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Abstract. The connective constant µ of a graph G is the as-
ymptotic growth rate of the number of self-avoiding walks on G
from a given starting vertex. Bounds are proved for the connective
constant of an infinite, connected, ∆-regular graph G. The main
result is that µ ≥

√
∆− 1 if G is vertex-transitive and simple. This

inequality is proved subject to weaker conditions under which it is
sharp.

1. Introduction

A self-avoiding walk (SAW) is a path on a graph that visits no vertex
more than once. SAWs were introduced as a model for long-chain
polymers in chemistry (see [9]), and have since been studied intensively
by mathematicians and physicists interested in their critical behaviour
(see [22]). If the underlying graph has a property of periodicity, the
asymptotic behaviour of the number of SAWs of length n (starting at a
given vertex) is exponential in n, with growth rate called the connective
constant of the graph. The main purpose of this paper is to explore
upper and lower bounds for connective constants.

The principal result of this paper is the following lower bound for
the connective constant µ of a ∆-regular graph. The complementary
upper bound µ ≤ ∆− 1 is very familiar.

Theorem 1.1. Let ∆ ≥ 2, and let G be an infinite, connected, ∆-
regular, vertex-transitive, simple graph. Then µ(G) ≥

√
∆− 1.

The problem of counting SAWs is linked in two ways to the study
of interacting disordered systems such as percolation and Ising/Potts
models. First, the numerical value of µ leads to bounds on critical
points of such models (see [10, eqns (1.12)–(1.13)] for percolation, and
hence Potts models via [11, eqn (5.8)]). Secondly, the SAW problem
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may be phrased in terms of the SAW generating function; this has
radius of convergence 1/µ, and the singularity is believed to have power-
law behaviour (for lattice-graphs such as Zd, at least), see [22]. Thus,
a lower bound for µ may be viewed as an upper bound for the critical
point of a certain combinatorial problem.

In Section 2, we introduce notation and definitions used throughout
this paper, and in Section 3 we prove a theorem concerning connective
constants of general graphs. Inequalities for the connective constant
µ(G) of a ∆-regular graph G are explored in Section 4, including a
re-statement and discussion of Theorem 1.1. It is shown at Theorem
4.2 that a quasi-transitive, ∆-regular graph G satisfies µ(G) = ∆ − 1
if and only if G is the ∆-regular tree. The proofs of results in Section
4 are found in Section 5.

There are two companion papers, [13, 15]. In [13], we use the Fisher
transformation in the context of SAWs on a cubic or partially cubic
graph. In particular, we calculate the connective constant of a cer-
tain lattice obtained from the hexagonal lattice by applying the Fisher
transformation at alternate vertices. In [15], we study strict inequalities
between connective constants. It is shown (subject to minor conditions)
that µ(G2) < µ(G1) if either: (i) G2 is the quotient graph of G1 with
respect to a non-trivial normal subgroup of an automorphism subgroup
that acts transitively, or (ii) G1 is obtained from G2 by the addition of
a further quasi-transitive family of edges. See also the review [14].

2. Notation

All graphs in this paper will be assumed infinite, connected, and
loopless (a loop is an edge both of whose endpoints are the same vertex).
In certain circumstances, they are permitted to have multiple edges
(that is, two or more edges with the same endpoints). A graph G =
(V,E) is called simple if it has neither loops nor multiple edges. An
edge e with endpoints u, v is written e = 〈u, v〉, and two edges with
the same endpoints are said to be parallel. If 〈u, v〉 ∈ E, we call u and
v adjacent and write u ∼ v. The degree of vertex v is the number of
edges incident to v, denoted deg(v). We assume that the vertex-degrees
of a given graph G are finite with supremum ∆, and shall often (but
not always) assume ∆ <∞. The graph-distance between two vertices
u, v is the number of edges in the shortest path from u to v, denoted
dG(u, v).

A walk w on G is an alternating sequence v0e0v1e1 · · · en−1vn of ver-
tices vi and edges ei such that ei = 〈vi, vi+1〉. We write |w| = n for
the length of w, that is, the number of edges in w. The walk w is
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called closed if v0 = vn. A cycle is a closed walk w with vi 6= vj for
1 ≤ i < j ≤ n. Thus, two parallel edges form a cycle of length 2.

