
RANDOMLY ORIENTED LATTICES

Geoffrey R. GrimmettAbstract. The square lattice is used to generate an oriented graph in which a
rightward or upward arrow is present on each edge with probability a, and a leftward
or downward arrow with probability b. Independence between different edges of
the square lattice is assumed, but nothing is assumed concerning the dependence
between the two possible orientations at any given edge. A property of self-duality
is exploited to show that, when a + b = 1, the process is, in a sense to be made
precise, either critical or supercritical but not subcritical. This observation enables
progress with the percolation problem in which each horizontal edge is oriented
rightwards with probability p and otherwise leftwards, and each vertical edge is
oriented upwards with probability p and otherwise downwards.

1. Randomly oriented square lattice

Despite the relative maturity of percolation theory (see [4]) there remain a number
of specific problems of charm and apparent difficulty. One such is the following.
Consider the square lattice Z

2 and let 0 ≤ p ≤ 1. Each horizontal edge is oriented
rightwards with probability p, and otherwise leftwards. Each vertical edge is ori-
ented upwards with probability p, and otherwise downwards. Let θ(p) denote the
probability that the origin 0 is the endpoint of an infinite self-avoiding path which
is oriented away from 0. The challenge is to determine for which p it is the case
that θ(p) > 0.

It is elementary that θ(0) = 1 and that θ(p) = θ(1 − p). It is less obvious
that θ( 1

2
) = 0; this was observed in Section 10.10 of the first edition of [4]. By a

comparison with oriented percolation (see [4, Section 12.8]), we have that θ(p) > 0
if p > ~pc, where ~pc is the critical point of oriented percolation on Z

2; it is not
difficult to prove by the method of [1] that there exists p′ ∈ ( 1

2
, ~pc) such that

θ(p) > 0 when p > p′. It is believed that ~pc ∼ 0.64, and proved that ~pc < 0.6735;
see [6, p. 186] and [2] respectively.

It has been conjectured (in the first edition of [4], and possibly elsewhere)
that θ(p) > 0 if p 6= 1

2
, and this note is intended as an explanation, but not a

full resolution, of this conjecture. In summary, we will show that, for all p, the
above process is either critical or supercritical in the following sense: if any small
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Figure 1. Arcs are placed randomly between pairs of neighbours of the square
lattice.

positive density of oriented edges is added at random, then there is a strictly
positive probability that the origin is the endpoint of an infinite self-avoiding
oriented path.

Although the problem studied in this paper is rather specific, it has several
features common to a circle of problems involving graphs with oriented rather than
unoriented edges. The now standard technology of unoriented percolation is not
by itself enough to answer such questions, and new ideas are needed.

The basic process of this paper is as follows. Let ρ, λ, β ≥ 0 and ρ+λ+β ≤ 1.
For each horizontal edge e of the square lattice, we designate e to be:

oriented only rightwards, with probability ρ,

oriented only leftwards, with probability λ,

oriented both rightwards and leftwards, with probability β,

absent , with probability 1 − ρ− λ− β.

Each vertical edge is treated similarly, replacing rightwards by upwards, and re-
placing leftwards by downwards. Different edges receive independent designations.
A sample realization of the resulting (random) directed graph is presented in Fig-
ure 1. We call the process constructed above the basic process with parameters
ρ, λ, β.

Let θ(ρ, λ, β) denote the probability that the origin 0 is the endpoint of some
infinite self-avoiding path oriented away from 0. It has been noted earlier that
θ(ρ, λ, β) equals the probability that the origin is the endpoint of some infinite
self-avoiding path oriented towards the origin. Perhaps the easiest way to see this
is to reflect the lattice in the line x1 + x2 = 0 and to reverse all orientations.
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A case of special interest arises when rightward and leftward (respectively,
upward and downward) arcs are placed independently between each pair of hori-
zontal (respectively, vertical) neighbours. That is, if e is the horizontal edge with
endpoints x and y, we place a rightward arc between x and y with probability a,
and independently a leftward arc with probability b. Vertical edges are treated
similarly, replacing rightward/leftward by upward/downward. In this case, we
have

ρ = a(1 − b), λ = b(1 − a), β = ab,

so that there exists an infinite oriented self-avoiding path from 0 with probabil-
ity θ(a(1 − b), b(1 − a), ab). We call this process the independent process with
parameters a, b.

