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The 1-2 model

Geoffrey R. Grimmett and Zhongyang Li

Abstract. The current paper is a short review of rigorous results for the
1-2 model. The 1-2 model on the hexagonal lattice is a model of statistical
mechanics in which each vertex is constrained to have degree either 1 or 2. It
was proposed in a study by Schwartz and Bruck of constrained coding systems,
and is strongly connected to the dimer model on a decoration of the lattice,
and to an enhanced Ising model and an associated polygon model on the graph

derived from the hexagonal lattice by adding a further vertex in the middle of
each edge.

The general 1-2 model possesses three parameters a, b, c. The funda-
mental technique is to represent probabilities of interest as ratios of counts of
dimer coverings of certain associated graphs, and to apply the Pfaffian method
of Kasteleyn, Fisher, and Temperley.

Of special interest is the existence (or not) of phase transitions. It turns
out that all clusters of the infinite-volume limit are almost surely finite. On
the other hand, the existence (with strictly positive probability) of infinite ‘ho-
mogeneous’ clusters, containing vertices of given type, depends on the values
of the parameters.

A further type of phase transition emerges in the study of the two-edge
correlation function, and in this case the critical surface may be found explic-

itly. For instance, when a ≥ b ≥ c > 0, the surface given by
√
a =

√
b+

√
c is

critical.

1. Origin of the 1-2 model

The 1-2 model originated in the work of computer scientists Schwartz and Bruck
[23] on constrained coding systems. They studied an array of variables on the
hexagonal lattice H subject to the ‘not all equal’ constraint. Of particular interest
to them was the asymptotic behaviour of the number of acceptable configurations
on large bounded regions Hn of the lattice, in the ‘thermodynamic limit’ as Hn ↑ H.
Using the method of so-called ‘holographic reduction’, they were able to map their
counting problem to one of counting the number of perfect matchings (or ‘dimer
coverings’) on a certain graph derived from the hexagonal lattice. This last problem
may be solved using the Pfaffian representation of Kasteleyn [15], Fisher [5], and
Temperley and Fisher [24].

When rephrased in the language of statistical mechanics, the work of Schwartz
and Bruck amounts to the calculation of the partition function of the following
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1-2 model of probability theory and mathematical physics. Let H = (V,E) be the
hexagonal lattice of Figure 1.1, and let Σ = {−1, 1}E be the set of configurations
of absent/present edges, where the local state −1 (respectively, 1) means absent
(respectively, present). The sample space is the subset of Σ containing all σ ∈ Σ
such that: every vertex of H is incident to either one or two present edges. Thus,
a configuration comprises disjoint paths and cycles of present edges.

Let Hn be an n × n subgraph of H with periodic boundary conditions, and
let μn be the uniform probability measure on the set of 1-2 configurations on Hn.
We ask for properties of μn in the limit as n → ∞. In particular, does the limit
measure μ∞ := limn→∞ μn exist, and, if so, what can be said about the long-range
correlations of edge-states under μ∞? It turns out that the connection to dimers
may be exploited to answer such questions.

The above system is a lattice model whose partition function can be com-
puted by the calculation of certain determinants using the holographic algorithm
of Valiant [25]. By introducing an invertible 2 × 2 matrix on edges of a graph
and conducting a base change, the partition function of a general vertex model
on a graph G is transformed into the partition function of perfect matchings on
a certain decorated version of G. Valiant’s original holographic algorithm can be
generalized by assigning different bases to different edges (see [16]), and the ensu-
ing algorithm can be used to compute partition functions of a larger class of vertex
models in polynomial time.

τ1τ2

a
b

c

Figure 1.1. The graph Hn is an n × n lozenge wrapped onto a
torus. A horizontal (respectively, NW/SE, NE/SW) edge is said
to be of type a (respectively, type b, c).

The holographic algorithm seems, however, not to be the most efficient way to
solve the 1-2 model. In particular, the correspondence between the 1-2 partition
function and the dimer partition function on a corresponding Fisher graph, via
the base change method, is not measure-preserving; thus, the computation of local
statistics and related probabilities becomes complicated, even if possible. An alter-
native measure-preserving correspondence was introduced in [18], and this permits
a number of representations in closed form of probabilities associated with the 1-2
model. This method, and some of its consequences, will be described in the current
review.

