
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 369, Number 8, August 2017, Pages 5961–5980
http://dx.doi.org/10.1090/tran/7166

Article electronically published on March 31, 2017

CONNECTIVE CONSTANTS AND HEIGHT FUNCTIONS

FOR CAYLEY GRAPHS

GEOFFREY R. GRIMMETT AND ZHONGYANG LI

Abstract. The connective constant μ(G) of an infinite transitive graph G is
the exponential growth rate of the number of self-avoiding walks from a given
origin. In earlier work of Grimmett and Li, a locality theorem was proved for
connective constants, namely, that the connective constants of two graphs are
close in value whenever the graphs agree on a large ball around the origin. A
condition of the theorem was that the graphs support so-called “unimodular
graph height functions”. When the graphs are Cayley graphs of infinite, finitely
generated groups, there is a special type of unimodular graph height function
termed here a “group height function”. A necessary and sufficient condition
for the existence of a group height function is presented, and may be applied in
the context of the bridge constant, and of the locality of connective constants

for Cayley graphs. Locality may thereby be established for a variety of infinite
groups including those with strictly positive deficiency.

It is proved that a large class of Cayley graphs support unimodular graph
height functions, that are in addition harmonic on the graph. This implies,
for example, the existence of unimodular graph height functions for the Cayley
graphs of finitely generated solvable groups. It turns out that graphs with non-
unimodular automorphism subgroups also possess unimodular graph height
functions, but the resulting unimodular graph height functions need not be
harmonic.

Group height functions, as well as the graph height functions of the pre-
vious paragraph, are non-constant harmonic functions with linear growth and
an additional property of having periodic differences. The existence of such
functions on Cayley graphs is a topic of interest beyond their applications in
the theory of self-avoiding walks.

1. Introduction, and summary of results

The main purpose of this article is to study aspects of ‘locality’ for the connec-
tive constants of Cayley graphs of finitely presented groups. The locality question
may be posed as follows: if two Cayley graphs are locally isomorphic in the sense
that they agree on a large ball centred at the identity, then are their connective
constants close in value? The current work may be viewed as a continuation of the
study of locality for connective constants of quasi-transitive graphs reported in [10].
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The locality of critical points is a well developed topic in the theory of disordered
systems, and the reader is referred, for example, to [5,29,31] for related work about
percolation on Cayley graphs.

The self-avoiding walk (SAW) problem was introduced to mathematicians in
1954 by Hammersley and Morton [17]. Let G be an infinite, connected, transitive
graph. The number of n-step SAWs on G from a given origin grows in the manner
of μn(1+o(1)) for some growth rate μ = μ(G) called the connective constant of the
graph G. The value of μ(G) is not generally known, and a substantial part of the
literature on SAWs is targeted at properties of connective constants. The current
paper may be viewed in this light, as a continuation of the series of papers [8–12].

The principal result of [10] is as follows. Let G, G′ be infinite, transitive graphs,
and write SK(v,G) for the K-ball around the vertex v in G. If SK(v,G) and
SK(v′, G′) are isomorphic as rooted graphs, then

(1.1) |μ(G)− μ(G′)| ≤ εK(G),

where εK(G) → 0 as K → ∞. This is proved subject to a condition on G and G′,
namely that they support so-called ‘unimodular graph height functions’.

Cayley graphs of finitely generated groups provide a category of transitive graphs
of special interest. They possess an algebraic structure in addition to their graphical
structure, and this algebraic structure provides a mechanism for the study of their
graph height functions. A necessary and sufficient condition is given in Theorem
4.1 for the existence of a so-called ‘group height function’, and it is pointed out that
a group height function is a unimodular graph height function, but not vice versa.
The class of Cayley groups that possess group height functions includes all infinite,
finitely generated, free solvable groups and free nilpotent groups, and groups with
fewer relators than generators.

We turn briefly to the topic of harmonic functions. The study of the existence
and structure of non-constant harmonic functions on Cayley graphs has acquired
prominence in geometric group theory through the work of Kleiner and others; see
[23, 33]. The group height functions of Section 4 are harmonic with linear growth.
Thus, one aspect of the work reported in this paper is the construction, on certain
classes of Cayley graphs, of linear-growth harmonic functions with the additional
property of having differences that are invariant under the action of a subgroup
of automorphisms. Such harmonic functions do not appear to contribute to the
discussion of the Liouville property (see, for example, [24, Defn 2.1.10]), since both
their positive and negative parts are unbounded. For recent articles on the related
aspect of geometric group theory, the reader is referred to [30, 35].

This paper is organized as follows. Graphs, self-avoiding walks, and Cayley
graphs are introduced in Section 2. Graph height functions and the locality theorem
of [10] are reviewed in Section 3, and a principal tool is presented at Theorem 3.4.
Graphs with non-unimodular automorphism subgroups may be handled by similar
means (see Theorem 3.5), but the resulting graph height functions need not be
harmonic.

Group height functions are the subject of Section 4, and a necessary and sufficient
condition is presented in Theorem 4.1 for the existence of a group height function.
Section 5 is devoted to existence conditions for height functions, leading to existence
theorems for virtually solvable groups. In Section 6 is presented a theorem for the
convergence of connective constants subject to the addition of further relators.
This parallels the Grimmett–Marstrand theorem [14] for the critical percolation
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probabilities of slabs of Zd (see also [11, Thm. 5.2]). Sections 7–8 contain the
proofs of Theorems 3.4 and 3.5, respectively.

2. Graphs, self-avoiding walks, and groups

The graphs G = (V,E) considered here are infinite, connected, and usually
simple. An undirected edge e with endpoints u, v is written as e = 〈u, v〉, and if
directed from u to v as [u, v〉. If 〈u, v〉 ∈ E, we call u and v adjacent and write
u ∼ v. The set of neighbours of v ∈ V is denoted ∂v := {u : u ∼ v}.

The degree deg(v) of vertex v is the number of edges incident to v, and G is
called locally finite if every vertex-degree is finite. The graph-distance between two
vertices u, v is the number of edges in the shortest path from u to v, denoted
dG(u, v).

The automorphism group of the graph G = (V,E) is denoted Aut(G). A sub-
group Γ ≤ Aut(G) is said to act transitively on G if, for v, w ∈ V , there exists γ ∈ Γ
with γv = w. It is said to act quasi-transitively if there is a finite set W of vertices
such that, for v ∈ V , there exist w ∈ W and γ ∈ Γ with γv = w. The graph is
called (vertex -)transitive (respectively, quasi-transitive) if Aut(G) acts transitively
(respectively, quasi-transitively). For Γ ≤ Aut(G) and a vertex v ∈ V , the orbit of
v under Γ is written Γv.