Our first theorem implies that θ(ρ, λ, β) depends only on the marginal prob-
abilities a = ρ + β, b = λ + β of rightward or leftward (respectively, upward or
downward) edges.

Theorem 1.1. We have that θ(ρ, λ, β) = θ(a(1− b), b(1− a), ab) where a = ρ+β

and b = λ+ β.

Theorem 1.2. If a+b > 1, the independent process with parameters a, b contains

an infinite oriented self-avoiding path from 0 with strictly positive probability, which

is to say that θ(a(1 − b), b(1− a), ab) > 0.

Returning to the process described at the beginning of this section, we set
ρ = p, λ = 1 − p, β = 0, to obtain a = ρ+ β = p, b = λ + β = 1 − p. Note that
a+ b = 1. We have from Theorem 1.1 that θ(p, 1− p, 0) = θ(a(1− b), b(1− a), ab).
By Theorem 1.2, if we augment the process by adding, independently at random, a
positive density ǫ of edges oriented rightwards/upwards, then the resulting random
directed graph contains, with a strictly positive probability, an infinite oriented
self-avoiding path from 0.

Theorem 1.2, and more, will be proved in Section 4. In Section 2 we prove
Theorem 1.1. We explore duality in Section 3, and exponential decay in Section
4.

Here is some notation. The square lattice Z
2 has vertices {x = (x1, x2) :

x1, x2 ∈ Z} where Z = {. . . ,−1, 0, 1, . . .}. We write

|x| = |x1| + |x2| for x = (x1, x2) ∈ Z
2,

and we place an edge, denoted 〈x, y〉, between any pair x, y satisfying |x− y| = 1.
We shall make use of the box Λn = {x ∈ Z

2 : |x| ≤ n} and its boundary ∂Λn =
Λn \ Λn−1.

We shall generally distinguish between an edge of Z
2 and an arc, the latter

term being reserved for an oriented edge joining two neighbours of Z
2. Arcs may

be oriented in one or both of the possible directions. Once arcs have been placed
on Z

2, we say that vertex y is reachable from vertex x, written x → y, if there
exists a path of arcs from x to y which is oriented away from x. For sets X, Y of
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vertices, we write X → Y if there exists x ∈ X and y ∈ Y such that x → y. We
write X 9 Y for the negation of X → Y , and ‘X → Y in Z’ if there exists an
oriented path from some x (∈ X) to some y (∈ Y ) using only vertices of Z.

2. Marginal probabilities

Consider the basic process with parameters ρ, λ, β, and write P for the associated
probability measure. If x = (m,n) and y = (m + 1, n) the chance that there
exists an rightward (respectively, leftward) edge joining the pair x, y is a = ρ+ β

(respectively, b = λ + β); a similar statement is valid with x = (m,n), y =
(m,n+ 1), and with rightward/leftward replaced by upward/downward. We refer
to a and b as the marginal probabilities associated with the basic process with
parameters ρ, λ, β.

Proposition 2.1. For all sets C of vertices, and all A,B ⊆ C, the probability

P(A→ B in C) depends only on the marginal probabilities a = ρ+β and b = λ+β.

That is, there exists a function f = fA,B,C such that

P(A→ B in C) = f(ρ+ β, λ+ β) for all ρ, λ, β.

Proof. The proof follows a standard construction (see, for example, [4, pp. 28,
211]), and is therefore given in an abbreviated form only. We order the edges of
the lattice in some deterministic manner. We then build up the set of vertices z
reachable from A along oriented paths, but examining appropriate edges chosen
sequentially according to this predetermined lexicographic ordering. Each time an
edge is examined, there exists a unique orientation of that edge which will enable
an extension of the set already constructed. Such an edge may be used to extend
the set if and only if it is oriented in the prescribed direction. The probability
that this occurs is the marginal probability associated with that direction. The
probability that this construction ultimately includes some vertex of B depends
therefore only on the marginal probabilities. �

Proof of Theorem 1.1. Take C to be the set of all vertices of Z
2, A = {0}, and

B = ∂Λn. By Proposition 2.1, P(0 → ∂Λn) depends only on the marginals a =
ρ+ β, b = λ+ β. The statement of the theorem follows on passing to the limit as
n→ ∞. �

Proposition 2.1 and Theorem 1.1 may be generalized to lattices other than
the square lattice, and to certain more general probability distributions.
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Figure 2. The solid vertices are those of Z2, and the open vertices are those of the
dual Z2

d
. If an edge e of the square lattice fails to have an orientation in direction θ,

then its dual edge ed has an orientation in direction θ+ 1

2
π. Dashed arrows indicate

missing orientations in the primal lattice, and solid arrows indicate orientations
present in the dual.

