
LARGE DEVIATIONS IN THE RANDOM SIEVEGeoffrey GrimmettAbstract. The proportion �k of gaps with length k between square-free numbersis shown to satisfy log �k = ��1 + o(1)�(6=�2)k log k as k ! 1. Such asymptoticsare consistent with Erd}os's challenge to prove that the gap following the square-freenumber t is smaller than c log t= log log t, for all t and some constant c satisfyingc > �2=12. The results of this paper are achieved by studying the probabilitiesof large deviations in a certain `random sieve', for which the proportions �k haverepresentations as probabilities. The asymptotic form of �k may be obtained insituations of greater generality, when the squared primes are replaced by an arbitrarysequence (sr) of relatively prime integers satisfying Pr 1=sr < 1, subject to twofurther conditions of regularity on this sequence.
1. IntroductionA positive integer is called square-free if it is divisible by no squared prime. Thesequence of square-free numbers has density 6=�2, but the gaps between consecutivesquare-free numbers can be large. Several authors have studied the lengths of thesegaps, in order to try to understand how large they may be. Results obtained todate appear, however, to be far from the best possible.Write t1; t2; : : : for the (increasing) square-free numbers. Erd}os [2] observed that(1.1) ti+1 � ti > �1 + o(1)��212 log tilog log ti for in�nitely many i;and he asked whether it could possibly be the case that(1.2) ti+1 � ti < (1 + �)�212 log tilog log ti for all large i:Also, he initiated a study of the moments of the gaps, in proving that the sequence(1.3) Ln(g) = 1n Xi: ti�n g(ti+1 � ti)1991 Mathematics Subject Classi�cation. 11N36, 11K31, 60F10.Key words and phrases. Random sieve, large deviations, square-free numbers.Address of author. Statistical Laboratory, University of Cambridge, 16 Mill Lane, CambridgeCB2 1SB, United Kingdom. 1



2 GEOFFREY GRIMMETThas a �nite limit as n ! 1, when g(x) = x� and � = 2. (A proof of (1.1) isincluded in Appendix 1, together with a discussion of the constant �2=12, whichactually appeared as �2=6 in [2].)Further results in these directions have been since obtained, and we mention twoof these. Filaseta and Trifonov [5] have shown thatti+1 � ti = O(n1=5 logn) if ti � n;and Huxley [15] that Ln(g) has a �nite limit if g(x) = x� and � < 113 . See also [4,6, 7, 11, 14].The (forthcoming) result of the present paper causes us to pose the followingprovocative extensions of Erd}os's question. Does Ln(g) have a �nite limit as n!1,when(a) g(x) = e�x and � > 0, or(b) g(x) = x�x (= expf�x logxg) and � is positive but not too large?Inequality (1.1) implies that Ln(g)!1 as n!1 when g(x) = x�x and � > 12=�2.The emphasis of the current work is probabilistic. Let Sk(m) be the numberof square-free numbers in the interval fm;m + 1; : : : ;m + k � 1g. It follows by acalculation of Mirsky [16] that the limit(1.4) pk(j) = limn!1 1n ���nm : Sk(m) = j; 1 � m � no���exists for all k and j. The function pk(�) is a probability mass function on theset f0; 1; : : : ; kg, and the quantity �k = pk(0) is the density of numbers m suchthat fm;m+ 1; : : :m+ k � 1g contains no square-free number. We shall prove thefollowing:(1.5) log �k = ��1 + o(1)� 6�2 k log k as k !1:(All logarithms in this paper are natural.) Thus the correct order for �k is k�(6=�2)k.This is an improvement over upper bounds of larger order obtained by Hall [12]and Huxley [15], and is relevant to the question (1.2) posed by Erd}os. We amplifythis statement next.Let g(x) = x�x (= expf�x logxg) where � > 0, and consider the quantity Ln(g)de�ned in (1.3). An argument of weak convergence (see (2.5)) suggests that, ifLn(g) has a �nite limit �(�), then it is reasonable to expect that�(�) =Xk g(k) �kwhere �k denotes the density of sequences fm;m+ 1; : : : ;m+ kg such that m andm+ k are square-free, but m+ i is not square-free when 1 � i < k. Now �k � �k�1