An (n-step) walk w on G is an alternating sequence (w0, e0, w1, e1, . . . , en−1, wn),
where n ≥ 0, of vertices wi and edges ei = 〈wi, wi+1〉, and its length |w| is the
number of its edges. The walk w is called closed if w0 = wn. A cycle is a closed
walk w satisfying n ≥ 3 and wi 
= wj for 1 ≤ i < j ≤ n.

An (n-step) self-avoiding walk (SAW) on G is a walk containing n edges no
vertex of which appears more than once. Let Σn(v) be the set of n-step SAWs
starting at v, with cardinality σn(v) := |Σn(v)|. Assume that G is transitive, and
select a vertex of G which we call the identity or origin, denoted 1 = 1G, and let
σn = σn(1). It is standard (see [17, 28]) that

(2.1) σm+n ≤ σmσn,

whence, by the subadditive limit theorem, the connective constant

μ = μ(G) := lim
n→∞

σ1/n
n

exists. See [2, 28] for recent accounts of the theory of SAWs.
We turn now to finitely generated groups and their Cayley graphs. Let Γ be a

group with generator set S satisfying |S| < ∞ and 1 /∈ S, where 1 = 1Γ is the
identity element. We write Γ = 〈S | R〉 with R a set of relators, and we adopt the
following convention for the inverses of generators. For the sake of concreteness, we
consider S as a set of symbols, and any information concerning inverses is encoded
in the relator set; it will always be the case that, using this information, we may
identify the inverse of s ∈ S as another generator s′ ∈ S. For example, the free
abelian group of rank 2 has presentation 〈x, y,X, Y | xX, yY, xyXY 〉, and the
infinite dihedral group 〈s1, s2 | s21, s22〉. Such a group is called finitely generated (in
that |S| < ∞), and finitely presented if, in addition, |R| < ∞.

The Cayley graph of Γ = 〈S | R〉 is the simple graph G = G(S,R) with vertex-set
Γ, and an (undirected) edge 〈γ1, γ2〉 if and only if γ2 = γ1s for some s ∈ S. Further
properties of Cayley graphs are presented as needed in Section 4. See [1] for an
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account of Cayley graphs, and [27] for a short account. The books [19] and [25,32]
are devoted to geometric group theory, and general group theory, respectively.

The set of integers is written Z, the natural numbers as N, and the rationals
as Q.

3. Graph height functions

We recall from [10] the definition of a graph height function for a transitive
graph, and then we review the locality theorem (the proof of which may be found
in [10]). This is followed by Theorem 3.4, which is one of the main tools of this
work.

Let G be the set of all infinite, connected, transitive, locally finite, simple graphs,
and let G = (V,E) ∈ G. Let H be a subgroup of Aut(G). A function F : V → R is
said to be H-difference-invariant if

(3.1) F (v)− F (w) = F (γv)− F (γw), v, w ∈ V, γ ∈ H.

Definition 3.1. A graph height function on G is a pair (h,H), where H ≤ Aut(G)
acts quasi-transitively on G and h : V → Z, such that

(a) h(1) = 0,
(b) h is H-difference-invariant,
(c) for v ∈ V , there exist u,w ∈ ∂v such that h(u) < h(v) < h(w).

The graph height function (h,H) is called unimodular if H is unimodular.

We remind the reader of the definition of the unimodularity of a subgroup H ≤
Aut(G). The (H-)stabilizer Stabv (= StabHv ) of a vertex v is the set of all γ ∈ H for
which γv = v. As shown in [36] (see also [4, 27, 34]), when viewed as a topological
group with the topology of pointwise convergence, H is unimodular if and only if

(3.2) |Stabuv| = |Stabvu|, v ∈ V, u ∈ Hv.

We follow [27, Chap. 8] by defining H to be unimodular (on G) if (3.2) holds.
We sometimes omit the reference to H and refer to such h as a graph height

function. In Section 4 is defined the related concept of a group height function for
the Cayley graph of a finitely presented group. We shall see that every group height
function is a graph height function, but not vice versa.

Remark 3.2 (Linear growth). A graph height function (h,H) on G has linear growth
in that h(γn1) = nh(γ1) for γ ∈ H.

Associated with the graph height function (h,H) are two integers d, r given as
follows. We set

(3.3) d = d(h) = max
{
|h(u)− h(v)| : u, v ∈ V, u ∼ v

}
.

If H acts transitively, we set r = 0. Assume H does not act transitively, and let
r = r(h,H) be the least integer r such that the following holds. For u, v ∈ V in
different orbits of H, there exists v′ ∈ Hv such that h(u) < h(v′), and a SAW
ν(u, v′) from u to v′, with length r or less, all of whose vertices x, other than
its endvertices, satisfy h(u) < h(x) < h(v′). We recall [10, Prop. 3.2] where it is
proved, inter alia, that r < ∞.

We state next the locality theorem for transitive graphs. The ball Sk = Sk(G),
with centre 1 = 1G and radius k, is the subgraph of G induced by the set of its
vertices within graph-distance k of 1. For G,G′ ∈ G, we write Sk(G) � Sk(G

′) if
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there exists a graph-isomorphism from Sk(G) to Sk(G
′) that maps 1G to 1G′ , and

we let
K(G,G′) = max

{
k : Sk(G) � Sk(G

′)
}
, G,G′ ∈ G.

For D ≥ 1 and R ≥ 0, let GD,R be the set of all G ∈ G which possess a unimodular
graph height function h satisfying d(h) ≤ D and r(h,H) ≤ R.

For G ∈ G with a given unimodular graph height function (h,H), there is a
subset of SAWs called bridges which are useful in the study of the geometry of
SAWs on G. The SAW π = (π0, π1, . . . , πn) ∈ Σn(v) is called a bridge if

(3.4) h(π0) < h(πi) ≤ h(πn), 1 ≤ i ≤ n,

and the total number of such bridges is denoted bn(v). It is easily seen (as in [18])
that bn := bn(1) satisfies

(3.5) bm+n ≥ bmbn,

from which we deduce the existence of the bridge constant

(3.6) β = β(G) = lim
n→∞

b1/nn .

The definition of β depends on the choice of height function, but it turns out that,
under reasonable conditions, its value does not.

Theorem 3.3 (Bridges and locality for transitive graphs, [10]).

(a) If G ∈ G supports a unimodular graph height function (h,H), then β(G) =
μ(G).

