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STRICT INEQUALITIES FOR CONNECTIVE CONSTANTS
OF TRANSITIVE GRAPHS∗
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Abstract. The connective constant of a graph is the exponential growth rate of the number of
self-avoiding walks starting at a given vertex. Strict inequalities are proved for connective constants of
vertex-transitive graphs. First, the connective constant decreases strictly when the graph is replaced
by a nontrivial quotient graph. Second, the connective constant increases strictly when a quasi-
transitive family of new edges is added. These results have the following implications for Cayley
graphs: the connective constant of a Cayley graph decreases strictly when a new relator is added to
the group, and increases strictly when a nontrivial group element is declared to be a generator.
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1. Introduction. A self-avoiding walk (SAW) is a path that revisits no vertex.
Self-avoiding walks were first introduced in the context of long-chain polymers in
chemistry (see [10]), and they have been studied intensively since by mathematicians
and physicists (see [25]). If the underlying graph G has some periodicity, the number
of n-step SAWs with a given starting point grows (asymptotically) exponentially as
n → ∞, with some growth rate μ(G) called the connective constant of the graph.
There are few graphs G for which μ(G) is known exactly, and a substantial part of
the associated literature is devoted to inequalities for such constants. The purpose
of the current work is to establish conditions under which a systematic change to G
results in a strict change to μ(G).

We have two main results for an infinite, vertex-transitive graph G, as follows.
The automorphism group of G is denoted by Aut(G). Precise conditions are given in
the formal statements of the theorems.

1. (Theorem 3.8) Let the subgroup Γ ⊆ Aut(G) act transitively on G, and let
A ⊆ Γ be a nontrivial, normal subgroup of Γ (satisfying a minor condition).

The (directed) quotient graph �G = G/A satisfies μ(�G) < μ(G).
2. (Theorem 3.2) Suppose new edges are added in such a way that the result-

ing graph is quasi-transitive (subject to a certain algebraic condition). The
connective constant of the new graph G satisfies μ(G) < μ(G).

These inequalities have the following implications for Cayley graphs. Let G be
the Cayley graph of an infinite, finitely generated group G with generator set S and
relator set R.

3. (Corollary 4.1) Let Gρ be the Cayley graph obtained by adding to G a further
nontrivial relator ρ. Then μ(Gρ) < μ(G).
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4. (Corollary 4.3) Let w be a nontrivial element of G that is not a generator, and
let Gw be the Cayley graph obtained by declaring w to be a further generator.
Then μ(G) < μ(Gw).

The proofs partly follow the general approach of Kesten’s proof of the pattern
theorem; see [21] and [25, sect. 7.2]. Any n-step SAW π in the smaller graph G lifts
to a SAW π′ in the larger graph G′. The idea is to show that “most” such π contain
at least an subwalks for which the corresponding sections of π′ may be replaced in at
least two different ways by SAWs on G′. Different subsets of these subwalks give rise
to different SAWs on G′. The number of such subsets grows exponentially in n, and
this introduces an exponential “entropic” factor in the count of SAWs.

Whereas Kesten’s proof and subsequent elaborations were directed at certain
specific lattices, our results apply in the general setting of vertex-transitive graphs, and
they require new algebraic and combinatorial techniques. Indeed, the work reported
here may be the first systematic study of SAWs on general vertex-transitive graphs.

Related questions have been considered in the contexts of percolation and disor-
dered systems. Consider a given model on a graph G, such as a percolation or an
Ising/Potts model. There is generally a singularity at some parameter value called
the “critical point.” For percolation the parameter in question is the density of open
sites or bonds, and for the models of statistical physics it is the temperature. It is
important and useful to understand something of how the critical point varies with
the choice of graph. In particular, under what conditions does a systematic change in
the graph cause a strict change in the value of the critical point? A general approach
to this issue was presented in [1] and developed further in [9, 12] and [13, Chap. 3].

Turning back to SAWs, the SAW generating function has radius of convergence
1/μ and is believed (for lattice-graphs at least) to have power-law behavior near its
critical point; see [25]. The above theorems amount to strict inequalities for the critical
point as the underlying graph G varies. Despite a similarity of the problem to that
of disordered systems, the required techniques for SAWs are substantially different.
We concentrate here on vertex-transitive graphs, and the required conditions are
expressed in the language of algebra. There is another feasible approach to proving
strict inequalities, namely the bridge-decomposition method introduced by Hammers-
ley and Welsh in [19] and used more recently in various works including [6, 23] and
[25, Thm. 8.2.1].

Basic notation and facts about SAWs and connective constants are presented
in section 2. There is a large literature concerning SAWs, of which we mention
[2, 5, 20, 25]. For accounts of algebraic graph theory, see [4, 11, 24, 28].

This paper has two companion papers, [15, 17]. In [15], we prove bounds on
connective constants of vertex-transitive graphs, in particular μ ≥ √

Δ− 1 when G is
an infinite, connected, Δ-regular, vertex-transitive, simple graph. In [17], we explore
the effect on SAWs of the Fisher transformation, applied to a cubic or partially cubic
graph. This work is reviewed in [16].

2. Notation and definitions. All graphs considered here are connected and
infinite. Subject to a minor exception in section 3, they may not contain loops (that
is, edges both of whose endpoints are the same vertex), but, in certain circumstances,
they are permitted to have multiple edges (that is, two or more edges with the same
pair of endpoints). A graph G = (V,E) is called simple if it has neither loops nor
multiple edges. An edge e with endpoints u, v is written e = 〈u, v〉, and two distinct
edges with the same endpoints are called parallel. If 〈u, v〉 ∈ E, we call u and v
adjacent and write u ∼ v. Let ∂v = {u : u ∼ v} denote the set of neighbors of v ∈ V .
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The degree of vertex v is the number of edges incident to v. We assume that
the vertex-degrees of a given graph G are finite with supremum Δ < ∞. The graph-
distance between two vertices u, v is the number of edges in the shortest path from u
to v, denoted dG(u, v).

The automorphism group of the graphG = (V,E) is denoted Aut(G). A subgroup
Γ ⊆ Aut(G) is said to act transitively on G (or on the vertex-set V ) if, for v, w ∈ V ,
there exists γ ∈ Γ with γv = w. It is said to act quasi-transitively if there is a finite set
W of vertices (called a fundamental domain) such that, for v ∈ V , there exist w ∈W
and γ ∈ Γ with γv = w. The graph is called vertex-transitive (respectively, quasi-
transitive) if Aut(G) acts transitively (respectively, quasi-transitively). The identity
element of any group is denoted by ι.

A walk w on G is an alternating sequence w0e0w1e1 · · · en−1wn of vertices wi and
edges ei = 〈vi, vi+1〉. We write |w| = n for the length of w, that is, the number of
edges in w. The walk w is called closed if w0 = wn. A cycle (or n-cycle) is a closed
walk w with distinct edges and wi �= wj for 1 ≤ i < j ≤ n. Thus, two parallel edges
form a 2-cycle.

Let n ∈ {1, 2, . . .} ∪ {∞}. An n-step self-avoiding walk (SAW) on G is a walk
containing n edges no vertex of which appears more than once. Let σn(v) be the
number of n-step SAWs starting at v ∈ V . We are interested here in the exponential
growth rate of σn(v). Note that, in the presence of parallel edges, two SAWs with
identical vertex-sets but different edge-sets are considered as distinct SAWs.

Theorem 2.1 (see [18]). Let G = (V,E) be an infinite, connected, quasi-
transitive graph with finite vertex-degrees. There exists μ = μ(G) ∈ [1,∞), called
the connective constant of G, such that

(2.1) lim
n→∞ σn(v)

1/n = μ, v ∈ V.

Subadditivity plays a key part in the proof of this theorem. It yields the inequality

(2.2) sup
v∈V

σn(v) ≥ μn, n ≥ 0,

which will be useful later in this paper. A further proof of Theorem 2.1 may be found
in [14].

See [17, Thm. 3.1] (and also [22, Prop. 1.1]) for an elaboration of Theorem 2.1 in
the absence of quasi-transitivity. We note for use in section 3 that the above notation
may be extended in a natural way to directed graphs, and we omit the details here.
In particular, one may define the connective constant �μ = μ(�G) of a directed, quasi-

transitive graph �G by (2.1) with σn(v) replaced by the number of directed n-step
SAWs (whenever the relevant limits exist).

3. Strict inequalities for vertex-transitive graphs.

3.1. Introduction. In this section, we present and discuss two strict inequalities
for connective constants of vertex-transitive graphs. The first (Theorem 3.2 in section
3.2) deals with the effect of adding a quasi-transitive family of new edges, and the
second (Theorem 3.8 in section 3.4) deals with quotient graphs. Proofs of these two
principal theorems are found in sections 5 and 6. (Readers of these proofs will be
aided by familiarity with the proof of the pattern theorem; see [25, sect. 7.2].) Two
further results are presented in section 3.6 concerning, respectively, the question of
whether the proof of Theorem 3.8 may be transformed into an algorithm, and the
possible removal of the assumption of normality in Theorem 3.8. Interspersed with
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the principal sections 3.2 and 3.4 are the discussions of sections 3.3 and 3.5, which
may be omitted at first reading.

The implications of the above inequalities for Cayley graphs are presented in
section 4; see Corollaries 4.1 and 4.3.

Let G = (V,E) be an infinite, connected, vertex-transitive, simple graph. We
assume throughout that the vertex-degree Δ of G satisfies Δ <∞.

3.2. Quasi-transitive augmentation. Let G = (V,E) be as above, and let
G = (V,E) be obtained fromG by adding further edges, possibly in parallel to existing
edges. We shall assume that E is a proper subset of E, and that the additional edge-
set E \ E has a property of quasi-transitivity with respect to some automorphism-
subgroup A. We shall require some properties of this subgroup A, and to this end we
introduce next a certain definition, followed by the main result of this subsection.

