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Abstract. The one-dimensional contact model for the spread of disease may be
viewed as a directed percolation model on

�
× � in which the continuum axis

is oriented in the direction of increasing time. Techniques from percolation
have enabled a fairly complete analysis of the contact model at and near its
critical point. The corresponding process when the time-axis is unoriented
is an undirected percolation model to which now standard techniques may
be applied. One may construct in similar vein a random-cluster model on�
× � , with associated continuum Ising and Potts models. These models are of

independent interest, in addition to providing a path-integral representation
of the quantum Ising model with transverse field. This representation may
be used to obtain a bound on the entanglement of a finite set of spins in
the quantum Ising model on

�
, where this entanglement is measured via the

entropy of the reduced density matrix. The mean-field version of the quantum
Ising model gives rise to a random-cluster model on Kn× � , thereby extending
the Erdős–Rényi random graph on the complete graph Kn.
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1. Introduction

Brazil is justly famous for its beach life and its probability community. In harness-
ing the first to support the second, a summer school of intellectual distinction and
international visibility in probability theory has been created. The high scientific
stature of the organizers and of the wider Brazilian community has ensured the
attendance of a host of wonderful lecturers during ten years of the Brazilian School
of Probability, and the School has attracted an international audience including
many young Brazilians who continue to leave their marks within this crossroads
subject of mathematics. The warmth and vitality of Brazilian culture have been at-
tractive features of these summer schools, and invitations to participate are greatly
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valued. This short review concerns two topics of recurring interest at the School,
namely percolation and the Ising model (in both its classical and quantum forms),
subject to the difference that one axis of the underlying space is allowed to vary
continuously.

The percolation process is arguably the most fundamental of models for a
disordered medium. Its theory is now well established, and several mathematics
books have been written on and near the topic, see [16, 18, 27, 47]. Percolation is
at the source of one of the most exciting areas of contemporary probability theory,
namely the theory of Schramm–Löwner evolutions (SLE). This theory threatens to
explain the relationship between probabilistic models and conformal field theory,
and is expected to lead ultimately to rigorous explanations of scaling theory for
a host of two dimensional models including percolation, self-avoiding walks, and
the Ising/Potts and random-cluster models. See [37, 46, 48, 49] and the references
therein.

Percolation theory has contributed via the random-cluster model to the study
of Ising/Potts models on a given graph G, see [28]. The methods developed for
percolation have led also to solutions of several of the basic questions about the
contact model on G × R, see [1, 9, 10, 39]. It was shown in [2] that the quantum
Ising model with transverse field on G may be reformulated in terms of a random-
cluster model on G×R, and it has been shown recently in [30] that random-cluster
arguments may be used to study entanglement in the quantum Ising model.

In this short account of percolative processes on G×R for a lattice G, greater
emphasis is placed on the probability theory than on links to statistical mechanics.
We shall recall in Sections 2–3 the problems of percolation on G × R, and of the
contact model on G. This is followed in Section 4 by a description of the continuum
random-cluster model on G × R, and its application to continuum Ising/Potts
models. In Section 5 we present a summary of the use of random-cluster techniques
to study entanglement in the quantum Ising model on Z. An account is included of
a recent result of [30] stating that the entanglement entropy of a line of L spins has
order not exceeding logL in the strong-field regime. The proof relies on a property
of random-cluster measures termed ‘ratio weak-mixing’, studied earlier in [4, 5]
for the random-cluster model on a lattice. The corresponding mean-field model is
considered in Section 6 under the title ‘quantum random graph’, and a conjecture
is presented for such a model.

2. Continuum percolation

Let G = (V,E) be a finite or countably infinite graph which, for simplicity, we
take to be connected with neither loops nor multiple edges. We shall usually take
G to be a subgraph of the hypercubic lattice Zd for some d ≥ 1. The models of this
paper inhabit the space G× R, which we refer to as space–time, and we think of
G×R as being obtained by attaching a ‘time-line’ (−∞,∞) to each vertex x ∈ V .
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Let λ, δ ∈ (0,∞). The continuum percolation model on G×R is constructed
via processes of ‘cuts’ and ‘bridges’ as follows. For each x ∈ V , we select a Poisson
process Dx of points in {x} × R with intensity δ; the processes {Dx : x ∈ V } are
independent, and the points in the Dx are termed ‘cuts’. For each e = 〈x, y〉 ∈ E,
we select a Poisson process Be of points in {e}×R with intensity λ; the processes
{Be : e ∈ E} are independent of each other and of the Dx. Let Pλ,δ denote the
probability measure associated with the family of such Poisson processes indexed
by V ∪E.

