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2 The Potts and random-cluster models

1.1 Synopsis

The relationship between the Tutte polynomial and the random-cluster, Ising,
and Potts models of statistical physics is summarised. Certain fundamental
properties of these models are described, particularly those that may be ex-
pressed neatly in terms of Tutte polynomials. The flow and chromatic poly-
nomials feature naturally in the study of the Potts model.

• Ising, Potts, and random-cluster models; physical origins; couplings, par-
tition functions.

• Basic properties of random-cluster measures; stochastic ordering; compar-
ison inequalities, positive association.

• Limit as q ↓ 0; uniform spanning tree, uniform spanning forest, uniform
connected subgraph; negative association.

• Flow polynomial; Potts two-point correlation; Simon inequality.

• Zero-temperature limit; chromatic polynomial.

• Asymptotics of the Tutte polynomial on the complete graph.

1.2 Introduction

The four principal elements in this chapter are the Ising model of 1925, the
Tutte polynomial of 1947, the Potts model of 1952, and the random-cluster
model of 1972.

The Ising model1 [28] is the fundamental model for the ferromagnet, and
it has generated enormous interest and activity in mathematics and physics
over the intervening decades. The Potts model [36] extends the number of local
states of the Ising model from 2 to a general number q. The random-cluster
model of Fortuin and Kasteleyn [20] provides an overarching framework for
the Ising/Potts models that incorporates percolation and electrical networks,
together with certain other processes. The common aspect of importance for
these three systems is the singularity that occurs at points of phase transition.

Whereas these three processes originated in mathematical physics, the
Tutte polynomial [44] is an object from combinatorics, and it encapsulates a
number of significant features of a graph or matroid. It turns out that the
Tutte polynomial is equal (subject to a change of variables) to the partition

1The Ising model was proposed to Ising by Lenz, and the Potts model to Potts by Domb.
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function of the random-cluster model, and therefore to that of the Potts model.
This connection is not a coincidence since both the Tutte and random-cluster
functions arose in independent analyses of local graph operations such as
deletion and contraction.

The Tutte polynomial originated in Tutte’s exploration of deletion and
contraction on a finite graph. The random-cluster model originated similarly
in Kasteleyn’s observation that the Ising, Potts, and percolation models, and
also electrical networks, have a property of invariance under series and parallel
operations on edges.

Combinatorial theory and statistical mechanics are areas of science which
have much in common, while retaining their distinctive characteristics. Statis-
tical mechanics is mostly concerned with the structure of phases and of singu-
larities, and has developed appropriate methodology and language. Although,
in principle, the properties of a physical model are encoded entirely within its
partition function, the extraction of such properties is often challenging and
hinges frequently on other factors such as the nature of the underlying graph.

The connection between the Tutte polynomial and statistical mechanics is
summarised in this chapter, as follows. We aim: (i) to give a clear formulation
of the relevant models, (ii) to explain the connection between their parti-
tion functions and the Tutte polynomial, (iii) to present some of the basic
properties of the random-cluster model that are contingent on the partition
function, and (iv) to present a selection of open problems concerning Potts
and random-cluster models that may be related to the Tutte polynomial.

Further references containing material relevant to this chapter include [5,
10, 16, 25, 42, 45, 46, 47, 48].

1.3 Probabilistic Models from Physics

1.3.1 The Ising and Potts ferromagnets

The Ising model for ferromagnetism was analysed in one dimension in Ising’s
thesis and 1925 paper [28]. It modelled the following physical experiment. A
piece of iron is placed in a magnetic field, with an intensity that is increased
from zero to a maximum, and then reduced to zero. The iron retains some
residual magnetisation if and only if the temperature is sufficiently low, and
the critical temperature for this phenomenon is called the Curie point.

The Ising model may be summarised as follows. Suppose that particles
are placed at the vertices of a graph embedded in a Euclidean space. Each
particle may be in either of two states: spin ‘up’ or spin ‘down’. Spin-values
are chosen at random according to a certain probability measure governed
by interactions between neighbouring particles. This measure is described as
follows.
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Let G = (V,E) be a finite, simple graph. Each vertex v ∈ V is occupied by
a particle with a random spin. Since spins are assumed to come in two basic
types, we take as sample space the set Σ = {−1,+1}V of vectors σ = (σx :
x ∈ V ) with entries ±1.