Definition 3.1. Let Γ ⊆ Aut(G) act transitively on G. A subgroup A ⊆ Γ is said
to have the finite coset property with root ρ ∈ V (in Γ) if there exist ν0, ν1, . . . , νs ∈ Γ,
with ν0 = ι and s < ∞, such that V is partitioned as

⋃s
i=0 νiAρ. It is said simply to

have the finite coset property if it has this property with some root.
Theorem 3.2. Let Γ act transitively on G, and let A be a subgroup of Γ with the

finite coset property. If A ⊆ Aut(G), then μ(G) < μ(G).
The finite coset property is somewhat technical, but it is satisfied in two cases of

practical interest. The following proposition is proved at the end of section 3.3.
Proposition 3.3. Let Γ act transitively on G, and let ρ ∈ V . The subgroup A

of Γ has the finite coset property with root ρ if either of the following holds:
(a) A is a normal subgroup of Γ which acts quasi-transitively on G.
(b) The index [Γ : A] is finite.
We ask whether the condition of Theorem 3.2 may be relaxed. More generally,

is it the case that μ(G) < μ(G) whenever G = (V,E) is transitive and G = (V,E) is
quasi-transitive, with E a proper subset of E ?

Example 3.4. The square/triangular lattices present an elementary example of
Theorem 3.2 in action. Let Z

2 denote the square lattice, and let Γ be the group of
its translations. The triangular lattice T is obtained by adding the edge e = 〈0, (1, 1)〉
and its images under Γ, where 0 is the origin (0, 0). Since Γ is a normal subgroup of
itself with the finite coset property, we deduce that μ(Z2) < μ(T). This inequality is
in fact an elementary consequence of known numerical bounds; see, for example, [2].
The current conclusion may, however, be extended beyond such known bounds by use
of Theorem 3.2 as follows.

Let u, v ∈ Z
2 be linearly independent (nonzero) vectors, and let Au,v be the sub-

group of Γ containing all translations of the form mu+ nv as m and n range over Z.
It is easily seen that Au,v is a normal subgroup of Γ which acts quasi-transitively, and
hence Au,v has the finite coset property.

Let w ∈ Z
2 satisfy w �= 0, and let e be a new edge 〈0, w〉. Let Tu,v,w be the graph

obtained from Z
2 by adding the set Au,ve of all images of e under Au,v. The regular

triangular lattice T is retrieved by appropriate choice of u, v, and w.
By Theorem 3.2, μ(Z2) < μ(Tu,v,w). The corresponding percolation theorem states

that the critical probabilities satisfy pc(Z
2) < pc(T

′) for certain T
′ obtained by enhanc-

ing Z
2; see [1] and [13, Chap. 3]. This requires less symmetry on the distribution of

new edges, and it suffices that there exists M < ∞ such that every vertex is within
distance M of a new edge.

The conclusion of Theorem 3.2 is generally invalid if G is assumed to be only
quasi-transitive. Consider, for example, the pair G, G of Figure 1, each of which has
connective constant 1.
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Fig. 1. The pair G, G. The patterns are extended infinitely in both directions. Each graph is
quasi-transitive with connective constant 1, and the second is obtained from the first by the systematic
addition of edges.

3.3. Algebraic discussion. This section contains discussion of certain algebraic
facts related to the finite coset property, and it may be omitted at first reading.

The assumption of normality will recur in this paper, and we recall the following
“standard facts.”

Remark 3.5. Let Γ act transitively on the infinite graph G = (V,E). A partition
P of V is called Γ-invariant if, for u, v ∈ V belonging to the same set of the partition
and for γ ∈ Γ, γu and γv belong to the same set of the partition.

Let A be a subgroup of Γ. The orbits of A form a partition P(A) of V . If A is
a normal subgroup, the partition P(A) is Γ-invariant. If P(A) is Γ-invariant, there
exists a normal subgroup N of Γ such that P(N ) = P(A). In the latter case, N may
be taken as the normal closure of A, that is, the intersection of all normal subgroups
of Γ containing A.

The proof of Proposition 3.3(b) makes use of the relationship between the index
of A and the number of its orbits when acting on V . Consider Γ as a group acting on
V with orbit-set denoted by V/Γ. It is said to act freely if every stabilizer is trivial,
that is, if

(3.1) Stabv := {γ ∈ Γ : γv = v}
satisfies

(3.2) Stabv = {ι}, v ∈ V.

We abuse notation by saying that Γ \ A acts freely on V if

(3.3) Stabv ⊆ A, v ∈ V.

The proof of the next proposition is at the end of this subsection.
Proposition 3.6. Let Γ act transitively on the countable set V , and let A be a

subgroup of Γ. Then

(3.4) |V/A| ≤ [Γ : A].

If |V/A| <∞, equality holds in (3.4) if and only if Γ \ A acts freely on the set V .
We make three comments concerning Theorem 3.3:
1. Let A ⊆ Aut(G) act quasi-transitively on G, and suppose there exists Γ ⊆

Aut(G) such that A ⊆ Γ, Γ acts transitively on G, and Γ \ A acts freely on
V . We have by Proposition 3.6 that [Γ : A] = |V/A| <∞, whence A has the
finite coset property (with arbitrary root) by Theorem 3.3(b).

2. By Remark 3.5, condition (a) of Theorem 3.3 may be replaced by the appar-
ently weaker assumption that A is a subgroup of Γ acting quasi-transitively
on G, whose orbits form a Γ-invariant partition of V .
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3. The normal core of A is the intersection of the conjugate subgroups of A. If
[Γ : A] < ∞, the normal core N of A satisfies [Γ : N ] < ∞ (see [27, Prop.
1.6.9]). By Proposition 3.6, N acts quasi-transitively on V .

This section closes with the proofs of Propositions 3.3 and 3.6.
Proof of Proposition 3.3. (a) Suppose A is a normal subgroup of Γ acting quasi-

transitively on G. With ρ ∈ V , the orbits of A may be written as Aνiρ for suitable
νi ∈ Γ and 0 ≤ i ≤ s <∞. Since A is normal, Aνi = νiA, and the claim follows.

(b) Suppose [Γ : A] < ∞. The finite coset property holds with the νi chosen so
that the νiA are the left cosets of A in Γ.

Proof of Proposition 3.6. Fix v0 ∈ V , and choose v1, v2 . . . such that Av0,Av1, . . .
are the (distinct) orbits ofA. Let γ0 = ι and, for i ≥ 1, find γi ∈ Γ such that γiv0 = vi.
Let Γ/A denote the set of right cosets of A, and let φ : V/A → Γ/A be given by
φ(Avi) = Aγi. We check next that φ is an injection.

It suffices to show that i = j whenever Aγi = Aγj . Suppose Aγi = Aγj . There
exists α ∈ A such that γi = αγj . Therefore,

vi = γiv0 = αγjv0 = αvj ,

whence Avi = Avj and i = j. Thus, φ is an injection, and (3.4) follows.
Suppose |V/A| < ∞, and write U :=

⋃∞
i=0 Aγi. Equality holds in (3.4) if and

only if φ is a surjection, which is to say that Γ = U . Assume there exists ρ ∈ Γ \ U .
Find j such that ρv0 ∈ Avj , say ρv0 = αvj with α ∈ A. Then α−1ργ−1

j ∈ Stabvj . If

α−1ργ−1
j ∈ A, then ρ ∈ Aγj in contradiction of the assumption ρ /∈ U . Therefore,

α−1ργ−1
j ∈ Γ \ A, and Γ \ A does not act freely.

Suppose conversely that there exist ρ ∈ Γ \A and v ∈ V with ρv = v. Set w0 = v
and find wi ∈ V such that the (distinct) orbits of A are Aw0,Aw1, . . . . Let γ0 = ι
and, for i ≥ 1, find γi ∈ Γ such that γiw0 = wi. If ρ ∈ Aγi, then ρ = αγi for some
α ∈ A, so that w0 = ρw0 = αγiw0 = αwi. This implies that i = 0, and hence ρ ∈ A,
a contradiction. Therefore, ρ ∈ Γ \ U , where U =

⋃
i Aγi. It follows as above that

|V/A| < [Γ : A].

3.4. Quotient graphs. Let Γ be a subgroup of the automorphism group Aut(G)

that acts transitively, and let A be a subgroup of Γ. We denote by �G = (V , �E) the
(directed) quotient graph G/A constructed as follows. Let ≈ be the equivalence
relation on V given by v1 ≈ v2 if and only if there exists α ∈ A with αv1 = v2. The
vertex-set V comprises the equivalence classes of (V,≈), that is, the orbits v := Av as
v ranges over V . For v, w ∈ V we place |∂v ∩w| directed edges from v to w (if v = w,
these edges are directed loops), and we write v ∼ w if |∂v ∩w| ≥ 1 and v �= w. (Thus
v ∼ w if and only if w ∼ v.) By the next lemma, the number |∂v ∩w| is independent
of the choice of v ∈ v.

Lemma 3.7. Let A be a subgroup of Γ, and let v, w ∈ V . The number |∂v ∩w| is
independent of the representative v ∈ v.

Proof. Let v, v′ ∈ v and v′ �= v. Choose α ∈ A such that αv = v′. Then x ∈ ∂v∩w
is mapped to αx ∈ ∂v′ ∩ w, whence α acts as an injection from ∂v ∩ w to ∂v′ ∩ w.
Therefore, |∂v ∩ w| ≤ |∂v′ ∩ w|, and the claim follows by symmetry.

We call A symmetric if

(3.5) |∂v ∩ w| = |∂w ∩ v|, v, w ∈ V.

Two sufficient conditions for symmetry are presented in the forthcoming Lemma 3.10.
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We recall that the orbits of A are invariant under Γ if and only if they are the
orbits of some normal subgroup of Γ (see Remark 3.5). Assume henceforth that A is

a normal subgroup of Γ. It is standard that α ∈ Γ acts on �G by α(Av) = A(αv), and

that Γ acts transitively on �G. Furthermore, for v, w ∈ V ,

(3.6) v = w ⇔ ∀γ ∈ Γ, γv = γw.

Any walk π on G induces a (directed) walk �π on �G, and we say that π projects

onto �π. For a walk �π on �G, there exists a walk π on G that projects onto �π, and we
say that �π lifts to π. There are generally many choices for such π, and we fix such a
choice as follows. For v1, v2 ∈ V , we label the N(v1, v2) := |∂v1 ∩ v2| directed edges
from v1 to v2 in a fixed but arbitrary way with the integers 1, 2, . . . , N(v1, v2). For
v ∈ v1, we label similarly the edges from v to vertices in the set v2. For v ∈ v, any �π
from v lifts to a unique π from v that conserves edge-labellings, and thus walks from a
given v on G are in one-to-one correspondence with walks from v on �G. Since a SAW
on �G lifts to a SAW on G, �μ := μ(�G) satisfies �μ ≤ μ(G). Our task in this subsection
is to identify sufficient conditions for the strict inequality �μ < μ(G).