LARGE DEVIATIONS IN THE RANDOM SIEVE 3(see (3.18)), whence, by (1.5), �(�) <1 if � < 6=�2. This calculation supports thepossibility that Ln(g) indeed has a �nite limit �(�) when g(x) = x�x and � < 6=�2.If this is so, then 1ti g(ti+1 � ti) � Lti(g)! �(�) as i!1;yielding (1.2) when � > 1.Our main result for the square-free numbers is the following theorem, whichincludes the claim (1.5).Theorem 1. We have that, as k !1,log�k = ��1 + o(1)� 6�2 k log k;log �k = ��1 + o(1)� 6�2 k log k:We shall prove Theorem 1 in the context of the random sieve introduced in [8]and pursued in [9]. The random sieve will provide the correct setting for a furtherdiscussion of some of the points above. It is described in Section 2.So far, we have concentrated on the square-free numbers. However, similarresults are valid for the a-free numbers with a � 2, and more generally for the setof all integers which remain after sieving by a family S = (sr) of relatively primenumbers satisfying Pr 1=sr < 1, subject to two conditions on S. Further detailsare provided in the next section.2. The random sieveRather than working with the squared primes, we shall work more generally withan increasing sequence S = (s1; s2; : : : ) of relatively prime integers (so that 1 <s1 < s2 < : : : , and (si; sj) = 1 if i 6= j). The `sieve generated by S' is constructedas follows. For m � 1, we write Gm for the set of integers r such that sr j m, andwe write G = (G1; G2; : : : ). An integer m is called S-free if Gm = ?, and we denotethe S-free numbers by the increasing sequence t1; t2; : : : .If sr = par , the ath power of the rth prime, then the S-free numbers are morecommonly called `a-free', or `square-free' in the case a = 2.The `random sieve' is a variant of the above process, in which the action of eachsr is subject to a random translation (see [8]). Let X1; X2; : : : be independentrandom variables, with P (Xr = k) = 1=sr for 1 � k � sr. For m � 1, we write �mfor the set of integers r such that sr j m � Xr. The outcome is a random vector� = (�1;�2; : : : ), taking values in the state space 
 = (2N)N of sequences of subsetsof the natural numbers N . An integer m is called `randomly S-free' if �m = ?.Next we review material taken from [8]. This material is directed at understand-ing the way in which the averaging properties of the sieve generated by S may be



4 GEOFFREY GRIMMETTrepresented as probabilities associated with the random sieve. We use the languageof weak convergence (see [1]).The sample space 
 is a product space, and we endow 
 with the productof discrete topologies. We write F for the �-�eld of subsets of 
 generated bythe open sets, and sets in F we call events. Next we introduce some probabilitymeasures on the measurable pair (
;F). For n � 1, let Nn be chosen randomlyand uniformly from f1; 2; : : : ; ng, so that P (Nn = k) = 1=n for 1 � k � n. Now,let 
n = (GNn ; GNn+1; : : : ), the sequence obtained from G by deleting an initialsegment of random length. Let �n denote the probability measure associated with
n, in that �n(A) = P (
n 2 A) for A 2 F ; let � be the probability measureassociated similarly with the random sieve �.Theorem 2 ([8]). We have that �n converges weakly to � (as n!1) if and onlyif Pr 1=sr <1.The su�ciency of the summability condition is proved in [8]. Its necessity wasgiven in [8] also, and follows from the following observation. Let A be the set of! = (!1; !2; : : : ) 2 
 such that j!1j <1. If Pr 1=sr =1, then �n(A) = 1 for alln whereas �(A) = 0. The picture is of course generally di�erent with a di�erenttopology on 
. Note that the harmonic summation of the primes diverges, andtherefore the theorem does not apply in this case. Sieves satisfying this summabilitycondition have been studied in [3, 17] and elsewhere.It is a consequence of this weak convergence thatZ f d�n ! Z f d� as n!1for all bounded continuous functions f : 
! R.In this paper we are concerned with the incidence of S-free numbers, and espe-cially the lengths of intervening gaps. To this end, we de�ne functions fjk on 
 asfollows. For non-negative integers j, k, and a sequence ! = (!1; !2; : : : ) 2 
, wede�ne Tk(!) = kXi=1 1f!i=?g; fjk(!) = 1fTk(!)=jg;where 1A denotes the indicator function of an event A. Thus, for example, fjk(G)equals 1 if and only if exactly j of the �rst k integers are S-free. Furthermore,Z fjk d�n = 1n ���nm : Sk(m) = j; 1 � m � no���where Sk(m) is the number of S-free integers in fm;m+1; : : : ;m+k�1g; cf. (1.4).Clearly fjk is bounded and continuous, and therefore (by Theorem 2)Z fjk d�n ! pk(j) as n!1;