Definition 1.3.1. Let β ∈ (0,∞) and h ∈ R. The Ising Hamiltonian HI and
partition function ZI are given by

HI(σ) = −
∑

e=〈x,y〉∈E

σxσy − h
∑

x∈V

σx, ZI(G;β, h) =
∑

σ∈Σ

e−βHI(σ). (1.1)

The Ising probability measure λβ,h on G is defined by

λβ,h(σ) =
1

ZI
e−βHI(σ). σ ∈ Σ,

The parameter β represents the reciprocal 1/T of temperature, and h is
the external field. The second summation of (1.1) may be subsumed into the
first by adding a new ‘ghost’ vertex to the graph, and connecting it to each
member of V . Such an augmentation is a classical device in the study of the
Ising model.

For reasons of simplicity, we shall assume generally here that h = 0, and
we write λβ = λβ,0. It is usual to include also an edge-interaction J , which
we have chosen to absorb into the parameter β. The above model is called
ferromagnetic (in that β > 0) in contrast to the antiferromagnet of Section
1.3.5.

The Ising model has two admissible spin-values, and a very rich theory.
In his 1952 paper [36], Potts developed an extension of the Ising model to a
general number of spin-values.

Let q be an integer satisfying q ≥ 2, and consider the sample space Σ =
{1, 2, . . . , q}V . Each vertex of G may now be in any of q states.

Definition 1.3.2. Let β ∈ (0,∞) and q ∈ {2, 3, . . .}. The Potts Hamiltonian
HP and partition function ZP are given by

HP(σ) = −
∑

e=〈x,y〉

δσx,σy
, ZP(G;β, q) =

∑

σ∈Σ

e−βHP(σ),

where δu,v is the Kronecker delta. The Potts probability measure on G is
defined by

πβ,q(σ) =
1

ZP
e−βHP(σ), σ ∈ Σ.

When q = 2, we have that

δσx,σy
= 1

2 (1 + σxσy),

from which it follows that the q = 2 Potts model is simply the Ising model
with β replaced by 1

2β.
In a more general definition, one may include a non-zero external field h

and a vector J of edge-parameters. See Section 1.3.5.
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FIGURE 1.1

A sample from the random-cluster model on a 2048 × 2048 box of the square
lattice, with p = 0.585816 and q = 2. It was obtained by simulating the Ising
model and applying the coupling of Section 1.3.3. Each individual cluster is
coloured with a different tint of gray, and the smaller clusters are not visible
in the picture. (Figure by courtesy of Raphaël Cerf.)

1.3.2 The random-cluster model

The random-cluster model was formulated in a series of papers [18, 19, 20] by
Fortuin and Kasteleyn. It is described next, and its relationship to the Potts
model is explained in Section 1.3.3.

Let G = (V,E) be a finite, simple graph. The relevant state space is the
set Ω = {0, 1}E of vectors ω = (ω(e) : e ∈ E) with entries 0 or 1. An edge e
as said to be open in ω ∈ Ω if ω(e) = 1, and closed if ω(e) = 0. For ω ∈ Ω, let
η(ω) = {e ∈ E : ω(e) = 1} denote the set of open edges, and let k(ω) be the
number of connected components (or ‘open clusters’) of the graph (V, η(ω));
the count k(ω) includes the number of isolated vertices.

Definition 1.3.3. Let p ∈ (0, 1) and q ∈ (0,∞). The random-cluster measure
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φp,q on G is given by

φp,q(ω) =
1

ZRC

{

∏

e∈E

pω(e)(1 − p)1−ω(e)

}

qk(ω), ω ∈ Ω,

where the partition function ZRC is given by

ZRC(G; p, q) =
∑

ω∈Ω

{

∏

e∈E

pω(e)(1 − p)1−ω(e)

}

qk(ω). (1.2)

The most important values of q are arguably the positive integers. When
q = 1, we have that φp := φp,1 is a product measure, and the words ‘perco-
lation’ and ‘random graph’ are often used in this context, see [22, 29]. The
random-cluster model with q ∈ {2, 3, . . .} corresponds, as sketched in the next
section, to the Potts model with q local states.

