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Figure 1. Harry Kesten in White Hall, Cornell Uni-
versity, around 1980.

The mathematical achievements of Harry Kesten
since the mid-1950s have revolutionized probability
theory as a subject in its own right and in its asso-
ciations with aspects of algebra, analysis, geometry,
and statistical physics. Through his personality and
scientific ability, he has framed the modern subject
to a degree exceeded by no other.

Harry inspired high standards of honesty, mod-
esty, and informality, and he played a central part
in the creation of a lively and open community of
researchers.
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Biographical notes

Early life

Harry Kesten’s early life was far from tranquil. His
already migrant father migrated once again from Ger-
many following Hitler’s appointment as Chancellor in
1933. Harry survived the war under the protection
of a non-Jewish family in the Netherlands. His par-
ents died naturally during and immediately following
the war. In 1952, he recognised his likely future as a
mathematician.

Harry was born in Duisburg, Germany on 19
November 1931 to Michael and Elise Kesten. “Ham-
born (Hochfeld)” is listed as his place of birth in both
a German and a Polish document. Harry had Polish
citizenship from birth via his father, and he retained
this until his American naturalization in 1962.

He was the only child of Michael Kesten (b.
Podotowoczyska, [5], then in Galicia and now
Ukraine, 22 November 1890) and Elise Abrahamovich
(b. Charlottenburg, Berlin, 4 October 1905). The
Kesten family name featured prominently in the
affairs of the substantial Jewish population of
Podotowoczyska in the late 19th century. Michael
moved from Galicia to Berlin, where he and Elise
were married in Charlottenburg on 23 May 1928.
Amos Elon has written eloquently in [4] of the Jewish
community in Berlin up to 1933, the year in which
the Kesten family moved to Amsterdam, perhaps as
a member of a group of Jewish families.

German military forces attacked and invaded the
Netherlands in May 1940. Shortly afterwards, Harry
was offered protection by a non-Jewish Dutch family



residing in Driebergen near Utrecht, with whom he
lived until the Dutch liberation in May 1945. His
father was hidden in the same village, and they could
be in occasional contact throughout the occupation.
During that period Harry attended school in a normal
way ([3]). Elise died of leukaemia in Amsterdam on
11 February 1941, and Michael died in October 1945,
probably in Groningen of cancer. Later in life, Harry
kept in touch with his Dutch family, and would visit
them whenever he was in the Netherlands.

Harry moved back to Amsterdam at the end of the
war to live with an older married cousin who had
been born a Kesten, and who had survived the war
in Switzerland. It was during the period between
1945 and graduation from High School in 1949 that
his attachment to Orthodox Judaism developed, and
this was to remain with him for most of the rest of
his life.

The earliest surviving indication of Harry’s scien-
tific ability is found in his school report on graduation
from the General Secondary High School in 1949. His
six grades in the six given scientific topics (includ-
ing mathematics) are recorded as five 10s and one
9. In languages, they were 7 (Dutch), 7 (French), 8
(English), 10 (German). There were three subjects
in which his mark was a mere 6 (‘satisfactory’), in-
cluding handwriting and physical education. In later
life, Harry was very active physically, and was keen
to run, swim, hike, and to ski cross-country, usually
with friends and colleagues.

Following his uncle’s advice to become a chemical
engineer, Harry entered the University of Amsterdam
in 1949 to study chemistry ([3]). This was not alto-
gether successful, and Harry took a particular dis-
like to laboratory work. He moved briefly to theo-
retical physics before settling on mathematics. From
1952 to 1956 he had a half-time assistantship in the
Statistical Department of the Mathematical Centre
(now the CWI), Amsterdam, under the supervision
of David van Dantzig (known for his theory of collec-
tive marks) and Jan Hemelrijk. He shared an office
with fellow student Theo (J. Th.) Runnenburg, with
whom he wrote his first papers on topics in renewal
theory and queueing theory. The pair of papers [20]
are notable, since they are probably related to the
Master’s (almost, in a sense, doctoral) thesis that

Figure 2. Harry Kesten, cross-country skiing with
Rob and Margriet van den Berg, Ithaca, 1991.

Harry wrote in 1956.

It was around this time that he met his wife-to-
be, Doraline Wabeke, who worked in the Mathemat-
ical Centre Library while studying interior design at
evening school.

