LARGE DEVIATIONS IN THE RANDOM SIEVE

GEOFFREY GRIMMETT

ABSTRACT. The proportion pg of gaps with length k& between square-free numbers
is shown to satisfy log p = —(1 4 0(1))(6/72)klogk as k — oc. Such asymptotics
are consistent with Erdds’s challenge to prove that the gap following the square-free
number ¢ is smaller than clogt/loglogt, for all ¢ and some constant c¢ satisfying
¢ > w2/12. The results of this paper are achieved by studying the probabilities
of large deviations in a certain ‘random sieve’, for which the proportions p; have
representations as probabilities. The asymptotic form of pr may be obtained in
situations of greater generality, when the squared primes are replaced by an arbitrary
sequence (s;) of relatively prime integers satisfying >, 1/s, < oo, subject to two
further conditions of regularity on this sequence.

1. Introduction

A positive integer is called square-free if it is divisible by no squared prime. The
sequence of square-free numbers has density 6/72, but the gaps between consecutive
square-free numbers can be large. Several authors have studied the lengths of these
gaps, in order to try to understand how large they may be. Results obtained to
date appear, however, to be far from the best possible.

Write t1, ta, ... for the (increasing) square-free numbers. Erdés [2] observed that

(1.1) tin —t; > (14 (1))”2 8% for infinitel :
. 1 — 13 (0] — Oor 1nmnnite many
1+1 % 12 log IOg t; Yy Y 1,

and he asked whether it could possibly be the case that

72 logt;

(1.2) tiy1—t; < (1+e) for all large i.

12 loglogt;
Also, he initiated a study of the moments of the gaps, in proving that the sequence

(13) Ln(g) = 3 gltiss — )

7 tign
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has a finite limit as n — oo, when g(z) = z®* and a = 2. (A proof of (1.1) is
included in Appendix 1, together with a discussion of the constant 72/12, which
actually appeared as 72/6 in [2].)

Further results in these directions have been since obtained, and we mention two
of these. Filaseta and Trifonov [5] have shown that

tiv1 —t; = O(nl/5 logn) if t; <mn,

and Huxley [15] that L, (g) has a finite limit if g(z) = #® and o < 4'. See also [4,
6, 7, 11, 14].

The (forthcoming) result of the present paper causes us to pose the following
provocative extensions of Erdés’s question. Does L,,(¢g) have a finite limit as n — oo,
when

(a) g(z) =€ and 6 > 0, or

(b) g(z) = 29* (= exp{fzlogz}) and 6 is positive but not too large?
Inequality (1.1) implies that L, (g) — 0o as n — oo when g(z) = 2%% and 0 > 12/72.

The emphasis of the current work is probabilistic. Let Si(m) be the number
of square-free numbers in the interval {m,m + 1,... ,m + k — 1}. It follows by a
calculation of Mirsky [16] that the limit

(1.4) pe(j) = lim {m L Se(m) =74, 1<m < n}‘
n—oo N

exists for all £ and j. The function pg(-) is a probability mass function on the

set {0,1,...,k}, and the quantity 7, = pg(0) is the density of numbers m such

that {m,m +1,...m + k — 1} contains no square-free number. We shall prove the

following;:

6
(1.5) logmp = —(1+0(1)) = klogk as k — oo,
T

(All logarithms in this paper are natural.) Thus the correct order for m, is k~(6/ ™)k,
This is an improvement over upper bounds of larger order obtained by Hall [12]
and Huxley [15], and is relevant to the question (1.2) posed by Erdds. We amplify
this statement next.