(b) Let D ≥ 1, R ≥ 0, and let G ∈ G and Gm ∈ GD,R for m ≥ 1 be such that
K(G,Gm) → ∞ as m → ∞. Then μ(Gm) → μ(G).

The main thrust of the current paper is to identify classes of finitely generated
groups whose Cayley graphs support graph height functions, and one of our main
tools is the following theorem, of which the proof is given in Section 7.

Theorem 3.4. Let G = (V,E) ∈ G. Suppose there exist

(a) a subgroup Γ ≤ Aut(G) acting transitively on V ,
(b) a normal subgroup H � Γ satisfying [Γ : H] < ∞, which is unimodular,
(c) a function F : H1 → Z that is H-difference-invariant and non-constant.

Then,

(i) there exists a unique harmonic, H-difference-invariant function ψ on G
that agrees with F on H1,

(ii) there exists a harmonic, H-difference-invariant function ψ′ that increases
everywhere, in that every v ∈ V has neighbours u, w such that ψ′(u) <
ψ′(v) < ψ′(w),

(iii) the function ψ of part (i) takes rational values, and the ψ′ of part (ii) may
be taken to be rational also; therefore, there exists a harmonic, unimodular
graph height function of the form (h,H).

The first part of condition (c) is to be interpreted as saying that (3.1) holds for
v, w ∈ H1 and γ ∈ H. Since G is transitive, the choice of origin 1 is arbitrary, and
hence the orbit H1 may be replaced by any orbit of H.

One application of Theorem 3.4, or more precisely of its method of proof, is the
proof of the existence of graph height functions for graphs with quasi-transitive,
non-unimodular automorphism subgroups. See Section 8 for the proof of the fol-
lowing.
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Theorem 3.5. Let G = (V,E) ∈ G. Suppose there exist a subgroup Γ ≤ Aut(G)
acting transitively on V , and a normal subgroup H � Γ satisfying [Γ : H] < ∞,
such that H is non-unimodular. Then G has a graph height function (h,H), which
is not generally harmonic.

The proofs of Theorems 3.4 and 3.5 are inspired in part by the proofs of [26, Sect.
3] where, inter alia, it is explained that some graphs support harmonic maps, taking
values in a function space, with a property of equivariance in norm. In this paper,
we study H-difference-invariant, integer-valued harmonic functions.

4. Group height functions

We consider Cayley graphs of finitely generated groups next, and a type of graph
height function called a ‘group height function’. Let Γ be a finitely generated group
with presentation 〈S | R〉, as in Section 2. A group height function on a Cayley
graph G of Γ may in fact be defined as a function on the group Γ itself, but it will
be convenient that it acts on the same domain as a graph height function (that is,
on G rather than on Γ). When viewed as a function on the group Γ, a group height
function is essentially a surjective homomorphism to Z, and such functions are of
importance in group theory (see Remark 4.2).

Each relator ρ ∈ R is a word of the form ρ = t1t2 · · · tr with ti ∈ S and r ≥ 1,
and we define the vector u(ρ) = (us(ρ) : s ∈ S) by

us(ρ) = |{i : ti = s}|, s ∈ S.

Let C be the |R| × |S| matrix with row vectors u(ρ), ρ ∈ R, called the coefficient
matrix of the presentation 〈S | R〉. Its null space N (C) is the set of column vectors
γ = (γs : s ∈ S) such that Cγ = 0. Since C has integer entries, N (C) is non-trivial
if and only if it contains a non-zero vector of integers (that is, an integer vector
other than the zero vector 0). If γ ∈ ZS is a non-zero element of N (C), then γ
gives rise to a function h : V → Z defined as follows. Any v ∈ V may be expressed
as a word in the alphabet S, which is to say that v = s1s2 · · · sm for some si ∈ S
and m ≥ 0. We set

(4.1) h(v) =
m∑
i=1

γsi .

Any function h arising in this way is called a group height function of the presen-
tation (or of the Cayley graph). We see next that a group height function is well
defined by (4.1), and is indeed a graph height function in the sense of Definition 3.1.
A graph height function, even if unimodular, need not be a group height function
(see, for instance, Example (d) following Remark 4.2).

Theorem 4.1. Let G be the Cayley graph of the finitely generated group Γ = 〈S |
R〉, with coefficient matrix C.

(a) Let γ = (γs : s ∈ S) ∈ N (C) satisfy γ ∈ ZS, γ 
= 0. The group height
function h given by (4.1) is well defined, and gives rise to a unimodular
graph height function (h,Γ) on G.

(b) The Cayley graph G(S,R) of the presentation 〈S | R〉 has a group height
function if and only if rank(C) < |S|.

(c) A group height function is a group invariant in the sense that, if h is a
group height function of G, then it is also a group height function for the
Cayley graph of any other presentation of Γ.
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(d) A group height function h of G is harmonic, in that

h(v) =
1

deg(v)

∑
u∼v

h(u), v ∈ V.

Since the group height function h of (4.1) is a graph height function, and Γ acts
transitively,

(4.2) d(h) = max{γs : s ∈ S},
in agreement with (3.3). In the light of Theorem 4.1(c), we may speak of a group
possessing a group height function.

Remark 4.2. The quantity b(Γ) := |S| − rank(C) is in fact an invariant of Γ,
and may be called the first Betti number since it equals the power of Z in the
abelianization Γ/[Γ,Γ] (see, for example, [25, Chap. 8]). Group height functions
are a standard tool of group theorists, since they are (when the non-zero γs are
coprime) surjective homomorphisms from Γ to Z. This fact is used, for example,
in the proof of [13, Thm. 4.1], which asserts that the Cayley graph of an infinite,
finitely generated, elementary amenable group possesses a harmonic (unimodular)
graph height function. Further details may be found in [21, 22].

Although some of the arguments of the current paper are standard within group
theory, we prefer to include sufficient details to aid readers from other backgrounds.

It follows in particular from Theorem 4.1 that G has a group height function if
|R| < |S|, which is to say that the presentation Γ = 〈S | R〉 has strictly positive
deficiency (see [32, p. 419]). Free groups provide examples of such groups.

Consider for illustration the examples of [10, Sect. 3].

(a) The hypercubic lattice Zn is the Cayley group of an abelian group with
|S| = 2n, |R| = n +

(
n
2

)
, and rank(C) = n. It has a group height function

(in fact, it has many, indexed by the non-zero, integer-valued elements of
N (C)).

(b) The 3-regular tree is the Cayley graph of the group with S = {s1, s2, t},
R = {s1t, s22}, and rank(C) = 2. It has a group height function.

(c) The discrete Heisenberg group has |S| = |R| = 6 and rank(C) = 4. It has a
group height function.