Let n ∈ {1, 2, . . . }∪{∞}. An n-step self-avoiding walk (SAW) on G
is a walk containing n edges that includes no vertex more than once.
Let σn(v) be the number of n-step SAWs starting at v ∈ V . We are
interested here in the exponential growth rate of σn(v), and thus we
define

µ(v) = lim inf
n→∞

σn(v)1/n, µ(v) = lim sup
n→∞

σn(v)1/n.

There is a choice over the most useful way to define the connective
constant of an arbitrary graph. One such way is as the constant µ =
µ(G) given by

(2.1) µ(G) := lim
n→∞

(
sup
v∈V

σn(v)1/n

)
.

The limit in (2.1) exists for any graph by the usual argument using
subadditivity (see the proof of Theorem 3.2(b)). By Theorem 3.1 be-
low, (2.1) provides an appropriate definition of the connective constant
of a quasi-transitive graph. The constant µ of the forthcoming equa-
tion (3.2) provides an alternative definition which is more suitable for
a random graph of the type studied by Lacoin [20].

It will be convenient to consider also SAWs starting at ‘mid-edges’.
We identify the edge e with a point (also denoted e) placed at the
middle of e, and we consider walks that start and end at these mid-
edges. Such a walk is called self-avoiding if it visits no mid-edge or
vertex more than once, and its length is the number of vertices visited.

The automorphism group of the graphG = (V,E) is denoted Aut(G).
A subgroup A ⊆ Aut(G) is said to act transitively on G if, for v, w ∈ V ,
there exists α ∈ A with αv = w. It acts quasi-transitively if there ex-
ists a finite subset W ⊆ V such that, for v ∈ V there exists α ∈ A such
that αv ∈ W . The graph is called vertex-transitive (respectively, quasi-
transitive) if Aut(G) acts transitively (respectively, quasi-transitively).

3. Basic facts for general graphs

Hammersley [17] proved that σn(v)1/n → µ for a class of graphs
including quasi-transitive graphs.

Theorem 3.1. [17] Let G = (V,E) be an infinite, connected, quasi-
transitive graph with finite vertex-degrees. Then

(3.1) lim
n→∞

σn(v)1/n = µ, v ∈ V,

where µ is given in (2.1).



4 GRIMMETT AND LI

The picture is incomplete in the absence of quasi-transitivity. The
following ancillary result provides a partial connection between the µ(v)
and the µ(v). The proof appears later in this section.

Theorem 3.2. Let G = (V,E) be an infinite, connected graph with
finite vertex-degrees, and assume there exists v ∈ V with µ(v) < ∞.
Let µ be given by (2.1).

(a) We have that µ(u) = µ(v) for all u, v ∈ V .
(b) If µ(v) = µ for some v ∈ V , then µ(v) = µ for all v ∈ V .

Part (a) may be found also in [20, Lemma 2.1], which appeared
during the writing of this paper. It is in fact only a minor variation
of Hammersley’s proof of Theorem 3.1. Subject to the conditions of
Theorem 3.2, let µ = µ(G) be given by

(3.2) µ := µ(v), v ∈ V.
By Theorem 3.1, µ(G) = µ(G) for any quasi-transitive graph G. The
constant µ is a more appropriate definition of ‘connective constant’ for
a random graph, for which it can be the case that µ < µ; see [20].

Assume that the supremum vertex-degree ∆ satisfies ∆ < ∞. It is
elementary that

(3.3) 1 ≤ µ(v) ≤ µ ≤ ∆− 1, v ∈ V.

Figure 3.1. Three regular graphs: the (doubly-infinite)
ladder graph L; the hexagonal tiling H of the plane; the
bridge graph B∆ (with ∆ = 4) obtained from Z by joining
every alternating pair of consecutive vertices by ∆ − 1
parallel edges.

The connective constant is known exactly for a limited class of quasi-
transitive graphs, of which we mention the ladder L, the hexagonal
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lattice H, and the bridge graph B∆ with degree ∆ ≥ 2 of Figure 3.1,
for which

(3.4) µ(L) = 1
2
(
√

5 + 1), µ(H) =

√
2 +
√

2, µ(B∆) =
√

∆− 1.