3. Duality

We explore the property of duality in this section. A related duality was observed
in [3]. Since we are interested mainly in the existence or not of oriented paths
with given endpoints, we may in the light of Proposition 2.1 restrict ourselves to
the independent model, in which arcs of differing orientations are placed at each e
independently of one another. Note however that the basic model also has a dual
model.

Consider then the independent model in which each pair of ‘horizontal’ (re-
spectively, ‘vertical’) neighbours is joined by a rightward (respectively, upward)
arc with probability a, and by a leftward (respectively, downward) arc with prob-
ability b; all such oriented arcs are placed independently of one another. This is
the basic model with ρ = a(1 − b), λ = b(1 − a), β = ab.

The dual lattice is denoted Z
2
d, and is a copy of Z

2 translated by the vector
( 1

2
, 1

2
). The dual origin is 0d = ( 1

2
, 1

2
). Each edge of e is traversed by a unique edge

ed whose orientation is given as follows: if e fails to have an orientation in direction
θ, then ed has an orientation in direction θ+ 1

2
π. This rule is illustrated in Figure

2, and, subject to a rotation of the dual lattice Z
2
d, leads to an independent model

on Z
2
d

with parameters 1 − a, 1 − b.
It follows that, when a + b = 1, the model is self-dual, but this observation

calls for a rigorous exploitation. Let D(n) be the subgraph of Z
2 induced by the

set of vertices within the ‘offset diamond’ {(x1, x2) ∈ R
2 : |x1|+ |x2−

1

2
| ≤ n+ 1

2
}.

The graph D(n) is illustrated in Figure 3, together with a certain subgraph D(n)d
of the dual lattice. Note that D(n) and D(n)d are isomorphic graphs.

Let Un (respectively, Vn) denote the upper left side (respectively, lower right
side) of D(n); that is, Un is the set of vertices x = (x1, x2) of D(n) such that
−x1 + (x2 −

1

2
) = n+ 1

2
, and Vn is the set of x such that x1 − (x2 −

1

2
) = n+ 1

2
.

In an analogous way, we define the top right side Rn and bottom left side of Ln

of D(n)d.

Lemma 3.1. In the independent model with parameters a and b,

P
(

Un → Vn in D(n)
)

+ P
(

Ln → Rn in D(n)d
)

= 1
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Figure 3. The solid lines are the edges of the subgraph D(n) of Z2 when n = 2.
The dashed lines are those of the associated ‘dual’ graph D(n)d of Z2

d
.

for all n ≥ 0.

Proof. This is achieved in a way similar to that used for bond percolation on
Z

2; see [9, 10] and [4, p. 294]. First, in rough terms, only one of the events
{Un → Vn in D(n)}, {Ln → Rn in D(n)d} may occur, since if both occur, there
necessarily exists an edge e with dual ed the orientations of which contradict the
rule given above.

Secondly, if Un 9 Vn in D(n) then the ‘edge boundary’ of the set of vertices
reachable from Un contains, in its dual, an oriented path from Ln to Rn. �

We write
gn(a, b) = P

(

Un → Vn in D(n)
)

and we deduce from Lemma 3.1 with attention to the order of the arguments of
gn that

(3.1) gn(a, b) + gn(1 − a, 1 − b) = 1 for all n ≥ 0.

Lemma 3.2. We have for all a, b, n that

gn+1(b, a) ≥ abgn(a, b),(3.2)

gn+1(a, b) ≥ max{a2, b2}gn(a, b).(3.3)

Proof. We may augmentD(n) to a larger graphD(n)′ induced by the set of vertices
within the diamond {(x1, x2) : |x1−

1

2
|+|x2| ≤ n+ 3

2
}; D(n)′ is illustrated in Figure

4. If Un → Vn in D(n), we may pick an oriented path π of D(n) joining some
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Figure 4. The region D(n) together with the enlarged region D(n)′ obtained by
adding the dashed edges around part of the boundary of D(n).