For each e = 〈x, y〉 ∈ E and (e, t) ∈ Be, we think of (e, t) as an edge join-
ing the endpoints (x, t) and (y, t), and we refer to this edge as a ‘bridge’. For
(x, s), (y, t) ∈ V × R, we write (x, s) ↔ (y, t) if there exists a path π with end-
points (x, s), (y, t) such that: π is a union of cut-free sub-intervals of G × R and
bridges. For Λ,∆ ⊆ V × R, we write Λ ↔ ∆ if there exist a ∈ Λ and b ∈ ∆ such
that a↔ b.

For (x, s) ∈ V × R, let Cx,s be the set of all points (y, t) such that (x, s) ↔
(y, t). The clusters Cx,s have been studied in [10], where the case G = Z

d was
considered in some detail. Let 0 denote the origin (0, 0) ∈ Zd ×R, and let C = C0

denote the cluster at the origin. Noting that C is a union of line-segments, we
write |C| for the Lebesgue measure of C. The radius rad(C) of C is given by

rad(C) = sup
{

‖x‖ + |t| : (x, t) ∈ C
}

,

where

‖x‖ = sup
i

|xi|, x = (x1, x2, . . . , xd) ∈ Z
d,

is the supremum norm on Z
d.

The critical point of the process is defined by

λc(δ) = sup{λ : θ(λ, δ) = 0},
where

θ(λ, δ) = Pλ,δ(|C| = ∞).

It is immediate by time-scaling that θ(λ, δ) = θ(λ/δ, 1), and we shall use the
abbreviations λc = λc(1) and θ(λ) = θ(λ, 1).

The following exponential-decay theorem will be useful for the study of the
quantum Ising model in Section 5.

Theorem 2.1. [10] Let G = Zd where d ≥ 1, and consider continuum percolation
on G× R.

(i) Let λ, δ ∈ (0,∞). There exist γ, ν satisfying γ, ν > 0 for λ/δ < λc such that:

Pλ,δ(|C| ≥ k) ≤ e−γk, k > 0, (2.2)

Pλ,δ(rad(C) ≥ k) ≤ e−νk, k > 0. (2.3)

(ii) When d = 1, λc = 1 and θ(1) = 0.
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The situation is rather different when the environment is chosen at random.
With G = (V,E) as above, suppose that the Poisson process of cuts at a vertex
x ∈ V has some intensity δx, and that of bridges parallel to the edge e = 〈x, y〉 ∈ E
has some intensity λe. Suppose further that the δx, x ∈ V , are independent,
identically distributed random variables, and the λe, e ∈ E also. Write ∆ and
Λ for independent random variables having the respective distributions, and P
for the probability measure governing the environment. [As before, Pλ,δ denotes
the measure associated with the percolation model in the given environment. The
above use of the letters ∆, Λ to denote random variables is temporary only.]

If there exist λ′, δ′ ∈ (0,∞) such that λ′/δ′ < λc and P (Λ ≤ λ′) = P (∆ ≥
δ′) = 1, then the process is almost surely dominated by a subcritical percolation
process, whence there is (almost sure) exponential decay in the sense of Theorem
2.1(i). This may fail in an interesting way if there is no such almost-sure domina-
tion, in that one may prove exponential decay in the space-direction but only a
weaker decay in the time-direction.

For any probability measure µ and function f , we write µ(f) for the expec-
tation of f under µ. For (x, s), (y, t) ∈ Zd × R and q ≥ 1, we define

dq(x, s; y, t) = max
{

‖x− y‖, [log(1 + |s− t|)]q
}

.

Theorem 2.4. [35, 36] Let G = Zd where d ≥ 1. Suppose that

K = max
{

P
(

[log(1 + Λ)]β
)

, P
(

[log(1 + ∆−1)]β
)}

<∞,

for some β > 2d2
(

1+
√

1 + d−1 +(2d)−1
)

. There exists Q = Q(d, β) > 1 such that
the following holds. For q ∈ [1, Q) and m > 0, there exists ε = ε(d, β,K,m, q) > 0
and η = η(d, β, q) > 0 such that: if

E
(

[

log(1 + (Λ/∆))
]β

)

< ε,

there exist identically distributed random variables Dx ∈ Lη(P ), x ∈ Zd, such that

Pλ,δ

(

(x, s) ↔ (y, t)
)

≤ exp
[

−mdq(x, s; y, t)
]

if dq(x, s; y, t) ≥ Dx,

for (x, s), (y, t) ∈ Zd × R.