Certain properties of the underlying hexagonal lattice are utilized heavily in this
work, such as trivalence, planarity, and support of a Z2 action. It may be possible
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to extend the results summarized here to certain other graphs with such properties,
including the Archimedean (3, 122) and (4, 82) lattices, and also to certain periodic
models.

The formal definition of the 1-2 model is presented in Section 2. The model has
strong connections to the dimer and Ising models as well as to a certain polygon
model, and these connections are laid out in Section 3. Two approaches to the issue
of phase transition are outlined in Section 4, using the geometry and the correlation
structure, respectively, and an exact formula for the critical surface is given in the
second case.

2. Definition of the 1-2 model

Whereas the 1-2 model of [23] is uniform in that there is only one parameter,
we present here the more general three-parameter model of [16].

Let n ≥ 1, and let τ1, τ2 be the two shifts of H as in Figure 1.1. The pair
(τ1, τ2) generates a Z

2 action on H, and we write Hn = (Vn, En) for the (toroidal)
quotient graph of H under the subgroup of Z2 generated by the powers τn1 and
τn2 . The configuration space Σn is the set of all σ ∈ {−1, 1}En such that every
v ∈ Vn is incident to either 1 or 2 edges e with σ(e) = 1. Note that σ ∈ Σn if and
only if −σ ∈ Σn. It is sometimes convenient to work with the vector σ′ given by
σ′(e) = 1

2 (1 + σ(e)).

000, 0 001, a 010, b 100, c111, 0 110, a 101, b 011, c

000, 0 001, a 010, b 100, c111, 0 110, a 101, b 011, c000, 0 001, a 010, b 100, c111, 0 110, a 101, b 011, c

Figure 2.1. Each vertex has eight possible local configurations,
six of which have nontrivial weights, a, b, or c as above. A vertex
v is said to be of type s in configuration σ if σ|v has weight s ∈
{a, b, c}. Whereas the type of an edge is deterministic (see Figure
1.1), the type of a vertex is random.

A vertex v ∈ Vn is incident to three edges e1, e2, e3 of Hn, which are in the
respective orientations: horizontal, NW/SE, and NE/SW. Let σ ∈ Σn, and let the
signature at v be the triple σ|v := σ′(e3)σ

′(e2)σ
′(e1) ∈ {0, 1}3 considered as a word

with three letters in the alphabet with two letters. Let a, b, c ∈ [0,∞) be such that
(a, b, c) �= (0, 0, 0). To the signature σ|v is allocated the weight w(σ|v) ∈ {0, a, b, c}
given in Figure 2.1, and the weight function w : Σn → [0,∞) is defined by

(2.1) w(σ) =
∏
v∈Vn

w(σ|v).
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This gives rise to the probability measure μn given by

(2.2) μn(σ) =
1

Zn
w(σ),

where

(2.3) Zn = Zn(a, b, c) =
∑
σ∈Σn

w(σ)

is the partition function. A sample drawn (approximately) from μ10 is depicted in
Figure 2.2.

Figure 2.2. A realization of the (uniform) 1-2 model on H10 with
a = b = c = 1, drawn by MCMC methods. Each vertex has degree
either 1 or 2, and therefore all components are either paths or
cycles.

It turns out that the weak limit of the sequence (μn : n ≥ 1) exists. However,
no simple correlation inequality is known, and the proof of existence of the limit
follows a different route using the relationship to dimer configurations outlined in
Section 3.1.

Theorem 2.1 ([10, Thm 6.2]). The weak limit

μ∞ := lim
n→∞

μn

exists and is translation invariant.

The infinite-volume limit μ∞ is of course a Gibbs state in the sense that it sat-
isfies the relevant Dobrushin–Lanford–Ruelle (DLR) condition (see [7, Sect. 4.4]).
On the other hand, the structure of the space of such Gibbs measures is unknown.
Neither is it known for which parameter-values μ∞ is ergodic (it is not ergodic
under the conditions of [18, Thm 4.9] and Theorem 4.3(b) of the current paper).

