the differences between the upper and lower elements of any given
pair of braces there. Consider the ith matched pair of braces in (4.9). Let fi be the first
index in this subsequence of X, and let si be the last. Finally, let mi = fi + |H−1τi| − 1
where |ω| denotes the length of a sequence ω; that is, mi is the index of the last element
of H−1τi when Zi = a. In illustration of these three indices, we assume that Zi = a and
express the ith matched pair in the form:{

H−1τiLi

}
= (t2

↓fi
t3 . . . tc

↓mi

) · (l1l2 . . . ld
↓si
) (4.10)

where τi = Ht2 . . . tc and Li = l1l2 . . . ld. Then fi is the index of t2 in X, mi is the index of
tc, and si is the index of ld (‘f ’ for first point, ‘m’ for middle, and ‘s’ for second). Evidently,
mi < si.

Here is a concrete example. If τi = H3TH2THT and Li = T3H, then the ith pair of
braces contains H−1τiLi = H2TH2THT · T3H, so that mi = fi + 7 and si = mi + 4, where
fi is the index in X of the first element of this brace.

Proof of Theorem 1.2(a). Let n ≥ 3, and find the unique I = In such that n lies in the Ith
brace pair of (4.9) (write I = 0 if no such pair exists). Note that fI ≤ n ≤ sI for I ≥ 1.
If n lies inside a B-excursion (respectively, A-excursion), then Bob (respectively, Alice) is

currently winning. The third possibility is that the Ith brace contains an Â-excursion and
n falls at or after the end of the A-excursion therein. More precisely, the score at epoch n
satisfies

Sn = 0 if I = 0,

Sn > 0 if I ≥ 1, ZI = b, and n < sI

Sn < 0 if I ≥ 1, ZI = a, and n < mI ,

Sn = 0 if none of the above conditions hold.

(4.11)

Recalling (4.9), it follows that

P(Sn > 0)− P(Sn < 0) = 1
2

[
P(I ≥ 1, n < sI)− P(I ≥ 1, n < mI)

]
= 1

2
P(I ≥ 1, mI ≤ n < sI) ≥ 0. (4.12)

The strict positivity of the last probability (with n ≥ 3) follows by consideration of se-
quences beginning H2TmH · · · with m ≥ n, for which M0 = 1, M1 = m, and γ1 = HTmH.
Thus, τ1 = H2T, and the interval {m1,m1+1, . . . , s1− 1} = {3, 4, . . . ,m+2} contains the
value n. □

The probability of a tie is derived similarly to (4.12) as

P(Sn = 0) = P(I = 0) + P(I ≥ 1, n = sI) +
1
2
P(I ≥ 1, mI ≤ n < sI). (4.13)

From (4.12)–(4.13) (as in (1.1)) one may obtain representations for the probabilities P(Sn >
0) and P(Sn < 0).
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5. Proof of Theorem 1.2(b, c)

Returning to the representation (4.9) for X, we take the lower element in each matched
pair of braces, and reorganise the terms slightly to obtain the sequence

Y := {L0H
−1τ1} · {L1H

−1τ2} · · · . (5.1)

We emphasise that Y and X are very different, but nevertheless the sequence Y enables
us to locate a set of renewal points that will aid the analysis of X, namely the following.
Let R = {m0,m1,m2, . . . } where m0 = 0 and the mi for i ≥ 1 are as marked in (4.10);
in other words, R is the set of indices of the rightmost elements of the braces in (5.1).
Since (mi+1 − mi : i ≥ 0) are independent and identically distributed, R is indeed a
renewal process. Such a process has the renewal property that, conditional on {m ∈ R}
the process subsequent to time m has the same distribution as the process starting at time
0. Let πm := P(m ∈ R).
Letm ≤ n, and recall the notation Zi, I = In from the last section. By the renewal prop-

erty, conditional on the event {m ∈ R, ZI = a}, the sequence ψm,n := Xm+1Xm+2 · · ·Xn

is a sequence of independent coin flips. For fixed n, the events

Em,n = {m ∈ R, ZI = a, ψm,n = Tn−m}, m = 1, 2, . . . , n,

are disjoint with union ⋃
m≤n

Em,n = {I ≥ 1, ZI = a, mI ≤ n < sI}.

By (4.12) and the above,

P(Sn > 0)− P(Sn < 0) = P(I ≥ 1, ZI = a, mI ≤ n < sI)

=
n∑

m=1

P(m ∈ R,ψm,n = Tn−m | ZI = a)P(ZI = a)

=
1

2

n∑
m=1

P(m ∈ R, ψm,n = Tn−m) =
n−1∑
k=0

(1
2
)k+1πn−k. (5.2)

Theorem 1.2(b) follows once the following has been proved.

Proposition 5.1. We have that πm ∼ c/
√
m as m→∞, where c = 1/(2

√
π) ≈ 0.282.

The proof uses the de Moivre local central limit theorem (as in [14]), though this amounts
only to sustained use of the (de Moivre–)Stirling formula, [10].

An outline of the proof of Theorem 1.2(c) is included after that of the proposition.

Proof. This proof is based on a combinatorial calculation associated with a certain subset
of the renewal process R = (mi : i ≥ 0), namely the subset RX = {mi : i ≥ 1, Zi = a}. It
is immediate that RX ⊆ R. Moreover, by the independence of (mi) and (Zj),

P(m ∈ RX) =
1
2
P(m ∈ R), m ≥ 1. (5.3)

By Lemma 4.3, the event {m ∈ RX} is the set of all ω with length m that satisfy
ωm−1ωm = HT and S(ω) = 0. Let h be the number of heads in such ω, and r the number
of runs (of either heads or tails). If r is even, (respectively, odd), then such sequences
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begin H (respectively, T), and they invariably finish with a tailrun of exactly one tail. By
Remark 4.1, since the aggregate score is 0, we have h = r if r is even, and h = r− 1 if r is
odd.