We introduce next the so-called type of the subgroup A, in terms of the length of
the shortest SAW of G with endpoints in the same orbit. Let v ∈ V , and let w �= v
satisfy that w = v and dG(v, w) is minimal with this property. By the transitive
action of Γ,

(3.7) dG(x, y) ≥ dG(v, w), x �= y, x = y.

We say that v is of the types given thus:

type 1 if dG(v, w) = 1,

type 2 if dG(v, w) = 2,

type 3 if dG(v, w) ≥ 3.

By (3.6), every vertex has the same type, and thus we shall speak of the type of A.
Given next is the main theorem of this section. A group is called trivial if it

comprises the identity ι only. An automorphism β is said to fix a vertex w if βw = w.
Theorem 3.8. Let A be a nontrivial, normal subgroup of Γ. The connective

constant �μ = μ(�G) satisfies �μ < μ(G) if either (a) or (b) holds:
(a) the type of A is 1 or 3, or
(b) A has type 2 and either of the following holds:

(i) G contains a SAW v0, w, v
′ satisfying v0 = v′ and |∂v0 ∩ w| ≥ 2,

(ii) G contains a SAW v0 (= w0), w1, w2, . . . , wl (= v′) satisfying v0 = v′,
wi �= wj for 0 ≤ i < j < l, and furthermore v′ = βv0 for some β ∈ A
which fixes no wi.

In the special case when μ(G) = 1, by [15, Thm. 1.1], G has degree 2 and is
therefore the line Z. It is easily seen that V is finite, so that �μ = 0.

The conclusion of Theorem 3.8 is generally invalid for quasi-transitive graphs.
Consider, for example, the graph G of Figure 2, with A = {ι, ρ}, where ρ is a reflection
in the horizontal axis. Both G and its quotient graph have connective constant 1.

Theorem 3.8 is related to but distinct from the strict inequalities of [6, 20, 29]
and [25, Thm. 8.2.1], where specific examples are considered of graphs that are not
vertex-transitive.
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Fig. 2. The pattern is extended infinitely in both directions.

Suppose that A has type 2. Condition (i) of Theorem 3.8(b) holds if A is sym-
metric, since |∂w∩ v| ≥ 2. While symmetry is sufficient for Theorem 3.8, we shall see
in the next example that it is not necessary.

Example 3.9. Conditions (i)–(ii) of Theorem 3.8 are necessary in the type-2
case, in the sense illustrated by the following example. Let G be the infinite 3-regular
tree with a distinguished end ω. Let Γ be the set of automorphisms that preserve
ω, and let A be the normal subgroup generated by the interchange of two children of
a given vertex v (and the associated relabeling of their descendants). The graph �G
is obtained from Z by placing two directed edges between consecutive integers in one
direction, and one directed edge in the reverse direction. The type of A is 2. It is
easily seen that neither (i) nor (ii) holds, and indeed μ(�G) = μ(G) = 2. We develop
this example as follows.

Let k ≥ 0, and let Ak be the normal subgroup generated by A together with the
map that shifts v to its ancestor k generations earlier. Note that Ak has type 2 for
k �= 1. The case of A1 is trivial since �G has a unique vertex.

We have that A2 is symmetric, and condition (i) of Theorem 3.8(b) applies. In
contrast, A3 is asymmetric (and therefore nonunimodular; see [30] and also [26, 28]
as well as Lemma 3.10), and condition (ii) applies. In either case, �μ < μ(G). The

situation is in fact trivial since �G is a directed k-cycle with two directed edges clockwise
and one anticlockwise. Thus �μ = 0 and μ(G) = 2. The same argument shows
�μ < μ(G) in the less trivial case with G the direct product of Zd and the tree.

A further example is provided later in Example 4.2.
It is sometimes convenient to work with an undirected graph derived from �G.

There are two such graphs, depending on whether or not the multiplicities of edges
are retained. The first is the simple graph, denoted G0, derived from �G by declaring
two distinct vertices v, w to be adjacent if and only if there is a directed edge between
v and w (this property is symmetric in v, w).

The second such graph, denoted G = (V ,E), is a multigraph derived from G0

by retaining the multiplicities of parallel edges of �G. If A is symmetric (in that (3.8)
holds), we obtain G by placing |∂v ∩ w| (undirected) parallel edges between each
distinct pair v, w ∈ V and adding |∂v ∩ v| (undirected) loops at each v ∈ V .

The relationship between �μ and the connective constants of the undirected graphs
derived from �G is as follows. It is easily seen that μ(G0) ≤ �μ. The graph G is defined
whenever A is symmetric, and in this case μ(G) = �μ.

Finally, we discuss the assumption of normality in Theorem 3.8. By Remark 3.5,
this assumption may be replaced by the following: there exists an automorphism group
Γ acting transitively on G, and a subgroup A whose partition of V is Γ-invariant.

3.5. Unimodularity. The concept of unimodularity is relevant to the type of
A, and we discuss this briefly in this optional section. First recall the stabilizer Stabv
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of a vertex v given at (3.1). As before, we say that γ ∈ Γ fixes vertex v if γ ∈ Stabv.
Note that |Stabvw| < ∞ for v, w ∈ V , since G is locally finite and all elements of
Stabvw are at the same distance from v.

Let Stab0v = Stabv ∩ A. As shown in [30] (see also [7, 28]), when viewed as a
topological group with the usual topology, A is unimodular if and only if

(3.8) |Stab0uv| = |Stab0vu|, u, v ∈ V.

Since all groups considered here are subgroups of Aut(G), we may follow [24, Chap.
8] by defining A to be unimodular if (3.8) holds.

It turns out that A is symmetric if either it is unimodular or it has type 3.
Lemma 3.10.

(a) If A is unimodular, then it is symmetric (in that (3.5) holds).
(b) If A has type 3, then |∂v ∩ v| = 0 for v ∈ V , and |∂v ∩ w| = |∂w ∩ v| = 1

whenever v ∼ w. In particular, A is symmetric.
Proof. (a) Suppose that A is unimodular, and let v, w ∈ V with v �= w. For

x, y ∈ V , let

f(x, y) =

{
1 if x ∈ v, y ∈ w, and x ∼ y,

0 otherwise.

The function f is invariant under the diagonal action of A, in that f(αx, αy) = f(x, y)
for α ∈ A. By the mass-transport principle as enunciated in, for example, [24, Thm.
8.7],

∑
w′∈w

f(v, w′) =
∑
v′∈v

f(v′, w)
|Stab0

v′w|
|Stab0

wv
′| , v, w ∈ V.

Equation (3.5) follows by (3.8).
(b) When A has type 3, the claim is a consequence of (3.7).

3.6. Two further results. The proof of Theorem 3.8 does not appear to yield
an explicit nontrivial upper bound for the ratio �μ/μ(G). One may, however, show the
following theorem, which is subject to the same assumptions as Theorem 3.8.

Theorem 3.11. Suppose there exists a real sequence (bn : n = 1, 2, . . . ), each
term of which may be calculated in finite time, such that bn ≤ μ(G) and limn→∞ bn =
μ(G). There exists an algorithm which terminates in finite time and, on termination,
yields a number R = R(G,A) < 1 such that �μ/μ(G) ≤ R.

If μ is known, we may set bn ≡ μ(G). In certain other cases, such a sequence (bn)
may be found; for example, when G = Z

d, we may take bn to be the nth root of the
number of n-step bridges from the origin (see [19, 21]). Theorem 3.11 is unlikely to
be useful in practice since the algorithm in question relies on successive enumerations
of the numbers of n-step SAWs on G and �G.

A result similar to Theorem 3.11 is valid in the context of Theorem 3.2 also.
The relationship between the percolation critical points of a graph G and a version

of the quotient graph G is the topic of a conjecture of Benjamini and Schramm [8,
Quest. 1]. As observed above (see also [8]), it is not necessary for the definition of
quotient graph to assume that A is a normal subgroup of Γ. However, [8] appears to
make the additional assumption thatA acts freely on V . This is a stronger assumption
than unimodularity.
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Following [8], we ask whether μ(�G) < μ(G), where �G = G/A, under the weaker
assumption that A is a nontrivial (not necessarily normal) subgroup of Γ acting freely

on V , such that �G is vertex-transitive. The proof of Theorem 3.8 may be adapted to
give an affirmative answer to this question under an extra condition, as follows. An
outline proof is included at the end of section 5.

Theorem 3.12. Let G be an infinite, locally finite graph on which the automor-
phism group Γ acts transitively. Let A be a nontrivial subgroup of Γ acting freely on V
such that the quotient graph �G := G/A is vertex-transitive. Assume that there exists

l ≥ 1 such that �G possesses an l-cycle but G does not. Then μ(�G) < μ(G).

4. Strict inequalities for Cayley graphs. We turn to the special case of
Cayley graphs. Let G be an infinite group with a finite set S of generators, where S
is assumed symmetric in that S = S−1, and the identity ι satisfies ι /∈ S. Thus G
has a presentation as G = 〈S | R〉, where R is a set of relators. The Cayley graph
G = G(G, S) is the simple graph defined as follows. The vertex-set V of G is the set
of elements of G. Distinct elements g, h ∈ V are connected by an edge if and only
if there exists s ∈ S such that h = gs. It is easily seen that G is connected and
vertex-transitive.

The group G may be viewed as a subgroup of the automorphism group of G =
(V,E) by: γ ∈ G acts on V by v �→ γv. Thus, G acts transitively.

The reader is reminded of an elementary property of Cayley graphs, namely that
G acts freely on V . This is seen as follows. Suppose γ ∈ Stabv. For w ∈ V there
exists h ∈ G with w = vh, so that γ fixes every w ∈ V , whence γ = ι. See [4] for a
general account of the theory of Cayley graphs, and [24, sect. 3.4] for a brief account.