The corresponding theorem of [35] contains no estimate for the tail of the Dx.
The above moment property may be derived from the Borel–Cantelli argument
used in the proof of [35], which proceeds by a so-called multiscale analysis, see
[30], Section 8. Explicit values may be given for the constants Q and η, namely

Q =
β(α− d+ αd)

αd(α+ β + 1)
,

where α = d+
√
d2 + d, and one may take any η = η(d, β, q) satisfying

0 < α2η < β

(

α− d+ αd

q
− αd

)

− αd(α + 1).

Complementary accounts of the survival of the process in a random environ-
ment may be found in [2, 7, 17, 42].
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We mention two further types of ‘continuum’ percolation that arise in appli-
cations and have attracted the attention of probabilists. Let Π be a Poisson process
of points in Rd with intensity 1. Two points x, y ∈ Π are joined by an edge, and
said to be adjacent, if they satisfy a given condition of proximity. One now asks
for conditions under which the resulting random graph possesses an unbounded
component.

The following conditions of proximity have been studied in the literature.

1. Lily-pond model. Fix r > 0, and join x and y if and only if |x − y| ≤ r,
where | · | denotes Euclidean distance. There has been extensive study of this
process, and of its generalization, the random connection model, in which x
and y are joined with probability g(|x − y|) for some given non-increasing
function g : (0,∞) → [0, 1]. See [27, 41, 43].

2. Voronoi percolation. To each x ∈ Π we associate the tile

Tx =
{

z ∈ R
d : |z − x| ≤ |z − y| for all y ∈ Π \ {x}

}

.

Two tiles Tx, Ty are declared adjacent if their boundaries share a facet of a
hyperplane of Rd. We colour each tile red with probability ρ, different tiles
receiving independent colours, and we ask for conditions under which there
exists an infinite path of red tiles.

This model has a certain property of conformal invariance when d = 2, 3,
see [8]. When d = 2, there is an obvious property of self-matching, leading to
the conjecture that the critical point is given by ρc = 1

2 , and this has been
proved recently in [15].

3. The contact model

Just as directed percolation on Zd arises by allowing only open paths that are
‘stiff’ in one direction, so the contact model on G is obtained from percolation on
G×R by requiring that open paths traverse time-lines in the direction of increasing
time.

As before, we let Dx, x ∈ V , be Poisson processes with intensity δ, and we
term points in the Dx ‘cuts’. We replace each e = 〈x, y〉 ∈ E by two oriented edges

[x, y〉, [y, x〉, the first oriented from x to y, and the second from y to x. Write ~E

for the set of oriented edges thus obtained from E. For each ~e = [x, y〉 ∈ ~E, we
let B~e be a Poisson process with intensity λ; members of B~e are termed ‘directed
bridges’ from x to y.

For (x, s), (y, t) ∈ V × R, we write (x, s) → (y, t) if there exists an oriented
path π from (x, s) to (y, t) such that: π is a union of cut-free sub-intervals of V ×R

traversed in the direction of increasing time, together with directed bridges in the
directions of their orientations. For Λ,∆ ⊆ V × R, we write Λ → ∆ if there exist
a ∈ Λ and b ∈ ∆ such that a→ b.

The directed cluster ~C at the origin is the set

~C =
{

(x, s) ∈ V × R : 0 → (x, s)
}

,
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of points reachable from the origin 0 along paths directed away from 0. The per-
colation probability is given by

~θ(λ, δ) = Pλ,δ(|~C | = ∞),

and the critical point by

~λc(δ) = sup
{

λ : ~θ(λ, δ) = 0
}

.

As before, we write ~θ(λ) = ~θ(λ, 1) and ~λc = ~λc(1).
The conclusion of Theorem 2.1(i) is valid in this new setting, with C replaced

by ~C, etc, see [9]. The exact value of the critical point is unknown even when d = 1,

although there are physical reasons to believe in this case that ~λc = 1.694 . . . , the
critical value of the so-called reggeon spin model, see [26, 38]. In compensation,

it is known that ~θ(~λc) = 0 in all dimensions, [9]. The contact model in a random
environment may be studied as in Theorem 2.4, see [35, 36].