See [23] for the general theory of the random-cluster model.

1.3.3 Coupling of the Potts and random-cluster measures

Let q ∈ {2, 3, . . .}, p ∈ (0, 1), and let G = (V,E) be a finite, simple graph.
We consider the product sample space Σ × Ω where Σ = {1, 2, . . . , q}V and
Ω = {0, 1}E as above. Let µ be the probability measure on Σ × Ω given by

µ(σ, ω) ∝ ψ(σ)φp(ω)1F (σ, ω), (σ, ω) ∈ Σ × Ω,

where ψ is uniform measure on Σ, φp = φp,1 is product measure on Ω with
density p, and 1F is the indicator function of the event that σ is constant on
each open cluster of ω, that is,

F =
{

(σ, ω) ∈ Σ × Ω : σx = σy for every e = 〈x, y〉 satisfying ω(e) = 1
}

.

The measure µ may be viewed as the product measure ψ×φp conditioned on
the event F . The marginal of a measure on a product space is its projection
onto a component.

Theorem 1.3.4. Let q ∈ {2, 3, . . . } and p ∈ (0, 1).

(a) Marginal on Σ. The first marginal of µ (on Σ) is the Potts measure
πβ,q where p = 1 − e−β.

(b) Marginal on Ω. The second marginal of µ (on Ω) is the random-cluster
measure φp,q.

(c) Conditional measures.

(i) Given ω ∈ Ω, the conditional measure on Σ is obtained by putting
(uniformly) random spins on entire clusters of ω. These spins are
constant on given clusters, and are independent between clusters.
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(ii) Given σ ∈ Σ, the conditional measure on Ω is obtained as follows.
For e = 〈x, y〉 ∈ E, we set ω(e) = 0 if σx 6= σy, and otherwise
ω(e) = 1 with probability p (independently of other edges).

(c) Partition functions. We have that

ZRC(G; p, q) = e−β|E|ZP(G;β, q). (1.3)

This coupling may be used to show that correlations in Potts models corre-
spond to connection probabilities in random-cluster models (see, for example,
[23, Thm 1.16]). In this way, one may harness methods of stochastic geometry
in order to understand the correlation structure of the Potts system. The basic
theorem of this type is Theorem 1.3.5, following.

The ‘two-point correlation function’ of the Potts measure πβ,q on the finite
graph G = (V,E) is the function

τβ,q(x, y) := πβ,q(σx = σy) − 1

q
, x, y ∈ V. (1.4)

Let {x ↔ y} be the event of Ω on which there exists an open path joining
vertex x to vertex y. The ‘two-point connectivity function’ of the random-
cluster measure φp,q is the function φp,q(x ↔ y) for x, y ∈ V , that is, the
probability that x and y are joined by a path of open edges. It turns out that
these two-point functions are the same up to a constant factor.

Theorem 1.3.5 (Correlation/connection theorem). If q ∈ {2, 3, . . .} and p =
1 − e−β ∈ (0, 1), then

τβ,q(x, y) = (1 − q−1)φp,q(x↔ y), x, y ∈ V. (1.5)

The Potts models considered above have zero external field. Some compli-
cations arise when an external field is added; see Section 1.3.5.

1.3.4 Partition functions and the Tutte polynomial

The Potts and random-cluster partition functions may be viewed as evalua-
tions of the Tutte polynomial, as follows.

Theorem 1.3.6. Let p ∈ (0, 1), q ∈ (0,∞), and

u− 1 =
q(1 − p)

p
, v − 1 =

p

1 − p
.

(a) The partition function ZRC(G) of the random-cluster measure on G
with parameters p, q satisfies

ZRC(G) =
(u − 1)(v − 1)|V |

v|E|
T (G;u− 1, v − 1).
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(b) If q ∈ {2, 3, . . .} and p = 1 − e−β, the partition function of the q-state
Potts model on G satisfies

ZP(G;β, q) = (u − 1)(v − 1)|V |T (G;u− 1, v − 1).