Middle years

Mark Kac visited Holland in 1955, and Harry had the
opportunity to meet him at the Mathematical Centre.
He wrote to Kac in January 1956 to enquire of a
graduate fellowship at Cornell University to study
probability theory, perhaps for one year. Van Dantzig
wrote to Kac in support “...I have not the slightest
doubt that, if you grant him a fellowship, you will
consider the money well spent afterwards.”

A Junior Graduate Fellowship was duly arranged
with a stipend of $1400 plus fees, and Harry joined
the mathematics graduate program at Cornell that
summer, traveling on a passport issued by the Inter-
national Refugee Organization. His fellowship was
extended to the next academic year 1957-58 with
support from Mark Kac: “Mr. Kesten is ... the best
student we have had here in the last twenty years. ...
one of these days we will indeed be proud of having
helped to educate an outstanding mathematician.”

He defended his PhD thesis at the end of that year,
on the (then) highly novel topic of random walks on
groups. This area of Harry’s creation remains an ac-



tive and fruitful area of research at the time of this
memoir.

Doraline followed Harry to the USA in 1957 un-
der the auspices of ‘The Experiment of International
Living’, and took a position in Oswego, NY, about 75
miles north of Ithaca on Lake Ontario. As a result of
the Atlantic crossing she became averse to long boat
journeys, and never traveled thus again. She studied
and converted to Judaism with a rabbi in Syracuse
and the couple was married in 1958.

Harry and Doraline moved to Princeton in 1958,
where Harry held a (one-year) instructorship in the
company of Hillel Furstenberg. For the following aca-
demic year, he accepted a position at the Hebrew
University of Jerusalem. Harry was interested in set-
tling in Israel, and wanted to try it out, but there
were competing pressures from Cornell, who wished
to attract him back to Ithaca, and from Doraline’s
concerns about practical matters. They postponed a
decision on the offer of an Assistant Professorship at
Cornell (with a standard nine hours/week teaching
load), opting instead to return for the year 1961-62
on a one-year basis.

It was during that year that Harry and Doraline
decided to make Ithaca their home. Harry was pro-
moted to the rank of Associate Professor in 1962, and
in 1965 Harry and Doraline celebrated both his pro-
motion to Full Professor and the birth of their only
child, Michael. Harry stayed at Cornell for his entire
career, becoming Emeritus Professor in 2002.

Harry, Doraline, and Michael lived for many years
with their cats at 35 Turkey Hill Road, where visitors
would be welcomed for parties and walks.

Unsurprisingly, many invitations arrived, and he
would invariably try to oblige. Harry traveled widely,
and paid many extended visits to universities and
research centers in the USA and abroad, frequently
accompanied by Doraline, and in earlier years by
Michael.

For some years the principal events in Cornell prob-
ability included the biweekly 5 mile runs of Harry
with Frank Spitzer, and able-bodied visitors were al-
ways welcome. When Harry’s knees showed their age,
he spent time swimming lengths in Cornell’s Teagle
pool, usually in the now passé men-only sessions. He
worked on his problems while swimming.

Figure 3. Harry Kesten with Geoffrey Grimmett in
Kendal at Ithaca, 2011.

Later years

Harry maintained his research activities and collab-
orations beyond his retirement from active duty in
2002. He spoke in the Beijing ICM that year on the
subject of percolation, finishing with a slide listing in-
dividuals who had been imprisoned in China for the
crime of expressing dissent ([18]).

He was awarded an honorary doctorate at the Uni-
versité de Paris-Sud in 2007, shortly following his
diagnosis with Parkinson’s disease. Harry and Do-
raline sold their house and moved in 2008 into the
Kendal retirement home, a ‘home from home’ for nu-
merous retired Cornell academics. Doraline devel-
oped Alzheimer’s disease and died at Kendal on 2
March 2016, followed by Harry from complications of
Parkinson’s disease on 29 March 2019. A volume on
percolation remained on his bedside table until the
end.

Awards of distinction

From among the awards made to Harry Kesten, men-
tion is made here of the Alfred P. Sloan Fellow-
ship (1963), the Guggenheim Fellowship (1972), the
Brouwer Medal (1981), the STAM George Pdélya Prize
(1994), and the AMS Leroy P. Steele Prize for Life-
time Achievement (2001). Harry delivered the Wald



Memorial Lectures of the IMS (1986), and was elected
a Correspondent of the Royal Netherlands Academy
of Arts and Sciences (1980), a Member of the Na-
tional Academy of Sciences (1983), and of the Amer-
ican Academy of Arts and Sciences (1999). He was
elected an Overseas Fellow of Churchill College, Cam-
bridge (1993), and was awarded an Honorary Doctor-
ate of the Université de Paris-Sud (2007).