u ∈ Un to some v ∈ Vn. Let Ev be the event that 〈v, v+e1〉 and 〈v+e1, v+e1−e2〉
are oriented in the respective directions v to v + e1, and v + e1 to v + e1 − e2.
(Here, e1 = (1, 0) and e2 = (0, 1).) Conditional on the choice of v, the event Ev is
independent of {Un → Vn in D(n)}, and the conditional probability of Ev is ab.
It follows that

P
(

Un → V ′

n in D(n)′
)

≥ abP
(

Un → Vn in D(n)
)

where V ′

n is the bottom right side of D(n)′. Inequality (3.2) follows. Inequality
(3.3) may be proved in a similar way, using the enlargement D(n)′′ of D(n) defined
as the graph induced by the set of vertices within the diamond {(x1, x2) : |x1| +
|x2 −

1

2
| ≤ n+ 3

2
}; D(n)′′ is illustrated in Figure 5. �

Combining (3.1) and (3.2), we obtain the following inequality:

(3.4) (1 − a)(1 − b)gn(a, b) + gn+1(1 − b, 1 − a) ≥ (1 − a)(1 − b)

for all 0 ≤ a, b ≤ 1 and n ≥ 0. In particular,

(3.5) a(1 − a)gn(a, 1 − a) + gn+1(a, 1 − a) ≥ a(1 − a)

for all 0 ≤ a ≤ 1 and n ≥ 0. Using (3.3) we obtain that

(

a(1 − a)

max{a2, (1− a)2}
+ 1

)

gn+1(a, 1 − a) ≥ a(1 − a),
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Figure 5. The region D(n) together with the enlarged region D(n)′′ obtained by
adding the dashed edges around part of the boundary of D(n).

and we arrive at the following.

Lemma 3.3. We have that

gn(a, 1 − a) ≥ a(1 − a) max{a, 1 − a} for all a and n ≥ 1.

It is reasonable to guess that the limit

g(a, 1− a) = lim
n→∞

gn(a, 1− a)

exists, but we do not prove this here.

4. Exponential decay

Consider the independent model with marginal probabilities a and b, and let
ψ(a, b) = θ(a(1 − b), b(1 − a), ab) be the probability that there exists an infinite
self-avoiding path oriented away from its endpoint 0. We write Pa,b for the associ-
ated probability measure, and write Λn = {x ∈ Z

2 : |x| ≤ n} and ∂Λn = Λn\Λn−1

as before.
It is easily seen that ψ(a, b) = 0 if and only if, Pa,b-a.s., there exists an

anticlockwise circuit in the dual having 0 in its inside. Using the usual circuit-
counting argument (see [4, p. 17]), we obtain that

ψ(a, b) > 0 if (1 − a)(1 − b) <
1

µ2
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where µ is the connective constant of Z
2. We recall the estimate µ ∼ 2.64; see [5,

p. 482].

Theorem 4.1. Assume that ψ(a, b) = 0 and that 0 ≤ a′ < a, 0 ≤ b′ < b. There

exists a strictly positive quantity c = c(a′, b′) such that

Pa′,b′(0 → ∂Λn) ≤ e−cn for all n ≥ 1.

Proof. This may be proved in exactly the same way as Menshikov’s proof of expo-
nential decay for subcritical percolation (see [7, 8], [4, Section 5.2]). The relevant
properties of the measures Pα,β are: invariance under translations of Z

2, stochas-
tic monotonicity in α and β, and the fact that they are product measures on the
appropriate product of copies of {0, 1}. The detailed proof contains nothing new
of substance, and is omitted. �

Proof of Theorem 1.2. Let ρ, λ, β ≥ 0 and ρ + λ + β ≤ 1, and set a = ρ + β,
b = λ + β. Assume we may pick ρ, λ, β such that a + b > 1 and θ(ρ, λ, β) = 0.
Since a, b ≤ 1, it must be the case that a, b > 0. We have from Theorem 1.1 that

θ(ρ, λ, β) = Pa,b(0 → ∞) = ψ(a, b).

Set

a′ =
a

a+ b
, b′ =

b

a+ b
,

so that a′ < a and b′ < b, and a′ + b′ = 1. By Lemma 3.3,

(4.1) gn(a′, b′) ≥ 1

2
a′b′ for n ≥ 1.

By Theorem 4.1 and the fact that |Un| = n+ 1, there exists c > 0 such that

(4.2) gn(a′, b′) ≤ (n+ 1)e−cn.

Inequalities (4.1) and (4.2) provide a contradiction for large n, and we deduce that
no such triple ρ, λ, β exists. �
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