1.3.5 Potts extensions

There are three senses in which the Potts model of Definition 1.3.2 may
be said to be in its simplest form: (i) each edge plays an equal (deter-
ministic) role, (ii) the external field satisfies h = 0, and (iii) the model
is ferromagnetic. More generally, one may consider the partition function
ZP(G;β,J, h) =

∑

σ∈Σ e
−βHP(σ) where the Hamiltonian is given by

HP(σ) = −
∑

e=〈x,y〉

Jeδσx,σy
−

q
∑

j=1

∑

x∈V

hjδσx,j. (1.6)

Here, J = (Je : e ∈ E) is a family of edge-parameters assumed to satisfy
Je 6= 0, and h = (hj : j = 1, 2, . . . , q) is a vector of external fields. The
model is termed ferromagnetic if Je > 0 for e ∈ E, and purely antiferromag-
netic if Je < 0 for all e ∈ E. In the ferromagnetic case, the measure has a
property of positive association (as in Section 1.5.2) which is absent in the
non-ferromagnetic case. The general Potts partition function of (1.6) poses
some new difficulties.

Assume first that h = 0. The associated random-cluster formula yields a
function φp,q where pe = 1 − e−βJe. If Je < 0 for some e, this does not define
a probability measure. In addition, the Potts model does not satisfy the range
of correlation inequalities that hold in the ferromagnetic case. On the other
hand, Theorem 1.3.6(b) is easily extended for general J to a multivariate Tutte
polynomial on G = (V,E) which may be written in the form

Z(G; q,v) =
∑

A⊆E

qk(A)
∏

e∈A

ve, (1.7)

where q and v = (ve : e ∈ E) are viewed as parameters. See [14, 42] for recent
accounts.

When h 6= 0, a form of the Tutte–Potts correspondence may be found
in [8], where positive association and infinite-volume limits are explored, and
also in a slightly more general setting in [14] (see also [34]). It turns out that
the Potts partition function ZP arising from (1.6) equals an evaluation of the
V -polynomial, namely V (G,h; s,p) where s =

∑

j e
βhj , and p = (eβJe − 1 :

e ∈ E). See [14].
The Je may themselves be random, in which case the model is termed

quenched, in contrast to the annealed case in which one averages initially
over the Je. If the probability distribution of the Je allocates strictly positive
probability to both positive and negative values, the system is a ‘spin glass’.
See [33].
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1.4 Phase Transition

Statistical mechanics is based around the notion of phase transition. Suppose
for simplicity that a given physical system has a single parameter denoted
T and called ‘temperature’. In many cases in nature, there exists a ‘critical
temperature’, denoted Tc, and the macroscopic behaviour of the system de-
pends on whether T < Tc or T > Tc. For example, it was observed by Pouillet
[30, 37] and, later, Curie [13] that there exists a threshold temperature Tc
for the retention of magnetization by an iron body. This discovery motivated
Lenz’s proposal of the Ising model of Definition 1.3.1, restricted initially to
the case of one dimension and extended subsequently to higher dimensions by
Peierls [35] and others.

Within the context of such a mathematical model, a singularity can occur
only in an infinite system. The procedure is as follows. The configuration space
in question is determined inside a space of size n, say. To each configuration σ
is allocated an energy, or ‘Hamiltonian’, H(σ), leading to the ‘weight’ w(σ) :=
e−βH(σ), where β = 1/T as before. The ‘partition function’ Zn :=

∑

σ w(σ)
is a smooth function of T and of any other parameters. The ‘infinite-volume
partition function’ is given in the so-called ‘thermodynamic limit’ by

logZ := lim
n→∞

{

1

n
logZn

}

.

Now, Z is not generally a smooth function, and it is through studying the
singularities of Z and its partial derivatives that one obtains a picture of any
phase transition. See [39].

An explicit example of the thermodynamic limit and the infinite-volume
partition function is exhibited in Theorem 1.9.1.

1.5 Basic Properties of Random-Cluster Measures

This section includes some of the basic properties of a random-cluster measure
on the finite graph G = (V,E). Each may be expressed in terms of the Tutte
polynomial.