Remark 2.2. For edges e, f of H and for sufficiently large n, we write 〈σeσf 〉n
for the two-edge correlation function of the measure μn. By Theorem 2.1, the limit

〈σeσf 〉 = lim
n→∞

〈σeσf 〉n
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exists. In Section 4.3, we shall consider the limit lim|e−f |→∞〈σeσf 〉 as an order
parameter that is indicative of phase transition.

Figure 2.3. Part of the hexagonal lattice H is drawn on the left,
together with a 1-2 configuration. The graph HΔ on the right is
obtained by replacing each face of H by a certain ‘gadget’. The
left-hand 1-2 configuration gives rise to a dimer configuration on
the decorated graph on the right, as described in the text. The
fundamental domain is outlined as a lozenge, and expanded in
Figure 3.1.

3. The dimer, Ising, and polygon models

The relationship between the 1-2 model and the dimer model is pivotal to
the study of the former. Dimers are relevant also to the study of Ising models in
two dimensions (see, for example, [17]), and the Ising model gives rise in turn to
a ‘high temperature’ polygon model (see for example, [1, p. 75] and [9, 21, 26]).
Therefore, the 1-2 model is connected firmly to the Ising and polygon models. These
connections play roles in the theory of the 1-2 model, and are summarized in this
section.

3.1. The dimer model. Let H = (V,E) be the hexagonal lattice, and let
HΔ = (VΔ, EΔ) be the ‘decorated graph’ drawn on the right side of Figure 2.3.
The graph in the figure is obtained by replacing each face F of H by a certain
‘gadget’ comprising a path which is joined to the vertices of F in the manner
drawn in the figure.

A 1-2 configuration of the left side of Figure 2.3 gives rise to a dimer configura-
tion on the decorated graph on the right, as follows. Note first that V ⊆ VΔ. Each
v ∈ V has three incident edges in HΔ, and these edges in HΔ may be regarded as
the bisector edges of the three angles in H at v.

Let σ ∈ Σ. An edge e ∈ EΔ, incident to a vertex v ∈ V, is designated present if
and only if the two sides of the corresponding angle of H have the same states, that
is, either both are present or both are absent. Once we have determined the states
of the bisector edges of HΔ, there is a unique extension to a dimer configuration
on HΔ. See Figure 2.3. Note that the two 1-2 configurations σ,−σ ∈ Σ give rise to
the same dimer configuration, and thus the above correspondence is two-to-one.
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Consider now the toroidal graph Hn and the corresponding decorated graph
Hn,Δ. The edges of Hn,Δ are weighted, with the edge e = 〈i, j〉 having weight

(3.1) wi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a if e is a horizontal bisector edge,

b if e is a NW/SE bisector edge,

c if e is a NE/SW bisector edge,

1 otherwise.

The weight of a dimer configuration is defined as the product of the weights of
the edges that are present, and this gives rise (as in (2.2)) to a probability mea-
sure δn,Δ on dimer configurations. Now, δn,Δ-probabilities may be represented as
weighted counts of dimer configurations, and such quantities on planar graphs may
be computed by the Pfaffian method of Kasteleyn [15], Fisher [5], and Temperley
and Fisher [24]. This leads to the following limit theorem.

Theorem 3.1 ([18, Prop. 3.3]). Let a, b, c > 0. The limit measure

δΔ := lim
n→∞

δn,Δ

exists and is translation-invariant and ergodic.

Theorem 2.1 follows by Theorem 3.1 and the above correspondence between
1-2 model configurations and dimer configurations. Note that the weak limit for
1-2 measures need not be ergodic.

u1 v2

γx γy

u2

v1

w

wz

z

Figure 3.1. A single fundamental domain of the decorated graph
Hn,Δ obtained from the central lozenge of Figure 2.3. This illus-
trates the relationship between the fundamental domain and the
original hexagonal lattice H. Note the homology cycles γx, γy of
the torus.