He was an invited lecturer at three ICMs, Nice
(1970), Warsaw (1983), and Beijing (2002), and he
spoke at the Hyderabad ICM (2012) on the work of
Fields Medalist Stanislav Smirnov. He was a member
of the inaugural class of Fellows of the AMS in 2013.

Personality and influence

Probability theory gained great momentum in the
second half of the 20th century. Exciting and beau-
tiful problems were formulated and solved, and con-
nections with other fields of mathematics and science,
both physical and socio-economic, were established.
The general area attracted a large number of distin-
guished scientists, and it grew in maturity and visibil-
ity. Harry was at the epicenter of the mathematical
aspects of this development. He contributed new and
often startling results at the leading edge of almost
every branch of probability theory.

Despite an occasionally serious aspect, he was a
very sociable person who enjoyed his many scientific
collaborations and was a popular correspondent. His
archive of papers (now held by Cornell University)
reveals a wealth of letters exchanged with many indi-
viduals worldwide, and every serious letter received
a serious reply, frequently proposing solutions to the
problems posed. He was especially keen to discuss
and collaborate with younger people, and he played
a key role through his achievements and personality
in bringing them into the field.

Harry commanded enormous respect and affection
amongst those who knew him well. He displayed an
uncompromising honesty, tempered by humanity, in
both personal and professional matters. This was
never clearer than in his opposition to oppression,
and in his public support for individuals deprived of
their positions, or even liberty, for expressing their

Figure 4. Harry Kesten and Frank Spitzer in 1970.

beliefs or needs.

Harry loved hard problems. Supported by an ex-
traordinary technical ability and a total lack of fear,
he gained a just reputation as a fearsome problem-
solver. His work often exceeded the greatest current
expectations, and it could be years before the com-
munity caught up with him. When the going became
too tough for the rest of us, he would simply refuse
to give in. The outcome is 196 works listed on Math-
SciNet, almost every one of which contains some new
idea of substance. An excellent sense of Harry as a
mathematician may be gained by reading the first two
pages of Rick Durrett’s appreciation [2], published in
1999 to mark 40+ years of Harry’s mathematics.

Scientific work

Most areas of probability theory have been steered,
even moulded, by Harry, and it is not uncommon to
attend conferences in which a majority of speakers
refer to his work as fundamental to their particular
topics. In this memoir, we do not aim at a compre-
hensive survey but, instead, to select and describe
some high points. Our selection is personal by neces-
sity, and readers desirous of a more comprehensive
account are referred to [2,7].



Random walks on groups

Harry’s PhD work was on the topic of random walks
on groups. So-called ‘simple random walk’ takes ran-
dom jumps of size =1 about the line Z. The domain Z
may replaced by either Z¢ or R?, and the unit moves
replaced by a general family of independent and iden-
tically distributed displacements. Harry’s space was
algebraic rather than Euclidean. He considered a
countable group G, a symmetric (p(x) = p(z~1))
probability distribution on a generating set of GG, and
defined random walk on G as the process that moves
at each step from y to yx with probability p(x). Let
q2n, denote the probability that the random walk re-
turns to its starting point after 2n steps. For exam-
ple, the usual random walk on Z¢ has qg,, ~ cqn=%2,
while for the free group on two generators we have
Gn = (3)".

Harry showed for a general countably infinite group
G that the quantity
lim q%r/fn

n—oo

A(G,p) =

equals both the spectral radius and the maximal
value of the spectrum of the associated operator on
L?(G) given by the random walk. He proved that
the equality A(G,p) = 1 is a property of the group
G and not of the particulars of the transition prob-
abilities p, and if it holds we write A(G) = 1. The
so-called ‘Kesten criterion for amenability’ states that
A(G) = 1if and only if G is amenable.! This remark-
able characterization of amenability may be viewed
as a fairly early contribution to the currently impor-
tant area of geometric group theory (see [1]).