See [2, p. 184] and [8] for the first two calculations. There is an extensive
literature devoted to self-avoiding walks, including numerical upper and
lower bounds for connective constants, of which we mention [1, 5, 18,
22].

Proof of Theorem 3.2. We adapt and extend an argument of [17]. Let
u, v be neighbours joined by an edge e. Let π be an n-step SAW from
u. Either π visits v, or it does not.

1. If π does not visit v, we prepend e to obtain an (n + 1)-step
SAW from v.

2. If π visits v after a number m < n steps, we break π after m−1
steps, and prepend e to the first subpath to obtain two SAWs
from v: one of length m and the other of length n−m.

3. If π visits v after n steps, we remove the final edge and prepend
e to obtain an n-step SAW from v.

It follows that

(3.5) σn(u) ≤ σn+1(v) +
n−1∑
m=1

σm(v)σn−m(v) + σn(v).

Suppose now that µ(v) < ∞, and let τ > µ(v). There exists C =
C(τ) <∞ such that

(3.6) σk(v) ≤ Cτ k, k ≥ 0.

By (3.5),

(3.7) σn(u) ≤ Cτn(τ + nC + 1).

Hence, µ(u) ≤ τ and therefore µ(u) ≤ µ(v). Part (a) follows since G
is connected and undirected.

Turning to part (b), we have in the usual way that

(3.8) σm+n(v) ≤ σm(v)σn,

where σn = supw∈V σn(w). Therefore, σm+n ≤ σmσn, whence by sub-
additivity the limit µ exists in (2.1). We note in passing that

(3.9) σn ≥ µn, n ≥ 1.

For τ > µ, there exists C = C(τ) <∞ such that

(3.10) σn ≤ Cτn, n ≥ 0.
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Let τ > µ. By (3.8)–(3.10), there exists C = C(τ) <∞ such that

(3.11) σi+j(u) ≤ Cσi(u)τ j, u ∈ V, i, j ≥ 0.

Set n = 2k in (3.5), and break the sum into two parts depending on
whether or not m ≤ k. By (3.5) and (3.11),

(3.12) σ2k(u) ≤ Cσk(v)(τ k+1 + 2kCτ k + τ k).

Therefore, µ(u)2 ≤ µ(v)τ , so that µ(u)2 ≤ µ(v)µ. Assume that u
satisfies µ(u) = µ. Then µ(v) = µ, and the claim follows by iteration.

�

4. Connective constants of regular graphs

The graph G is regular (or ∆-regular) if every vertex has the same
degree ∆. A 3-regular graph is called cubic. In this section, we inves-
tigate bounds for the connective constants of infinite regular graphs.
The optimal universal lower bound, even restricted to quasi-transitive
graphs, is of course the trivial bound µ ≥ 1. This is achieved when
∆ = 3, 4 by the graphs of Figure 4.1, and by similar constructions for
∆ ≥ 5. Improved bounds may be proved when G is assumed vertex-
transitive.

Figure 4.1. An infinite line may be decorated in order
to obtain regular graphs of degree 3 and 4. Similar con-
tructions yield regular graphs with arbitrary degree ∆
and connective constant 1.

The main result of this paper, Theorem 1.1, is included in the fol-
lowing theorem, of which the upper bound on µ(G) is already well
known.

Theorem 4.1. Let ∆ ≥ 2, and let G be an infinite, connected, ∆-
regular, vertex-transitive graph. We have µ(G) ≤ ∆−1, and in addition
µ(G) ≥

√
∆− 1 if either

(a) G is simple, or
(b) G is non-simple and ∆ ≤ 4.
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Part (a) answers a question posed by Itai Benjamini (personal com-
munication). We ask whether the lower bound is strict for simple
graphs, and furthermore, motivated in part by the results of [13],
whether or not the golden mean is the sharp lower bound. Secondly,
we ask whether part (b) may be extended to larger values of ∆. Proofs
of theorems in this section are found in Section 5.