Let g(z) = 2% (= exp{fzlogz}) where 6 > 0, and consider the quantity L,,(g)
defined in (1.3). An argument of weak convergence (see (2.5)) suggests that, if
L, (g) has a finite limit X(0), then it is reasonable to expect that

AO) = g(k) pi
k

where py, denotes the density of sequences {m,m +1,...,m+ k} such that m and
m+ k are square-free, but m + 7 is not square-free when 1 < ¢ < k. Now pg < mp_1
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(see (3.18)), whence, by (1.5), A(#) < oo if § < 6/72. This calculation supports the
possibility that L,(g) indeed has a finite limit A\(#) when g(z) = 27 and 0 < 6/72.
If this is so, then

1
. g(tiv1 —t;) < L, (g) — A(@) as i — oo,
yielding (1.2) when € > 1.

Our main result for the square-free numbers is the following theorem, which
includes the claim (1.5).

Theorem 1. We have that, as k — oo,
6
logm, = —(1+ 0(1))—2 klogk,
T
6
log pr, = —(1+ 0(1))ﬁ klogk.

We shall prove Theorem 1 in the context of the random sieve introduced in [8]
and pursued in [9]. The random sieve will provide the correct setting for a further
discussion of some of the points above. It is described in Section 2.

So far, we have concentrated on the square-free numbers. However, similar
results are valid for the a-free numbers with a > 2, and more generally for the set
of all integers which remain after sieving by a family S = (s,) of relatively prime
numbers satisfying Y 1/s, < oo, subject to two conditions on S. Further details
are provided in the next section.

2. The random sieve

Rather than working with the squared primes, we shall work more generally with
an increasing sequence S = (81, $2,...) of relatively prime integers (so that 1 <
51 < sp < ...,and (sj,s;) = 1if i # j). The ‘sieve generated by S’ is constructed
as follows. For m > 1, we write G, for the set of integers r such that s, | m, and
we write G = (G1,Ga,...). An integer m is called S-free if G,,, = @, and we denote
the S-free numbers by the increasing sequence tq,to, .. ..

If s, = p?, the ath power of the rth prime, then the S-free numbers are more
commonly called ‘a-free’, or ‘square-free’ in the case a = 2.

The ‘random sieve’ is a variant of the above process, in which the action of each
s, is subject to a random translation (see [8]). Let Xj, Xs,... be independent
random variables, with P(X, = k) = 1/s, for 1 < k < s,.. For m > 1, we write [,
for the set of integers r such that s, | m — X,. The outcome is a random vector
[ = (I'y,Ty,...), taking values in the state space Q = (2M)Y of sequences of subsets
of the natural numbers N. An integer m is called ‘randomly S-free’ if I, = @.

Next we review material taken from [8]. This material is directed at understand-
ing the way in which the averaging properties of the sieve generated by S may be
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represented as probabilities associated with the random sieve. We use the language
of weak convergence (see [1]).

The sample space  is a product space, and we endow 2 with the product
of discrete topologies. We write F for the o-field of subsets of  generated by
the open sets, and sets in F we call events. Next we introduce some probability
measures on the measurable pair (2, F). For n > 1, let N,, be chosen randomly
and uniformly from {1,2,...,n}, so that P(N,, = k) = 1/n for 1 < k < n. Now,
let v, = (Gn,,GnN,+1,---), the sequence obtained from G by deleting an initial
segment of random length. Let u, denote the probability measure associated with
Tn, 10 that p,(A) = P(y, € A) for A € F; let p be the probability measure
associated similarly with the random sieve I'.

Theorem 2 ([8]). We have that y,, converges weakly to p (asn — oc) if and only
if 3,1/, < 00.

The sufficiency of the summability condition is proved in [8]. Its necessity was
given in [8] also, and follows from the following observation. Let A be the set of
w = (w1,ws,...) € Qsuch that |wi| < oco. If Y7 1/s, = oo, then py,(A) =1 for all
n whereas p(A) = 0. The picture is of course generally different with a different
topology on . Note that the harmonic summation of the primes diverges, and
therefore the theorem does not apply in this case. Sieves satisfying this summability
condition have been studied in [3, 17] and elsewhere.

It is a consequence of this weak convergence that

/fdunﬁ/fdu as n — oo

for all bounded continuous functions f : Q2 — R.