Suppose that a product s1s2 · · · sl of generators is a relator. The relation s1s2 · · · sl
= ι corresponds to the closed walk (ι, s1, s1s2, . . . , s1s2 · · · sl = ι) of G passing through
the identity ι. Consider now the effect of adding a further relator. Let s1, s2, . . . , sl ∈ S
be such that ρ := s1s2 · · · sl �= ι, and write Gρ = 〈S | R∪ {ρ}〉. Then Gρ is isomorphic
to the quotient group G/N , where N is the normal subgroup of G generated by ρ.
Let G(Gρ, S) be the Cayley graph of Gρ.

Corollary 4.1. Let G = G(G, S) be the Cayley graph of the infinite, finitely
presented group G = 〈S | R〉. Let ρ ∈ G, ρ /∈ R ∪ {ι}, and let Gρ = G(Gρ, S). The
connective constants of G and Gρ satisfy μ(Gρ) < μ(G).

A complementary result may be found in [23, Thm. 2].
Proof. The Cayley graph Gρ is obtained from the quotient graph G/Gρ by re-

placing every set of parallel edges by a single edge. Since Gρ acts freely on V , it
is unimodular, and the claim follows by Lemma 3.10 and Theorem 3.8 (see also the
statement about symmetry before Example 3.9).

Example 4.2. The square/octagon lattice, otherwise known as the Archimedean
lattice (4, 82), is illustrated in Figure 3. It is the Cayley graph of the group with
generator set S = {s1, s2, s3} and relators {s21, s22, s23, s1s2s1s2, s1s3s2s3s1s3s2s3}. The
horizontal edges correspond to s1, the vertical edges to s2, and the other edges to s3.
Adding the further relator s2s3s2s3, we obtain a graph isomorphic to the ladder graph
of Figure 4, whose connective constant is the golden mean φ := 1

2 (
√
5 + 1).

By Corollary 4.1, the connective constant μ of the square/octagon lattice is strictly
greater than φ = 1.618 . . . . The best lower bound currently known appears to be
μ > 1.804 . . . ; see [20].

We ask whether μ(G) ≥ φ for all infinite, vertex-transitive, simple, cubic graphs
G; see [15, 17].

Our second inequality for Cayley graphs concerns the addition of a generator.
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s1
s2

s3

Fig. 3. The square/octagon lattice, also denoted (4, 82).

Fig. 4. The (doubly infinite) ladder graph has as connective constant the golden mean φ :=
1
2
(
√
5 + 1); see [3, p. 184] and [17].

Let G = 〈S | R〉 be a finitely generated group as above, and let w be a group element
satisfying w /∈ S and w �= ι. Let Gw = 〈S ∪ {w,w−1} | R〉.

Corollary 4.3. The connective constants of the Cayley graphs G, Gw of the
above presentations of the groups G, Gw satisfy μ(G) < μ(Gw).

Proof. This is an immediate corollary of Theorem 3.2, on noting that G acts
transitively on both G and Gw.

In the special case when μ(G) = 1, we have that G = Z (as noted after Theorem
3.8). Therefore, Gw has degree either 3 or 4, whence μ(Gw) ≥

√
2 by [15, Thm. 1.1].

Example 4.4. Consider Z
2 as the Cayley graph of the abelian group with S =

{a, b} and R = {aba−1b−1}. Adding the generator ab (and its inverse) amounts to
adding a diagonal to each square of Z2. Recall Example 3.4. One may easily construct
more interesting examples based on, for example, the square/octagon lattice of Figure
3.

For both Corollaries 4.1 and 4.3, there exists an algorithm which, under a certain
condition, terminates in finite time and, on termination, yields an explicit nontrivial
bound for the ratio of the connective constants under consideration. This holds just
as in Theorem 3.11, and the details are omitted.

5. Proofs of Theorems 3.8 and 3.11. The proof of Theorem 3.8 is inspired by
Kesten’s proof of the pattern theorem in [21] (see also [25, sect. 7.2]), and a familiarity
with the latter proof will aid the reader of the following proofs. The overall shape
of the argument from [21] recurs more than once in this paper; at later occurrences
we shall outline any necessary adaptation rather than attempt to systematize the
method. We begin with an elementary lemma.

Lemma 5.1. Let v ∈ V , and let A be a normal subgroup of Γ. We have that
A ⊆ Stabv if and only if A is trivial.



STRICT INEQUALITIES FOR CONNECTIVE CONSTANTS 1317

Proof. If A is trivial, then A = {ι} ⊆ Stabv. Conversely, suppose A ⊆ Stabv and
let w ∈ V . Since G is vertex-transitive, there exists γ ∈ Γ such that γv = w. Since A
is normal,

Aw = Aγv = γAv = {γv} = {w}.

Therefore, A ⊆ Stabw for all w ∈ V , and hence A is trivial.
Let G, A ⊆ Γ, �G = G/A, etc., be given as for Theorem 3.8, and fix v0 ∈ V . Let

Σn (respectively, �Σn) be the set of n-step SAWs of G (respectively, �G) starting from

v0 (respectively, v0), and write σn = |Σn| (respectively, �σn = |�Σn|).
Assumption 5.2. We assume henceforth that either condition (a) of Theorem

3.8 holds, or condition (b)(i). An explanation of the sufficiency of condition (b)(ii)
for type 2 is given in Remark 5.5 at the end of this proof.

Any walk π on G induces a walk �π on �G, and we say that π projects onto �π. For
�π ∈ �Σn, there exists a SAW π ∈ Σn that projects onto �π, and we say that �π lifts to
π. There are generally many choices for such π, and we fix such a choice as explained
after Lemma 3.7. Let μ = μ(G) and �μ = μ(�G). By the above remarks, �μ ≤ μ.

The idea of the proof is to replace certain subwalks of �π ∈ �Σn by new walks that
lift to SAWs on G. Such replacements are given in terms of a certain SAW on G that
we introduce in the next paragraph. We shall show that “most” n-step SAWs on �G
contain at least An subwalks with the special property that they lift to at least two
SAWs on G. This introduces a factor of 2An in the relative counts of SAWs on �G
and G, and hence the required strict inequality �μ < μ. The word “most” must be
interpreted in terms of an exponential growth rate, and the constant A > 0 chosen
appropriately. The principal point of divergence of the current proof from that of the
pattern theorem lies in the multiplicity of liftings: whereas the pattern theorem is
combinatorial at this point, the current proof is algebraic.

Let �v0 be a shortest SAW from v0 to some w �= v0 satisfying v0 = w. Such a
walk exists by Lemma 5.1 and the nontriviality of A. We consider �v0 as a directed

walk from v0 to w. Let ��v0 be the projection of �v0 in �G. Thus, if G has type 1, ��v0 is

a loop; if type 2, ��v0 traverses a directed edge from v0 to w, and then returns along

a directed edge from w to v0; if type 3, ��v0 is a (directed) cycle of �G of length 3 or
more.

When A has type 2, we take �v0 to be the path given in condition (b)(i) of the
theorem.

For w ∈ V , let Lw (or L(w)) denote the set of all walks in G starting from w

which are images of �v0 under elements of Γ, and let �Lw (or �L(w)) be the corresponding

collection of walks in �G. Let L =
⋃{Lw : w ∈ V } and �L =

⋃{�Lw : w ∈ V }. All walks
in L have equal length, written Λ. Thus, Λ is the number of distinct vertices in ��. We
shall refer to elements of �L as cycles, and later we shall use the fact that the graph
G, “decorated” with members of L, is preserved under the action of Γ.

For u ∈ V and a positive integer r, we define the ball Br(u) = {v ∈ V : dG(u, v) ≤
r}. Since G is Δ-regular,

(5.1) |Br(u)| ≤ 1 + Δ+Δ(Δ− 1) + · · ·+Δ(Δ− 1)r−1 < Δr+1.

Let �π be an r-step SAW on �G, and write �π0, �π1, . . . , �πr for the vertices traversed
by �π in order. For k ∈ N, we say that Ek = Ek(�π) occurs at the jth step of �π if there

exists �� ∈ �L�πj
, denoted �� = ��(�πj), such that at least k vertices of �� are visited by �π.
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Now let �π be an n-step SAW on �G. Let j,m ∈ N, and let �ν be the sub-SAW of
�π from �πj−m to �πj+m. (If j −m < 0 or j +m > n, a modification must be made in
this definition: if j −m < 0, we take �ν from �π0 to �πj+m, and similarly if j +m > n.)
We say that Em

k occurs at the jth step of �π if Ek(�ν) occurs at the mth step of �ν. (If
j −m < 0, we require that Ek(�ν) occur at the jth step, and similarly if j +m > n.)
In particular, if Em

k occurs at the jth step of �π, then Ek occurs at the jth step of �π.

For r ≥ 0, let �σn(r, Ek) (respectively, �σn(r, E
m
k )) be the number of SAWs in �Σn

for which Ek (respectively, Em
k ) occurs at no more than r different steps. Observe

that, for given n, r, the count �σn(r, E
m
k ) is nonincreasing in m.

It is easily seen that �σm+n(0, Ek) ≤ �σm(0, Ek)�σn(0, Ek). By the subadditive limit
theorem, the limit

(5.2) λk := lim
n→∞ �σn(0, Ek)

1/n

exists and satisfies

(5.3) λk ≤ �σn(0, Ek)
1/n, n ≥ 1.

Thus, λk < μ if and only if

(5.4) ∃ε > 0, M ∈ N such that �σm(0, Ek) < [μ(1− ε)]m for m ≥M.

Our target in the next two lemmas is to show that λΛ < μ, and to deduce that,
for suitable a, m, the number of n-step SAWs on �G in which Em

Λ occurs fewer than
an times grows at a smaller exponential rate than the total number of SAWs. Once
the last is proved, the proof of the theorem is fairly immediately completed in the
manner of the sketch near the start of this section.

Lemma 5.3. Let k satisfy 1 ≤ k ≤ Λ and

(5.5) λk < μ.

Let ε, M satisfy (5.4), and let m ≥M satisfy

(5.6) �σm ≤ [μ(1 + ε)]m.

There exist a = a(ε,m) > 0 and R = R(ε,m) ∈ (0, 1) such that

(5.7) lim sup
n→∞

�σn(an,E
m
k )1/n < Rμ.