1.5.1 Stochastic ordering

The state space Ω = {0, 1}E is a partially ordered set with partial order given
by: ω1 ≤ ω2 if ω1(e) ≤ ω2(e) for all e ∈ E. This partial order is extremely
useful in the analysis of Potts and random-cluster models, and it induces
partial orderings on the spaces of associated functions and measures.



10 The Potts and random-cluster models

Definition 1.5.1.

(a) A random variable f : Ω → R is called increasing if f(ω1) ≤ f(ω2)
whenever ω1 ≤ ω2.

(b) An event A ⊆ Ω is called increasing if its indicator function 1A is
increasing.

(c) Given two probability measures µ1, µ2 on Ω, we write µ1 ≤st µ2, and
say that µ1 is stochastically smaller than µ2, if µ1(f) ≤ µ2(f) for all
increasing random variables f on Ω.

Arguably the most useful approach to stochastic ordering is due to Hol-
ley. We obtain the following comparison inequalities as corollaries of Holley’s
inequality, see [27] and [23, Thm 2.1].

Theorem 1.5.2 (Comparison inequalities). It is the case that

φp′,q′ ≤st φp,q if q′ ≥ q, q′ ≥ 1, and p′ ≤ p,

φp′,q′ ≥st φp,q if q′ ≥ q, q′ ≥ 1, and
p′

q′(1 − p′)
≥ p

q(1 − p)
.

1.5.2 Positive association

Holley’s inequality admits a neat proof of the FKG inequality of [21]. This
amounts to the following in the case of random-cluster measures.

Theorem 1.5.3 (Positive association). Let p ∈ (0, 1) and q ∈ [1,∞). If f
and g are increasing functions on Ω, then

φp,q(fg) ≥ φp,q(f)φp,q(g).

Specialising to indicator functions f = 1A, g = 1B, we obtain that

φp,q(A ∩B) ≥ φp,q(A)φp,q(B) for increasing events A,B,

whenever q ≥ 1. Positive association is generally false when 0 < q < 1.

1.6 The Limit as q ↓ 0

1.6.1 UST, USF, and USC

Some interesting limits with combinatorial flavours arise from consideration
of φp,q as q ↓ 0. Write Ωfor, Ωst, Ωcs for the subsets of Ω containing all forests,
spanning trees, and connected subgraphs, respectively, and write USF, UST,
and UCS for the uniform probability measures on the respective sets Ωfor, Ωst,
Ωcs. An account of the following limits and their history may be found at [23,
Thm 1.2].
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FIGURE 1.2

Two edges in series and in parallel.

Theorem 1.6.1. We have in the limit as q ↓ 0 that:

φp,q ⇒











UCS if p = 1
2 ,

UST if p→ 0 and q/p→ 0,

USF if p = q.

The spanning tree limit UST is especially interesting for historical and
mathematical reasons. The random-cluster model originated in a systematic
study by Fortuin and Kasteleyn of systems of a certain type which satisfy
certain parallel and series laws. Electrical networks are the best known such
systems: two resistors of resistances r1 and r2 in parallel (respectively, in
series) may be replaced by a single resistor with resistance (r−1

1 + r−1
2 )−1

(respectively, r1 + r2); see Figure 1.2. Fortuin and Kasteleyn realized that the
electrical-network theory of a graph G is related to the limit as q ↓ 0 of the
random-cluster model on G, where p is given by p =

√
q/(1+

√
q). It has been

known since Kirchhoff’s theorem [31] that the electrical currents which flow
in a network may be expressed in terms of counts of spanning trees.

The theory of the uniform spanning tree measure UST is beautiful in its
own right. In partnership with the so-called ‘loop erased random walk’, it is
linked in an important way to the emerging field of stochastic growth processes
of ‘stochastic Löwner evolution’ (SLE) type. See Figure 1.3, and the references
in [25, Chap. 2].

1.6.2 Negative association

Let E be a finite set, and let µ be a probability measure on the space Ω =
{0, 1}E. There are several concepts of negative association, of which we present
three here.

