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Abstract

The two-point correlation function of a Potts model on a graph

G may be expressed in terms of the flow polynomials of ‘Poissonian’

random graphs derived from G by replacing each edge by a Poisson-

distributed number of copies of itself. This fact extends to Potts

models the so-called random-current expansion of the Ising model.

1 Introduction

The Tutte polynomial and its relatives have rarely been distant from the
work of Dominic Welsh. They play important roles in matroid theory, [20],
computational complexity, [22, 23, 24], and models of statistical physics,
[21, 24]. They provide the natural way to count and relate a variety of
objects defined on graphs. We show here that they permit a representation
of the two-point correlation function of a ferromagnetic Potts model on a
graph G in terms of the flow polynomials of certain related random graphs.
This representation extends to general Potts models the so-called random-
current expansion for Ising models, wielded with great effect in [1, 2, 3, 16]
and elsewhere, and it amplifies the links between the Potts partition function
and the Tutte polynomial surveyed earlier by Welsh and Merino, [24].

Two key elements of the analysis of the Ising model on a graph G are
the random-cluster representation and the random-current expansion. The
former is valid for all Potts models (and more besides), but the latter has not
previously been extended beyond the Ising model. It hinges on an expansion
of the partition function in terms of 0/1-vectors indexed by edges and such
that, for every vertex v, the sum of the values over edges incident to v is even.
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Such a vector may be recognised as a ‘mod-2 flow’. It turns out that the q-
state Potts partition function corresponds similarly to counts of ‘mod-q flows’
on a graph derived from G in the following way. Let λ > 0, and replace every
edge e of G by P (e) parallel edges, where the P (e) are independent Poisson-
distributed random variables with parameter λ. The quantity of interest is
the mean number of non-zero mod-q flows on the resulting random graph.

There is a powerful method of ‘path-manipulation’ by which many im-
portant results have been proved for the Ising model. This method has a
simple form when set in the context of a Poissonian random graph, and we
illustrate this in Section 5 with a version of the ‘switching lemma’ of [1].

A short tour of graph polynomials appears in Section 2. In Section 3
is introduced the Potts and random-cluster models, and the main result is
proved in Section 4. Applications to the Ising model are summarized in
Section 5. The principal open area is to extend the random-current analysis
to Potts models with general q.

2 Graph polynomials

Let G = (V,E) be a finite graph, possibly containing multiple edges and
loops. The Whitney and Tutte polynomials of G are well known to graph
theorists, and we begin with a reminder of their definitions. The (Whitney)
rank-generating function of G was introduced in [25] and is given by

WG(u, v) =
∑

E′⊆E

ur(G′)vc(G′), u, v ∈ R, (2.1)

where r(G′) = |V | − k(G′) is the rank of the subgraph G′ = (V,E ′), and
c(G′) = |E ′| − |V | + k(G′) is its co-rank . Here, k(G′) denotes the number of
components of G′. Note that

WG(u, v) = (u/v)|V |
∑

E′⊆E

v|E
′|(v/u)k(E′), u, v 6= 0. (2.2)

The rank-generating function has various useful properties, and it occurs
in several contexts in graph theory, see [6, 19]. The Tutte (or dichromatic)
polynomial of G was introduced independently in [18, 19], and may be ex-
pressed as

TG(u, v) = (u− 1)|V |−1WG

(

(u− 1)−1, v − 1
)

. (2.3)

This also is a function of two variables. For suitable values of these variables,
it provides counts of colourings, forests, and flows, and of other combinatorial
quantities. The principal purpose of the current paper is to explore the use
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of the Whitney/Tutte polynomial in the study of the correlation functions of
the Potts model, and to this end we define next the flow polynomial of G.