Proof. Assume that k is such that (5.5) holds, and let ε, M , m satisfy (5.4) and
(5.6). Since �σm(0, Ek) = �σm(0, Em

k ),

(5.8) �σm(0, Em
k ) < [μ(1 − ε)]m.

Let �π ∈ �Σn and N = �n/m�. If Em
k occurs at no more than r steps in �π, then

Em
k occurs at no more than r of the N m-step subwalks

(�π(j−1)m, �π(j−1)m+1, . . . , �πjm), 1 ≤ j ≤ N.

Counting the number of ways in which k or fewer of these subwalks can contain an
occurrence of Em

k , we have by (5.6) and (5.8) that

�σn(r, E
m
k ) ≤

r∑
i=0

(
N

i

)
(�σm)i�σm(0, Em

k )N−i�σn−Nm(5.9)

≤ μNm�σn−Nm

r∑
i=0

(
N

i

)
(1 + ε)im(1− ε)(N−i)m.
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It suffices to show that there exist ζ > 0 and t < 1, depending on ε, m only, such
that

(5.10) �σn(ζN,E
m
k )1/N < tμm

for all sufficiently large n, since this yields (5.7) with 0 < a < ζ/m and R = t1/m. For
ζ small and positive,

(5.11)

ζN∑
i=0

(
N

i

)
(1 + ε)im(1− ε)(N−i)m ≤ (ζN + 1)

(
N

ζN

)(
1 + ε

1− ε

)ζNm

(1− ε)Nm.

The Nth root of the right side converges as N → ∞ to

1

ζζ(1− ζ)1−ζ

(
1 + ε

1− ε

)ζm

(1 − ε)m,

which is strictly less than 1 for 0 < ζ < ζ0 and some ζ0 = ζ0(ε,m) > 0. Combining
this with (5.9), we obtain (5.10) for 0 < ζ < ζ0, suitable t = t(ε,m), and n sufficiently
large.

Lemma 5.4. We have that λΛ < μ.
Proof. Since each vertex πj is visited by π,

(5.12) �σn(0, E1) = 0, n ≥ 1.

Type 1. If G has type 1, then Λ = 1, and λΛ = 0 by (5.12).
Types 2 and 3. Assume G has type 2 or 3, and that the conclusion of the lemma

is false in that

(5.13) λΛ = μ.

Now, �σn(0, Ek) (and hence λk also) is nondecreasing in k. By (5.12), we may choose
k with 1 ≤ k < Λ such that

(5.14) λk < μ, λk+1 = μ.

Let ε, M satisfy (5.4), and let m ≥ M satisfy (5.6). By Lemma 5.3, there exists
a = a(ε,m) > 0 such that

(5.15) lim sup
n→∞

�σn(an,E
m
k )1/n < μ.

Let Tn be the subset of �Σn comprising SAWs for which Ek+1 never occurs but
Em

k occurs at least an times. We have that

|Tn| ≥ �σn(0, Ek+1)− �σn(an,E
m
k ),

whence, by (5.14) and (5.15),

(5.16) lim
n→∞ |Tn|1/n = μ.

Thus, under (5.13), for “most” SAWs �π, there exist many cycles in L having exactly
k (< Λ) vertices visited by �π and none with more than k such vertices. The rest of
the proof is devoted to showing the existence of S = S(ε,m,Δ,Λ) < 1 such that

(5.17) lim sup
n→∞

|Tn|1/n ≤ Sμ.
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This contradicts (5.16), and the claim follows.

The idea is as follows. Let �π ∈ Tn, and consider the set of cycles ��(�πj) with
exactly k vertices visited by �π. Where such a cycle is met by �π, we may augment
�π with an entire copy of it. The ensuing transformation is not one-to-one, and the
length of the resulting walk differs from that of �π. By selecting the places where
the new elements of �L are added, we shall show that the number of resulting walks
exceeds |Tn| by an exponential factor. It is key that such augmented walks lift to

SAWs on G while traversing cycles in �G, and thus we shall contradict (5.16).
Let �π ∈ Tn, so that �π contains at least an occurrences of Em

k . We can find
j1 < · · · < ju with u = �κn� − 2, where

(5.18) κ =
a

(2m+ 2)Δ2Λ+1
,

such that

(5.19) Em
k occurs at the j1th, j2th, . . . , juth steps of π

(and perhaps at other steps as well), and in addition

0 < j1 −m, ju +m < n,(5.20)

jt +m < jt+1 −m, 1 ≤ t < u,(5.21)

∀��t ∈ L(�πt), the ��1, ��2, . . . , ��u are pairwise vertex-disjoint.(5.22)

Such jt may be found by the following iterative construction. First, j1 is the smallest
j > m such that Em

k occurs at the jth step of �π. Having found j1, j2, . . . , jr, let jr+1

be the smallest j such that
1. jr +m < j −m,
2. every element of �L(�πj) is disjoint from every element of �L(�πj1 ), �L(�πj2 ), . . .

�L(�πjr ),
3. Em

k occurs at the jth step of �π.
Condition 1 gives rise to the factor 2m+2 in the denominator of (5.18), and, by (5.1),
condition 2 gives rise to the factor Δ2k+1 (≤ Δ2Λ+1).

Let t ∈ {1, 2, . . . , u}. Since Em
k but not Ek+1 occurs at the jtth step, �π visits

at most k vertices in each cycle of �L(�πjt). Let �L(�πjt , k) be the subset of �L(�πjt)
containing all such cycles with exactly k vertices visited by �π, and such that these k
vertices lie between �πjt−m and �πjt+m on �π. Choose a specific cycle ��(�πjt) ∈ �L(�πjt , k).
For t = 1, 2, . . . , u, let

(5.23) αt = min{i : �πi ∈ ��(�πjt)}, ωt = max{i : �πi ∈ ��(�πjt)},

so that

jt −m ≤ αt ≤ jt ≤ ωt ≤ jt +m, 1 ≤ t ≤ u.

We describe next the strategy for replacement of the subwalk (�παt , �παt+1, . . . ,

�πωt). Starting from �παt , the new walk winds once around the cycle �� := ��(�πjt); having

returned to the vertex �παt , it continues around the same cycle �� until it reaches the
vertex �πωt . This new subwalk is inserted into �π at the appropriate place. The resulting

walk π̃(t) is evidently not self-avoiding in �G (it includes a unique cycle, namely �� in
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some order), but we shall see that it lifts to a SAW π
(t)
∗ on G. The precise definition

and properties of π̃(t) and π
(t)
∗ are described next.

Suppose �π ∈ Tn lifts to π ∈ Σn. The initial segment (�π0, . . . , �πjt) of �π lifts to a
SAW of G that traverses the vertices π0, π1, . . . , πjt . We write v := πjt , and we shall
consider graphs of type 2 and 3 separately.

Type 3. Assume that G has type 3, and think of �� as a rooted, directed cycle
of �G with root v. The cycle �� lifts to the SAW � := �v of G, traversing the vertices
v (= w0), w1, w2, . . . , wΛ. We have that

(5.24) v (= w0), w1, . . . , wΛ−1 belong to different equivalence classes

of (V,≈), and we may choose β ∈ A such that wΛ = βv.
We prove next that

(5.25) wr �= βwr , 1 ≤ r < Λ.

Suppose first that w1 = βw1, and consider the walk

v (= w0), w1, . . . , wΛ (= βv), βw1 (= w1).

By the triangle inequality,

(5.26) Λ = dG(v, βv) ≤ dG(v, w1) + dG(βw1, βv) = 2,

a contradiction since Λ ≥ 3. Applying the same argument to the walk

w1, w2, . . . , wΛ (= βv), βw1, βw2,

we obtain by (3.7) that w2 �= βw2, and (5.25) follows by iteration.
Suppose that �παt lifts to vertex x ∈ V with x = wi and i ≥ 1; similarly, suppose

�πωt = wj . We show next that the replacement of the subwalk (�παt , . . . , �πωt) lifts to
some SAW of G. Find γ ∈ A such that x = γwi.

Case 3.1: i < j. Consider the walk

(5.27) x (= γwi), γwi+1, . . . , γwΛ (= γβv), γβw1, . . . , γβwi,

followed by γβwi+1, γβwi+2, . . . , γβwj . By (5.24), two vertices of this walk are equal
if and only if there exists r such that 1 ≤ r < Λ and wr = βwr . By (5.25), this is
not the case. We have proved that (�π0, . . . , �παt), followed by the above walk, lifts to
a SAW ν on G. Thus, π̃(t) lifts to the SAW ν followed by the image of (πωt , . . . , πn)

under the map that sends πωt to γβwj . Since �π ∈ Tn, π̃
(t) lifts to a SAW π

(t)
∗ of G.

Case 3.2: i > j. Consider the walk

(5.28) x (= γwi), γwi−1, . . . , γw0 (= γv), γβ−1wΛ−1, . . . , γβ
−1wi,

followed by γβ−1wi−1, γβ
−1wi−2, . . . , γβ

−1wj . By (5.25), this is a SAW on G, and
the step is completed as above.

Type 2. Assume that G has type 2, so that Λ = 2 and k = 1. The required
argument is slightly different, since (5.26) is no longer a contradiction. Let jt be as

above, and let �� = ��(�πjt) ∈ �L(�πjt) (with corresponding � ∈ L) be a witness to the
occurrence of Em

1 at πjt . As in (5.23),

(5.29)
αt = αt(�π) = min{i : �πi ∈ ��},
ωt = ωt(�π) = max{i : �πi ∈ ��}.
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Let π be the lift of �π to a SAW in G from v0, and write v = πjt . Recall that �
is a SAW visiting v, w, βv in G for some β = βt ∈ A with βv �= v, and the pair v,
w are visited (in some order) at the αtth and ωtth steps of π. We may assume that
βw �= v, since otherwise w is adjacent to βw, and G is of type 1. We next describe
the required substitution.

Case 2.1: βw �= w. As in Cases 3.1 and 3.2 above, both v, w, βv, βw and

w, v, β−1w, β−1v are SAWs on G. We write π
(t)
∗ for the SAW on G obtained by

replacing the segment of π between παt and πωt by

v, w, βv, βw if π visits v before w,

w, v, β−1w, β−1v if π visits w before v,

and the walk after βw (respectively, β−1v) by the image under β (respectively, β−1)
of π after w (respectively, v).