A δn,Δ-probability may be expressed in terms of weighted counts of dimers,
and these are studied via the Pfaffian representation. As explained in [10] and the
references therein, the asymptotics (as n → ∞) of such Pfaffians depend on the so-
called characteristic polynomial of the model. We do not define the characteristic
polynomial here beyond saying that it is the determinant P (z, w) of the weighted
adjacency matrix of the fundamental domain of HΔ, oriented in a ‘clockwise odd’
manner, and illustrated in Figure 3.1. It is a function of the parameters a, b, c, and
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of two complex variables z, w. It is shown in [18] that

P (z, w) = a4 + b4 + c4 + 6a2b2 + 6a2c2 + 6b2c2 − 2ab

(
z +

1

z

)(
a2 + b2 − c2

)
− 2ac

(
w +

1

w

)(
a2 + c2 − b2

)
− 2bc

( z

w
+

w

z

) (
b2 + c2 − a2

)
.

The spectral curve is the zero locus of the characteristic polynomial, that is,
the set of roots of the equation P (z, w) = 0. As explained in [18], it is important
to understand the intersection of the spectral curve with the unit torus

T
2 =

{
(z, w) ∈ C

2 : |z| = |w| = 1
}
.

It turns out that the intersection is either empty or is a single real point (1, 1).
Moreover, when P (1, 1) = 0, the zero (1, 1) has multiplicity 2. Evidently,

(3.2) P (1, 1) = (a2 + b2 + c2 − 2ab− 2bc− 2ac)2,

and therefore the spectral curve intersects T2 if and only if

(3.3)
√
a±

√
b±

√
c = 0.

We shall return to this equation in the study of phase transition in Section 4.3.

3.2. The half-edge graph. When considering correlations, it will be con-
venient to work on a graph derived from the hexagonal lattice by replacing each
edge by two half-edges. Let AHn = (AVn, AEn) be the graph derived from Hn =
(Vn, En) by adding a vertex at the midpoint of each edge in En. Let MEn = {Me :
e ∈ En} be the set of such midpoints, and AVn = Vn ∪MEn. The edges AEn are
the half-edges of En, each being of the form 〈v,Me〉 for some v ∈ Vn and incident
edge e ∈ En.

The 1-2 model on Hn can be viewed as a spin-model on the set MEn of mid-
points, as we explain next.

3.3. The Ising model. It turns out that the 1-2 model is the marginal of a
certain Ising-type model on the half-edge graph AHn of Section 3.2, that is rem-
iniscent of the Edwards–Sokal coupling of the Potts and random-cluster measures
(see [7, Sect. 1.4]). It is constructed via a weight function on configuration space,
using weights that are permitted in general to be C-valued.

Let Σe = {−1,+1}MEn and Σv = {−1,+1}Vn . An edge e ∈ En is identified
with the element of MEn at its centre. A spin-vector is a pair (σe, σv) ∈ Σe × Σv

with σe = (σv,s : v ∈ Vn, s = a, b, c) and σv = (σv : v ∈ Vn), where σv,a, σv,b, σv,c

denote the spins on midpoints of the corresponding edges of given types incident
to v ∈ Vn (see Figure 1.1). We allocate the (possibly complex) weights

(3.4) w(σv, σe) =
∏
v∈Vn

(1 + εaσvσv,a)(1 + εbσvσv,b)(1 + εcσvσv,c),

where εa, εb, εc ∈ C are constants associated with horizontal, NW/SE, and NE/SW
edges, respectively. In (3.4), each factor 1 + εsσvσv,s (s = a, b, c) corresponds to a
half-edge of Hn.

When considering the relationship to the 1-2 model, it will be convenient to
choose the constants εs, s = a, b, c, as follows. Let a, b, c > 0, and

(3.5) A =
a− b− c

a+ b+ c
, B =

b− a− c

a+ b+ c
, C =

c− a− b

a+ b+ c
,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

146 GEOFFREY R. GRIMMETT AND ZHONGYANG LI

where we assume for simplicity that ABC �= 0. The appropriate values of the εs
are

(3.6) εa =

√
BC

A
, εb =

√
AC

B
, εc =

√
AB

C
.

Theorem 3.2 ([10, Sect. 4]).

(a) Marginal on Vn. For σv ∈ Σv, w(σv) :=
∑

σe∈Σe w(σv, σe) satisfies

(3.7) w(σv) = 2|En|
∏

g=〈u,v〉∈En

(
1 + ε2gσuσv

)
.

That is, the marginal weights on Σv are those of an Ising-type model on Hn

with (possibly complex) edge-interactions. Here, εg denotes the parameter
associated with edge g = 〈u, v〉.