We turn G into a oriented graph by allocating an orientation to each
edge e ∈ E, and we denote the resulting digraph by ~G = (V, ~E). If the
edge e = 〈u, v〉 ∈ E is oriented from u to v, we say that f leaves u and
arrives at v. It will turn out that the choices of orientations are immaterial
to the principal conclusions that follow. Let q ∈ {2, 3, . . .}. A function

f : ~E → {0, 1, 2, . . . , q − 1} is called a mod-q flow on ~G if

∑

~e ∈ ~E :
~e leaves v

f(~e) −
∑

~e ∈ ~E :
~e arrives at v

f(~e) = 0 modulo q, for all v ∈ V ,

which is to say that flow is conserved at every vertex. A mod-q flow f is
called non-zero if f(~e) 6= 0 for all ~e ∈ ~E. Let CG(q) be the number of non-

zero mod-q flows on ~G. It is fundamental that the quantity CG(q) does not
depend on the orientations of the edges of G, and the proof may be found
in [19]. The function CG(q), viewed as a function of q, is called the flow

polynomial of G.
The flow polynomial may be obtained as an evaluation of the Whit-

ney/Tutte polynomial with two particular parameter values, as follows:

CG(q) = (−1)|E|WG(−1,−q)

= (−1)|E|−|V |+1TG(0, 1 − q), q ∈ {2, 3, . . .}. (2.4)

See [6, 19]. We shall later write C(G; q) for CG(q), and similarly for other
polynomials when the notational need arises.

3 Potts and random-cluster models

Amongst models for ferromagnetism, the Potts model is one of the most
studied. It has two principal parameters, the ‘inverse temperature’ β ∈
(0,∞) and the number q ∈ {2, 3, . . .} of local states. When q = 2, the Potts
model becomes the Ising model. Let G = (V,E) be a finite graph which for
simplicity we assume to have no loops. It is convenient to allow a separate
parameter for each edge of G, and thus we let J = (Je : e ∈ E) be a vector
of non-negative numbers, and we set

pe = 1 − e−βJeq, e ∈ E. (3.1)
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The configuration space of the q-state Potts model on G is the set Σ =
{1, 2, . . . , q}V . The Potts measure on Σ is given by

πβJ,q(σ) =
1

ZP
exp

{

∑

e∈E

βJe(qδe(σ) − 1)

}

, σ ∈ Σ, (3.2)

where, for e = 〈x, y〉 ∈ E,

δe(σ) = δσx,σy
=

{

1 if σx = σy,

0 otherwise,

and ZP = ZP
G is the partition function

ZP =
∑

σ∈Σ

exp

{

∑

e∈E

βJe(qδe(σ) − 1)

}

. (3.3)

Since βJe ≥ 0, the Potts measure πβJ,q allocates greater probability to con-
figurations for which δe(σ) = 1 for a larger set of edges e. That is, it prefers
configurations in which many neighbour-pairs have the same state, and in
this regard the model is termed ‘ferromagnetic’.

A central quantity is the ‘two-point correlation function’ given by

τβJ,q(x, y) = πβJ,q(σx = σy) −
1

q
, x, y ∈ V. (3.4)

We shall work here with qτβJ,q(x, y) = πβJ,q(qδσx,σy
− 1) and, for ease of

notation in the following, we write

σ(x, y) = qτβJ,q(x, y), x, y ∈ V, (3.5)

thereby suppressing reference to the parameters βJ and q.
Two of the most successful ways of studying the Ising/Potts models are

the so-called ‘random-cluster model’ and the ‘random-current expansion’.
We define next the random-cluster model, and we explain its relevance to
the Potts model. The random-current expansion for the Ising model will be
reviewed in Section 5.

In the (bond) percolation model on G, each edge is declared at random
to be either ‘open’ or ‘closed’. An edge is declared ‘open’ with some given
probability p, and closed otherwise, and different edges are allocated inde-
pendent states. The percolation model is basic to the study of disordered
media, particularly when the underlying graph is part of a ‘crystalline’ lattice
such as the d-dimensional cubic lattice Ld. See [9] for a full account. When G
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is a complete graph, the percolation model is usually called an ‘Erdős–Rényi
random graph’, see [13].

The random-cluster measure on G is obtained through a perturbation
of the percolation measure, as follows. Let p = (pe : e ∈ E) ∈ [0, 1]E and
q ∈ (0,∞). The configuration space is Ω = {0, 1}E. For ω ∈ Ω and e ∈ E, we
say that e is ω-open (or, simply, open) if ω(e) = 1, and ω-closed otherwise.
The random-cluster probability measure on Ω is defined by

φp,q(ω) =
1

ZRC

{

∏

e∈E

pω(e)
e (1 − pe)

1−ω(e)

}

qk(ω), ω ∈ Ω,

where k(ω) denotes the number of ω-open components on the vertex-set V ,
and ZRC = ZRC

G is the appropriate normalizing factor. We sometimes write
φG,p,q when the role of G is to be emphasized.