Case 2.2.1: βw = w, and π visits w before v. Only in the following shall we use
the assumed condition (b)(i) of Theorem 3.8. Since |∂v ∩w|, |∂w ∩ v| ≥ 2, there exist
w′ ∈ w and v′ ∈ v such that

(5.30) w, v, w′, v′

is a SAW of G. Let γ ∈ A be such that v′ = γv. We write π
(t)
∗ for the SAW on G

obtained by replacing the segment of π between παt and πωt by (5.30), and the walk
after v′ (= γv) by the image under γ of π after v.

Case 2.2.2: βw = w, and π visits v before w. Since |∂v ∩ w| ≥ 2, there exists
w′ ∈ w such that

(5.31) v, w, βv, w′

is a SAW on G. We find γ ∈ A such that w′ = γw, and we write π
(t)
∗ for the SAW

on G obtained by replacing the segment of π between παt and πωt by (5.31), and the
walk after w′ (= γw) by the image under γ of π after w.

This ends the definitions of the required substitutions, and we consider next their
enactment. Let δ > 0, to be chosen later, and set s = δn. (Here and later, for
simplicity of notation, we omit the integer-part symbols.) Let H = (h1, h2, . . . , hs)
be an ordered subset of {j1, j2, . . . , ju}. We shall make an appropriate substitution in
the neighborhood of each �πht , by an iterative construction.

We consider the cases t = 1, 2, . . . , u in order. First, let t = 1. If j1 /∈ H , we
do nothing, and we set π(1) = π. If j1 ∈ H , we make the appropriate substitution
around the point �πj1 and write π(1) for the resulting SAW on G. Now let t = 2. Once
again, if j2 /∈ H , we do nothing and set π(2) = π(1). Otherwise, let α′

2 = α2(�π
(1)),

ω′
2 = ω2(�π

(1)). The sub-SAW of π(1) between steps α′
2 and ω′

2 is the image of π
between steps α2 and ω2 under some γ′ ∈ A. Therefore, we may perform operations
on π(1) after the α′

2th step as discussed above for the α2th step of π, thus obtaining
a SAW π(2). This process may be iterated to obtain a sequence π(1), π(2), . . . , π(u)

of SAWs on G, and we set π∗ = π(u). The role of H is emphasized by writing
π∗ = π∗(�π,H). It follows from the construction that π∗(�π,H) �= π∗(�π,H ′) if H �= H ′.

One small issue arises during the iteration, namely that the projections of the
SAWs π(t) are not generally self-avoiding. However, by (5.20)–(5.22), the subwalk of
�π under inspection at any given step is disjoint from all previously inspected subwalks,
and thus the current substitution is unaffected by the past.
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By (5.22) and the discussion above, π∗ is self-avoiding on G. By inspection of
such π∗ and its projection, one may reconstruct the places at which cycles have been
added to �π. The length of π∗ does not exceed n+ 2Λs.

We estimate the number of pairs (�π,H) as follows. First, the number |(�π,H)| is
at least the cardinality of Tn multiplied by the minimum number of possible choices
of H as �π ranges over Tn. Any subset of {j1, j2, . . . , ju} with cardinality s = δn may
be chosen for H , whence

(5.32) |(�π,H)| ≥ |Tn|
(
κn− 2

δn

)
.

We bound |(�π,H)| above by counting the number of SAWs π∗ of G with length
not exceeding n+ 2Λδn and multiplying by an upper bound for the number of pairs
(�π,H) giving rise to a particular π∗. The number of possible choices for π∗ is no

greater than
∑n+2Λδn

i=0 σi. A given π∗ contains |H | = δn elements of L. At the tth
such occurrence, �πht is a point on the corresponding cycle, and there are no more
than 2Λ different choices for �πht . For given π and (�πht : t = 1, 2, . . . , s) there are at

most
(∑2m

i=1 �σi
)δn

corresponding SAWs �π of �G. Therefore,

(5.33) |(�π,H)| ≤
(
2Λ

2m∑
i=1

�σi

)δn(n+2Λδn∑
i=0

σi

)
.

Let τ := lim sup |Tn|1/n. We combine (5.32)–(5.33), and take nth roots and the

limit as n→ ∞, to obtain, by the fact that σ
1/N
N → μ,

τ
κκ

δδ(κ− δ)κ−δ
≤
(
2Λ

2m∑
i=1

�σi

)δ

μ1+2Λδ.

There exists Z = Z(ε,m,Δ,Λ) <∞ such that

2Λμ2Λ
2m∑
i=1

�σi ≤ Z.

Therefore,

τ ≤ f(η)κμ,

where f(η) = Zηηη(1− η)1−η and η = δ/κ. Since

lim
η↓0

f(η) = 1, lim
η↓0

f ′(η) = −∞,

we have that f(η) < 1 for sufficiently small η = η(Z) > 0, and (5.17) follows for
suitable S < 1. The proof is complete.

Proof of Theorem 3.8 under Assumption 5.2. By Lemma (5.4), λΛ < μ. Let ε, M
satisfy (5.4), and let m ≥ M satisfy (5.6), with k = Λ. By Lemma 5.3, there exist
a = a(ε,m) > 0 and R = R(ε,m) ∈ (0, 1) such that

(5.34) lim sup
n→∞

�σn(an,E
m
Λ )1/n < Rμ.
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Let Tn be the subset of �Σn comprising SAWs for which Em
Λ occurs at least an

times. Thus

(5.35) |Tn| ≥ �σn − �σn(an,E
m
Λ ).

We follow the route of the previous proof. For �π ∈ Tn and κ as in (5.18), we may find
j1 < · · · < ju with u = κn− 2 such that (5.19)–(5.22) hold with k = Λ.

Let δ > 0, set s = δn, and let �π ∈ Tn. We choose a subset H of {j1, j2, . . . , ju}
with cardinality s, and we construct a SAW π∗ = π∗(�π,H) on G accordingly. This
may be done exactly as in the previous proof if G has type 2 or 3 to obtain as in
(5.17) that there exists S = S(ε,m,Δ,Λ) < 1 such that

(5.36) lim sup
n→∞

|Tn|1/n ≤ Sμ.

By (5.34)–(5.35),

�μ = lim
n→∞�σ1/n

n ≤ max{R,S}μ,

and the claim of the theorem is proved in this case.
Assume that G has type 1. This case is easier than the others. Suppose �πjt = v

and that �π lifts to π with πjt = v. We obtain π
(t)
∗ by replacing v by the pair v, γv

for some γ ∈ A with γ �= ι, and translating by γ the subwalk of π starting at v. The
above counting argument yields the result.

Remark 5.5. Theorem 3.8 has been proved subject to Assumption 5.2, and it
remains to prove it when A has type 2 and condition (b)(ii) holds. Suppose the latter
holds, so that l ≥ 2. If l = 2, the argument in the proof of Lemma 5.4 is valid (this
is Case 2.1 of the proof, which does not use condition (i)), and the theorem follows
similarly. Assume l ≥ 3. By vertex-transitivity, we may set v0 = v, and replace �v0
by the path of (ii), so that Λ = l. The proof for type 3 in Lemma 5.4 may be followed
with one difference, namely that (5.25) holds by the assumption that β fixes no wi.

Proof of Theorem 3.11. We use the notation of the previous proofs. The constants
R, S of the last proof may be calculated explicitly in terms of ε, m, Δ, Λ, and so it
suffices to describe how to choose ε and m.

Let an = σ
1/n
n , noting by (2.2) that an ≥ μ and an → μ. By changing (bn) if

necessary, we may assume for convenience that (bn) is a nondecreasing sequence, so
that bn ↑ μ.

By Lemma 5.4, λΛ < μ. Since br(1 − r−1) ↑ μ, we may find the earliest r such
that

�σr(0, EΛ)
1/r < br(1− r−1).

Let ε = r−1, and let s ≥ r be such that bs(1 + ε) ≥ as(1 +
1
2ε). Since bs ≥ br,

�σr(0, EΛ)
1/r < bs(1− ε).

By (5.3), λΛ < bs(1− ε), so that

(5.37) �σm(0, EΛ)
1/m < bs(1− ε)

for infinitely many values of m.
Since as ≥ μ, we may find the earliest m such that (5.37) holds and in addition

�σ
1/m
m ≤ bs(1 + ε). With ε and m defined thus, (5.6) and (5.8) are valid as required.
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Each of the above computations requires a finite enumeration of a suitable family
of SAWs.

Outline proof of Theorem 3.12. Let v0 ∈ V with orbit v0 = Av0. With l ≥ 1 as
given, let �� be a (directed) cycle of �G of length l. Since �G is vertex-transitive, we may

assume that �� goes through v0, and thus we write ��v0
for ��, considered as a (directed)

walk from v0 to v0. Now, ��v0
lifts to a walk �v0 from v0 on G. Since all vertices of ��v0

other than its endpoints are distinct, and since G possesses no cycle of length l, �v0
is a SAW from v0 on G.

Let B be a subgroup of Aut(�G) acting transitively on �G. For w ∈ V , let �L(�w) be

the set of images of ��v0 under B, and let L(w) be the set of lifts of such images. Since
G possesses no cycle of length l, every member of L(w) is a SAW on G.

We now follow the above proof of Theorem 3.8. No assumption is made on the
relationship between the groups Γ and B. If l �= 2, the argument is as presented
previously, except insofar as (5.25) holds (since A acts freely). If l = 2, we follow
Case 2.1 as in Remark 5.5.

6. Proof of Theorem 3.2. The general idea of the proof of Theorem 3.2 is
similar to that of Theorem 3.8, but with some differences. The graphs G, G have the
same vertex-set V , but G possesses cycles not present in G. Let v0, w0 ∈ V be such
that there are strictly more edges of the form 〈v0, w0〉 in E than in E. Since G is
connected, it has a shortest path from v0 to w0, written

(6.1) v0f1v1f2v2 · · · fΛvΛ (= w0), where ft = 〈vt−1, vt〉.
The path (6.1), followed by the new edge f := 〈w0, v0〉, forms a cycle in G but not in
G. Let C1 denote this cycle of G, and note that C1 has length Λ + 1. As usual, Δ
denotes the vertex-degree of G.