For ω ∈ Ω and F ⊆ E, the cylinder event ΩF,ω generated by ω on F is
given by

ΩF,ω = {ω′ ∈ Ω : ω′(e) = ω(e) for e ∈ F}.
For E′ ⊆ E and an event A ⊆ Ω, we say that A is defined on E′ if, for all
ω ∈ Ω, we have that ω ∈ A if and only if ΩE′,ω ⊆ A. Let A and B be events
in Ω. We define A�B to be the set of all vectors ω ∈ Ω for which there exists
F ⊆ E such that ΩF,ω ⊆ A and ΩF,ω ⊆ B, where F = E \ F . Note that the
choice of F is allowed to depend on the vector ω. The operator � originated
in the work of van den Berg and Kesten [7] on the well known BK inequality.

Definition 1.6.2.
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FIGURE 1.3

A uniform spanning tree (UST) on a large box of the square lattice. It contains
a unique path between any two vertices, taken here as opposite corners of the
box. This path has the law of a loop-erased random walk. (Figure by courtesy
of Oded Schramm.)

(a) The measure µ is edge negatively associated if

µ(Je ∩ Jf ) ≤ µ(Je)µ(Jf ), e, f ∈ E, e 6= f,

where Je is the event that e is open.

(b) We call µ negatively associated if

µ(A ∩B) ≤ µ(A)µ(B)

for all pairs (A,B) of increasing events with the property that there
exists E′ ⊆ E such that A is defined on E′ and B is defined on its
complement E \ E′.

(c) We say that µ has the disjoint occurrence property if

µ(A�B) ≤ µ(A)µ(B), A,B ⊆ Ω.
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Proposition 1.6.3. We have that

µ has the disjoint occurrence property

⇒ µ is negatively associated

⇒ µ is edge negatively associated.

The proof of the proposition follows from the definitions. Neither of the
two implications of the proposition can be reversed: see [32] for the first, and
the second is more elementary.

It was proved by Reimer [38] that the product measures φp,1 have the
disjoint occurrence property. The random-cluster measure φp,q cannot (gen-
erally) be edge negatively associated when q > 1. It may be conjectured that
φp,q satisfies some form of negative association when q < 1. Such a property
would be very useful in studying random-cluster measures when q < 1.

In the absence of a satisfactory approach to the general case of random-
cluster measures with q < 1, we turn next to the issue of negative association
of φp,q in the limit as q ↓ 0.

Conjecture 1.6.4. For any finite graph G = (V,E), the uniform spanning
forest measure USF and the uniform connected subgraph measure UCS are
edge negatively associated.

A stronger version of this conjecture is that USF and UCS are negatively
associated in one or both of the further senses described above. Numerical
evidence for the conjecture is found in [26]. (The problem is simpler in the
symmetric context of USF on the complete graph, see [43].)

The UST measure is, in contrast, much better understood, owing to the
theory of electrical networks and, more particularly, Kirchhoff’s matrix–tree
theorem, [31] and its ramifications. The following was proved by Feder and
Mihail, [17].

Theorem 1.6.5. The uniform spanning tree measure UST is negatively as-
sociated.

In addition, UST has the stronger property of being ‘strong Rayleigh’, see
[12]. The material in this section may be found in expanded form in [23, 25].

1.7 Flow Polynomial

1.7.1 Potts correlations and flow counts

The Potts correlation functions (1.4) may be expressed in terms of flow poly-
nomials associated with a certain Poissonian random graph derived from G
by replacing each edge by a random number of copies.



14 The Potts and random-cluster models

For a vector m = (me : e ∈ E) of non-negative integers, let Gm = (V,Em)
be the graph with vertex set V and, for each e ∈ E, with exactly me edges in
parallel joining the endvertices of the edge e; the original edge e is removed.

Let β ≥ 0, and let P = (Pe : e ∈ E) be a family of independent random
variables such that Pe has the Poisson distribution with parameter β. The
random graph GP = (V,EP) is called a Poisson graph with intensity β. Let
Pβ and Eβ denote the corresponding probability measure and expectation.

For x, y ∈ V , let Gx,y
P denote the graph obtained from GP by adding an

edge with endvertices x, y. If x and y are adjacent in the original graph GP,
we add a further edge between them. Potts correlations are related to flow
counts as follows.