It is common to take pe = p for all e ∈ E, in which case we write φp,q for
φp,q. The special case q = 1, p = p is evidently the percolation measure with
parameter p, in which case we write φp = φp,1. It turns out that the random-
cluster model with q ∈ {2, 3, . . .} corresponds in a certain way to the Potts
model on G with q local states and with βJ satisfying (3.1). Specifically, the
two-point correlation function of the latter is (up to a harmless factor) equal
to the connection probability of the former,

τβJ,q(x, y) = (1 − q−1)φp,q(x↔ y), x, y ∈ V, (3.6)

where x ↔ y means that there exists a path of open edges from x to y.
The random-cluster model was introduced by Fortuin and Kasteleyn around
1970, and has been reviewed recently in [8, 10, 11].

The random-cluster partition function ZRC
G is given by

ZRC
G (p, q) =

∑

ω∈Ω

p|η(ω)|(1 − p)|E\η(ω)|qk(ω),

and is easily seen by (2.2) to satisfy

ZRC
G (p, q) = q|V |(1 − p)|E|WG

(

p

q(1 − p)
,

p

1 − p

)

, p 6= 1,

a relationship which provides a link with other classical graph-theoretic quan-
tities. See [5, 6, 7, 17, 24].

4 Potts correlations and flow counts

It is shown in this section that the Potts correlation functions (3.4) may be
expressed in terms of flow polynomials associated with a certain ‘Poissonian’
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random graph derived from G by replacing each edge by a random number of
copies. This extends to general q the random-current expansion of the Ising
model described in Section 5.

For any vector m = (m(e) : e ∈ E) of non-negative integers, let Gm =
(V,Em) be the graph with vertex set V and, for each e ∈ E, with exactly
m(e) edges in parallel joining the endvertices of the edge e; the original edge
e is itself removed. Note that

|Em| =
∑

e∈E

m(e). (4.1)

Let λ = (λe : e ∈ E) ∈ [0,∞)E. Let P = (P (e) : e ∈ E) be a family of
independent random variables such that P (e) has the Poisson distribution
with parameter λe. The random graph GP = (V,EP) is called a Poisson

graph with intensity λ. Let P� and E� denote the corresponding probability
measure and expectation operator.

For x, y ∈ V , x 6= y, we denote by Gx,y
P the graph obtained from GP by

adding an edge with endvertices x, y. If x and y are already adjacent in GP,
we add exactly one further edge between them. Potts-correlations and flows
are related by the following theorem. The function σ(x, y) is given in (3.5).

Theorem 4.2. Let q ∈ {2, 3, . . .} and λe = βJe. Then

σ(x, y) =
E�(C(Gx,y

P ; q))

E�(C(GP; q))
, x, y ∈ V. (4.3)

This formula is particularly striking when q = 2, since non-zero mod-2
flows necessarily take only the value 1. A finite graph H = (W,F ) is called
even if the degree of every vertex w is even. It is trivial that CH(2) = 1 if H
is even, and CH(2) = 0 otherwise. By (4.3), for any graph G,

σ(x, y) =
P�(Gx,y

P is even)

P�(GP is even)
. (4.4)

Such observations are at the heart of the random-current expansion for Ising
models. See Section 5.

Theorem 4.2 may be extended via (3.6) to the random-cluster model.
Assume for simplicity that every edge has the same parameter p. The proof
of the following is easily derived from Theorem 4.2, and may be found in
[11]. It is obtained by expressing the flow polynomial in terms of the Tutte
polynomial T , and allowing q to vary continuously.