Further theory of the contact model may be found in [38, 39]. Sakai and van
der Hofstad [45] have shown how to apply the lace expansion to the spread-out
contact model on Zd for d > 4, and related results are valid for directed percolation
even when the connection function has unbounded domain, see [19, 20].

4. Random-cluster and Ising/Potts models

The percolation model on a graph G = (V,E) may be generalized to obtain the
random-cluster model on G, see [28]. Similarly, the continuum percolation model
on G × R may be extended to a continuum random-cluster model. Let W be a
finite subset of V that induces a connected subgraph of G, and let EW denote
the set of edges joining vertices in W . Let β ∈ (0,∞), and let Λ be the ‘box’
Λ = W × [0, β]. Let PΛ,λ,δ denote the probability measure associated with the
Poisson processes Dx, x ∈ W , and Be, e = 〈x, y〉 ∈ EW . As sample space we
take the set ΩΛ comprising all finite sets of cuts and bridges in Λ, and we may
assume without loss of generality that no cut is the endpoint of any bridge. For
ω ∈ ΩΛ, we write B(ω) and D(ω) for the sets of bridges and cuts, respectively, of
ω. The appropriate σ-field FΛ is that generated by the open sets in the associated
Skorohod topology, see [10, 22].

For a given configuration ω ∈ ΩΛ, let k(ω) be the number of its clusters under
the connection relation ↔. Let q ∈ (0,∞), and define the ‘continuum random-
cluster’ probability measure PΛ,λ,δ,q by

dPΛ,λ,δ,q(ω) =
1

Z
qk(ω)dPΛ,λ,δ(ω), ω ∈ ΩΛ, (4.1)

for an appropriate normalizing constant, or ‘partition function’, Z = ZΛ(λ, δ, q).
The quantity q is called the cluster-weighting factor. The continuum random-
cluster model may be studied in very much the same way as the random-cluster
model on a lattice, see [28].
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The space ΩΛ is a partially ordered space with order relation given by: ω1 ≤
ω2 if B(ω1) ⊆ B(ω2) and D(ω1) ⊇ D(ω2). A random variable X : ΩΛ → R is called
increasing if X(ω) ≤ X(ω′) whenever ω ≤ ω′. An event A ∈ FΛ is called increasing
if its indicator function 1A is increasing. Given two probability measures µ1, µ2 on
a measurable pair (ΩΛ,FΛ), we write µ1 ≤st µ2 if µ1(X) ≤ µ2(X) for all bounded
increasing continuous random variables X : ΩΛ → R.

The measures PΛ,λ,δ,q have certain properties of stochastic ordering as the
parameters Λ, λ, δ, q vary. The basic theory will be assumed here, and the reader is
referred to [11] for further details. In rough terms, the PΛ,λ,δ,q inherit the properties
of stochastic ordering and positive association enjoyed by their counterparts on
discrete graphs. Of particular value later will be the stochastic inequality

PΛ,λ,δ,q ≤st PΛ,λ,δ when q ≥ 1. (4.2)

While it will not be important for what follows, we note that the thermody-
namic limit may be taken in much the same manner as for the discrete random-
cluster model, whenever q ≥ 1. Suppose, for example, that W is a finite connected
subgraph of the lattice G = Zd, and assign to the box Λ = W × [0, β] a suitable
boundary condition. As in [28], if the boundary condition τ is chosen in such a
way that the measures P

τ
Λ,λ,δ,q are monotonic as W ↑ Z

d, then the weak limit
Pτλ,δ,q,β = limW↑Zd PτΛ,λ,δ,q exists. One may similarly allow the limit as β → ∞ to
obtain a measure Pτλ,δ,q = limβ→∞ Pτλ,δ,q,β.

Let G = Zd. Restricting ourselves for convenience to the case of free boundary
conditions, we define the percolation probability by

θ(λ, δ, q) = Pλ,δ,q(|C0| = ∞),

and the critical point by

λc(Z
d, q) = sup

{

λ : θ(λ, 1, q) = 0
}

.

Here, |C| denotes the aggregate (one-dimensional) Lebesgue measure of the time
intervals comprising C. In the special case d = 1, the random-cluster model has a
property of self-duality that leads to the following conjecture.

Conjecture 4.3. The continuum random-cluster model on Z × R with cluster-
weighting factor satisfying q ≥ 1 has critical value λc(Z, q) = q.

It may be proved by standard means that λc(Z, q) ≥ q. See [28], Section 6.2,
for the corresponding result on the discrete lattice Z2.