In this paper we are concerned with the incidence of S-free numbers, and espe-
cially the lengths of intervening gaps. To this end, we define functions f;, on Q as
follows. For non-negative integers j, k, and a sequence w = (wy,ws,...) € Q, we
define

k
Ti(w) =Y lw=oys  fi(w) = Lzpo)=s-
=1

where 14 denotes the indicator function of an event A. Thus, for example, f;i(G)
equals 1 if and only if exactly j of the first k integers are S-free. Furthermore,

1 .
/fjkdunz E‘{m:Sk(m):j, 1 Smﬁn}‘

where Si(m) is the number of S-free integers in {m,m+1,... ,m+k—1}; cf. (1.4).
Clearly f;) is bounded and continuous, and therefore (by Theorem 2)

/fjk dpn, — pr(j) asn — oo,
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whenever ) 1/s, < oo, where

pi(j) = n(fie(T) = 1) = p(Te(T) = j).

The mean of the probablhty mass function pg(-) is

Zypk E(Ty(I)) = 3 w(li = &) = k¢

where FE denotes expectatlon, and ¢ = ((S) is given by

1
¢=1] (1 - —> .
Sp
”

Our result in this paper is a large-deviation theorem for the mass function py,
in the limit as £ — oco. Such a theorem is valid subject to additional conditions
on the sequence S, and we state these next. Write ¥(n) = |S N [1,n]|, the growth
function of §S. We shall require that there exists ¢ satisfying 0 < ¢ < 1 such that

log ¥(n)

(2.1) oan 0 N
gn
and that
lo
(2.2) limsup{ B 2w sion o } <o-—1.
n—00 logn

At first sight these conditions may appear somewhat artificial. However, they are
valid in a variety of instances. It is worthwhile to contrast them with the stronger
condition of regular variation (of X) utilised in [9]. Recall that ¥ is said to be
reqularly varying if the limit

. X(en)
te) = Jim, S(n)
exists for all ¢ > 0. If ¥ is regularly varying then it is easily seen that ¢(c) = ¢
for some o, called the indezr of the function. Furthermore, the condition of regular
variation is valid with index o = 1/a, if S is the sequence of ath powers of the
primes. Also, for any ¢ satisfying 0 < ¢ < 1, there exists a sequence S of relatively
prime numbers for which ¥(n) = |SN[1, n]| is regularly varying with index . Such
a sequence may be obtained by a suitable thinning of the prime numbers.
If ¥ is regularly varying with index o (where 0 < o < 1), then (2.1) and (2.2)
hold (see [9]).
The distribution function associated with the mass function py, is denoted by Fy,

so that
[z]

Fy(z) = u(Tk(F) < a:) = Zpk(j) for x > 0,

where |x| denotes the integer part of .
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Theorem 3. Suppose that S satisfies (2.1) and (2.2) for some o with 0 < o < 1.
If 0 <v < ( then

(2.3) log Fi,(vk) = —(¢ — v) (% — 1) (1+o0(1))klogk ask — oc.

This theorem asserts that the probability of a deviation having size (( — v)k
beneath the mean (i.e., v < () is of order k—f)k for an appropriate positive
quantity f(v, o). Deviations above the mean have even smaller probability. More
specifically, it may be seen by the Chinese Remainder Theorem that, if v > (, then
pe(7) = 0if j > vk and k is sufficiently large. Other properties of the distribution
associated with Fj were established in [8, 9], particularly results concerning its
height.

Applying Theorem 3 with v = 0, we find that

(2.4) log pr(0) = — (1 +0(1)) <§ - 1) {H<1 - %) } klog k.

T

If S is the sequence of squared primes, then o = % and

6
log pr(0) = —(1+ o(1)) - klogk

in agreement with the first claim of Theorem 1. In this case (and more generally
for the a-free numbers) one may in principle obtain further information about the
o(1) term in (2.4), by using the more detailed asymptotics associated with the
distribution of the primes.