(b) Marginal on MEn. Let a, b, c > 0 and assume the εs satisfy (3.5)–(3.6)
where ABC �= 0. For σe ∈ Σe, w(σe) :=

∑
σv∈Σv w(σv, σe) satisfies

w(σe) =
∏
v∈Vn

(
1 +Aσv,bσv,c +Bσv,aσv,c + Cσv,aσv,b

)
∝ μn(σ

e).

That is, the marginal weights on Σe are proportional to those of the 1-2
model.

(c) Two-edge correlation function. Let e = 〈u, v〉, f = 〈x, y〉 ∈ En. Subject to
the notation of part (b) above, the two-edge correlation function of Remark
2.2 satisfies

(3.8) 〈σeσf 〉n =
∑

σv∈Σv

De,f (σ
v)w(σv)

/ ∑
σv∈Σv

w(σv),

where

De,f (σ
v) =

εe(σu + σv)εf (σx + σy)

(1 + ε2e)(1 + ε2f )
.

If the weights w(σv) of (3.7) are real and non-negative (which they are not in
general), the ratio on the right side of (3.8) may be interpreted as an expectation.
The weights w(σv) correspond to a ferromagnetic Ising model if and only the edge-
weights of (3.7) satisfy 0 < ε2g < 1. Unfortunately, this never occurs with the εg
derived from the 1-2 model as in (3.5)–(3.6). If, however, one assumes that the a,
b, c satisfy the acute angle condition

a2 < b2 + c2, b2 < c2 + a2, c2 < a2 + b2,

then −1 < ε2g < 0, and the corresponding Ising model is antiferromagnetic. Since
H is bipartite, this process may be transformed into a ferromagnetic system by
changing the sign of every other vertex (see [6, p. 17]), and this transformation
greatly facilitates its analysis.

The above Ising model may be regarded as a special case of the eight-vertex
model of Lin and Wu [20].
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3.4. The hexagonal polygon model. Let Hn = (Vn, En) as before, and
let Πn = {0, 1}En . The sample space of the polygon model on Hn is the subset
Πpoly

n ⊆ Πn containing all π = (π(e) : e ∈ En) ∈ Πn such that

(3.9)
∑
e�v

π(e) is either 0 or 2, v ∈ Vn.

Each π ∈ Πpoly
n may be considered as a union of vertex-disjoint cycles of Hn,

together with isolated vertices. We identify π ∈ Πn with the set {e ∈ En : π(e) = 1}
of ‘open’ edges under π. Thus (3.9) requires that every vertex is incident to an even
number of open edges.

Let εa, εb, εc ∈ C. To the configuration π ∈ Πpoly
n , we assign the (possibly

complex) weight

(3.10) w(π) = ε2|π(a)|a ε
2|π(b)|
b ε2|π(c)|c ,

where π(s) is the set of open s-type edges. The weight function w gives rise to the
partition function

Zpoly
n =

∑
π∈Πpoly

n

w(π).

Let a, b, c > 0. We now choose the constants εs, s = a, b, c, according to (3.5)–
(3.6), where it is assumed that ABC �= 0. The corresponding polygon model is
related to the high-temperature expansion of the Ising-type model of Section 3.3
(see, for example, [8, eqn 5.1] and [9, Thm 1.7]).

In considering correlation functions, it is convenient to view the polygon model
on the half-edge graph AHn of Section 3.2. A polygon configuration on Hn induces
a polygon configuration on AHn, namely a subset of AEn with the property that
every vertex in AVn has even degree. For an a-type edge e ∈ En, the two half-edges
of e have weight εa each (and similarly for b- and c-type edges). The weight function
w of (3.10) may now be expressed as

w(π) = ε|π(a)|a ε
|π(b)|
b ε|π(c)|c ,

where π(s) is the set of open half-edges of type s, as π ranges over polygon config-
urations on AHn.