Let C be a finite set of vertices ofG with v0 ∈ C, and denote by γC = {γz : z ∈ C}
the image of C under the automorphism γ ∈ Γ. Let π = (π0, π1, . . . , πn) be an n-step
SAW on G from v0. For k ∈ N we say that Ek(C) occurs at the jth step of π if there
exists γ ∈ Γ with γv0 = πj such that at least k vertices of γC are visited by π. Let
σn(r, Ek(C)) (respectively, σn(r, E∗(C))) be the number of n-step SAWs on G from
v0 in which Ek(C) (respectively, E|C|(C)) occurs at no more than r steps. When C
is the vertex-set of C1, we write E1

k = Ek(C1) for Ek(C), and so on.
The main step of the current proof is the following lemma.
Lemma 6.1. With μ = μ(G), we have that

(6.2) lim inf
n→∞ σn(0, E

1
2)

1/n < μ.

As in (5.2), the lim inf is in fact a limit (here and later). An automorphism γ ∈ Γ
acts on the edge e = 〈x, y〉 by γe = 〈γx, γy〉. Let � be the equivalence relation on
the edge-set of G given by e � e′ if there exists γ ∈ Γ such that γe = e′. We write e
for the equivalence class containing edge e, and {e : e ∈ E} for the set of such classes.
Since Γ acts transitively on G, for every edge e and vertex v, there exists a member
of e that is incident to v.

The proof of Lemma 6.1 will make use of the intermediate Lemmas 6.2–6.3.
Lemma 6.2. Assume that

(6.3) lim
n→∞ σn(0, E

1
2)

1/n = μ.

There exist h ≥ 2 and a sequence (er : r = 1, 2, . . . , h − 1) of distinct equivalence
classes of edges of G, with e1 = f1, such that the following holds:
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For r ≥ 1, let

Fr = e1 ∪ e2 ∪ · · · ∪ er,
and let Gr be the graph obtained from G by the deletion of Fr.

There exists a sequence C2, C3, . . . , Ch of cycles in G such that

for 2 ≤ r ≤ h, there exists er−1 ∈ er−1 that is incident to v0(6.4)

and belongs to both Cr−1 and Cr,

lim
n→∞σn,r−1(0, E2(Cr))

1/n = μ, 2 ≤ r < h,(6.5)

lim inf
n→∞ σn,h−1(0, E2(Ch))

1/n < μ,(6.6)

where σn,r−1(0, E2(Cr)) is the number of n-step SAWs on Gr−1 from v0 for which
E2(Cr) never occurs.

Proof of Lemma 6.2. We construct the er and Cr by iteration. Let G′
r be obtained

from Gr−1 (where G0 := G) by the deletion of all edges in er incident to v0. Assume
that (6.3) holds, and let e1 = f1.

The case r = 2. By (6.3), for “most” n-step SAWs π on G from v0, and for all
j and all γC1 with γ ∈ Γ and γv0 = πj , πj is the unique vertex of γC1 visited by π.
Since no edge in F1 is traversed by any path contributing to σn(0, E

1
2), by (6.3),

(6.7) μ(G1) = μ.

Let v
(1)
0 be the neighbor of v0 such that f1 = 〈v0, v(1)0 〉. We claim that, subject

to (6.3),

(6.8) v0 and v
(1)
0 are connected in G′

1,

and shall prove this by contradiction. Assume that (6.3) holds and that v0 and v
(1)
0

are not connected in G′
1.

Let π(1), π(2) be two SAWs from v0 on G1, and consider a walk ν on G given as
follows: ν follows π(1) from v0 to its other endvertex z, then traverses an edge of the
form f = 〈z, w〉 ∈ e1, and then follows γπ2 for some γ ∈ Γ satisfying γv0 = w. By
the above assumption and vertex-transitivity, the removal of all edges of e1 incident
to z disconnects z and w, and thus any such ν is a SAW on G.

This process of concatenation may be iterated as follows. Let π(1), π(2), . . . , π(N)

be SAWs on G1 from v0. We aim to construct a SAW ν on G as follows. Suppose we
have concatenated π(1), . . . , π(r) to obtain a SAW ν(r) on G from v0 to some vertex
z. We now traverse an edge of the form f = 〈z, w〉 ∈ e1, followed by the SAW γπ(2)

for some γ ∈ Γ with γv0 = w. Unless (i) there is a unique edge of e1 incident to z
and (ii) π(r) is the SAW with zero length, then there exists a choice of w such that
the resulting walk ν(r+1) is a SAW. Therefore, if every π(r) has length 1 or more, the
sequence (π(r)) may be concatenated to obtain a SAW ν = ν(N) on G.

Let σn,1 be the number of n-step SAWs from v0 on G1, and let μ1 = μ(G1). By
(2.2),

(6.9) σ2n,1 ≥ μ2n
1 , n ≥ 1.

Let Σo
2n be the set of 2n-step SAWs from v0 on G that traverse edges in F1 (in either

direction) at the odd-numbered steps only, and write σo
2n = |Σo

2n|. Our purpose in
considering only the odd steps is to avoid component walks of zero length.
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Let 0 ≤ j ≤ n, and consider the set of all π ∈ Σo
2n that traverse exactly j

edges of F1. There are
(
n
j

)
ways of choosing the indices of these edges within π. By

the construction described above, and (6.9), there are at least μ2n−j
1 choices for the

sequence of SAWs on G1 whose concatenation makes π. Therefore,

(6.10) σo
2n ≥

n∑
j=0

(
n

j

)
μ2n−j
1 = μ2n

1 (1 + μ−1
1 )n.

This implies

(6.11) σ2n ≥ σo
2n ≥ μ2n

1 (1 + μ−1
1 )n,

whence μ ≥ μ1

√
1 + μ−1

1 > μ1, in contradiction of (6.7). Statement (6.8) is proved.

By (6.8), G has a shortest (directed) walk W2 from v0 to v
(1)
0 using no edge of

e1 incident to v0. The walk W2, followed by the (directed) edge 〈v(1)0 , v0〉, forms the

required (directed) cycle C2 of G, having e1 in common with C1. Let e2 = 〈v0, v(2)0 〉
be the first edge of W2, and write E2

k = Ek(C2) and so on.
If

(6.12) lim inf
n→∞ σn,1(0, E

2
2)

1/n < μ,

we have proved the claim with h = 2. Suppose conversely that

(6.13) lim
n→∞σn,1(0, E

2
2)

1/n = μ,

whence μ(G2) = μ as in (6.7).
The general case. Suppose u ≥ 2 and that cycles C2, C3, . . . , Cu from v0 have

been found, with corresponding classes e2, e3, . . . , eu and edges ei = 〈v0, v(i)0 〉 ∈ ei,
such that (6.4) holds with h replaced by u and

(6.14) lim
n→∞σn,i−1(0, E

i
2)

1/n = μ, 1 ≤ i ≤ u,

where Ei
2 = E2(Ci). By (6.14) with r = u, we have as above that μ(Gu) = μ.

Let σo
2n,u−1 be the number of 2n-step SAWs on Gu−1 from v0 that traverse edges

in Fu only at odd steps. If v0 and v
(u)
0 are disconnected in G′

u, we have

(6.15) σ2n ≥ σo
2n,u−1 ≥

n∑
j=0

(
n

j

)
μ2n−j
u = μ2n

u (1 + μ−1
u )n,

where μu = μ(Gu). This contradicts μu = μ, whence v0 and v
(u)
0 are connected in

G′
u.

Therefore, v0 and v
(u)
0 are connected by a shortest (directed) walk Wu+1 of Gu−1

using no edge of eu incident to v0, and we write eu+1 = 〈v0, v(u+1)
0 〉 for the first edge

of Wu+1, and Cu+1 for the cycle in Gu−1 formed by Wu+1 followed by 〈v(u)0 , v0〉. If

(6.16) lim inf
n→∞ σn,u(0, E

u+1
2 )1/n < μ,

we stop and set h = u+ 1, and otherwise we continue as above.
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Either this iterative process terminates at some earliest u satisfying (6.16) or it
does not. In the step from Gu to Gu+1, the degree of v0 is reduced strictly. If the
process does not terminate in the manner of (6.16), all edges incident to v0 in the last
nontrivial graph encountered, Gt say, lie in the same equivalence class. Furthermore,
(6.14) holds with i replaced by t+1, and hence μt+1 = μ. This is impossible since v0
is isolated in Gt+1. The proof is complete.

If (6.3) fails, we set h = 1 and G0 = G. If (6.3) holds, we adopt the notation of
Lemma 6.3 and write Ei

k = Ek(Ci) and so on. For an n-step SAW π = (π0, π1, . . . , πn)
on G, we say that Ei

k(m) occurs at the jth step of π if Ei
k occurs at the mth step of

the 2m-step SAW (πj−m, . . . , πj+m) (with a modified definition if either j−m < 0 or
j +m > n, as in the second paragraph after (5.1)).

Lemma 6.3. Let 1 ≤ i ≤ h and 1 ≤ k ≤ |Ci|. If

lim inf
n→∞ σn,i−1(0, E

i
k) < μ,

then there exist a > 0 and m ∈ N such that

lim sup
n→∞

σn,i−1(an,E
i
k(m))1/n < μ.

Proof. This is proved in the same manner as was Lemma 5.3.
Proof of Lemma 6.1. Assume the converse of (6.2), namely (6.3), and adopt

the notation of Lemma 6.2. Recall the notation E∗ from the beginning of section 6.
Exactly one of the following holds,

lim inf
n→∞ σn,h−1(0, E

h
∗ )

1/n < μ,(6.17)

lim
n→∞σn,h−1(0, E

h
∗ )

1/n = μ,(6.18)

and we shall derive a contradiction in each case.
Assume first that (6.17) holds. No SAW counted in σn,h−2(0, E

h−1
2 ) traverses any

edge of eh−1, whence σn,h−2(0, E
h−1
2 ) = σn,h−1(0, E

h−1
2 ). Since Ch and Ch−1 have at

least one common edge, we deduce that

σn,h−2(0, E
h−1
2 ) ≤ σn,h−1(0, E

h
∗ ),

and hence

lim inf
n→∞ σn,h−2(0, E

h−1
2 )1/n < μ,

in contradiction of the minimality of h.
Assume now that (6.18) holds. By (6.6) and the monotonicity of σn,h−1(0, E

h
k )

in k, there exists k ∈ N satisfying 2 ≤ k < � := |Ch| such that

lim inf
n→∞ σn,h−1(0, E

h
k )

1/n < μ,(6.19)

lim
n→∞σn,h−1(0, E

h
k+1)

1/n = μ.(6.20)

By (6.19) and Lemma 6.3, there exist a > 0 and m ∈ N such that

(6.21) lim sup
n→∞

σn,h−1(an,E
h
k (m))1/n < μ.