For a graph satisfying the initial conditions of Theorem 4.1, we have
by Theorem 3.1 that µ(v) = µ(v) = µ for all v ∈ V . The Cayley graph
(see [3]) of an infinite group with finitely many generators satisfies the
hypothesis of Theorem 4.1(a). If the assumption of vertex-transitivity
is weakened to quasi-transitivity, the best lower bound is µ ≥ 1, as
illustrated in Figure 4.1.

The upper bound of Theorem 4.1 is an equality for the ∆-regular
tree T∆, but is strict for non-trees, even within the larger class of
quasi-transitive graphs. We prove the slightly more general fact fol-
lowing, thereby extending an earlier result of Bode [6, Sect. 2.2] for
quotients of free groups. (See [19, Lemma 3.3] for a similar result,
proved independently of the current work.)

Theorem 4.2. Let G = (V,E) be an infinite, connected, quasi-transitive
graph (possibly with multiple edges), and let ∆ ≥ 3. We have that
µ(G) < ∆− 1 if either

(a) G is ∆-regular and contains a cycle, or
(b) deg(v) ≤ ∆ for all v ∈ V , and there exists w ∈ V with deg(w) ≤

∆− 1.

It is a natural problem to identify operations on graphs under which
the connective constant decreases strictly. Theorem 4.2 is a step in this
direction. When the graphs are required to be regular, this problem
may be phrased in terms of graphs and quotient graphs, and a general
form of it is formulated and resolved in [15].

We shall deduce Theorem 4.1 from the stronger Theorem 4.3 follow-
ing. The latter assumes a certain condition which we introduce next,
and which plays a role in excluding the graphs of Figure 4.1. The
condition is technical, but is satisfied by a variety of graphs of interest.

Let G = (V,E) be an infinite, connected, ∆-regular graph, possibly
with multiple edges. For distinct edges e, e′ ∈ E with a common vertex
w ∈ V , a SAW is said to traverse the triple ewe′ if it contains the
mid-edge e followed consecutively by the vertex w and the mid-edge e′.
For v ∈ V , let I(v) be the set of infinite SAWs from v, and I(e) the
corresponding set starting at the mid-edge of e ∈ E. Let π ∈ I(v), let
ewe′ be a triple traversed by π, and write πw for the finite subwalk of π
between v and w. Let e′′ 6= e, e′, e′′ be an edge incident to w. We colour
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e′′ blue if there exists π′′ ∈ I(v) that follows πw to w and then takes edge
e′′, and we colour e′′ red otherwise. Let Rπ,w = {ej : j = 1, 2, . . . , r} be
the set of red edges corresponding to the pair (π,w).

We make two notes. First, an edge of the form 〈u,w〉 with u ∈ πw can
be red when seen from w and blue when seen from u. Thus, correctly
speaking, colour is a property of a directed edge. We shall take care
over this when necessary. Secondly, suppose there is a group of two or
more parallel edges e′′ = 〈w,w′〉 with w ∈ π, e′′ /∈ π. Then all such
edges have the same colour. They are all blue if and only if there exists
π′′ ∈ I(v) that follows πw to w and then takes one of these edges.

The vertex v ∈ V is said to satisfy condition Πv if, for all π ∈ I(v)
and all triples ewe′ traversed by π, there exists a set F (π,w) = {fj =
〈xj, yj〉 : j = 1, 2, . . . , |Rπ,w|} of distinct edges of G such that, for
1 ≤ j ≤ |Rπ,w|,

(a) yj ∈ πw, yj 6= w,
(b) there exists a SAW from w to xj with first edge ej, that is

vertex-disjoint from πw except at its starting vertex w.

The graph G is said to satisfy condition Π if every vertex v satisfies
condition Πv. The set F (π,w) is permitted to contain parallel edges.
By reversing the SAWs in (b) above, we see that every edge fj =
〈xj, yj〉 ∈ F (π,w) is blue when seen from yj. Note that F (π, v) = ∅
for π ∈ I(v).

v w
e e′ ∞

πy1 y2

x1

Figure 4.2. An illustration of the condition Πv with
∆ = 5 and x1 = x2. The two edges above w are red, and
the edge below is blue.