(d) The square/octagon lattice is the Cayley graph of a finitely presented group
with |S| = 3 and |R| = 5, and this does not satisfy the hypothesis of The-
orem 4.1(b) (since rank(C) = 3). This presentation has no group height
function. Neither does the lattice have a graph height function with auto-
morphism subgroup acting transitively, but nevertheless it possesses a uni-
modular graph height function in the sense of Definition 3.1, as explained
in [10, Sect. 3].

(e) The hexagonal lattice is the Cayley graph of the finitely presented group
with S = {s1, s2, s3} and R = {s21, s2s3, s1s22s1s23}. Thus, |R| = |S| = 3,
rank(C) = 2, and the graph has a group height function.

A discussion is presented in Section 5 of certain types of infinite groups whose
Cayley graphs have group or graph height functions. We describe next some il-
lustrative examples and a question. The next proposition is extended in Theorem
5.2.

Proposition 4.3. Any finitely generated group which is infinite and abelian has a
group height function h with d(h) = 1.
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Example 4.4. The infinite dihedral group Dih∞ = 〈s1, s2 | s21, s22〉 is an example
of an infinite, finitely generated group Γ which has no group height function. The
Cayley graph of Γ is the line Z with (harmonic) unimodular graph height function
(h,H), where h is the identity and H is the group of shifts. This example of a
solvable group is extended in Theorem 5.1.

Example 4.5. The Higman group Γ of [20] is an infinite, finitely presented group
with presentation Γ = 〈S | R〉 where

S = {a, b, c, d, a′, b′, c′, d′},
R = {aa′, bb′, cc′, dd′} ∪ {a′ba(b′)2, b′cb(c′)2, c′dc(d′)2, d′ad(a′)2}.

The quotient of Γ by its maximal proper normal subgroup is an infinite, finitely
generated, simple group. By Theorem 4.1(b), Γ has no group height function.

Remark 4.6. Since writing this paper, the authors have shown in [13] that the
Cayley graph of the Higman group does not possess a graph height function.

Proof of Theorem 4.1. (a) Let γ be as given. To check that h is well defined by
(4.1), we must show that h(v) is independent of the chosen representation of v as
a word. Suppose that v = s1 · · · sm = u1 · · ·un with si, uj ∈ S, and extend the
definition of γ to the directed edge-set of G by

(4.3) γ([g, gs〉) = γs, g ∈ Γ, s ∈ S.

The walk (1, s1, s1s2, . . . , v) is denoted as π1, and (1, u1, u1u2, . . . , v) as π2, and
the latter’s reversed walk as π−1

2 . Consider the walk ν obtained by following π1,
followed by π−1

2 . Thus ν is a closed walk of G from 1.
Any ρ ∈ R gives rise to a directed cycle in G through 1, and we write ΓR for the

set of images of such cycles under the action of Γ. Any closed walk lies in the vector
space over Z generated by the directed cycles of ΓR (see, for example, [16, Sect.
4.1]). The sum of the γs around any gρ ∈ ΓR is zero, by (4.3) and the fact that
Cγ = 0. Hence

m∑
i=1

γsi −
n∑

j=1

γuj
= 0,

as required.
We check next that (h,Γ) is a graph height function. Certainly, h(1) = 0. For

u, v ∈ V , write v = ux where x = u−1v, so that h(v) − h(u) = h(x) by (4.1). For
g ∈ Γ, we have that gv = (gu)x, whence

(4.4) h(gv)− h(gu) = h(x) = h(v)− h(u).

Since γ 
= 0, there exists s ∈ S with γs > 0. For v ∈ V , we have h(vs−1) < h(v) <
h(vs).

(b) The null space N (C) is non-trivial if and only if rank(C) < |S|. Since C
has integer entries and |S| < ∞, N (C) is non-trivial if and only if it contains a
non-zero vector of integers.

(c) See Remark 4.2. This may also be proved directly, but we omit the details.
(d) We do not give the details of this, since a more general fact is proved in

Proposition 7.1(b). The current proof follows that of the latter proposition with
H = Γ, F = h, and Γ acting on V by left-multiplication. Since this action of Γ has
no non-trivial fixed points, Γ is unimodular. �
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Proof of Proposition 4.3. See Remark 4.2 for an elementary group-theoretic expla-
nation. Since Γ is infinite and abelian, there exists a generator, σ say, of infinite
order. For s ∈ S, let

(4.5) γs =

⎧⎪⎨
⎪⎩
1 if s = σ,

−1 if s = σ−1,

0 otherwise.

Since any relator must contain equal numbers of appearances of σ and σ−1, we have
that γ ∈ N (C). Therefore, the function h of (4.1) is a group height function. �

5. Cayley graphs with height functions

The main result of this section is as follows. The associated definitions are
presented later, and the proofs of the next two theorems are at the end of this
section.

Theorem 5.1. Let Γ be an infinite, finitely generated group with a normal subgroup
Γ∗ satisfying [Γ : Γ∗] < ∞. Let q = sup{i : [Γ∗ : Γ∗

(i)] < ∞} where (Γ∗
(i) : i ≥ 1)

is the derived series of Γ∗. If q < ∞ and [Γ∗
(q),Γ

∗
(q+1)] = ∞, then every Cayley

graph of Γ has a unimodular graph height function of the form (h,Γ∗
(q)) which is

harmonic.

The theorem may be applied to any finitely generated, virtually solvable group
Γ, and more generally whenever the derived series of Γ∗ terminates after finitely
many steps at a finite perfect group.

In preparation for the proof, we present a general construction of a height func-
tion for a group having a normal subgroup. Part (a) extends Proposition 4.3 (see
also Remark 4.2).

Theorem 5.2. Let Γ be an infinite, finitely generated group, and let Γ′ � Γ.

(a) If the quotient group Γ/Γ′ is infinite and abelian, then Γ has a group height
function h with d(h) = 1.

(b) If the quotient group Γ/Γ′ is finite, and Γ′ has a group height function, then
every Cayley graph of Γ has a harmonic, unimodular graph height function
of the form (h,Γ′).

Recall that Γ/Γ′ is abelian if and only if Γ′ contains the commutator group
[Γ,Γ], of which the definition follows. An example of Theorem 5.2(b) in action is
the special linear group SL2(Z) of the forthcoming Example 5.4 (see [19, p. 66]).