Theorem 4.5. Let p ∈ [0, 1) and q ∈ (0,∞). Let λe = λ for all e ∈ E,

where p = 1 − e−λq.
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(i) For x, y ∈ V ,

(q − 1)φG,p,q(x↔ y) =
Eλ

(

(−1)1+|EP|T (Gx,y
P ; 0, 1 − q)

)

Eλ

(

(−1)|EP|T (GP; 0, 1 − q)
) . (4.6)

(ii) For q ∈ {2, 3, . . .},

φp(q
k(ω)) = (1 − p)|E|(q−2)/qq|V |Eλ(C(GP; q)). (4.7)

When q = 2, (4.7) reduces to the curiosity

φp(2k(ω)) = 2|V |Pλ(GP is even). (4.8)

This may be simplified further. Let ζ(e) = P (e) modulo 2. It is easily seen
that GP is an even graph if and only if Gζ is even, and that the ζ(e), e ∈ E,
are independent Bernoulli variables with

Pλ(ζ(e) = 1) = 1
2
(1 − e−2λ) = 1

2
p.

Equation (4.7) may therefore be written as

φp(2
k(ω)) = 2|V |φp/2(the open graph on V is even). (4.9)

Proof of Theorem 4.2. Since the parameter β appears together with the mul-
tiplicative factor Je, we may without loss of generality take β = 1. We begin
with a calculation involving the Potts partition function ZP of (3.3). Let
Z+ = {0, 1, 2, . . .} and let m = (me : e ∈ E) ∈ ZE

+. By a Taylor expansion
in the variables Je,

exp

{

−
∑

e∈E

Je

}

ZP =
∑

m∈ZE
+

(

∏

e∈E

Jme
e

me!
e−Je

)

∂mZP
∣

∣

∣

J=0

= E� (∂PZP
∣

∣

∣

J=0

)

(4.10)

where

∂mZP =

(

∏

e∈E

∂me

∂Jme
e

)

ZP, m ∈ ZE
+.
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By (3.3) with β = 1,

∂mZP
∣

∣

∣

J=0
=
∑

σ∈Σ

∏

e∈E

(qδe(σ) − 1)me

=
∑

σ∈Σ

∏

e∈Em

(qδe(σ) − 1)

=
∑

σ∈Σ

∏

e∈Em

∑

ne∈{0,1}

[−δne,0 + δne,1qδe(σ)]

=
∑

n∈{0,1}Em

∑

σ∈Σ

(−1)|{e:ne=0}|q|{e:ne=1}|

(

∏

e∈Em

δe(σ)ne

)

=
∑

n∈{0,1}Em

(−1)|{e:ne=0}|q|{e:ne=1}|qk(m,n), (4.11)

where k(m,n) is the number of connected components of the graph obtained
from Gm after deletion of all edges e with ne = 0. By (2.2)–(2.4),

∂mZP
∣

∣

∣

J=0
= (−1)|Em|

∑

n∈{0,1}Em

(−q)|{e:ne=1}|qk(m,n)

= (−1)|Em|q|V |WGm
(−1,−q) (4.12)

= q|V |C(Gm; q). (4.13)

Combining (4.10)–(4.13),

exp

{

−
∑

e∈E

Je

}

ZP = q|V |E�(C(GP; q)). (4.14)

Let x, y ∈ V . We define the unordered pair f = (x, y), and write δf (σ) =
δσx,σy

for σ ∈ Σ. We have that

σ(x, y) = πβJ,q(qδf(σ) − 1)

=
1

ZP

∑

σ∈Σ

(qδf(σ) − 1) exp

{

∑

e∈E

βJe(qδe(σ) − 1)

}

. (4.15)

By an analysis parallel to (4.10)–(4.14),

exp

{

−
∑

e∈E

Je

}

∑

σ∈Σ

(qδf(σ) − 1) exp

{

∑

e∈E

βJe(qδe(σ) − 1)

}

(4.16)

= q|V |E�(C(Gx,y
P ; q)),

and (4.3) follows by (4.14) and (4.15).
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5 Random-current expansion of the Ising model

Unlike the situation with the Potts model, there is a fairly complete analysis
of the Ising model. A principal part in this analysis is played by Theorem
4.2 with q = 2, under the heading ‘random-current expansion’. This has per-
mitted proofs amongst other things of the exponential decay of correlations
in the low-β regime on the cubic lattice Ld with d ≥ 2. See [1, 2, 3]. It has
not so far been possible to extend this work to general Potts models, but
Theorem 4.2 could play a part in such an extension.