Let e, f ∈ MEn be distinct midpoints of AHn, and let Πe,f be the subset of
all π ∈ {0, 1}AEn such that: (i) every v ∈ AVn with v �= e, f is incident to an even
number of open half-edges, and (ii) the midpoints e and f are incident to exactly
one open half-edge. Let

(3.11) Mn(e, f) =
Zn,e↔f

Zpoly
n

,

where

(3.12) Zn,e↔f :=
∑

π∈Πe,f

ε|π(a)|a ε
|π(b)|
b ε|π(c)|c .

Theorem 3.3 ([12]). Subject to (3.6), the two-edge correlation function 〈σeσf 〉n
of the 1-2 model on Hn satisfies 〈σeσf 〉n = Mn(e, f).

The polygon model with general parameters is studied in [12].
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4. Phase transition

We discuss two forms of phase transition for the 1-2 model. Of these, the first
concerns the existence (or not) of infinite ‘homogeneous’ clusters of H containing
vertices of the same type, and the second considers as order parameter the limiting
two-edge correlation function. Thus, the first studies the geometry of the model,
and the second its correlation structure. There may exist other forms of phase
transition, as yet unstudied.

4.1. Occurrence of paths. Every connected component (‘cluster’) in a re-
alization of the 1-2 model is either a self-avoiding path or a cycle (see Figure 2.2).
It turns out that all such clusters are μ∞-a.s. finite, when a, b, c > 0. We formalize
this statement in this subsection, and begin with an exact formula. Using the cor-
respondence between 1-2 model configurations on H and dimer configurations on
HΔ, as described in Section 3.1, we have the following.

Theorem 4.1 ([18, Thm 3.4]). Let a, b, c > 0 and let μ∞ be the limit 1-2
measure of Theorem 2.1. Let � be a self-avoiding path of Hn containing l+1 edges,
and write E� = {ek = 〈uk, vk〉 : 1 ≤ k ≤ l} for the set of bisector edges of HΔ

encountered along �, as in Figure 2.3. Then

μ∞(� is present) = 1
2

(
l∏

k=1

wek

)∣∣PfK−1
�

∣∣ ,
where we is the weight of the edge e in HΔ, K

−1
� is the submatrix of the inverse of the

weighted adjacency matrix of HΔ with rows and columns indexed by u1, v1, . . . , ul, vl,
and PfM is the Pfaffian of the matrix M .

The mass transport principle, introduced in [3, 13], is a valuable tool in the
study of interacting systems including percolation and self-avoiding walks on Cayley
graphs, see [2,11,14]. It may also be applied to the 1-2 model, where it is used to
prove the following.

Theorem 4.2 ([18, Thm 2.4]). If a, b, c > 0, we have that

μ∞
(
there exists an infinite path

)
= 0.

4.2. Existence of infinite homogeneous clusters. The concept of ‘phase
transition’ hinges on the non-smoothness of some so-called ‘order parameter’. For
the Ising model, one may take as order parameter the magnetization at the origin in
the infinite-volume measure with + boundary conditions. This corresponds in the
universe of percolation and the random-cluster model (see [7]) to studying whether
or not there there exists an infinite cluster. By Theorem 4.2, the 1-2 model possesses
no infinite cluster for any values of a, b, c > 0. ‘Clusters’ may however be defined
in another manner.

Let σ ∈ Σ. Each vertex of H has a random type, given in Figure 2.1. For
s ∈ {a, b, c}, a type-s cluster is a maximal connected subgraph of H every vertex of
which has type s. As illustrated in the figure, type s comes in two sub-types; for
example, a type-a vertex has signature either 001 or 110. Thus, one may speak of
a 001-cluster, etc. By examining the figure again, it is seen that a type-a cluster
is either a 001-cluster or a 110-cluster, but may not contain vertices of both types
(and similarly for types b and c). A homogeneous cluster of σ ∈ Σ is a w-cluster
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for some w ∈ {0, 1}3, w �= 000, 111. We concentrate now on the existence (or not)
of an infinite homogeneous cluster.

Theorem 4.3. Let a, b, c > 0.

(a) ([19, Thm 1.1]) Let w ∈ {0, 1}3, w �= 000, 111. The number Iw of infinite
w-clusters is μ∞-a.s. no greater than 1.

(b) ([18, Thm 4.4, Prop. 4.7]) Fix b, c > 0. For sufficiently small a > 0, there
exists μ∞-a.s. no infinite type-a cluster. For sufficiently large a, the μ∞-
probability that the origin belongs to an infinite type-a cluster is strictly
positive.