Products of random matrices

One of the earliest papers in the now important
field of random matrices is [6] by Furstenberg and
Kesten, written by two Princeton instructors in 1958—
59. They were motivated by the 1954 work of Bell-
man, studying the asymptotic behavior of the prod-
uct of n independent, random 2 x 2 matrices, and they

1Of the various equivalent definitions of amenability, the
reader is reminded that a discrete group G is amenable if there
exists a sequence Fj, of finite subsets such that, for g € G,
[(gFn) A Fy|/|Fn] — 0 as n — oo.

derived substantial extensions of Bellman’s results.
This now classical paper [6] has been very influential
and is much cited, despite having proved unwelcome
at the authors’ first choice of journal. It deals with
products of random matrices, in contrast to most of
the modern theory which is directed towards spectral
properties.

Consider a stationary sequence X1, Xo, ...
dom k x k matrices, and let

of ran-

Y" = (yZ) =X, Xpo1-- Xy

In an analysis termed by Bellman “difficult and inge-
nious”, Furstenberg and Kesten proved a law of large
numbers and a central limit theorem. Firstly, if X is
ergodic, the limit £ := lim, o, n "1 log ||Y™"||; exists
a.s. Secondly, subject to certain conditions, the limit
of n71E(log y;;) exists, and n=1/2 (log yr; —E(log y%))
is asymptotically normally distributed.

Although they used subadditivity in the proofs,
they did not anticipate the forthcoming theory of
subadditive stochastic processes, initiated in 1965 by
Hammersley and Welsh to study first-passage perco-
lation, which would one day provide a neat proof of
some of their results.

Harry returned in 1973 to a study of products of
random matrices arising in stochastic recurrence rela-
tions. In the one-dimensional case, it was important
to understand the tail behavior of a random vari-
able Y satisfying a stochastic equation of the form

v £ my + @Q; that is, for random variables M and
Q with given distributions, Y and MY + @ have the
same distribution. He proved in [11] that such Y are
generally heavy-tailed in that P(Y > y) decays as a
power law as y — oo. This work has generated a very
considerable amount of interest since in probability,
statistics, and mathematical finance.

Random walks and Lévy processes

Harry’s early years at Cornell marked a heyday for
the theory of random walk. His colleague Frank
Spitzer had written his Springer monograph Prin-
ciples of Random Walk, and, together, they and
their collaborators did much to further the field.
The classical definition of random walk is as a sum



S, =z+ X1+ -+ X,, where x is an initial posi-
tion and X1, Xs,... are independent and identically
distributed. When the distributions are nice, the the-
ory parallels that of the continuous potential theory
of the Laplacian. When the hypotheses on distribu-
tions are weakened, some but not all such properties
persist.

In an early sequence of papers, Harry proved a fam-
ily of ratio limit theorems for probabilities associated
with random walks on Z%. Here are two examples,
taken from joint work with Spitzer and Ornstein.
Let T denote the first return time of X to its start-
ing point. Then Po(T > n+ 1)/Po(T > n) — 1 as
n — 0o, and this may be used to show that the limit

. P(T>n)
= 1 _—
exists and equals the potential kernel (fundamental
solution of the corresponding discrete Laplacian) at
x, that is

oo

a(z) = Y [Po(X, = 0) — Po(X,, = 0)],

n=0

This result requires no further assumptions on the
random walk.

A Lévy process is a random process in continuous
time with stationary independent increments. Let X
be a Lévy process on R%. The fundamental ques-
tion arose through work of Neveu, Chung, Meyer,
and McKean of deciding when the hitting probabil-
ity h(r) by X of a point r € R? satisfies h(r) > 0.
Harry solved this problem in his extraordinary AMS
Memoir of 1969, [10]. The situation is simplest when
d = 1, for which case Harry showed that (apart from
special cases) h(r) > 0 if and only if the so-called
characteristic exponent of X satisfies a certain inte-
gral condition.

The expression ‘random walk’ is sometimes used
loosely in the context of interesting and challenging
problems, arising for instance in physical and biolog-
ical models, which lack the full assumptions of inde-
pendence and identical distribution of jumps. Harry
responded to the challenge to attack many of these
difficult problems for which the current machinery

was not sufficient. He combined his mastery of clas-
sical techniques with his ‘problem-solving’ ability to
develop new ideas for such novel topics.

A significant variant of the classical random walk is
the ‘random walk in random environment’ (RWRE).
In the one-dimensional case, this is given by (i) sam-
pling random variables for each site, that prescribe
the transition probabilities when one reaches the site,
and (ii) performing a random walk (or more precisely
a Markov chain) with those transition probabilities.
RWRE is a Markov chain given the environment, but
it is not itself Markovian because, in observing the
process, one accrues information about the underly-
ing random environment.