We turn now towards solvable groups. Let Γ be a group with identity 1Γ. The
commutator of the pair x, y ∈ Γ is the group element [x, y] := x−1y−1xy. Let A, B
be subgroups of Γ. The commutator subgroup [A,B] is defined to be

[A,B] =
〈
[a, b] : a ∈ A, b ∈ B

〉
,

that is, the subgroup generated by all commutators [a, b] with a ∈ A, b ∈ B. The
commutator subgroup of Γ is the subgroup [Γ,Γ]. It is standard that [Γ,Γ] � Γ, and
the quotient group Γ/[Γ,Γ] is abelian. The group Γ is called perfect if Γ = [Γ,Γ].

Here is an explanation of the terms in Theorem 5.1. Let Γ(1) = Γ. The derived
series of Γ is given recursively by the formula

(5.1) Γ(i+1) = [Γ(i),Γ(i)], i ≥ 1.
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The group Γ is called solvable if there exists an integer c ∈ N such that Γ(c+1) =
{1Γ}. Thus, Γ is solvable if there exists c ∈ N such that

Γ = Γ(1) � Γ(2) � · · · � Γ(c+1) = {1Γ}.

A virtually solvable group is a group Γ for which there exists a normal subgroup Γ∗

which is solvable and satisfies [Γ : Γ∗] < ∞. The reader is referred to [25, 32] for
general accounts of group theory.

Example 5.3. Here is an example of a finitely generated but not finitely presented
group with a group height function. The lamplighter group L has presentation
〈S | R〉 where S = {a, t, u} and R = {a2, tu} ∪ {[a, tnaun] : n ∈ Z}. It has a group
height function since the rank of its coefficient matrix is 2. A recent reference to
linear-growth harmonic functions on L is [3].

Example 5.4. The special linear group Γ := SL2(Z) has a presentation

(5.2) Γ = 〈x, y, u, v | xu, yv, x4, x2v3〉,

where

x =

(
0 −1
1 0

)
, y =

(
0 −1
1 1

)
.

The presentation has no group height function.
The commutator subgroup Γ(2) := [Γ,Γ] is a normal subgroup of Γ with index

12, and Γ(2) is free of rank 2. (See [6] and [19, p. 66].) By Theorem 5.2(b), every
Cayley group of Γ has a harmonic, unimodular graph height function.

Proof of Theorem 5.2. (a) This is an immediate consequence of Remark 4.2. A
detailed argument may be outlined as follows. Let Γ = 〈S | R〉. If Q := Γ/Γ′

is infinite and abelian, it is generated by the cosets {s := sΓ′ : s ∈ S}, and its
relators are the words s1s2 · · · sr as ρ = s1s2 · · · sr ranges over R. Choose σ ∈ S
with infinite order, and let

(5.3) γs =

⎧⎪⎨
⎪⎩
1 if s ∈ σ,

−1 if s−1 ∈ σ,

0 otherwise.

It may now be checked that Cγ = 0 where C is the coefficient matrix.
(b) Let G be a Cayley graph of Γ, and let Γ′ � Γ satisfy [Γ : Γ′] < ∞. By

assumption, Γ′ has a group height function h′. The subgroup Γ′ of Γ acts on G by
left-multiplication, and it is unimodular since its elements act with no non-trivial
fixed points. We apply Theorem 3.4 with H = Γ′ and F = h′ to obtain a harmonic,
unimodular graph height function (h,Γ′) on G. �

Proof of Theorem 5.1. Since q < ∞, we have that [Γ : Γ∗
(q)] < ∞, and in particular

Γ∗
(q) is finitely generated. Now, Γ∗

(q) is characteristic in Γ∗, and Γ∗ � Γ, so that

Γ∗
(q) � Γ.

By applying Theorem 5.2(a) to the pair Γ∗
(q+1) � Γ∗

(q), there exists a group height

function h∗
q on Γ∗

(q). We apply Theorem 5.2(b) to the pair Γ∗
(q) � Γ to obtain a

harmonic, unimodular graph height function (h,Γ∗
(q)) on Γ. �
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6. Convergence of connective constants of Cayley graphs

Let Γ = 〈S | R〉 be finitely presented with coefficient matrix C and Cayley graph
G = G(S,R). Let t ∈ Γ have infinite order. We consider in this section the effect
of adding a new relator tm, in the limit as m → ∞. Let Gm be the Cayley graph
of the group Γm = 〈S | R ∪ {tm}〉.

Theorem 6.1. If rank(C) < |S| − 1, then μ(Gm) → μ(G) as m → ∞.

Proof. The coefficient matrix Cm of Gm differs from C1 only in the multiplicity of
the row corresponding to the new relator, and therefore N (C1) = N (Cm). Since Γ1

has only one relator more than G, rank(C1) ≤ rank(C) + 1. If rank(C) < |S| − 1,
then rank(C1) < |S|. By Theorem 4.1, we may find γ = (γs : s ∈ S) ∈ N (C1)
such that γ ∈ ZS , γ 
= 0. By the above, for m ≥ 1, γ ∈ N (Cm), so that Gm has a
corresponding group height function hm. By (4.2), d(h) = d(hm) =: D for all n, so
that Gm ∈ GD,0 for all m.

The group Γm is obtained as the quotient group of Γ by the (normal) subgroup
generated by tm. We apply [10, Thm. 5.2] with Am the cyclic group generated by
tm. The condition of the theorem holds since t has infinite order. �

Remark 6.2 (Approximating μ(G)). The question is posed in [11] of whether one
can obtain rigorous sequences of bounds for μ(G) which are sharp. Such upper

bounds are provided by the subadditive argument of (2.1), namely μ ≤ σ
1/m
m for

m ≥ 1. Theorem 6.1, taken together with [11, Thm. 3.8], provides lower bounds.

It is however preferable to use the improved lower bound μ ≥ b
1/m
m , where bm is the

number of m-step bridges. The latter inequality is asymptotically sharp whenever
G has a unimodular graph height function (see [10, Remark 4.5]), and this is a less
restrictive condition than that of Theorem 6.1.

As examples of finitely generated groups satisfying the conditions of Theorem 6.1,
we mention free groups, abelian groups, free nilpotent groups, free solvable groups,
and, more widely, nilpotent and solvable groups Γ with presentations 〈S | R〉 whose
coefficient matrix C satisfies b(Γ) = |S| − rank(C) > 1. Here is an example where
Theorem 6.1 cannot be applied, though the conclusion is valid.

Example 6.3. Let G be the Cayley graph of the infinite dihedral group Dih∞ =
〈s1, s2 | s21, s22〉 of Example 4.4. As noted there, G has no group height function,
though it has a unimodular graph height function (h,H) with d(h) = 1. Let
Γm = Dih∞ × Jm where m ≥ 3 and Jm = 〈a, b | ab, am〉 is the cyclic group
{1, a, a2, . . . , am−1}. Thus, Γm is finitely presented but, by Theorem 4.1(b), it has
no group height function. In particular, Theorem 6.1 may not be applied.