LARGE DEVIATIONS IN THE RANDOM SIEVE 5whenever Pr 1=sr <1, wherepk(j) = ��fjk(�) = 1� = ��Tk(�) = j�:The mean of the probability mass function pk(�) iskXj=0 j pk(j) = E�Tk(�)� = kXi=1 �(�i = ?) = k�where E denotes expectation, and � = �(S) is given by� =Yr �1� 1sr� :Our result in this paper is a large-deviation theorem for the mass function pk,in the limit as k ! 1. Such a theorem is valid subject to additional conditionson the sequence S, and we state these next. Write �(n) = jS \ [1; n]j, the growthfunction of S. We shall require that there exists � satisfying 0 < � < 1 such that(2.1) log�(n)logn ! � as n!1and that(2.2) lim supn!1 ( logPr: sr>n s�1rlog n ) � � � 1:At �rst sight these conditions may appear somewhat arti�cial. However, they arevalid in a variety of instances. It is worthwhile to contrast them with the strongercondition of regular variation (of �) utilised in [9]. Recall that � is said to beregularly varying if the limit `(c) = limn!1 �(cn)�(n)exists for all c > 0. If � is regularly varying then it is easily seen that `(c) = c�for some �, called the index of the function. Furthermore, the condition of regularvariation is valid with index � = 1=a, if S is the sequence of ath powers of theprimes. Also, for any � satisfying 0 < � < 1, there exists a sequence S of relativelyprime numbers for which �(n) = jS \ [1; n]j is regularly varying with index �. Sucha sequence may be obtained by a suitable thinning of the prime numbers.If � is regularly varying with index � (where 0 < � < 1), then (2.1) and (2.2)hold (see [9]).The distribution function associated with the mass function pk is denoted by Fk,so that Fk(x) = ��Tk(�) � x� = bxcXj=0 pk(j) for x � 0;where bxc denotes the integer part of x.



6 GEOFFREY GRIMMETTTheorem 3. Suppose that S satis�es (2.1) and (2.2) for some � with 0 < � < 1.If 0 � � < � then(2.3) logFk(�k) = �(� � �)� 1� � 1��1 + o(1)�k log k as k !1:This theorem asserts that the probability of a deviation having size (� � �)kbeneath the mean (i.e., � < �) is of order k�f(�;�)k for an appropriate positivequantity f(�; �). Deviations above the mean have even smaller probability. Morespeci�cally, it may be seen by the Chinese Remainder Theorem that, if � > �, thenpk(j) = 0 if j � �k and k is su�ciently large. Other properties of the distributionassociated with Fk were established in [8, 9], particularly results concerning itsheight.Applying Theorem 3 with � = 0, we �nd that(2.4) log pk(0) = ��1 + o(1)�� 1� � 1�(Yr �1� 1sr�) k log k:If S is the sequence of squared primes, then � = 12 andlog pk(0) = ��1 + o(1)� 6�2 k log kin agreement with the �rst claim of Theorem 1. In this case (and more generallyfor the a-free numbers) one may in principle obtain further information about theo(1) term in (2.4), by using the more detailed asymptotics associated with thedistribution of the primes.The second claim of Theorem 1 is similar to the �rst, as is its proof. We haveby Mirsky's theorem (and Theorem 2) that�k = ���1 = ?; �i 6= ? for 1 < i � k; �k+1 = ?�:Theorem 4. Suppose that S satis�es (2.1) and (2.2) for some � with 0 < � < 1.(a) If s1 > 2 thenlog �k = ��1 + o(1)�� 1� � 1�(Yr �1� 1sr�) k log k as k !1:(b) If s1 = 2, the same asymptotic relation is valid so long as k tends to in�nitythrough the even numbers. We have that �k = 0 if k is odd.Finally in this section, we discuss the matter of the lengths of gaps betweenS-free numbers. The appropriate function h : 
! R is given byh(!) = 1f!1=?g � �inffk � 2 : !k = ?g � 1�



LARGE DEVIATIONS IN THE RANDOM SIEVE 7for ! = (!1; !2; : : : ) 2 
. For g : R ! R, we have thatZ g�h(�)� d�n = 1n Xi: ti�n g(ti+1 � ti);where t1; t2; : : : is the sequence of S-free numbers as before. The function g�h(�)�maps 
 into R, and is continuous but not generally bounded. It follows by weakconvergence that(2.5) Z g�h(�)� d�n ! E �g�h(�)�� as n!1subject to the condition of uniform integrability, namely thatsupn ZAM g�h(�)�d�n ! 0 as M !1where AM = �! 2 
 : jg(h(!))j �M	; see [1, p. 32]. In the interesting case, wheng is an unbounded function of the positive integers, uniform integrability amountsto an upper bound on the gaps ti+1 � ti.Note. There is a minor error in the proof of Theorem 2 appearing in [8], and thisis an appropriate place to acknowledge this. See Appendix 2.3. Proof of Theorems 3 and 4Proof of Theorem 3. As in [9], the strategy of the proof is to divide S into classes(small, medium, and large, in this case), and to show that deviations from the meancan occur only if the e�ect of the `large' members of S is aberrant in a special way.Owing to a convenient de�nition of the `large' members, the probability of suchaberrant behaviour may be estimated.Assume that S and � satisfy (2.1) and (2.2) where 0 < � < 1. In particular,Pr 1=sr <1, so that(3.1) � =Yr �1� 1sr� > 0:Let 0 � � < � and 0 < � < minf�; 1 � �; � � �g, noting that � < ��1 � 1. Wecall sr (2 S) small if r � R where R = R(�) is chosen in such a way that(3.2) Xr>R 1sr < 13 �;



8 GEOFFREY GRIMMETTand(3.3) RYr=1�1� 1sr� � � + 23�:(These two inequalities are of course related.) With U = s1s2 : : : sR, let(3.4) Hk = fj : 1 � j � k; r 2 �j for some 1 � r � Rg;the set of j (satisfying 1 � j � k) such that �j contains at least one memberof f1; 2; : : : ; Rg. Using the Chinese Remainder Theorem and the coprimality ofs1; s2; : : : ; sR, we may bound jHkj by(3.5) jHkj � (1� RYr=1�1� 1sr�)Ubk=Uc+ U:Therefore(3.6) 1k jHkj � (1� �) + Uk :We choose N1 such that U=N1 < 13 �, and obtain(3.7) 1k jHkj � 1� � + 13� if k � N1:Let 0 < � < �, and let V = bk��1��c where k is su�ciently large that sR � V(say k � N2 � N1). We partition S as S = M[N where M = fsr : sr � V g,N = fsr : sr > V g. Members of M n fs1; s2; : : : ; sRg are called `medium', andmembers of N are called `large'.We may bound the cardinality of the set(3.8) Jk = fj : 1 � j � k; r 2 �j for some sr 2 Mgby jJkj � jHkj+ Xr: sr2Mr>R �1 + ksr�(3.9) � k(1� � + 13�) + jMj+ k � 13 � if k � N2by (3.2) and (3.7). By (2.1), there exists � (> 0) such that, for all large k,jMj = �(V ) � k1��:



LARGE DEVIATIONS IN THE RANDOM SIEVE 9Therefore there exists N3 (� N2) such that jMj � 13 �k if k � N3, giving from (3.9)that(3.10) jJkj � k(1� � + �) if k � N3:Next we introduce the random set whose cardinality is to be estimated:(3.11) Kk = fj : 1 � j � k; j 62 Jk; r 2 �j for some sr 2 Ng:We have that Fk(�k) = ��jJkj+ jKkj � (1� �)k�(3.12) � ��jKkj � (� � � � �)k� by (3.10):We shall bound the last probability using Markov's inequality (see [10, p. 278]).Note that jKkj � K where K = Xr: sr2N 1fXr�kg;the sum of independent Bernoulli random variables with respective meansE�1fXr�kg� = �(Xr � k) = ksr ;the Xr were given towards the beginning of Section 2.Lemma. Let Y1; Y2; : : : be independent Bernoulli random variables withP (Yr = 1) = 1� P (Yr = 0) = qr;where � =Pr qr <1. Then(3.13) P� 1Xr=1 Yr � 
�� � exp���(
 log 
 + 1� 
)	 for 
 > 1:Proof. By Markov's inequality, if � > 0,P� 1Xr=1 Yr � 
�� � e�
�� 1Yr=1E�e�Yr�= e�
�� 1Yr=1�1 + qr(e� � 1)�� exp��
�� + �(e� � 1)	:



10 GEOFFREY GRIMMETTWe set � = log 
 to obtain (3.13). �Returning to the proof of the theorem, the mean of jKkj satis�es(3.14) EjKkj � E(K) = Xr: sr2N ksr � k2���1+�for all large k (say for k � N4 � N3) by (2.2).By (3.12), (3.14), and the lemma,logFk(�k) � log��K � (� � � � �)k� � �E(K)(
 log 
 + 1� 
);where 
 = (� � � � �)kE(K) � (� � � � �)k��1�1�� if k � N4by (3.14). This implies thatlogFk(�k) � ��1 + o(1)�(� � � � �)k log k��1�1�� as k !1and hencelim supk!1 � logFk(�k)k log k � � �(� � � � �)(��1 � 1� �) for all � > 0:We let � # 0 to obtain the upper bound necessary for the theorem.Finally we establish a lower bound for Fk(�k). First note a lower bound for jHkj,similar to the upper bound (3.5),jHkj � �1� RYr=1�1� 1sr��Ubk=Ucand therefore 1� � � � � 1k jHkj � 1� � + � if k � N2by (3.3) and (3.7). Now, for k � N2,(3.15) Fk(�k) = ��Tk(�) � �k� =XH ��Tk(�) � �k j Hk = H��(Hk = H)where the summation is over all subsets H of f1; 2; : : : ; kg satisfying(3.16) (1� � � �)k � jHj � (1� � + �)k:



LARGE DEVIATIONS IN THE RANDOM SIEVE 11We say that sr `strikes' the integer i if r 2 �i. Conditional on the event fHk = Hg,we have that Tk(�) � �k if and only if the medium and large sr (i.e., the srsatisfying r > R) strike at least jHj � �k elements of H (the complement of a setH is denoted as H). This is certainly achieved if the earliest jHj � �k such sr eachstrikes a new integer of H, i.e., an integer struck by no smaller sr (here and laterwe sometimes use real numbers where integers are required, but it may easily bechecked that this notational convenience has no in
uence on the outcome). That is��Tk(�) � �k j Hk = H� � �(AH)where AH = nXR+1 2 H; XR+2 2 H n fXR+1g; : : : ;XR+W 2 H n fXR+1; XR+2; : : : ; XR+W�1go;with W = jHj � �k. Now�(AH) = jHjsR+1 � jHj � 1sR+2 � � � jHj �W + 1sR+W� jHj!(jHj �W )! � 1sR+W �W� f(� � �)kg!(�k)! � 1sR+W �(�+���)kby (3.16). Furthermore, by (2.1),sR+W � s(�+2���)k � f(� + 2�� �)kg��1+�for large k, say k � N5 (� N2). Substituting into (3.15), we obtain(3.17) lim infk!1 � logFk(�k)k log k � � (� � �� �)� (� + �� �)(��1 + �)for all � > 0. Now let � # 0 to obtain the required lower bound. The proof iscomplete. �Proof of Theorem 4. Using the stationarity of the sequence �, we have that(3.18) �k � ���i 6= ? for 1 < i � k� = �k�1:This provides an upper bound for log �k of the required order. We note that(3.19) �k = �k�1 � 2�k + �k+1;