One of the first RWRE cases considered was a near-
est neighbor, one-dimensional walk, sometimes called
a birth—death chain on Z. Let «,, denote the probabil-
ity that the random walk moves one step rightwards
when at position = (so that 8, = 1 — «, is the proba-
bility of moving one step leftwards). We assume the
a, are independent and identically distributed. In
the deterministic environment with, say, 3, = 8 < %
for all x, then as n — oo, X,,/n — 1 — 20; when
0= %, the walk returns to the origin infinitely often.
For the RWRE (with random «,), the properties of
the ratio By/aq are pivotal for determining whether
or not X,, — o0o; a straightforward birth—death argu-
ment indicates that X,, — oo if E[log(8o/ap)] < 0.
The regime with E[log(80/0)] < 0 and E[Gy/ap] > 1
turns out to be interesting. It was already known for
this regime that X,, — oo but X,,/n — 0. With Ko-
zlov and Spitzer [19], Harry showed in this case that
the rate of growth of X; is essentially determined by
the value of the parameter x defined by

E[(Bo/0)"] = 1.

In particular, if k < 1, then X, has order n". It
turns out that the limit distribution of n™"X; may
be expressed in terms of a stable law with index k.
This result answered a question of Kolmogorov.

The above is an early contribution to the broad
area of RWRE, and to the the related area of homog-
enization of differential operators with random coef-
ficients. The one-dimensional case is special (roughly
speaking, because the walk cannot avoid the excep-



tional regions in the environment), and rather pre-
cise results are now available, including Sinai’s proof
that X,,/(logn)? converges weakly (to a distribution
calculated later by Harry). RWRE in higher dimen-
sions poses a very challenging problem. This pro-
cess is more diffusive than its one-dimensional cousin,
and its study requires different techniques. Major
progress has been made on it by Bricmont, Kupi-
ainen, and others.

Self-avoiding walk

A self-avoiding walk (or ‘SAW’) on the d-dimensional
hypercubic lattice Z? is a path that visits no vertex
more than once. SAWs may be viewed as a simple
model for long-chain polymers, and the SAW problem
is of importance in physics as in mathematics.

Let x,, be the number of n-step SAWs starting at
the origin. The principal SAW problems are to estab-
lish the asymptotics of x, as n — oo, and to deter-
mine the typical radius of a SAW of length n. Ham-
mersley and Morton proved in 1954 that there exists
a ‘connective constant’ x such that y, = x"(1to1)
as n — oo. The finer asymptotics of x, have proved
elusive, especially in dimensions d = 2, 3.

Harry’s 10 page paper [9] from 1963 contains a
theorem and a technique; the theorem is essentially
unimproved, and the technique has frequently been
key to the work of others since. His main result
is the ratio limit theorem that x,i2/xn — k2 as
n — oo. It remains an open problem to prove that
Xn+1/Xn — k. His technique is an argument now re-
ferred to ‘Kesten’s pattern theorem’. To paraphrase
Frank Spitzer from Mathematical Reviews, the idea
is that any configuration of k steps which can occur
more than once in an n-step SAW has to occur at
least an times, for some a > 0, in all but ‘very few’
such SAWs.

The pattern theorem is proved using a type of
path surgery that has been useful in numerous other
contexts since. The proof is centered around an
‘exponential estimate’, of a general type that made
powerful appearances in various different settings in
Harry’s later work.

One of the most prominent current conjectures
in SAW theory is that SAW in two dimensions

converges, in an appropriate limit, to a certain
Schramm-Loewner evolution (namely, SLEg/3). If
one could show that the limit exists and exhibits
conformal invariance, then it is known that the limit
must be SLEg/3. Although the behavior of this SLE
is now understood fairly precisely ([22]), and the ana-
logues of the finite asymptotics of x,, and the typical
length of a SAW are known for the continuous model,
the problems of establishing that the discrete SAW
has a limit, and showing that the limit is conformally
invariant, remain wide open.

Figure 5. A simulation of diffusion limited aggrega-
tion in two dimensions.

Diffusion limited aggregation

Diffusion limited aggregation (DLA) is a growth
model introduced by Witten and Sander. The model
may be defined in general dimensions d, but we con-
centrate here on the case d = 2.