The continuum Potts model onG×R is given as follows. Let q ∈ {2, 3, . . .}. To
each cluster of the random-cluster model with cluster-weighting factor q is assigned
a ‘spin’ from the space Σ = {1, 2, . . . , q}, different clusters receiving independent
spins. The outcome is a function σ : V × R → Σ, and this is the spin-vector of a
‘continuum q-state Potts model’ with parameters λ and δ. When q = 2, we refer
to the model as a continuum Ising model.
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It may be seen that the law of the above spin model on Λ = W × [0, β] is
given by

dP(σ) =
1

Z
eλL(σ) dPΛ,δ(Dσ),

where Dσ is the set of (x, s) ∈ W × [0, β] such that σ(x, s−) 6= σ(x, s+), PΛ,δ is
the law of a family of independent Poisson processes on the time-lines {x}× [0, β],
x ∈ W , with intensity δ, and

L(σ) =
∑

〈x,y〉∈EW

∫ β

0

1{σ(x,u)=σ(y,u)} du

is the aggregate Lebesgue measure of those subsets of pairs of adjacent time-lines
on which the spins are equal. As usual, Z is an appropriate constant.

The continuum Ising model has arisen in the study by Aizenman, Klein, and
Newman, [2], of the quantum Ising model with transverse field, as described in the
next section.

5. The quantum Ising model

Aizenman, Klein, and Newman reported in [2] a representation of the quantum
Ising model in terms of the q = 2 continuum random-cluster and Ising models. This
was motivated in part by arguments of [17] and by earlier work referred to therein.
We summarise this here, and we indicate how it may be used to study the property
of entanglement in the quantum Ising model on Z. Related representations may
be constructed for a variety of quantum spin systems, see [3].

The quantum Ising model on a finite graph G = (V,E) is defined as follows.
To each vertex x ∈ V is associated a quantum spin- 1

2 with local Hilbert space C2.

The Hilbert space H for the system is therefore the tensor product H =
⊗

x∈V C2.

As basis for the copy of C2 labelled by x ∈ V , we take the two eigenstates, denoted

as |+〉x =

(

1
0

)

and |−〉x =

(

0
1

)

, of the Pauli matrix

σ(3)
x =

(

1 0
0 −1

)

at the site x, with corresponding eigenvalues ±1. The other two Pauli matrices
with respect to this basis are:

σ(1)
x =

(

0 1
1 0

)

, σ(2)
x =

(

0 −i
i 0

)

. (5.1)

In the following, |φ〉 denotes a vector and 〈φ| its adjoint.

Let D be the set of 2|V | basis vectors |η〉 for H of the form |η〉 =
⊗

x |±〉x.
There is a natural one–one correspondence between D and the space Σ = ΣV =
∏

x∈V {−1,+1}. We may speak of members of Σ as basis vectors, and of H as the
Hilbert space generated by Σ.
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The Hamiltonian of the quantum Ising model with transverse field is the
operator

H = − 1
2λ

∑

e=〈x,y〉∈E

σ(3)
x σ(3)

y − δ
∑

x∈V

σ(1)
x , (5.2)

generating the operator e−βH where β denotes inverse temperature. Here, λ, δ ≥ 0
are the spin-coupling and transverse-field intensities, respectively. The Hamilton-
ian has a unique pure ground state |ψG〉 defined at zero-temperature (that is, in
the limit as β → ∞) as the eigenvector corresponding to the lowest eigenvalue of
H .

Let

ρG(β) =
1

ZG(β)
e−βH , (5.3)

where
ZG(β) = tr(e−βH) =

∑

η∈Σ

〈η|e−βH |η〉.

It turns out that the matrix elements of ρG(β) may be expressed in terms of a type
of ‘path integral’ with respect to the continuum random-cluster model on G×[0, β]
with parameters λ, δ and q = 2. Let Λ = V × [0, β], write ΩΛ for the configuration
space of the latter model, and let φG,β be the appropriate continuum random-
cluster measure on ΩΛ (with free boundary conditions). For ω ∈ ΩΛ, let Sω denote
the space of all functions s : V ×[0, β] → {−1,+1} that are constant on the clusters
of ω, and let S be the union of the Sω over ω ∈ ΩΛ. Given ω, we may pick an
element of Sω uniformly at random, and we denote this random element as σ. We
shall abuse notation by using φG,β to denote the ensuing probability measure on
the coupled space ΩΛ×S. For s ∈ S and W ⊆ V , we write sW,0 (respectively, sW,β)
for the vector (s(x, 0) : x ∈ W ) (respectively, (s(x, β) : x ∈ W )). We abbreviate
sV,0 and sV,β to s0 and sβ , respectively.