12 GEOFFREY GRIMMETTby using the stationarity of �; however, we shall not make use of this fact. (Equation(3.19) is shown as follows. Denote by u 0k�1 v, for u; v = 0; 1, the event that1f�1=?g = u, �2 6= ?, : : : , �k 6= ?, 1f�k+1=?g = v. Now,�k = �(1 0k�1 1) = �(� 0k�1 �)� �(0 0k�1 �)� �(� 0k�1 0) + �(0 0k�1 0)where a dot in position j indicates no constraint on �j . Equation (3.19) followsusing stationarity.)Turning to lower bounds for �k, we remark �rst that, when s1 = 2, we have that2 2 �1 [ �k+1 if k is odd; therefore �k = 0 in this case. Suppose now that s1 > 2(a similar argument holds if s1 = 2 and k is even). Basically we follow the relevantpart of the proof of Theorem 3. First,(3.20) �k = ���i 6= ? for 1 < i � k ��A��(A)where A = f�1 = �k+1 = ?g. Now,(3.21) �(A) = � Yr: srjk�1� 1sr��� Yr: sr-k�1� 2sr�� �Yr �1� 2sr� :The last quantity is strictly positive since s1 > 2.We now compute a lower bound for the conditional probability in (3.20). Condi-tioning on A amounts to conditioning on the event that Xr 6= 1; k+1 (mod sr) forall r. Under A, the Xr are conditionally independent with distributions which aresimilar to their unconditional distributions. The argument of the previous proofnow goes through, with � = 0, and with Hk replaced byHk = �j : 2 � j � k; r 2 �j for some 1 � r � R	;and other minor changes arising from the altered distributions of the Xr. Theconclusion is, as in (3.17), thatlim infk!1 ( log���i 6= ? for 1 < i � k ��A�k log k ) � ��(��1 � 1):This may be combined with (3.21), as required. �



LARGE DEVIATIONS IN THE RANDOM SIEVE 13Appendix 1We present here a sketch proof of (1.1), which was given in [2] but with the constant�2=12 unfortunately replaced by �2=6. The proof is elementary, but there is somevalue in giving brief details.Let si = p2i , the square of the ith prime, let ti be the ith square-free number,and write � = 1Yi=1�1� 1si� = 6�2 :Let � > 0, and pick R such thatRYi=1�1� 1si� � � + �;implying that the numbers s1; s2; : : : ; sR divide at least a proportion 1 � � � � ofintegers. Let k be an integer which is larger than P = QRi=1 si. For an integerm, write xm(1); xm(2); : : : ; xm(M) for the increasing subsequence of m + 1;m +2; : : : ;m+ k containing all integers not divisible by any si (for 1 � i � R), notingthat(A.1) 0 �M � �P bk=P c � P + �P bk=P c:For �xed large k, what is the smallest value of m such that(A.2) xm(i) � 0 mod sR+i; for 1 � i �M?By (A.1) and the Chinese Remainder Theorem, these congruences have a solutionfor some m satisfying 1 � m � n, if n =QNi=1 si and(A.3) N � R+ (� + �)P bk=P c+ P:Now log� NYi=1 si� = 2 NXi=1 log pi � 2N logN as N !1;by [13, Thm 420]. Therefore, by (A.3), we may take n such thatlog n = 2(1 + o(1))(� + �)k log k as k !1:With n = n(k) given thus, there exists by (A.2) a square-free number ti satisfyingti � n and ti+1 � ti > k. This implies that(A.4) ti+1 � ti > (1 + o(1)) 12(� + �) log tilog log ti for in�nitely many i



14 GEOFFREY GRIMMETTas required for (1.1).We have a further note, relevant to the appearances in (1.5) and (A.4) of therespective constants �2=6 and �2=12. The calculation above implies that(A.5) ti+1 � ti > k for some ti � exp�2(1 + �)�k log k	:In fact there are many such ti, for the following reason. The congruences (A.2)may be replaced by(A.6) xm(i) � 0 mod sR+j(i); for 1 � i �Mwhere j = (j(1); j(2); : : : ; j(M)) is any given permutation of (1; 2; : : : ;M). Bycounting the number of such permutations, one �nds after a little work that thereare at least expf(1 � �)�k log kg integers m satisfying m � expf2(1 + �)�k log kgsuch that the sets fm+1;m+2; : : : ;m+kg are disjoint and contain no square-freenumber. If these numbers m were `uniformly spread' over the integers between 1and exp�2(1+�)�k log k	, then the �rst would be smaller than exp�(1+�)�k log k	.In fact, we do not know how these numbers m are distributed. In the averagingprocess of (1.4) however, it is the `average' gap which manifests itself, and thisaccounts for the value �2=6 appearing in (1.5) and Theorem 1.Appendix 2We take this opportunity to correct two minor omissions in [8]. Firstly, on page 2,each set Gi is the set of all subsets of the label set G. Secondly, in (2.13) on page6, we assume further that tj < 12sj . The �nal display on that page becomes1n jI \ f1; 2; : : : ; ngj � 1n Xj: j�Rsj�2n �1 + nsj� tj � 3Xj�R tjsj � 3�:
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