Let G = (V,E) be a finite graph without loops as before, and set q = 2.
We restrict ourselves here to the Ising model with Je = J for all e ∈ E, and
we write λ = βJ . By Theorem 4.2,

σ(x, y) = 2τλ,2(x, y) =
Pλ(Gx,y

P is even)

Pλ(GP is even)
, 0 ≤ λ <∞. (5.1)

The value of such a representation will become clear during the following
discussion, which is based on material in [1, 15, 16]. In advance of this, we
make a remark concerning (5.1). In deciding whether GP or Gx,y

P is an even
graph, we need only know the numbers P (e) when reduced modulo 2. That
is, we can work with ζ ∈ Ω = {0, 1}E given by ζ(e) = P (e) mod 2. Since
P (e) has the Poisson distribution with parameter λ, ζ(e) has the Bernoulli
distribution with parameter

p′ = Pλ(P (e) is odd) = 1
2
(1 − e−2λ).

We obtain thus from (5.1) that

σ(x, y) =
φp′(∂ζ = {x, y})

φp′(∂ζ = ∅)
,

where φp′ denotes product measure on Ω with density p′, and

∂ζ =

{

v ∈ V :
∑

e: e∼v

ζ(e) is odd

}

, ζ ∈ Ω,

where the sum is over all edges e incident to v. We refer to members of ∂ζ
as ‘sources’ of the configuration ζ .

Let M = (Me : e ∈ E) be a sequence of disjoint finite sets (possibly
empty) indexed by E, and let me = |Me|. As noted in the last section, the
vector M may be used to construct a multigraph Gm = (V,Em) in which
each e ∈ E is replaced by me edges in parallel; we may take Me to be the set
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of such edges. For x, y ∈ V , we write ‘x↔ y in m’ if x and y lie in the same
component of Gm. We define the set ∂M of sources of M by

∂M =

{

v ∈ V :
∑

e: e∼v

me is odd

}

. (5.2)

Thus, for example, Gm is even if and only if ∂M is empty. From the vector
M we construct a vector N = (Ne : e ∈ E) by deleting each member of each
Me with probability 1

2
, independently of all other elements. That is, we let

Bi, i ∈
⋃

eMe, be independent Bernoulli random variables with parameter
1
2
, and we set

Ne = {i ∈Me : Bi = 1}, e ∈ E.

We write PM for the appropriate probability measure. The following lemma
is pivotal for the computations which follow.

Lemma 5.3. Let M and m be as above. If x, y ∈ V are such that x 6= y and

x↔ y in m then, for A ⊆ V ,

PM
(

∂N = {x, y}, ∂(M\N) = A
)

= PM
(

∂N = ∅, ∂(M\N) = A △ {x, y}
)

.

Proof. Take Me to be the set of edges of Gm parallel to e, and assume that
x ↔ y in m. Fix A ⊆ V . Let M be the set of all vectors n = (ne : e ∈ E)
with ne ⊆ Me for all e. Let p be a fixed path of Gm with endpoints x, y,
and consider the map ρ : M → M given by

ρ(n) = n △ p, n ∈ M.

The map ρ is one–one, and maps {n ∈ M : ∂n = {x, y}, ∂(M \ n) = A}
to {n′ ∈ M : ∂n′ = ∅, ∂(M \ n′) = A △ {x, y}}. Each member of M is
equiprobable under PM, and the claim follows.

Let λ ∈ [0,∞), and recall from the last section the definition of a Poisson
graph with parameter λ. The following is a fairly immediate corollary of the
last theorem. Let M = (Me : e ∈ E) and M′ = (M ′

e : e ∈ E) be vectors
of disjoint finite sets satisfying Me ∩M

′
f = ∅ for all e, f ∈ E, and suppose

that the random variables me = |Me|, m
′
e = |M ′

e|, e ∈ E are independent
and such that, for each e ∈ E, me and m′

e have the Poisson distribution
with parameter λ. We write M ∪ M′ = (Me ∪M ′

e : e ∈ E), and P for the
appropriate probability measure. The following lemma is a simplification of
the so-called switching lemma of [1].