We use the fact that the number of p-partitions of the integer q is
(
q−1
p−1

)
. Let m ≥ 5,

say. By partitioning the heads and tails into r runs subject to the above, and interleaving
headruns and tailruns, we obtain that

|{m ∈ RX}| = Σ1 + Σ2

where

Σ1 =
∑
r odd

(
m− h− 2
1
2
(r + 1)− 2

)(
h− 1

1
2
(r − 1)− 1

)
=

∑
r odd

(
m− r − 1
1
2
(r − 3)

)(
r − 2

1
2
(r − 3)

)
,

Σ2 =
∑
r even

(
m− h− 2

1
2
r − 2

)(
h− 1
1
2
r − 1

)
=

∑
r even

(
m− r − 2

1
2
r − 2

)(
r − 1
1
2
r − 1

)
.

Set r = 2s+ 1 (respectively, r = 2s) in Σ1 (respectively, Σ2) and add to obtain

|{m ∈ RX}| =
∞∑
s=1

[(
m− 2s− 2

s− 1

)
+

(
m− 2s− 2

s− 2

)](
2s− 1

s− 1

)

=
∞∑
s=1

(
m− 2s− 1

s− 1

)(
2s− 1

s− 1

)
. (5.4)

We could now expand the binomial coefficients and use Stirling’s formula directly. These
calculations have been done already by de Moivre [3, 14], and we choose to refer to his
results, as follows.

By (5.4),

P(m ∈ RX) =

(
1

2

)m

|{m ∈ RX}|

=
1

4

∞∑
s=1

P(Tm−2s−1 = s− 1)P(T2s−1 = s− 1), (5.5)

where Tk has the binomial distribution with paramters k and 1
2
. By Stirling’s formula (or

[14, Thm 1.1]),

P (T2s−1 = s− 1) ∼ 1√
πs

as s→∞. (5.6)

We may occasionally use real numbers in the following where integers are expected. The
term P(Tm−2s−1 = s− 1) in (5.5) is a maximum when m− 2s− 1 = 2(s− 1), which is to
say that s = 1

4
(m + 1). Let γ ∈ (1

2
, 2
3
). We may restrict the summation in (5.5) to values

of s satisfying |s− 1
4
m| < mγ. To see this, note that∑

s≥ 1
4
m+mγ

P(Tm−2s−1 = s− 1) ≤
∑

s≥ 1
4
m+mγ

P(Tm/2 ≥ s− 1),
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which tends to 0 as m → ∞ by the moderate-deviation theorem of Cramér [2] (or, for
a more modern treatment, see Feller [6, p. 549]*). We have used the fact that Tk is
stochastically increasing in k in that, for t ≥ 0, P(Tk > t) is non-decreasing in k. A similar
argument applies for s ≤ 1

4
m−mγ.

Suppose |s− 1
4
m| < mγ. By [14, Thm 1.2], there is an absolute constant C such that∣∣∣∣∣P(Tm−2s−1 = s− 1)−

√
2

π(m− 2s− 1)
exp

(
− (4s−m− 1)2

2(m− 2s− 1)

)∣∣∣∣∣ ≤ C

m2/3
.

It follows that ∑
|s− 1

4
m|<mγ

P(Tm−2s−1 = s− 1)

deviates from

Ψm :=
∑

|s− 1
4
m|<mγ

√
2

π(m− 2s− 1)
exp

(
− (4s−m− 1)2

2(m− 2s− 1)

)

by at most C(2mγ + 1)/m2/3, which tends to 0. Express Ψm as an integral, make the
change of variable

β =
4s−m− 1√
m− 2s− 1

and let m→∞ to obtain, by the dominated convergence theorem, that

Ψm →
1

2

∫ ∞

−∞

1√
2π
e−

1
2
β2

dβ =
1

2
.

Therefore, the terms P(Tm−2s−1 = s− 1) in (5.5) are (asymptotically) concentrated in the
interval 1

4
m±mγ, with total weight 1

2
. Hence, by (5.3) and (5.5)–(5.6),

πm ∼
2

8
√
πm/4

=
1

2
√
πm

,

as claimed. □

Outline proof of Theorem 1.2(c). One may deduce (c) from (4.13) by adapting the argu-
ment leading to (5.2). Alternatively, one may perform a direct calculation as above, and
there follows a sketch of this. Let Vm be the set of vectors ω ∈ Ωm such that S(ω) = 0.
Elements ω ∈ Vm may be expressed as interleaved headruns and tailruns, with the counts
of heads and tailruns being balanced by the condition S(ω) = 0 (see Remark 4.1). Such ω
may start with either H or T, and each case leads to two terms as in the first line of (5.4).
Thus, |Vm| is the sum of four terms, each being the product of two binomial coefficients.
The analysis continues as in the above proof. □

*Feller’s theorem may be stated as follows. Let (Zi) be a sequence of independent identically distributed
random variables with zero mean and unit variance, and with finite moment generating function in some
neighbourhood of 0, and write Sn = Z1 + Z2 + · + Zn. The central limit theorem states that, for x ∈ R,
P(Sn > x

√
n)/[1 − Φ(x)] → 1 as n → ∞, where Φ denotes the standard Gaussian distribution function.

The same limit is valid as x, n→∞ in such a way that x = o(n1/6).
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