The Cayley graph G is isomorphic to Z. Therefore, we may define a unimodular
graph height function (h′,H′) on the Cayley graph Gm of Γm by h′(γ, ak) = h(γ),
with H′ generated by the shifts (γ, ak) 
→ (γ + 1, ak) and (γ, ak) 
→ (γ, ak+1).
Furthermore, d(h′) = d(h) = 1 and r(h′,H′) = r(h,H) = 0. By [10, Thms 5.1, 5.2],
μ(Gm) → μ(Z2) as m → ∞.

7. Proof of Theorem 3.4

Assume that assumptions (a)–(c) of Theorem 3.4 hold. There are two steps in
the proof, namely of the following.
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A. (Proposition 7.2) There exists ψ : V → Q which is H-difference-invariant,
harmonic, non-constant, and takes values in the rationals.

B. (Proposition 7.4) There exists a graph height function which is harmonic
on G.

The vertex 1 may appear to play a distinguished role in this section. This is in
fact not so: since G is assumed transitive, the following is valid with any choice of
vertex for the label 1. The approach of the proof is inspired in part by the proof of
[26, Cor. 3.4]. Let X = (Xn : n = 0, 1, 2, . . . ) be a simple random walk on G, with
transition matrix

P (u, v) = Pu(X1 = v) =
1

deg(u)
, u, v ∈ V, v ∈ ∂u,

where Pu denotes the law of the random walk starting at u.
Let V1 = H1 be the orbit of the identity under H, and let P1 be the transition

matrix of the induced random walk on V1, that is,

P1(u, v) = Pu(Xτ = v), u, v ∈ V1,

where τ = min{n ≥ 1 : Xn ∈ V1}. It is easily seen that Pu(τ < ∞) = 1 since, by
the quasi-transitive action of H, there exist α > 0 and K < ∞ such that

(7.1) Pu(Xk ∈ V1 for some 1 ≤ k ≤ K) ≥ α, u ∈ V.

We note for later use that, by (7.1), there exist α′ = α′(α,K) ∈ (0, 1) and A =
A(α,K) such that

(7.2) Pu(τ ≥ m) ≤ A(1− α′)m, m ≥ 1, u ∈ V.

Since H ≤ Aut(G), P1 is invariant under H in the sense that

(7.3) P1(u, v) = P1(γu, γv), γ ∈ H, u, v ∈ V1.

Proposition 7.1.

(a) The transition matrix P1 is symmetric, in that

P1(u, v) = P1(v, u), u, v ∈ V1.

(b) Let F : V1 → Z be H-difference-invariant. Then F is P1-harmonic in that

F (u) =
∑
v∈V1

P1(u, v)F (v), u ∈ V1.

Proof. (a) Since P is reversible with respect to the measure (deg(v) : v ∈ V ), and
deg(v) is constant on V1, we have that

P (u0, u1)P (u1, u2) · · ·P (un−1, un) = P (un, un−1)P (un−1, un−2) · · ·P (u1, u0)

for u0, un ∈ V1, u1, . . . , un−1 ∈ V . The symmetry of P1 follows by summing over
appropriate sequences (ui).

(b) It is required to prove that

(7.4)
∑
v∈V1

P1(u, v)[F (u)− F (v)] = 0, u ∈ V1,

and it is here that we shall use assumption (b) of Theorem 3.4, namely, that H is
unimodular. Since F is H-difference-invariant, there exists D < ∞ such that

|F (u)− F (v)| ≤ DdG(u, v), u, v ∈ V1.
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By (7.1), the random walk on V1 has finite mean step-size. It follows that the
summation in (7.4) converges absolutely.

Equation (7.4) may be proved by a cancellation of summands, but it is shorter
to use the mass-transport principle. Let

m(u, v) = P1(u, v)[F (u)− F (v)], u, v ∈ V1.

The sum
∑

v∈V1
m(u, v) is absolutely convergent as above, and m(γu, γv) = m(u, v)

for γ ∈ H. SinceH is unimodular, by the mass-transport principle (see, for example,
[27, Thm. 8.7, Cor. 8.11]),

(7.5)
∑
v∈V1

m(u, v) =
∑
w∈V1

m(w, u), u ∈ V1.

Now, ∑
w∈V1

m(w, u) =
∑
w∈V1

P1(w, u)[F (w)− F (u)]

= −
∑
w∈V1

P1(u,w)[F (u)− F (w)] by part (a),

and (7.4) follows by (7.5).
It is usual to assume in the mass-transport principle that m(u, v) ≥ 0, but it

suffices that
∑

v m(u, v) is absolutely convergent. �

Let β > 1, and let f : V → R. We write f = O(βn) if there exists B such that

(7.6) |f(v)| ≤ Bβn if dG(1, v) ≤ n, and n ≥ 1.

Proposition 7.2. Let F : V1 → Z be H-difference-invariant, and let

(7.7) ψ(v) = Ev[F (XT )], v ∈ V,

where T = inf{n ≥ 0 : Xn ∈ V1}. Then,

(a) the function ψ is H-difference-invariant, and agrees with F on V1,
(b) ψ is harmonic on G, in that

(7.8) ψ(u) =
∑
v∈V

P (u, v)ψ(v), u ∈ V,

and, furthermore, ψ is the unique harmonic function that agrees with F on
V1 and satisfies ψ = O(βn) with any 1 ≤ β < 1/(1− α′), where α′ satisfies
(7.2),

(c) ψ takes rational values.

Remark 7.3. By Proposition 7.2(a, b), any O(βn) harmonic extension of F (with
suitable β) is H-difference-invariant. Conversely, any H-difference-invariant func-
tion f satisfies f = O(βn) for all β > 1, whence the function ψ of (7.7) is the unique
harmonic extension of F that is H-difference-invariant.

Proof. (a) The function ψ is H-difference-invariant since the law of the random
walk is H-invariant, and

ψ(v)− ψ(w) = Ev[F (XT )]− Ew[F (XT )].

It is trivial that ψ ≡ F on V1.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5974 GEOFFREY R. GRIMMETT AND ZHONGYANG LI

(b) By conditioning on the first step, ψ is harmonic at any v /∈ V1. For v ∈ V1,
it suffices to show that

ψ(v) =
∑
w∈V

P (v, w)ψ(w).