Let Ag be the origin of the square lattice Z2. Con-
ditional on the set A,, the set A,y is obtained by
starting a random walk ‘at infinity’ and stopping it
when it reaches a point that is adjacent to A,, and
then adding that new point to the existing A,,. The
concept of random walk from infinity can be made
precise using harmonic measure, and the hard prob-



lem is then to describe the evolution of the ran-
dom sets A,,. Computer simulations suggest a ran-
dom, somewhat tree-like, fractal structure for A,, as
n — oo. Indeed, assigning a ‘fractal dimension’ to
such a set is a subtle issue, but a start is made by
trying to find the exponent « such that the diameter
of A, grows like n®. Since A,, is a connected set of
n + 1 points, we have the trivial bounds % <a<l.

Harry wrote a short paper [15] containing a beau-
tiful argument showing that a < % For many read-
ers, this seemed a good start to the problem, and
much subsequent effort has been invested in seeking
improved estimates. Unfortunately, no one has yet
made a substantial rigorous improvement to Harry’s
bound. There are a number of planar models with
diffusive limited growth, and it is open whether they
are in the same universality class. On the other hand,
‘Kesten’s bound’ is one property they have in com-
mon.

Harry’s argument is simple, but in order to com-
plete it, he needed a separate lemma ([17]) about
planar random walks which is a discrete analogue of
a theorem from complex variables due to Beurling.
Kesten’s lemma has itself proved an extremely use-
ful tool over the last thirty years in the development
of the theory of conformally invariant limits of two-
dimensional random walks and other processes. Al-
though the original theorem of Beurling was phrased
in terms of complex analysis, both the continuous
version of Beurling and the discrete lemma of Kesten
become most important in probabilistic approaches to
problems. While Kesten figured out what the right
answer should be in his discrete version, he was for-
tunate to have a colleague, Clifford Earle, who knew
Beurling’s result and could refer Harry to a proof that
proved to be adaptable (with work!) to the discrete
case.

Branching processes

The branching process (sometimes called the Galton—
Watson process) is arguably the most fundamental
stochastic model for population growth. Individu-
als produce a random number of offspring. The off-
spring produce offspring similarly, and so on, with dif-
ferent family-sizes being independent and identically

distributed. The first question is whether or not the
population survives forever. A basic fact taught in el-
ementary courses on stochastic processes states that
the population dies out with probability 1 if and only
if 4 <1, where p is the mean number of offspring per
individual. (There is a trivial deterministic exception
to this, in which each individual produces exactly one
offspring.)

One of Harry’s best known results is the Kesten—
Stigum theorem [21] for the supercritical case p > 1;
it was proved in the more general situation with more
than one type of individual, but we discuss here the
situation with only one population type. If X,, de-
notes the population size of the nth generation, we
have E[X,] = "Xy, and with some (computable)
probability ¢ > 0, the population survives forever.
One might expect that, for large n, X,, ~ Kou" with
K, a random variable determined by the growth
of the early generations. In other words, once the
population has become large, we should be able to
approximate its growth by the deterministic dynam-
ics Xp41 ~ pX,,. If this were true, we would write
Ko = lim,, o K, where K,, = X,, /™. The process
K, is a martingale, and the martingale convergence
theorem implies that K, converges almost surely to
some limit K,. However, it turns out to be possible
that K., = 0 a.s., even though the process survives
forever with a strictly positive probability.

Let L be a random variable with the family-size
distribution, so that p = E[L]. It was a problem of
some importance to identify a necessary and sufficient
moment condition for the statement that E[K] =
Xo. Kesten and Stigum showed that this condition
is that E[Llog™ L] < ooc.

Harry was inevitably attracted by the critical
branching process (with g = 1). Amongst his nu-
merous results are the well known necessary and suf-
ficient conditions (proved with Ney and Spitzer) for
the so-called Yaglom and Kolmogorov laws,

P(X, > 0) ~ % P(X, > nz | Xn, > 0) — 7.

We return later to his work on random walk on the
critical family tree conditioned on non-extinction.



Figure 6. A simulation of bond percolation on Z?2
with p = 0.51.

Percolation

The percolation model for a disordered medium was
pioneered by Hammersley in the 1950/60s, and it has
since become one of the principal objects in proba-
bility theory. In its simplest form, each edge of the
square lattice is declared open with probability p and
otherwise closed, different edges having independent
states. How does the geometry of the open graph
vary as p increases, and in particular for what p does
there exist an infinite open cluster?

It turns out that there exists a critical probabil-
ity p. such that an infinite open cluster exists if and
only if p > p.. The so-called ‘phase transition’ at
Pe is emblematic of phase transitions in mathemat-
ical physics. Percolation theory is frequently used
directly in the study of other systems, and it has led
to the development of a number of powerful insights
and techniques.