We shall derive a contradiction from (6.20)–(6.21) in a manner similar to the proof of
(5.17).
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Let Tn be the set of n-step SAWs on Gh−1 from v0 such that Eh
k+1 never occurs

and Eh
k (m) occurs at least an times. By (6.20)–(6.21),

(6.22) lim
n→∞ |Tn|1/n = μ.

Let π = (π0, π1, . . . , πn) ∈ Tn and u = �κn� − 2, where

κ =
a

(2m+ 2)�
.

As after (5.18), we may find j1 < j2 < · · · < ju and γ1, . . . , γu ∈ Γ such that

γt(v0) = πjt , 1 ≤ t ≤ u,(6.23)

each 2m-step SAW (πjt−m, . . . , πjt+m) visits at least k vertices of γtCh,(6.24)

0 < j1 −m, ju +m < n,(6.25)

jt +m < jt+1 −m, 1 ≤ t < u,(6.26)

γ1Ch, γ2Ch, . . . , γuCh are pairwise vertex-disjoint.(6.27)

For t = 1, 2, . . . , u, let

(6.28) αt = min{i : πi ∈ γtCh}, ωt = max{i : πi ∈ γtCh}.

Since Eh
k (m) occurs at the jtth step but not Eh

k+1, there are exactly k points of
γtCh that are visited by π, and these points lie on π between positions jt −m and
jt +m. Therefore,

(6.29) jt −m ≤ αt < ωt ≤ jt +m, 1 ≤ t ≤ u.

We propose to replace the subwalk (παt , . . . , πωt) by the part of the cycle γtCh with
the same endpoints and using at least one edge in γtCh−1; this may be done since
γtCh and γtCh−1 have at one edge in common, namely γteh−1. By (6.27), such a
replacement may be performed simultaneously for all t. The resulting walk ψ is a
SAW on G with length n′ satisfying

n′ < n+ u�.

Furthermore, since π ∈ Tn, the only edges of eh−1 in ψ are those introduced during a
substitution.

Let δ > 0 and s = δn, where δ will be chosen later (and we omit integer-
part symbols as before). Consider the set of pairs (π,H), where π ∈ Tn and H =
(h1, h2, . . . , hs) is an ordered subset of {j1, j2, . . . , ju}. We may make the above re-
placement around each πhi to obtain a SAW ψ = ψ(π,H) on G.

As in (5.32),

(6.30) |(π,H)| ≥ |Tn|
(
κn− 2

δn

)
.

For an upper bound, consider a given pair (π,H). Edges in eh−1 are traversed between
|H | = δn and �δn times on ψ. Therefore, given ψ, there are at most 2m

(
�δn
δn

)
(≤

m2�δn+1) possibilities for the location of the earliest point of ψ in γtCh. Given ψ
and the locations of these earliest points, there are at most Δ� different choices for
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each γtCh. Once these are determined, each such γtCh determines a subwalk of ψ
that replaces some subwalk of π. Since each of the replaced subwalks of π has length
not exceeding 2m, there are at most Y δN possibilities for π, where Y =

∑2m
i=0 σi.

Therefore,

(6.31) |(π,H)| ≤ m2�δn+1Δ�Y δn
n+�δn∑
i=0

σi.

We combine (6.30) and (6.31), take the nth root and let n → ∞, obtaining by
(6.22) that

μ
κκ

δδ(κ− δ)κ−δ
≤ 2�δY δμ1+�δ.

Setting Z = (2μ)�Y and η = δ/κ, we deduce that

1 ≤ [Zηηη(1− η)1−η]κ.

As at the end of the proof of Lemma 5.4, this is a contradiction for small η > 0.
In conclusion, if (6.3) and (6.18) hold, we have a contradiction, and the lemma is

proved.
Proof of Theorem 3.2. Write μ := μ(G), and let F be the set of edges of G not

in G. Let f and C1 be given as around (6.1), and let � = Λ + 1 be the number of
vertices in C1 (or, equivalently, the number of edges in C1 viewed as a cycle of G). It
suffices to make the following assumption.

Assumption 6.4. We have that F = Af .
For v, w ∈ V and a graph H with vertex-set V , let N(v, w;H) denote the number

of edges between v and w in H . For γ ∈ Γ, we construct the graph denoted γG as
follows. First, γG has vertex-set V . For v, w ∈ V , we place N(v, w;G) edges between
γv and γw in γG. Thus, γG is obtained from γG by adding the edges of γF . Two
elementary properties of γG are as follows.

Lemma 6.5. Let γ ∈ Γ.
(a) γG is isomorphic to G.
(b) γAγ−1 ⊆ Aut(γG).
Proof. (a) This is an immediate consequence of the definition of γG.
(b) By the definition of γG, for α ∈ A,

N
(
γαγ−1(γv), γαγ−1(γw); γG

)
= N(γαv, γαw; γG)

= N(αv, αw;G)

= N(v, w;G)

= N(γv, γw; γG),

and the claim follows.
Assume μ = μ. By Lemma 6.1 with Ek := E1

k,

(6.32) lim inf
n→∞ σn(0, E2)

1/n < μ (= μ).

Exactly one of the following holds:

lim inf
n→∞ σn(0, E�)

1/n < μ,(6.33)

lim
n→∞σn(0, E�)

1/n = μ.(6.34)
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Assume first that (6.33) holds. By Lemma 6.3, there exist a > 0 and m ∈ N such
that

(6.35) lim sup
n→∞

σn(an,E�(m))1/n < μ.

Let Rn be the set of n-step SAWs from v0 on G on which E�(m) occurs at least an
times. By (6.35),

(6.36) lim
n→∞ |Rn|1/n = μ.

Let ρ ∈ V be such that A has the finite coset property with root ρ, and let
ν0, ν1, . . . , νs be given accordingly, as in Definition 3.1. Let O = ΓC1 be the orbit
under Γ of C1 viewed as a set of labeled vertices, and let Oi = νiAC1. Let 0 ≤ i ≤ s.
We say that Ei

�(m) occurs at the jth step of a SAW π on G if there exists γ ∈ Γ with
γπ0 = πj and γC1 ∈ Oi such that all the vertices of γC1 are visited by the 2m-step
SAW (πj−m, . . . , πj+m) (subject to the usual amendment if j−m < 0 or j +m > n).

Let R
(i)
n be the set of n-step SAWs from v0 on G for which Ei

�(m) occurs at least
an/(s+ 1) times. Thus,

(6.37) Rn ⊆
s⋃

i=0

R(i)
n .

By (6.36)–(6.37), there exists i satisfying 0 ≤ i ≤ s such that

(6.38) lim sup
n→∞

|R(i)
n |1/n = μ,

and we choose i accordingly.
We now apply the argument in the proof of Lemma 6.1 with the constant a

replaced by a/(s+1). Let π ∈ R
(i)
n be such that Ei

�(m) occurs at steps j1 < j2 < · · · <
ju, and in addition (6.25)–(6.27) hold with h replaced by 1 and with each γtC1 ∈ Oi.
Since γtC1 ∈ Oi = νiAC1 there exists αt ∈ A such that γtC1 = [νiαtν

−1
i ]νiC1. By

Lemma 6.5(b), [νiαtν
−1
i ]νiG is isomorphic to νiG. Therefore, γtf is an edge of νiG

but not of νiG. We think of π as a SAW on the graph νiG.
Let αt, ωt be as in (6.28), and note that (6.29) holds as before. Consider the

replacement of the subwalk (παt , . . . , πωt) by a walk that goes along that part of γtC1

(= γ′tνiC1, where γ′t = νiαtν
−1
i ), viewed as a cycle, that includes an edge of γtF

(= γ′tνiF ). By Lemma 6.5(b), the new walk is a SAW on νiG. Furthermore it uses
edges of νiG not belonging to νiG. Lower and upper bounds may be derived as in
the proof of Lemma 6.1, and these lead to a contradiction when working along the
subsequence implicit in (6.38). This implies μ(G) < μ(νiG) subject to (6.33). By
Lemma 6.5(a), μ(νiG) = μ and hence μ(G) < μ.

Assume finally that (6.34) holds. By (6.32)–(6.34), there exists k ∈ N satisfying
2 ≤ k < � such that

lim inf
n→∞ σn(0, Ek)

1/n < μ,

lim
n→∞σn(0, Ek+1)

1/n = μ.(6.39)

By Lemma 6.3, there exist a > 0 and m ∈ N such that

(6.40) lim sup
n→∞

σn(an,Ek(m))1/n < μ.
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Let Sn be the set of n-step SAWs from v0 on G such that Ek+1 never occurs and
Ek(m) occurs at least an times. By (6.39)–(6.40),

(6.41) lim
n→∞ |Sn|1/n = μ.

For 0 ≤ i ≤ s, let S
(i)
n be the set of n-step SAWs from v0 on G such that Ek+1 never

occurs and Ei
k(m) occurs at least an/s times. Thus,

(6.42) Sn ⊆
s⋃

i=0

S(i)
n .

By (6.41)–(6.42), there exists i satisfying 0 ≤ i ≤ s such that

lim sup
n→∞

|S(i)
n |1/n = μ,

and we choose i accordingly.
We apply the argument of the proof of Lemma 6.1 once again. Let π ∈ S

(i)
n be

such that Ei
k(m) occurs at steps j1 < j2 < · · · < ju, and in addition (6.25)–(6.27)

hold with γtC1 ∈ Oi. The argument is as above, and we do not repeat the details.
This implies μ(G) < μ(G) when (6.34) holds, and the proof is complete.
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