The following representation of the matrix elements of ρG(β) is obtained by
the Lie–Trotter expansion of the exponential in (5.3), and it permits the use of
random-cluster methods to study the matrix ρG(β). For example, as pointed out
in [2], it implies the existence of the low-temperature limits

〈η′|ρG|η〉 = lim
β→∞

〈η′|ρG(β)|η〉, η, η′ ∈ Σ.

Theorem 5.4. [2] The elements of the density matrix ρG(β) are given by

〈η′|ρG(β)|η〉 =
φG,β(σ0 = η, σβ = η′)

φG,β(σ0 = σβ)
, η, η′ ∈ Σ. (5.5)

This representation may be used to study the degree of entanglement in the
quantum Ising model on G. Let W ⊆ V , and consider the reduced density matrix

ρWG (β) = trV \W (ρG(β)), (5.6)

where the trace is performed over the Hilbert space HV \W =
⊗

x∈V \W C2 of the

spins belonging to V \W . By an analysis parallel to that leading to Theorem 5.4,
we obtain the following.



10 Geoffrey R. Grimmett

Theorem 5.7. [30] The elements of the reduced density matrix ρWG (β) are given by

〈η′|ρWG (β)|η〉 =
φG,β(σW,0 = η, σW,β = η′ | E)

φG,β(σ0 = σβ | E)
, η, η′ ∈ ΣW , (5.8)

where E is the event that σV \W,0 = σV \W,β.

Let DW be the set of 2|W | vectors |η〉 of the form |η〉 =
⊗

x∈W |±〉x, and write
HW for the space generated by DW . Just as before, there is a natural one–one
correspondence between DW and the space ΣW =

∏

x∈W {−1,+1}, and we shall
regard HW as the Hilbert space generated by ΣW .

We may write
ρG = lim

β→∞
ρG(β) = |ψG〉〈ψG|

for the density matrix corresponding to the ground state of the system, and simi-
larly

ρWG = trV \W (|ψG〉〈ψG|) = lim
β→∞

ρWG (β). (5.9)

There has been extensive study of entanglement in the physics literature,
see the references in [30]. The entanglement of the spins in W may be defined as
follows.

Definition 5.10. The entanglement of the vertex-set W relative to its complement
V \W is the entropy

SWG = − tr(ρWG log2 ρ
W
G ). (5.11)

The behaviour of SWG , for general G and W , is not understood at present.
We specialize here to the case of a finite subset of the one-dimensional lattice Z.
Let m,L ≥ 0 and take V = [−m,m+ L] and W = [0, L], viewed as subsets of Z.
We obtain G from V by adding edges between each pair x, y ∈ V with |x− y| = 1.
We write ρm(β) for ρG(β), and SLm for SWG . A key step in the study of SLm for large
m is a bound on the norm of the difference ρLm − ρLn . For a Hermitian matrix A,
let

‖A‖ = sup
‖ψ‖=1

∣

∣〈ψ|A|ψ〉
∣

∣,

where the supremum is over all ψ ∈ HL with L2-norm 1.

Theorem 5.12. [30] Let λ, δ ∈ (0,∞) and write θ = λ/δ. There exist constants C,
α, γ depending on θ and satisfying γ > 0 when θ < 1 such that:

‖ρLm − ρLn‖ ≤ min
{

2, CLαe−γm
}

, 2 ≤ m ≤ n <∞, L ≥ 1. (5.13)

One would expect that γ may be taken in such a manner that γ > 0 under the
weaker assumption λ/δ < 2, but this has not yet been proved (cf. Conjecture 4.3).
The constant γ is, apart from a constant factor, the reciprocal of the correlation
length of the associated random-cluster model.

Inequality (5.13) is proved in [30] by the following route. Consider the random-
cluster model with q = 2 on the space–time graph Λ = V × [0, β] with ‘partial
periodic top/bottom boundary conditions’; that is, for each x ∈ V \W , we identify
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the two vertices (x, 0) and (x, β). Let φp
m,β denote the associated random-cluster

measure on ΩΛ. To each cluster of ω (∈ ΩΛ) we assign a random spin from {−1,+1}
in the usual manner, and we abuse notation by using φp

m,β to denote the measure
governing both the random-cluster configuration and the spin configuration. Let

am,β = φp
m,β(σW,0 = σW,β),

noting that

am,β = φm,β(σ0 = σβ | E)

as in (5.8).
By Theorem 5.7,

〈ψ|ρLm(β) − ρLn(β)|ψ〉 =
φp
m,β(c(σW,0)c(σW,β))

am,β
−
φp
n,β(c(σW,0)c(σW,β))

an,β
, (5.14)

where c : {−1,+1}W → C and

ψ =
∑

η∈ΣW

c(η)η ∈ HW .