Condition Πv may be expressed in a simpler form for cubic graphs
(with ∆ = 3). In this case, for each pair (π,w) there exists at most
one red edge. Therefore, Πv is equivalent to the following: for every
π ∈ I(v) and every triple ewe′ traversed by π, there exists π′′ ∈ I(e′′)
beginning e′′w′′, where e′′ = 〈w,w′′〉 is the third edge incident with w.
It is thus sufficient for a cubic graph G that every vertex lies in some
doubly-infinite self-avoiding walk of G.
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Theorem 4.3. Let ∆ ≥ 2, and let G = (V,E) be an infinite, connected
∆-regular graph. If v ∈ V satisfies condition Πv, we have µ(v) ≥√

∆− 1. The bridge graph B∆ satisfies condition Π, and µ(v) = µ =√
∆− 1 for all vertices v.

It is trivial that the ∆-regular tree T∆ satisfies condition Π and has
connective constant ∆ − 1, and it was noted in (3.3) that ∆ − 1 is
an upper bound for connective constants of ∆-regular graphs. Let
∆ ≥ 2 and

√
∆− 1 ≤ ρ ≤ ∆ − 1. By replacing the edges of T∆

by finite segments of the bridge graph B∆, one may construct graphs
satisfying condition Π with connective constant ρ. Therefore, the set of
connective constants of infinite, connected, ∆-regular graphs satisfying
condition Π is exactly the closed interval [

√
∆− 1,∆− 1].

5. Proofs of Theorems 4.1–4.3

Proof of Theorem 4.3. Let G satisfy the given conditions. A finite
SAW is called extendable if it is the starting sequence of some infi-
nite SAW. Let v ∈ V satisfy condition Πv, and let σ̃n be the number
of extendable n-step SAWs from v. We claim that

(5.1) lim inf
n→∞

σ̃1/n
n ≥

√
∆− 1,

from which the inequality of the theorem follows. The claim is trivial
when ∆ = 2, and we assume henceforth that ∆ ≥ 3. (Since this paper
was written, the growth rate for extendable SAWs has been considered
in [12].)

Let π = v0e0v1 · · · e2n−1v2n be an extendable 2n-step SAW from v0 =
v, and, for convenience, augment π with a mid-edge e−1 ( 6= e0) incident
to v0. Thus, π traverses the triples es−1vses for 0 ≤ s < 2n. Let rs and
bs be the numbers of red and blue edges, respectively, seen from vs, so
that

(5.2) rs + bs = ∆− 2, 0 ≤ s < 2n.

We claim that

(5.3)
2n−1∑
s=0

bs ≥ n(∆− 2),

and the proof of this follows.
For 0 ≤ s < 2n, let Fs = F (π, vs), and recall that F (π, v0) = ∅.

We claim that Fs ∩ Ft = ∅ for s 6= t. Suppose on the contrary that
0 ≤ s < t < 2n and f ∈ Fs ∩ Ft for some edge f = 〈x, y〉 with y = vu
and u < s. See Figure 5.1. There exists a SAW ωs from vs to x such
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that: (i) the first edge of ωs, denoted es, is red, and (ii) ωs is vertex-
disjoint from πvs except at vs. Similarly, there exists a SAW ωt from
vt to x whose first edge et is red, and which is vertex-disjoint from πvt

except at vt. Let z be the earliest vertex of ωs lying in ωt. Consider
the infinite SAW ω′ that starts at vs, takes edge es, follows ωs to z,
then ωt and et backwards to vt, and then follows π \πvt . Thus, ω′ is an
infinite SAW starting with vses that is vertex-disjoint from πvs except
at vs. This contradicts the colour of es (seen from vs), and we deduce
that Fs ∩ Ft = ∅ as claimed.

v

∞

πy vs vt

z

es et

x

Figure 5.1. An illustration of the proof that Fs ∩ Ft = ∅.

Since each edge f ∈ Fs is blue when seen from one of its endvertices,
we have that

2n−1∑
s=0

bs ≥
2n−1∑
s=0

|Fs| =
2n−1∑
s=0

rs.