10



Lemma 5.4. If x, y ∈ V are such that x 6= y and x ↔ y in m + m′ then,

for A ⊆ V ,

P
(

∂M = {x, y}, ∂M′ = A | M ∪ M′
)

= P
(

∂M = ∅, ∂M′ = A △ {x, y} | M ∪M′
)

P-a.s. (5.5)

Proof. Conditional on the sets Me ∪M
′
e for e ∈ E, the sets Me are selected

by the independent removal of each element with probability 1
2
. The claim

now follows from Lemma 5.3.

We present two applications of Lemma 5.4 to the Ising model, as in [1].
For m = (me : e ∈ E) ∈ ZE

+, let

∂m =

{

v ∈ V :
∑

e: e∼v

me is odd

}

, (5.6)

as in (5.2). We write as before

σ(x, y) = 2τλ,2(x, y) = πλ,2(2δσx,σy
− 1), x, y ∈ V,

thereby suppressing reference to λ. By (5.1),

σ(x, y) =
Pλ(∂P = {x, y})

Pλ(∂P = ∅)
. (5.7)

Let QA denote the law of P conditional on the event {∂P = A},

QA(E) = Pλ(P ∈ E | ∂P = A).

We have need of two independent copies P1, P2 of P with potentially different
conditionings, and thus we write QA;B = QA × QB .

Lemma 5.8. Let x, y, z ∈ V be distinct vertices. Then:

(i) σ(x, y)2 = Q?;?(x↔ y in P1 + P2),

(ii) σ(x, y)σ(y, z) = σ(x, z)Q{x,z};?(x↔ y in P1 + P2).

Proof. (i) By (5.7) and Theorem 5.4,

σ(x, y)2 =
Pλ × Pλ(∂P1 = {x, y}, ∂P2 = {x, y})

Pλ(∂P = ∅)2

=
Pλ × Pλ(∂P1 = {x, y}, ∂P2 = {x, y}, x↔ y in P1 + P2)

Pλ(∂P = ∅)2

=
Pλ × Pλ(∂P1 = ∂P2 = ∅, x↔ y in P1 + P2)

Pλ(∂P = ∅)2

= Q?;?(x↔ y in P1 + P2).
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(ii) Similarly,

σ(x, y)σ(y, z)

=
Pλ × Pλ

(

∂P1 = {x, y}, ∂P2 = {y, z}
)

Pλ(∂P = ∅)2

=
Pλ × Pλ

(

∂P1 = ∅, ∂P2 = {x, z}, x↔ y in P1 + P2

)

Pλ(∂P = ∅)2

=
Pλ(∂P2 = {x, z})

Pλ(∂P = ∅)
· Pλ × Pλ

(

x↔ y in P1 + P2 | ∂P1 = ∅, ∂P2 = {x, z}
)

= σ(x, z)Q{x,z};?(x↔ y in P1 + P2),

and the proof is complete.

Theorem (5.8)(ii) leads to an important correlation inequality known as
the ‘Simon inequality’, [16]. Let x, z ∈ V be distinct vertices. A subset
W ⊆ V is said to separate x and z if x, z /∈ W and every path from x to z
contains some vertex of W .

Theorem 5.9. Let x, z ∈ V be distinct vertices, and let W separate x and

z. Then

σ(x, z) ≤
∑

y∈W

σ(x, y)σ(y, z).

Proof. By Theorem 5.8(ii),

∑

y∈W

σ(x, y)σ(y, z)

σ(x, z)
=
∑

y∈W

Q{x,z};?(x↔ y in P1 + P2)

= Q{x,z};?(∣∣{y ∈ W : x↔ y in P1 + P2}
∣

∣

)

.

Assume that the event ∂P1 = {x, z} occurs. On this event, x↔ z in P1+P2.
Since W separates x and z, the set {y ∈W : x↔ y in P1 +P2} is non-empty
on this event. Thus its (conditional) mean size is at least one under Q{x,z};?,
and the claim follows.

The Ising model on the graph G = (V,E) corresponds as described in
Section 3 to a random-cluster measure φp,q with q = 2. By (3.6),

σ(x, y) = 2τλ,2(x, y) = φp,q(x↔ y),

where p = 1 − e−λq and q = 2. The Simon inequality may be written in the
form

φp,q(x↔ z) ≤
∑

y∈W

φp,q(x↔ y)φp,q(y ↔ z)

12



whenever W separates x and z. It is a curious fact that this inequality holds
also when q = 1, see [9, 12]. One may conjecture that it holds for any
q ∈ [1, 2].