The random-cluster property of ratio weak-mixing is used in the derivation
of (5.13) from (5.14). At the final step of the proof of Theorem 5.12, the random-
cluster model is compared with the continuum percolation model of Section 2,
and the exponential decay of Theorem 5.12 follows by Theorem 2.1. A logarithmic
bound on the entanglement entropy follows for sufficiently small λ/δ.

Theorem 5.15. [30] Let λ, δ ∈ (0,∞) and write θ = λ/δ. There exists θ0 ∈ (0,∞)
such that: for θ < θ0, there exists K = K(θ) <∞ such that

SLm ≤ K log2 L, m ≥ 0, L ≥ 2. (5.16)

A stronger result is expected, namely that the entanglement SLm is bounded
above, uniformly in L, whenever θ is sufficiently small, and perhaps for all θ < θc
where θc = 2 is the critical point. See Conjecture 4.3 above, and the references in
[30], especially [6]. There is no rigorous picture known of the behaviour of SLm for
large θ, or of the corresponding quantity in dimensions d ≥ 2, although Theorem
5.12 has a counterpart in this setting. Theorem 5.15 may be extended to the
disordered system in which the intensities λ, δ are independent random variables
indexed by the vertices and edges of the underlying graph, subject to certain
conditions on these variables (cf. Theorem 2.4 and the preceding discussion). See
also [24].

6. The mean-field continuum model

The term ‘mean-field’ is often interpreted in percolation theory as percolation on
either a tree (see [27], Chapter 10) or a complete graph. The latter case is known
as the Erdős–Rényi random graph Gn,p, and this is the random graph obtained
from the complete graph Kn on n vertices by deleting each edge with probability



12 Geoffrey R. Grimmett

1 − p. The theory of Gn,p is well developed and rather refined, see [12, 34], and
particular attention has been paid to the emergence of the giant cluster for p = λ/n
and λ ' 1. A similar theory has been developed for the random-cluster model on
Kn with parameters p, q, see [13, 28, 40].

Unless boundary conditions are introduced in the manner of [28, 29, 31], the
continuum random-cluster model on a tree may be solved exactly by standard
means. We therefore concentrate here on the case of the complete graph Kn on
n vertices. Let β > 0, and attach to each vertex the line [0, β] with its endpoints
identified; thus, the line forms a circle. We now consider the continuum random-
cluster model onKn×[0, β] with parameters p = λ/n, δ = 1, and q. [The convention
of setting δ = 1 differs from that of [32] but is consistent with that adopted in
earlier work on related models.]

Suppose that q ≥ 1, so that we may use methods based on stochastic compar-
isons. It is natural to ask for the critical value λc = λc(β, q) of λ above which the
model possesses a giant cluster. This has been answered thus by Ioffe and Levit,
[32], in the special case q = 1. Let F (β, λ) be given by

F (β, λ) = λ
[

2(1 − e−β) − βe−β
]

,

and let λc = λc(β) be chosen so that F (β, λc) = 1.

Theorem 6.1. [32] Let M be the maximal (one-dimensional) Lebesgue measure of
the clusters of the process with parameters β, p = λ/n, δ = 1, q = 1. Then, as
n→ ∞,

1

n
M →

{

0 if λ < λc,

βπ if λ > λc,

where π = π(β, λ) ∈ (0, 1) when λ > λc, and the convergence is in probability.

When λ > λc, the density of the giant cluster is π, in that there is probability
π that any given point of Kn×[0, β] lies in this giant cluster. The claim of Theorem
6.1 has a straightforward motivation (the proof is more complicated). Let 0 be a
vertex of Kn, and let I be the maximal cut-free interval of 0 × [0, β] (viewed as
a circle) containing the point 0 × 0. Given I , the mean number of bridges leaving
I is λ|I |(n − 1)/n ∼ λ|I |, where |I | is the Lebesgue measure of I . One may thus
approximate to the cluster at 0× 0 by a branching process with mean family-size
λE|I |. It is elementary that λE|I | = F (β, λ), which is to say that the branching
process is subcritical (respectively, supercritical) if λ < λc (respectively, λ > λc).
The full proof may be found in [32], and a further proof has appeared in [33]. The
quantity π is of course the survival probability of the above branching process,
and this may be calculated in the standard way on noting that |I | is distributed
as min{U +V, β} where U , V are independent, exponentially distributed, random
variables with mean 1.