The total number of blue/red edges is 2n(∆− 2), and (5.3) follows.
We show next that (5.3) implies the claim of the theorem. A branch

of π with root x is a (rooted) edge e = 〈x, y〉 such that x ∈ π, x 6= v2n,
e /∈ π, and the path πx followed by xey is an extendable SAW. A set of
branches with the same root is called a fork. By (5.3), π has at least
n(∆−2) branches, namely the blue edges. Each of these branches gives
rise to a further extendable 2n-step SAW from v, and similarly every
such SAW has at least n(∆ − 2) such branches. We will show that,
regardless of the way in which the branches are grouped into forks, the
number of ensuing 2n-step extendable SAWs is at least (∆−1)n. In so
doing, we will investigate how to group the branches into forks in such
a way as to minimize the total number of ensuing 2n-step SAWs.

Let n ≥ 1. The extendable SAW tree Tn at v ∈ V is defined as
follows. The vertices of Tn are the extendable k-step SAWs from v
with 0 ≤ k ≤ 2n, and two such vertices are joined by an edge if and
only if one of the corresponding SAWs is the prolongation by one step
of the other. The tree Tn is rooted at the empty SAW, and it is non-
empty since G is assumed infinite and connected. Let L be the set of
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leaves of Tn (the root is not considered to be a leaf even if it has degree
1). Thus, |L| is the number of extendable 2n-step SAWs from v.

Let T be a finite rooted tree, and let d(w) be the down-degree of a
vertex w of T , that is, d(w) is the number of edges incident to w that
do not contain the root in the corresponding sub-tree of T . Let P be
the set of paths in T from the root to a leaf. It suffices to prove the
next lemma.

Lemma 5.1. Let T be a finite rooted tree whose down-degrees satisfy
d(w) ≤ ∆− 1 and∑

w∈p

(
d(w)− 1

)
≥ n(∆− 2), p ∈ P .

Then T has at least (∆− 1)n leaves.

Proof of Lemma 5.1. As in the above discussion, a branch of p ∈ P is
an edge of T with exactly one endvertex in p. By pruning T , it suffices
to assume that there are exactly n(∆− 2) branches along each p ∈ P .
We prove a more general statement by induction on B, namely the
following.
Claim. Suppose every p ∈ P has exactly B branches, where B =
α(∆−2) +β with α ≥ 0 and 0 ≤ β < ∆−2. Then T has at least g(B)
leaves where g(B) := (β + 1)(∆− 1)α.

The claim is trivially true when B = 1, since T has g(2) = 2 leaves.
Suppose B0 ≥ 1 is such that the claim is true for B ≤ B0, and consider
the case B = B0 + 1. Let B = α(∆− 2) +β as above. Pick p ∈ P , and
suppose the fork of branches on p encountered first when descending
from the root has size γ for some 1 ≤ γ ≤ ∆− 2.

There are two cases depending on whether or not γ ≤ β. Assume
first that 1 ≤ γ ≤ β. By the induction hypothesis, the number of leaves
is at least (γ + 1)g(B − γ), which satisfies

(γ + 1)g(B − γ) = (γ + 1)(β − γ + 1)(∆− 1)α ≥ g(B),

as required. In the second case (β < γ ≤ ∆ − 2), the corresponding
inequality

(γ + 1)g(B − γ) = (γ + 1)(∆− 2 + β − γ + 1)(∆− 1)α−1 ≥ g(B)

is quickly checked (since the middle expression is an upwards pointing
quadratic in γ, it suffices to check the two extremal cases γ = β +
1,∆− 2), and the induction is complete.

With B ≥ n(∆− 2), we have α ≥ n and g(B) ≥ (∆− 1)n. �

By Lemma 5.1 applied to the tree Tn,

lim inf
n→∞

σ̃
1/n
2n ≥ ∆− 1,
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and (5.1) follows since σ̃k is non-decreasing in k.
Finally, let ∆ ≥ 2. It is easily seen that the bridge graph B∆ satisfies

condition Π and has connective constant
√

∆− 1, as in (3.4). �

Proof of Theorem 4.1. The upper bound for µ(G) is as in (3.3).
(a) Let G = (V,E) satisfy the given conditions. We claim that, for
v ∈ V , there exist ∆ edge-disjoint infinite SAWs from v. It follows
that G satisfies condition Π, and hence part (a).