As Harry wrote in the preface of his 1982 book [13],

“Quite apart from the fact that percola-
tion theory had its origin in an honest ap-
plied problem ..., it is a source of fasci-
nating problems of the best kind a mathe-
matician can wish for: problems which are
easy to state with a minimum of prepara-

Figure 7. Harry Kesten, Rudolf Peierls, and Roland
Dobrushin in New College, Oxford, 1993.

tion, but whose solutions are (apparently)
difficult and require new methods. At the
same time many of the problems are of inter-
est to or proposed by statistical physicists
and not dreamt up merely to demonstrate
ingenuity.”

They certainly require ingenuity to solve, as demon-
strated in Harry’s celebrated proof that p. = % for
the square lattice problem, published in 1980 ([12],
see Figure 6). Harry proved that p, < 3, thereby
complementing Harris’s earlier proof that p. > %
His paper, and the book [13] that followed, resolved
this notorious open problem, and invigorated an area
that many considered almost impossibly mysterious.

Harry’s book [13] was a fairly formidable work con-
taining many new results for percolation in two di-
mensions, set in quite a general context. He was
never frightened by technical difficulty or complica-
tion, and entertained similar standards of the reader.
This project led in a natural way to his important
and far-sighted work [16] on scaling relations and so-
called ‘arms’ at and near the critical point, that was
to prove relevant in the highly original study initiated
by Schramm and developed by Smirnov and others on
conformal invariance in percolation.

Write C for the open cluster containing the origin.
According to scaling theory, macroscopic functions,
such as the percolation probability § and mean clus-



ter size y, given by

0(p) = Pp(‘c‘ =o0), x(p)= ]Ep‘clv

have singularities at p. of the form |p — p.| raised to
an appropriate power called a ‘critical exponent’. In
similar fashion, when p = p., several random vari-
ables associated with the open cluster at the origin
have power-law tail behaviors of the form n=% as
n — oo, for suitable critical exponents d. The set of
critical exponents describes the nature of the singu-
larity and they are characteristics of the model. They
are not, however, independent variables, in that they
satisfy the ‘scaling relations’ of statistical physics. It
is an open problem to prove almost any of the above
in general dimensions.

In the special case of two dimensions, the proof of
existence of critical exponents had to wait beyond the
invention of SLE by Schramm around 2000, and the
proof of Cardy’s formula by Smirnov in 2001 (illus-
trated in Figure 8), and is the work of several indi-
viduals including Lawler and Werner. In a precur-
sor [16] of that, Harry proved amongst other things
that, conditional on the existence of certain expo-
nents, certain others must also exist and a variety of
scaling relations ensue. In this work, he introduced a
number of techniques that have been at the heart of
understanding the problem of conformal invariance.

Correlation inequalities are central to the theory of
disordered systems in mathematics and physics. The
highly novel BK (van den Berg/Kesten) inequality
plays a key role in systems subjected to a product
measure such as percolation. Proved in 1985, this
inequality is a form of negative association, based
around the notion of the ‘disjoint occurrence’ of two
events. It is a delicate and tantalizing result.

When p > p., there exists a.s. at least one infi-
nite open cluster, but how many? This uniqueness
problem was answered by Harry in joint work with
Aizenman and Newman. He tended to downplay his
part in this work, but his friends knew him better
than to take such protestations at face value. Their
paper was soon superseded by the elegant argument
of Burton and Keane, but it remains important as a
source of quantitative estimates.

Under the title ‘ant in a labyrinth’, de Gennes pro-
posed the use of a random walk to explore the geom-
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Figure 8. Site percolation on the triangular lattice
T. The red path is a black/white interface. Smirnov
proved Cardy’s formula, that states in this context
that the hitting point of the interface on the bottom
side is asymptotically uniformly distributed

etry of an open cluster. In a beautiful piece of work
[14], Harry showed the existence of a measure known
as the ‘incipent infinite cluster’, obtained effectively
by conditioning on critical percolation possessing an
infinite cluster at the origin. He then proved that ran-
dom walk X,, on this cluster is subdiffusive in that
there exists € > 0 such that Xn/n%_E — 0. This is in
contrast to the situation on Z¢ for which X,, has or-
der n2. This ‘slowing down’ occurs because the walk
spends time in blind alleys of the incipient infinite
cluster.