Theorem 1.7.1. Let q ∈ {2, 3, . . . } and β ≥ 0. Then

qτβ,q(x, y) =
Eβ(F (Gx,y

P ; q))

Eβ(F (GP; q))
, x, y ∈ V. (1.1)

This formula is particularly striking when q = 2, since non-zero mod-2
flows take only the value 1. A finite graph H = (W,F ) is said to be even
if every vertex has even degree. Evidently F (H ; 2) = 1 if H is even, and
F (H ; 2) = 0 otherwise. By (1.1), for any graph G,

qτβ,q(x, y) =
Pβ(Gx,y

P is even)

Pβ(GP is even)
, (1.2)

when q = 2. This observation is central to the so called ‘random-current
expansion’ of the Ising model, which has proved very powerful in the study of
both classical and quantum Ising models. See [1, 2, 3, 4, 9].

Theorem 1.7.1 may be extended via (1.3.5) to the random-cluster model.
The following is obtained by expressing the flow polynomial in terms of the
Tutte polynomial T , and allowing q to vary continuously.

Theorem 1.7.2. Let p ∈ (0, 1), q ∈ (0,∞), and let β satisfy p = 1 − e−βq.

(i) For x, y ∈ V ,

(q − 1)φG,p,q(x↔ y) =
Eβ

(

(−1)1+|EP|T (Gx,y
P ; 0, 1 − q)

)

Eβ

(

(−1)|EP|T (GP; 0, 1 − q)
) . (1.3)

(ii) For q ∈ {2, 3, . . .},

ZRC(G; p, q) = φG,p(qk(ω)) = (1 − p)|E|(q−2)/qq|V |
Eβ(F (GP; q)). (1.4)

Further details may be found in [24].
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1.7.2 The random-current expansion when q = 2

Unlike the Potts model, there is a fairly complete analysis of the Ising model.
A principal part in this analysis is played by Theorem 1.7.1 with q = 2 under
the heading ‘random-current expansion’. This has permitted proofs amongst
other things of the exponential decay of correlations in the low-β regime on
the cubic lattice L

d with d ≥ 2. It has not so far been possible to extend this
work to general Potts models, but Theorem 1.7.1 could play a part in such an
extension.

Let G = (V,E) be a finite graph and set q = 2. By Theorem 1.7.1,

2τβ,2(x, y) =
Pβ(Gx,y

P is even)

Pβ(GP is even)
, 0 ≤ β <∞. (1.5)

There is an important correlation inequality known as Simon’s inequality,
[40]. Let x, z ∈ V be distinct vertices. A set W of vertices is said to separate
x and z if x, z /∈ W and every path from x to z contains some vertex of W .

Theorem 1.7.3. Let x, z ∈ V be distinct vertices, and let W separate x and
z. Then κβ,2(x, y) := 2τβ,2(x, y) satisfies

κβ,2(x, z) ≤
∑

y∈W

κβ,2(x, y)κβ,2(y, z).

The Ising model corresponds to a random-cluster measure φp,q with q = 2.
By (1.5),

κβ,q(x, y) = φp,q(x↔ y),

where p = 1 − e−βq and q = 2. The Simon inequality may be written in the
form

φp,q(x↔ z) ≤
∑

y∈W

φp,q(x↔ y)φp,q(y ↔ z) (1.6)

whenever W separates x and z. It is well known that this inequality is valid
also when q = 1, see [22, Chap. 6]. One may conjecture that it holds for any
q ∈ [1, 2].

1.8 The Limit of Zero Temperature

The physical interpretation of the constant β is as β = 1/(kT ) where k is
Boltzmann’s constant and T denotes (absolute) temperature. The limit T ↓ 0
corresponds to the limit β → ∞. The ferromagnetic Potts measure πβ,q on
a finite graph G = (V,E) converges weakly to the probability measure that
allocates a uniform random spin to each connected component of G, this
being constant on each component and independent between components. A
realization of this recipe is called a ‘ground state’ of the system.
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The situation is more interesting in the presence of a vector J of edge-
parameters, some of which are negative. The ground states in this case are
colourings κ of V with the colour palette {1, 2, . . . , q} and the property that,
for any each e = 〈x, y〉,

κ(x)

{

= κ(y) if Je > 0,

6= κ(y) if Je < 0.
(1.1)

In the purely antiferromagnetic case, such a colouring κ is has the property
that any two neighbours have different colours.