The claim is proved as follows. Let λf = λf(G) be the least number
of edges whose removal disconnects G into components at least one of
which is finite. By [4, Lemma 3.3] (see also [21, Chap. 12, Prob. 14]),
we have that λf = ∆. It is a fairly immediate consequence that there
exist λf edge-disjoint infinite SAWs from v. A sketch of this presumably
standard fact follows (more elaborate work may be found in [16] and
[7, Chap. 8]).

Let n ≥ 1, and let Bn be the graph obtained from G by identifying
as a single vertex (denoted ∂Bn) all vertices having distance n + 1 or
more from v. Since v has degree ∆ and λf = ∆, the minimum number
of edges whose removal disconnects v from ∂Bn is ∆. By Menger’s
theorem (see [7, Sect. 3.3]), there exist ∆ distinct edge-disjoint SAWs
from v to ∂Bn. Therefore, for all n, G contains a set of ∆ edge-disjoint
n-step SAWs from v. We construct next the required infinite SAWs,
and this is where local finiteness is essential.

A set of SAWs is coloured red if it comprises ∆ pairwise edge-disjoint,
finite SAWs from v that, for all large n, are the initial segments of some
set of ∆ pairwise edge-disjoint, n-step SAWs. Let η1 be the set of edges
incident to v, considered as the set of 1-step SAWs from v. By the above
and the fact that v has degree ∆, η1 is red. Let η2 be the set of 2-step
SAWs from v, so that the first steps of η2 comprise the set η1. Since
η2 is finite, it has a ∆-subset (denoted η′2) that is red. We iterate the
last step. Suppose m ≥ 2 is such that ηm, η′m have been constructed.
Let ηm+1 be the set of (m+ 1)-step SAWs from v whose initial m-step
segments comprise η′m. Since ηm+1 is finite, it has a ∆-subset (denoted
η′m+1) that is red. By induction, there exist ∆ edge-disjoint infinite
SAWs from v.
(b) When ∆ = 2, G is simple. If ∆ = 3 and G is non-simple, it
is immediate that every v has property Πv, and the claim follows by
Theorem 4.3. Suppose ∆ = 4. There are three types of non-simple
graph, depending on the groupings of the parallel edges incident to a
given vertex. By consideration of these types, we see that only one
type merits a detailed argument, namely that in which each vertex
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is adjacent to exactly three other vertices, and we restrict ourselves
henceforth to this case.

Two paths from w ∈ V are called vertex-disjoint if w is their unique
common vertex. Let π ∈ I(v), with vertex-sequence (v, v1, v2, . . . ).
Then vn is the endpoint of two vertex-disjoint SAWs of respective
lengths n and ∞. By vertex-transitivity, for every n ≥ 1 and w ∈ V ,
w is the endpoint of two vertex-disjoint SAWs of respective lengths n
and ∞. Since G is locally finite, every w ∈ V is the endpoint of two
vertex-disjoint infinite SAWs. We write the last statement as v =⇒∞.

Let π ∈ I(v), w = vk with k ≥ 1, and consider the triple ewe′

traversed by π. By assumption, w has three neighbours w1, w2, w3 in
G, labelled in such a way that w1 = vk−1 and w2 = vk+1. For some i,
there are two parallel edges of the form 〈w,wi〉, as illustrated in Figure
5.2.

ww1 w2

w3 w3 w3

w2ww1w1 w w2

v vv
e3 e′

3 e′′
3

Figure 5.2. The three cases in the proof Theorem 4.1(b).

There are several cases to consider. If w3 ∈ π, say w3 = vM , any
edge 〈w,w3〉 is red if M < k and blue otherwise. The situation is more
interesting if w3 /∈ π, and we assume this henceforth.

Consider the first case in Figure 5.2 (the second case is similar). The
edge e1 = 〈w,w1〉 not in π is red (seen from w), and contributes itself
to the set F (π,w). Suppose e3 = 〈w,w3〉 is red (if it is blue, there
is nothing to prove). Since w3 =⇒ ∞, there exists an infinite SAW
ν from w3 not using e3. Since e3 is assumed red, there exists a first
vertex z of ν lying in π, and furthermore z = vK for some K < k. We
add to F (π,w) the last edge of ν before z.