Since ψ ≡ F on V1, and F is P1-harmonic (by Proposition 7.1), this may be written
as ∑

w∈V1

P1(v, w)ψ(w) =
∑
w∈V

P (v, w)ψ(w), v ∈ V1.

Each term equals Ev[ψ(W (X1))], where X1 is the position of the random walk after
one step, and W (X1) is the first element of V1 encountered having started at X1.

To establish uniqueness, let φ be a harmonic function with φ = O(βn) where
1 ≤ β < 1/(1 − α′), such that φ ≡ F on V1. Then Yn := φ(Xn) is a martingale,
and furthermore T is a stopping time with tail satisfying (7.2). By the optional
stopping theorem (see, for example, [15, Thm. 12.5.1]) and (7.7),

φ(u) = Eu(YT ) = Eu(F (XT )) = ψ(u),

so long as Eu(|Yn|I{T≥n}) → 0 as n → ∞, where IE denotes the indicator function
of an event E. To check the last condition, note by (7.6) and (7.2) that

Eu(|Yn|I{T≥n}) ≤ Bβn+|u|Pu(T ≥ n)

≤ (ABβ|u|)βn(1− α′)n → 0 as n → ∞,

where |u| = dG(1, u).
(c) The quantity ψ(v) has a representation as a sum of values of the unique

solution of a finite set of linear equations with integral coefficients and boundary
conditions, and thus ψ(v) ∈ Q. Some further details follow.

Let �G = (V, �E) be the directed graph obtained from G = (V,E) by replacing
each e ∈ E by two edges �e, −�e with the same endpoints and opposite orientations.

Suppose δ : �E → R satisfies the linear equations

δ(−�e) + δ(�e) = 0, e ∈ E,(7.9) ∑
�e∈W

δ(�e) = 0, W ∈ W(G),(7.10)

∑
v∼u

δ([u, v〉) = 0, u ∈ V,(7.11)

δ(α�e) = δ(�e), e ∈ E, α ∈ H,(7.12)

where W(G) is the set of directed closed walks of G. (Equation (7.10) may be
viewed as including (7.9).) By (7.10), the sum

Δ(v) :=
∑
�e∈lv

δ(�e), v ∈ V,

is well defined, where lv is an arbitrary (directed) walk from 1 to v ∈ V . Equation
(7.11) requires that Δ be harmonic, and (7.12) that Δ be H-difference-invariant.

Since H acts quasi-transitively, by (7.12), the linear equations (7.9)–(7.11) in-
volve only finitely many variables. Therefore, there exists a finite subset of equa-
tions, denoted as Eq, of (7.9)–(7.11) such that δ satisfies (7.9)–(7.12) if and only if δ
satisfies Eq together with (7.12). In summary, any harmonic, H-difference-invariant
function Δ, satisfying Δ(1) = 0, corresponds to a solution to the finite collection
Eq of linear equations.
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With F as given, let ψ be given by (7.7). By Remark 7.3, equations (7.9)–(7.12)
have a unique solution satisfying

(7.13)
∑
�e∈lv

δ(�e) = F (v)− F (1), v ∈ V1.

By (7.10), it suffices in (7.13) to consider only the finite set V ′
1 ⊆ V1 of vertices v

within some bounded distance of 1 that depends on the pair G, H.
Therefore, Eq possesses a unique solution subject to (7.13) (with V1 replaced

by V ′
1). All coefficients and boundary values in Eq and (7.13) are integral, and

therefore ψ takes only rational values. �

Proposition 7.4. Let F : V1 → Z be H-difference-invariant, and non-constant on
V1. There exists a graph height function (h = hF ,H) such that h is harmonic on
G.

Proof. The normality of H is used in this proof. A vertex v ∈ V is called a
point of increase of a function h : V → R if v has neighbours u, w such that
h(u) < h(v) < h(w). The function h is said to increase everywhere if every vertex
is a point of increase. For v ∈ V and a harmonic function h,

(7.14)
either: v is a point of increase of h,

or: h is constant on {v} ∪ ∂v.

An H-difference-invariant function h on G is a graph height function if and only if
h(1) = 0, h takes integer values, and h increases everywhere.

Let F be as given, and let ψ be given by Proposition 7.2. Thus, ψ : V → Q

is non-constant on V1, H-difference-invariant, and harmonic on G. Since ψ is H-
difference-invariant, we may replace it by mψ for a suitable m ∈ N to obtain such
a function that in addition takes integer values. We shall work with the latter
function, and thus we assume henceforth that ψ : V → Z. Now, ψ may not increase
everywhere. By (7.14), ψ has some point of increase w ∈ V .

Let V1, V2, . . . , VM be the orbits of V under H. Find W such that w ∈ VW . Since
Γ acts transitively on G, and H is a normal subgroup of Γ acting quasi-transitively
on G, there exist γ1, γ2, . . . , γM ∈ Γ such that γW = 1Γ and

Vi = γiVW , i = 1, 2, . . . ,M.

Let

(7.15) ψi(v) = ψ(γ−1
i v), i = 1, 2, . . . ,M,

so that, in particular, ψW = ψ. Since w ∈ VW is a point of increase of ψ, wi := γiw
is a point of increase of ψi, and also wi ∈ Vi.

Lemma 7.5. For i = 1, 2, . . . ,M ,

(a) ψi : V → Z is a non-constant, harmonic function, and
(b) ψi is H-difference-invariant.

Proof. (a) Since ψi is obtained from ψ by shifting the domain according to the
automorphism γi, ψi is non-constant and harmonic.

(b) For α ∈ H and u, v ∈ V ,

ψi(αv)− ψi(αu) = ψ(γ−1
i αv)− ψ(γ−1

i αu).
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Since H � Γ and γi ∈ Γ, there exists αi ∈ H such that γ−1
i α = αiγ

−1
i . Therefore,

ψi(αv)− ψi(αu) = ψ(αiγ
−1
i v)− ψ(αiγ

−1
i u)

= ψ(γ−1
i v)− ψ(γ−1

i u) since ψ is H-difference-invariant

= ψi(v)− ψi(w) by (7.15),

so that ψi is H-difference-invariant. �

Let ν : V → R be H-difference-invariant. For j = 1, 2, . . . ,M , either every
vertex in Vj is a point of increase of ν, or no vertex in Vj is a point of increase
of ν. We shall now use an iterative construction in order to find a harmonic, H-
difference-invariant function h′ for which every wi is a point of increase. Since the
wi represent the orbits Vi, the ensuing h′ increases everywhere.