The second claim of Theorem 1 is similar to the first, as is its proof. We have
by Mirsky’s theorem (and Theorem 2) that

pk:u(Flzg, It Ao forl1<i<k, Fk+1:®).

Theorem 4. Suppose that S satisfies (2.1) and (2.2) for some o with 0 < o < 1.
(a) If s; > 2 then

log p, = — (1 + o(1)) (é —1> {H<1— é)}klogk as k — oo.

T

(b) If s1 = 2, the same asymptotic relation is valid so long as k tends to infinity
through the even numbers. We have that px = 0 if k is odd.

Finally in this section, we discuss the matter of the lengths of gaps between
S-free numbers. The appropriate function h : 2 — R is given by



LARGE DEVIATIONS IN THE RANDOM SIEVE 7

for w = (w1, wa,...) € Q. For g : R — R, we have that

/g(h(')) dpn = % > g(tigr —ta),

2: tiS’I’L

where t1,ts,... is the sequence of S-free numbers as before. The function g(h())
maps () into R, and is continuous but not generally bounded. It follows by weak
convergence that

(2.5) /g(h()) dpn, — E (9(R(T))) asn— oo

subject to the condition of uniform integrability, namely that

sup/ g(h(:))dpn — 0 as M — oo
n A
where Apr = {w € Q: |g(h(w))| > M}; see [1, p. 32]. In the interesting case, when
¢ is an unbounded function of the positive integers, uniform integrability amounts
to an upper bound on the gaps ;41 — ;.

Note. There is a minor error in the proof of Theorem 2 appearing in [8], and this
is an appropriate place to acknowledge this. See Appendix 2.

3. Proof of Theorems 3 and 4

Proof of Theorem 3. As in [9], the strategy of the proof is to divide S into classes
(small, medium, and large, in this case), and to show that deviations from the mean
can occur only if the effect of the ‘large’ members of S is aberrant in a special way.
Owing to a convenient definition of the ‘large’ members, the probability of such
aberrant behaviour may be estimated.

Assume that S and ¥ satisfy (2.1) and (2.2) where 0 < ¢ < 1. In particular,
>, 1/s, < 00, so that

(3.1) C:H<131T) > 0.

T

Let 0 <v < (and 0 < € < min{o,1 — 0, — v}, noting that e < 01 — 1. We
call s, (€ 8) small if r < R where R = R(e) is chosen in such a way that

1
(3.2) > —< Le,
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and

(3.3) ﬁ(l - Si) <(+ Ze

T
(These two inequalities are of course related.) With U = s185...sg, let

(3.4) Hy,={j:1<j<k, reTl;forsomel <r <R},

the set of j (satisfying 1 < j < k) such that I'; contains at least one member

of {1,2,...,R}. Using the Chinese Remainder Theorem and the coprimality of
$1,82,... ,SR, we may bound |Hy| by

R
(3.5) Hk|g{1—H<1—Si>}ULk/UJ+U.

Therefore
1 U
3.6 —|Hi| < (1 — —.
(3) <10+
We choose Nj such that U/N; < %6, and obtain
1 1 .
(3.7) E|Hk|§1—C+ z€ if k> Ny

Let 0 <np<e and let V = Lk"_l_"J where k is sufficiently large that sp < V
(say k > Ny > Nip). We partition S as S = M UN where M = {s, : 5, < V},
N = {s, : s, > V}. Members of M\ {s1,$2,...,sr} are called ‘medium’, and
members of N are called ‘large’.