Consider the third case in Figure 5.2, with parallel edges e′3 =
〈w,w3〉, e′′3 = 〈w,w3〉. Since e′3 and e′′3 have the same colour we may
restrict ourselves to the case when both are red. Since w3 =⇒∞, there
exists an infinite SAW ν from w3 using neither e′3 nor e′′3. Since e′3 and
e′′3 are assumed red, there exists an earliest vertex vK of ν lying in π,
with K < k. Write ν ′ for the sub-path of ν that terminates at vK , and
f(ν ′) for the final edge of ν ′.

Let g = 〈w3, x〉 be the edge incident to w3 other than e′3, e′′3, and the
first edge of ν. We construct a path ρ from w3 with first edge g, as
follows. Suppose ρ has been found up to some vertex z.
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1. If z has been visited earlier by ρ, we exit z along the unique
edge not previously traversed by ρ. Such an edge exists since
G is 4-regular.

2. If z lies in ν ′, we exit z along the unique edge lying in neither
ν ′ nor the prior part of ρ.

3. If z ∈ π, say z = vL, we stop the construction, and write f(ρ)
for the final edge traversed.

Since e′3 and e′′3 are red, Case 3 occurs for some L < k. By construction,
ρ and ν ′ are edge-disjoint, whence f(ρ) 6= f(ν ′). Corresponding to the
two red edges e′3, e′′3, we have the required set F (π,w) = {f(ν ′), f(ρ)}.

In conclusion, every v ∈ V has property Πv, and the claim follows
by Theorem 4.3. �

Proof of Theorem 4.2. Let u ∈ V and let e ∈ E be incident to u. Let
σn(u, e) be the number of n-step SAWs from u that do not traverse
e. We shall prove, subject to either (a) or (b), that there exists N =
N(G) ≥ 3, such that

(5.4) σN(u, e) ≤ (∆− 1)N − 1 for all such pairs u, e.

Assume first that (a) holds. By quasi-transitivity, there exist M, l ∈
N and a cycle ρ of length l such that, for v ∈ V , there exist w ∈ V and
α ∈ Aut(G) such that dG(v, w) < M and

(5.5) w ∈ α(ρ).

Let C(u, e) be the subset of V reachable from u along paths not using
e. If |C(u, e)| <∞, then σn(u, e) = 0 for large n, whence (5.4) holds for
all N ≥ N0 and some N0 = N0(u, e). Assume that |C(u, e)| =∞. Let
π = (π0, π1, . . . ) be an infinite SAW from u not using e. This walk has
a first vertex, πR say, lying at distance 4M from u. By the definition
of M , there exists k = k(u, e,M) satisfying R−M ≤ k ≤ R+M , and
a k-step SAW π′ from u not using e, such that π′ has final endpoint
w′ lying in α′(ρ) for some α′ ∈ Aut(G). We may represent the set of
SAWs from u, not using e, as a subtree of the rooted tree of degree ∆
(excepting the root, which has degree ∆− 1). By counting the number
of paths in that tree, we deduce that, for N ≥ N0 := k + l + 1, the
number of such N -step walks is no greater than (∆− 1)N − 1.

Since G is quasi-transitive, N0 < ∞ may be picked uniformly in u,
e. Inequality (5.4) is proved in case (a).

If (b) holds, condition (5.5) is replaced by deg(w) ≤ ∆− 1, and the
conclusion above is valid for N ≥ k + 2. For both cases (a) and (b),
(5.4) is proved.
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By considering the last edge traversed by a (k−1)N -step SAW from
v, we have that

σkN(v) ≤ σ(k−1)N(v)
[
(∆− 1)N − 1

]
, k ≥ 2,

and, furthermore, σN(v) ≤ ∆[(∆− 1)N − 1]. Therefore,

µ = lim
n→∞

σn(v)1/n ≤
[
(∆− 1)N − 1

]1/N
< ∆− 1,

and the theorem is proved. �
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