1. If every wi is a point of increase of ψ, we set h′ = ψ.
2. Assume otherwise, and find the smallest j2 such that wj2 is not a point of

increase of ψ. By (7.14), we may choose cj2 ∈ Q such that both w and wj2

are points of increase of h2 := ψ + cj2ψj2 . If h2 increases everywhere, we
set h′ = h2.

3. Assume otherwise, and find the smallest j3 such that wj3 is not a point
of increase of h2. By (7.14), we may choose cj3 ∈ Q such that w, wj2 ,
and wj3 are points of increase of h3 := ψ + cj2ψj2 + cj3ψj3 . If h3 increases
everywhere, we set h′ = h3.

4. This process is iterated until we find an H-difference-invariant, harmonic
function of the form

h′ =
M∑
l=1

cjlψjl ,

with j1 = W , cW = 1, and cjl ∈ Q, which increases everywhere.

The function h′ − h′(1) may fail to be a graph height function only in that it
may take rational rather than integer values. Since the cjl are rational, there exists
m ∈ Z such that h = m(h′ − h(1)) is a graph height function. �

Proof of Theorem 3.4. By Propositions 7.1 and 7.2, there exists ψ : V → Q satisfy-
ing (i). The existence of ψ′ : V → Q, in (ii), follows as in Proposition 7.4. Similarly,
ψ, ψ′ may be taken to be integer-valued, and the unimodularity holds since H is
assumed unimodular. �

8. Proof of Theorem 3.5

Let G, Γ, H be as given. The idea is to apply Theorem 3.4 to a suitable triple G′,
Γ′, H′, and to extend the resulting graph height function to the original graph G.
The required function F of the theorem will be derived from the modular function
of G under H.

By [27, Thm. 8.10], we may define a positive weight function M : V → (0,∞)
satisfying

(8.1)
M(u)

M(v)
=

|Stabuv|
|Stabvu|

, u, v ∈ V,

where | · | denotes cardinality. The weight function is uniquely defined up to a
multiplicative constant, and is automorphism-invariant up to a multiplicative con-
stant. Since G is assumed non-unimodular, M is non-constant on some orbit of H.
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Without loss of generality, we assume 1 lies in such an orbit and that M(1) = 1.
See [27, Sect. 8.2] for an account of (non-)unimodularity.

Let S be the normal subgroup of Γ generated by
⋃

v∈V Stabv, where Stabv =

StabHv . Let G′ denote the quotient graph G/S (as in [10, Sect. 2]), which we take
to be simple in that every pair of neighbours is connected by just one edge, and
any loop is removed.

Lemma 8.1.

(a) S � H.
(b) The function F ′ : V/S → (0,∞) given by F ′(Sv) = logM(v), v ∈ V , is

well defined, in the sense that F ′ is constant on each orbit in S.
(c) The quotient group Γ′ := Γ/S acts transitively on G′, and H′ := H/S acts

quasi-transitively on G′.
(d) The quotient graph G′ = G/S satisfies G′ ∈ G.
(e) H′ is unimodular on G′.

Proof. (a) Since S � Γ and H ≤ Γ, it suffices to show that S ≤ H. Now, S is
the set of all products of the form (γ1σ1γ

−1
1 )(γ2σ2γ

−1
2 ) · · · (γkσkγ

−1
k ) with k ≥ 0,

γi ∈ Γ, σi ∈ Stabwi
, wi ∈ V . Since γiσiγ

−1
i ∈ Stabγiwi

, we have that S ≤ H as
required.

(b) If u = σv with σ ∈ Stabw, then

M(u)

M(w)
=

|Stabuw|
|Stabwu|

=
|Stabσv(σw)|
|Stabσw(σv)|

=
|Stabvw|
|Stabwv|

=
M(v)

M(w)
,

so that M(u) = M(v). As in part (a), every element of S is the product of members
of the stabilizer groups Stabw, and the claim follows.

(c) Let u, v ∈ V , and find γ ∈ Γ such that v = γu. Since S � Γ, Sγ(Su) =
Sγu = Sv, so that Sγ : Su 
→ Sv. The first claim follows, and the second is similar
since H acts quasi-transitively on G.

(d) Since M is non-constant on the orbit H1, there exist v, w ∈ H1 such that
ξ := M(w)/M(v) satisfies μ > 1. Let α ∈ H be such that w = αv. By (8.1),
M(αkv)/M(v) = ξk, whence the range of M is unbounded. By part (b), G′ is
infinite. (The non-constantness of the modular function has been used also in [7].)
The graph G′ is connected since G is connected, and is transitive by part (c). It is
locally finite since its vertex-degree is no greater than that of G.

(e) It suffices for the unimodularity that, for u ∈ V and u := Su, we have that

Stabu := StabH
′

u is a single element, namely the identity element S of H′. Let
α ∈ H be such that Sα ∈ Stabu. Then Sα(Su) = αSu = Su. Therefore, there
exists s ∈ S such that αs(u) = u, so that αs ∈ S. It follows that α ∈ S, and hence
Sα = S as required. �

Since M is non-constant on H1, F ′ is non-constant on the orbit of H′ containing
S1. By Theorem 3.4 applied to (G′,Γ′,H′, F ′), G′ has a harmonic, unimodular
graph height function (ψ′,H′) satisfying ψ′(S1) = 0. Let ψ : V → Z be given by
ψ(v) = ψ′(Sv). We claim that (ψ,H) is a graph height function on G.
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First, for α ∈ H,

ψ(αv)− ψ(αu) = ψ′(Sαv)− ψ′(Sαu)
= ψ′(αSv)− ψ′(αSu) since S � H
= ψ′(Sv)− ψ′(Su) since (ψ′,H′) is a graph height function

= ψ(v)− ψ(u),

whence ψ is H-difference-invariant. Second, let v ∈ V , and find u,w ∈ ∂v such
that ψ′(Su) < ψ′(Sv) < ψ′(Sw). Then ψ(u) < ψ(v) < ψ(w), so that v is a point
of increase of ψ. Therefore, (ψ,H) is a graph height function on G.

Finally, we give an example in which the above recipe leads to a graph height
function which is not harmonic. Consider the ‘grandparent graph’ introduced in
[36] (see also [27, Example 7.1]) and defined as follows. Let T be an infinite degree-
3 tree, and select an ‘end’ ω. For each vertex v, we add an edge to the unique
grandparent of v in the direction of ω. Let H be the set of automorphisms of the
resulting graph G. Note that H acts transitively on G, and is non-unimodular.
The above recipe yields (up to a multiplicative constant which we take to be 1) the
graph height function on T which measures the (integer) height of a vertex in the
direction of ω. The neighbours of a vertex with height h have average height h− 7

8 ,
whence h is not harmonic.
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