Theorem 1.8.1. For the purely antiferromagnetic Potts model,

ZP(G;β, q) → χ(G; q) as β → ∞,

where χ denotes the chromatic polynomial.

This is easily seen to hold, since, as βJe → −∞, there is limiting weight
zero on any pair of equal adjacent spins. This observation may be extended
naturally in the presence of negative external fields (as in (1.6)) to counts
of list colourings of G in which the available colours at any given v ∈ V is
restricted to a given list (see [15]).

For given q, there exist graphs G for which (1.1) has no solution, and such
graphs are called ‘frustrated’.

1.9 The Random-Cluster Model on the Complete Graph

When the underlying graph is the complete graph Kn, the asymptotic be-
haviour of the corresponding random-cluster partition function ZRC(n, p, q)
may be studied using a mixture of combinatorics and probability, within the
regime q ≥ 1, p = λ/n. Here is some notation and explanation, in preparation
for the main theorem.

Let q ≥ 1 and p = λ/n. It turns out that there is a critical value of λ that
marks the arrival of a giant cluster in the random-cluster model on Kn, and
this value is given in [11] by

λc(q) =







q if q ∈ (0, 2],

2

(

q − 1

q − 2

)

log(q − 1) if q ∈ (2,∞),

and plotted in Figure 1.4. As λ increases through the value λc, a giant cluster
of size approximately θ(λ, q)n is created, where

θ(λ, q) =

{

0 if λ < λc(q),

θmax if λ ≥ λc(q),
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FIGURE 1.4

The critical value λc(q) plotted against q > 0. There is a discontinuity in the
second derivative at the value q = 2.

and θmax is the largest root of the equation

e−λθ =
1 − θ

1 + (q − 1)θ
.

Theorem 1.9.1. Let q ∈ (0,∞) and λ ∈ (0,∞). We have that

1

n
logZRC(n, λ/n, q) → η(λ) as n→ ∞,

where

η(λ) =
g(θ(λ))

2q
− q − 1

2q
λ+ log q,

g(θ) = −(q − 1)(2 − θ) log(1 − θ) −
[

2 + (q − 1)θ
]

log
[

1 + (q − 1)θ
]

.

By Theorem 1.3.6, this provides an asymptotic evaluation of the Tutte
polynomial Tn,λ/n,q(u − 1, v − 1) within the quadrant u, v ∈ (0,∞). See [11]
and [23, Chap. 10] for further details.

1.10 Open Problems

There is an enormous range of open problems associated with Ising, Potts,
and random-cluster models. Of these, there follows a brief selection some of
which may be allied in part to the Tutte polynomial.

1. Prove or disprove some version of negative association for the uniform
forest measure USF or the uniform connected subgraph measure UCS.
See Conjecture 1.6.4.
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2. Prove or disprove some version of negative association for the random-
cluster measure φp,q with 0 < q < 1.

3. Prove or disprove a version of Simon’s inequality for a random-cluster
measure φp,q with q ∈ [1, 2], as in (1.6).

4. Establish a version of Simon’s inequality, Theorem 1.7.3, for the Potts
model with q ≥ 3.

5. More generally, find an application of mod-q flows to the q-state Potts
model with q ≥ 3, as in Theorem 1.7.1. Develop such an application for
real q > 0, as in Theorem 1.7.2.

6. There is a universe of problems associated with classical and quantum
phase transitions, of which we mention the determination of the natures
of the phase transitions of the Potts model with q ≥ 2 on lattices in
dimensions d ≥ 2.

7. A problem of great current interest to probabilists and mathematical
physicists is to understand the geometry of interfaces in the 3-state Potts
model on the square lattice Z

2, and more generally the random-cluster
model on Z

2 with 1 < q < 4. See [41], and [6] for a recent reference.
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[37] M. Pouillet. Eléments de Physique Expérimentale et de Météorologie.
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