Part (a) is proved in [19] using an adaptation of the method of Burton and
Keane (see [4,22]) to the 1-2 model, subject to the complication that μ∞ does not
have the so-called ‘finite energy property’. It is unknown whether infinite w-clusters
and w′-clusters can coexist with w �= w′.

Part (b) indicates the existence of a phase transition. It is not known if there
exists a single critical point ac = ac(b, c) for the given property. Furthermore, there
is currently no indication of the exact value of such a point.

4.3. Non-analyticity of the two-edge correlation function. For distinct
edges e, f ∈ E, we write

〈σeσf 〉 = lim
n→∞

〈σeσf 〉n,
which exists by Theorem 2.1, (see [10, Thm 6.2]). We consider here the asymptotic
behaviour of 〈σeσf 〉 as |e − f | → ∞. The behaviour of this limit is unknown in
general, but a great deal is known if e and f are related in the ‘diagonal’ manner
of the forthcoming assumption (4.1), as illustrated in Figure 4.1.

Theorem 4.4 ([10, Thm 3.1]). Let a, b, c > 0, and let e, f ∈ E be NW/SE
edges such that:

(4.1)
there exists a path � = �(e, f) of Hn from e to f

using only horizontal and NW/SE half-edges.

(a) Let a ≥ b > 0. For c > 0 satisfying

either
√
a >

√
b+

√
c or

√
c >

√
a+

√
b

except possibly on some set of isolated points, the limit lim|e−f |→∞〈σeσf 〉2
exists and is non-zero.

(b) If a ≥ b > 0 and
√
a−

√
b <

√
c <

√
a+

√
b,

then 〈σeσf 〉 → 0 as |e− f | → ∞.

A strengthened version of this theorem may be found in [10], allowing a partial
relaxation of assumption (4.1), and including a proof of an exponential rate of
convergence.

By Theorem 4.4, when a ≥ b ≥ c > 0, the phase transition occurs when√
a =

√
b +

√
c. The proof is along the following lines. The square 〈σeσf 〉2 of

the two-edge correlation may be expressed as the determinant of an explicit block
Toeplitz matrix (this is where (4.1) is used); see the forthcoming Lemma 4.5. Its
limit as |e−f | → ∞ is given by Widom’s theorem (see [27,28] and [10, Thm 8.7]) as
the determinant of the limiting (infinite) block Toeplitz matrix. This determinant
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Figure 4.1. A path � comprising horizontal and NW/SE mid-
edges, connecting the midpoints of two NW/SE edges e and f .

is complex analytic with respect to the parameters a, b, c except when the spectral
curve has a unique real zero on the unit torus. As remarked at the end of Section
3.1, the last occurs if and only if

√
a±

√
b±

√
c = 0. When a ≥ b ≥ c, this equation

becomes
√
a−

√
b−√

c = 0.
The ‘isolated points’ of part (b) arise through the use in the proof of the fact

that, for an analytic function Λ, either Λ ≡ 0 or the zeros of Λ are isolated.
It is easily seen from Figures 2.1 and 4.1 that

〈σeσf 〉 = 1 if either a, b > 0, c = 0, or a = b = 0, c > 0,

and part (b) of Theorem 4.4 follows by the analyticity. For part (a), one uses the
representation of the 1-2 model as the Ising model of Section 3.3.

The key step in the proof of Theorem 4.4 is the following exact formula. Let
Y1 be the 2× 2 matrix

Y1 =

(
0 1
−1 0

)
,

and let Y2k be the 4k × 4k block diagonal matrix with diagonal 2× 2 blocks equal
to Y1. That is,

Y2k =

⎛
⎜⎜⎜⎝
Y1 0 · · · 0
0 Y1 · · · 0
...

...
. . .

...
0 0 · · · Y1

⎞
⎟⎟⎟⎠ .

Lemma 4.5 ([10, Lemma 8.4]). Suppose the path � = �(e, f) of (4.1) passes 2k
bisector edges of HΔ. We have that

〈σeσf 〉 = Pf [Y2k + 2cK−1
� ],

where K−1
� is as in Theorem 4.1.
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