Let d ≥ 2. The random-cluster measure φp,q on the cubic lattice Ld

may be obtained as a weak limit (with so-called free boundary conditions)
of the random-cluster measure on finite boxes Λ, as Λ ↑ Zd. The percolation

probability is the function θ given by

θ(p, q) = φp,q(0 ↔ ∞),

the probability that the origin is the endpoint of an infinite open path. The
critical point is defined as

pc(q) = sup{p : θ(p, q) = 0}.

Let ‖ · ‖ be a norm on Zd. It has been conjectured that, for p < pc(q),
there exists γ = γ(p, q) ∈ (0,∞) such that φp,q(0 ↔ x) ≤ e−‖x‖γ for all
x ∈ Zd. This has been proved when q = 1, 2 and q is sufficiently large. The
Simon inequality implies the following necessary and sufficient condition for
exponential decay when q = 2.

Theorem 5.10. Let q = 2 and assume that p is such that
∑

x∈Zd

φp,q(0 ↔ x) <∞.

There exists γ = γ(p, q) ∈ (0,∞) such that

φp,q(0 ↔ z) ≤ e−‖z‖γ , z ∈ Zd.

The proof follows standard lines, and may be found in [11, 16] together
with proofs of the following facts. There is an important extension of the
Simon inequality due to Lieb, [15]. This also may be proved via the flow
representation of Theorem 4.2. The Lieb inequality has an important conse-
quence for the nature of the phase transition of the Ising model, namely the
‘vanishing of the mass gap’.

Let q = 2 and write

ψ(p, q) = lim
n→∞

{

−
1

n
log φp,q(0 ↔ ∂Λn)

}

,

where Λn = [−n, n]d and ∂Λn = Λn\Λn−1. Note that ψ(p, q) is non-increasing
in p, and ψ(p, q) = 0 if p > pc(q). One of the characteristics of a first-order
phase transition is the (strict) exponential decay of connectivity probabilities
at the critical point. The quantity ψ(pc(q), q) is sometimes termed the mass

gap.

13



Theorem 5.11. Let d ≥ 2 and q = 2. Then ψ(p, q) decreases to 0 as

p ↑ pc(q). In particular ψ(pc(q), q) = 0, that is, the mass gap equals 0.

This was proved in [15], see also [11]. The corresponding statement is
known to be false for d ≥ 2 and q > Q(d) for some sufficiently large Q(d).
See [11, 14]. In further use of the random-current expansion (with q = 2), it
has been proved that ψ(p, q) > 0 whenever p < pc(q). See [2, 3, 4] for more
details of the Ising phase transition.
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Interfaces in the Potts model I: Pirogov–Sinai theory of the Fortuin–
Kasteleyn representation. Comm. Math. Phys., 140:81–91, 1991.

[15] E. H. Lieb. A refinement of Simon’s correlation inequality. Comm. Math.

Phys., 77:127–135, 1980.

[16] B. Simon. Correlation inequalities and the decay of correlations in fer-
romagnets. Comm. Math. Phys., 77:111–126, 1980.

[17] A. Sokal. The multivariate Tutte polynomial (alias Potts model) for
graphs and matroids. 2005.

[18] W. T. Tutte. A ring in graph theory. Proc. Camb. Phil. Soc., 43:26–40,
1947.

[19] W. T. Tutte. Graph Theory. Cambridge University Press, Cambridge,
2001.

[20] D. J. A. Welsh. Matroid Theory. Academic Press, London, 1976.

[21] D. J. A. Welsh. Percolation in the random-cluster process. J. Phys. A:

Math. and Gen., 26:2471–2483, 1993.

[22] D. J. A. Welsh. The computational complexity of knot and matroid
polynomials. Discr. Math., 124:251–269, 1994.

[23] D. J. A. Welsh. The Tutte polynomial. Rand. Struct. Alg., 15:210–228,
1999.

[24] D. J. A. Welsh and C. Merino. The Potts model and the Tutte polyno-
mial. J. Math. Phys., 41:1127–1152, 2000.

15



[25] H. Whitney. A logical expansion in mathematics. Bull. AMS, 38:572–
579, 1932.

16