Whereas it was not possible to obtain exact results
for critical percolation, Harry gave a precise solution
to the corresponding problem on the family tree T
of a critical branching process, conditioned on non-
extinction. Here also there are blind alleys, but it
is possible to estimate the time spent in them. It
turns out that the displacement X, of the walk has
order n3 and, moreover, Harry computed the limit
distribution of X,,/n3.

In joint work with Grimmett and Zhang on super-



critical percolation, he showed that random walk on
the infinite cluster in d > 2 dimensions is recurrent
if and only if d = 2. This basic result stimulated
others to derive precise heat kernel estimates for ran-
dom walks on percolation clusters and other random
networks.

We mention one further result for classical perco-
lation on Z?. When p < p., the tail of |C| decays
exponentially to 0, in that P,(|C| = n) < e=*" for
some «(p) > 0. Matters are more complicated when
p > pe, since large clusters ‘prefer’ to be infinite. It
turns out that the interior of a large cluster (of size
n, say) typically resembles that of the infinite clus-
ter, and its finiteness is controlled by its boundary
(of order n(@=1/4). As a result, |C| should have a
tail of order exp{—cn(?=1/4} There was a proof by
Aizenman, Delyon, and Souillard that

P, (|C| = n) > exp{—pnld~V/4}

for B(p) > 0. Kesten and Zhang showed, by a block
argument, the complementary inequality

P,(|C| = n) < exp{—yn{¢=D/4}

for some y(p) > 0. When d > 3, they were in fact
only able to show this for p exceeding a certain value
Pslab, but the conclusion for p > p. followed once
Grimmett and Marstrand had proved the slab limit
Pe = Dslab- Sharp asymptotics were established later
by Alexander, Chayes, and Chayes when d = 2, and
by Cerf in the more challenging situation of d = 3, in
their work on the Wulff construction for percolation.

First-passage percolation was introduced by Ham-
mersley and Welsh in 1965 as an extension of classical
percolation in which each edge has a random ‘pas-
sage time’, and one studies the set of vertices reached
from the origin along paths of length not exceeding
a given value. This is where the notion of a sub-
additive stochastic process was introduced, and an
ergodic theorem first proved. The theory of subaddi-
tivity was useful throughout Harry’s work on disor-
dered networks, and indeed he noted that it provided
an “elegant” proof of his 1960 theorem with Fursten-
berg on products of random matrices.

Harry turned towards first-passage percolation
around 1979, and he resolved a number of open prob-
lems, and posed others, in a series of papers spanning
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Figure 9. Harry Kesten with John Hammersley, Ox-
ford, 1993.

nearly 10 years. He established fundamental proper-
ties of the time constant, including positivity under
a natural condition, and continuity as a function of
the underlying distribution (with Cox), together with
a large deviation theorem for passage times (with
Grimmett). Perhaps his most notable contribution
was a theory of duality in three dimensions akin to
Whitney duality of two dimensions, as expounded in
his St Flour notes, [8]. The dual process is upon pla-
quettes, and dual surfaces occupy the role of dual
paths in two dimensions. This leads to some tricky
geometrical issues concerning the combinatorics and
topology of dual surfaces which have been largely an-
swered since by Zhang, Rossignol, Théret, Cerf, and
others.

Percolation and its cousins provide the environ-
ment for a number of related processes to which
Harry contributed substantial results. He was an en-
thusiastic contributor to too many collaborative ven-
tures to be described in full here. As a sample we
mention word percolation (with Benjamini, Sidoravi-
cius, Zhang), p-percolation (with Su), random lattice
animals (with Cox, Gandolfi, Griffin), and uniform
spanning trees (with Benjamini, Peres, Schramm).

Postscript

This memoir describes only a sample of Harry
Kesten’s impact within the probability and statisti-



cal physics communities. Those seeking more may
read Rick Durrett’s account [2]. The more compre-
hensive article [7] includes summaries of Harry’s work
in other areas, such as quasi-stationary distributions
of Markov chains and bounded remainder sets in Eu-
clidean dynamics.

The authors are grateful to several people for their
advice: Michael Kesten for access to the Kesten fam-
ily papers and for his personal reminiscences, Laurent
Saloff-Coste for biographical material from Cornell,
Frank den Hollander for advice on Dutch matters,
Rob van den Berg for his suggestions, Hillel Fursten-
berg for his comments on a draft, and three anony-
mous readers for their suggestions.

Figure 10. The authors: Geoffrey Grimmett and
Greg Lawler.
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