What is the analogue of Theorem 6.1 when q 6= 1? Indications are presented
in [32] of the critical value when q = 2, and the problem is posed there of proving
this value by calculations of the random-cluster type to be found in [13]. There is
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a simple argument that yields upper and lower bounds for the critical value for
any q ∈ [1,∞). We present this next, and also explain our reason for believing the
upper bound to be exact when q ∈ [1, 2].

Consider the continuum random-cluster model onKn×[0, β] with parameters
p = λ/n, δ = 1, and q ∈ (0,∞). Let

Fq(β, λ) =
λ

q2
· 2eβq − 2 + βq(q − 2)

eβq + q − 1
, (6.2)

noting that F1 = F .

Theorem 6.3. Let Mq be the maximal (one-dimensional) Lebesgue measure of the
clusters of the process with parameters β, p = λ/n, δ = 1, q ∈ [1,∞).

(i) We have that limn→∞ n−1Mq = 0 if Fq < q−1, where the convergence is in
probability.

(ii) There exists πq = πq(β, λ), satisfying πq > 0 whenever Fq > 1, such that

lim inf
n→∞

P

(

1

n
Mq ≥ βπq

)

→ 1.

The bound πq may be calculated by a branching-process argument, in the
same manner as was π = π1, above. We conjecture that n−1Mq → 0 in probability
if Fq < 1 and q ∈ [1, 2]. This conjecture is motivated by the evidence of [13] that,
in the second-order phase transition occurring when q ∈ [1, 2], the location of the
critical point is given by the branching-process approximation described in the
sketch proof below. This amounts to the claim that the critical value λc(q) of the
continuum random-cluster model with cluster-weighting factor q satisfies

λc(q) = q2
eβq + q − 1

2eβq − 2 + βq(q − 2)
, q ∈ [1, 2]. (6.4)

This is implied by Theorem 6.1 when q = 1, and by the claim of [32] when q = 2.
Note the relatively simple formula when q = 2,

λc(2) =
2

tanhβ
, (6.5)

which might be termed the critical point of the quantum random graph. Dmitry
Ioffe has pointed out that the exact calculation (6.5) may be derived from the
results of [21, 23]. Results similar to those of Theorem 6.3 may be obtained for
q < 1 also.

Sketch proof of Theorem 6.3. We begin with part (ii). The idea is to bound the
process below by a random graph to which the results of [14, 33] may be applied
directly. The bounding process is obtained as follows. First, we place the cuts on
each of the time-lines x× [0, β], and we place no bridges. Thus, the cuts on a given
time-line are placed in the manner of the continuum random-cluster model on that
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line. It may be seen that the number D of cuts on any given time-line has mass
function

P (D = k) =
e−β

Z
· q

k∨1βk

k!
, k ≥ 0,

where a ∨ b = max{a, b}, and Z is the requisite constant,

Z = (q − 1)e−β + eβ(q−1).

It is an easy calculation that the maximal cut-free interval I containing the point
0 × 0 satisfies E|I | = qFq/λ.

We next place edges between pairs of time-lines according to independent
Poisson processes with intensity λ/q. We term the ensuing graph a ‘product
random-cluster model’, and we claim that this model is dominated (stochasti-
cally) by the continuum random-cluster model. This may be seen in either of two
ways: one may apply suitable comparison inequalities (see [28], Section 3.4) to a
discrete approximation of Kn× [0, β] and then pass to the continuum limit, or one
may establish it directly for the continuum model. Related material has appeared
in [25, 44].

If this ‘product’ random-cluster model possesses a giant cluster, then so does
the original random-cluster model. The former model may be studied either via the
general techniques of [14, 33] for inhomogeneous random graphs, or using the usual
branching process approximation. We follow the latter route here, but omit the
details. In the limit as n→ ∞, the mean number of offspring of 0 × 0 approaches
(λ/q)E|I | = Fq , so that the branching process is supercritical if Fq > 1. The claim
of part (ii) follows.

For part (i) one proceeds similarly, but with λ/q replaced by λ and the
domination reversed. �
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