We may bound the cardinality of the set

(3.8) Jy={j:1<j <k, reTlj for some s, € M}
by
(3.9) [Tl < [Hil+ > <1+£>
. k|l > k Sr
r:s,eM
r>R

<k(1-(+ i)+ |[M|l+k -3¢ ifk>N,
by (3.2) and (3.7). By (2.1), there exists p (> 0) such that, for all large k,

M| =%(V) < ke
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Therefore there exists N3 (> N») such that M| < ek if k > Nj, giving from (3.9)
that

(3.10) |Jk| < k(1 —C+e€) if k> Ns.
Next we introduce the random set whose cardinality is to be estimated:
(3.11) Kp={j:1<j<k, j&Jg, r €l for some s, € N'}.
We have that
(3.12) Fuvk) = u(| i) + [Ki| > (1 v)k)
< u(Kxl > (C— v = k) by (3.10).

We shall bound the last probability using Markov’s inequality (see [10, p. 278]).
Note that |Kj| < K where

K= Y 1x,<u}:
TS, eN
the sum of independent Bernoulli random variables with respective means

k
E(lix,<ky) = w(X, < k)= —;

s
the X, were given towards the beginning of Section 2.
Lemma. Let Y1,Ys,... be independent Bernoulli random variables with
P(Y,=1)=1=P(, =0) = g,
where =Y, q, < oo. Then

(3.13) P<ZYT 2’7#) <exp{—p(ylogy+1—7)} forvy>1.

r=1

Proof. By Markov’s inequality, if @ > 0,

P (i Y, > w) < em e ﬁ E(e7)

r=1 r=1

=e [0+ ar(ef = 1))

r=1

< exp{—yub + p(e’ —1)}.
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We set 6 = log~ to obtain (3.13). O

Returning to the proof of the theorem, the mean of | K}| satisfies

(3.14) E|Kg <B(K)= > L3 < 2o e

S
r:5,.€EN r

for all large k (say for k > Ny > N3) by (2.2).
By (3.12), (3.14), and the lemma,

log Fi,(vk) <logu(K > (¢ —v — e)k) < —E(K)(ylogy +1 —7),

where
((—v—e)k
E(K)

by (3.14). This implies that

v = >((—v—ek® ~17¢ ifk> N,

log Fi,(vk) < —(1+0(1))(¢ — v — €)k log e N

and hence

log Fy(vk
liﬁgp{%} <—(C-v—e)(ot=1—¢€) foralle>0.

We let € | 0 to obtain the upper bound necessary for the theorem.
Finally we establish a lower bound for Fi(vk). First note a lower bound for |Hy|,
similar to the upper bound (3.5),

R
1
Hi | ><1— 11— — U|lk/U
iz =TI (- ) jou)
and therefore .
1—C—€§E|Hk\§1—C—I-6 if k> No

by (3.3) and (3.7). Now, for k > Ny,

(3.15)  Fr(vk) = p(Tw(T) < vk) = > pu(Te(T) < vk | Hy = H)p(Hy = H)
H

where the summation is over all subsets H of {1,2,...,k} satisfying

(3.16) (1—C—ek<|H|<(1—C(+ ek
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We say that s, ‘strikes’ the integer ¢ if € I';. Conditional on the event {Hy = H},
we have that Ty(I') < vk if and only if the medium and large s, (i.e., the s,
satisfying 7 > R) strike at least |H| — vk elements of H (the complement of a set
H is denoted as H). This is certainly achieved if the earliest |H| — vk such s, each
strikes a new integer of H, i.e., an integer struck by no smaller s, (here and later
we sometimes use real numbers where integers are required, but it may easily be
checked that this notational convenience has no influence on the outcome). That is

u(T(T) < vk | Hy = H) > p(Ax)
where
Apg = {XR+1 € H, Xpy2 € H\{Xpi1},...,
Xp+w € H\{Xg+1, X2, .- 7XR+W—1}}7
with W = |H| — vk. Now

H| |H|-1 H -W+1
pty) = 1L =1 ]
SR+1 SR+2 SR+W

H|! ( 1 )W
>
([H| - W) \spyw

>{(<—e)k}!< 1 ><c+e_y)k

- (I/k)' SR4+W

by (3.16). Furthermore, by (2.1),

-1
SRAW < S(c42e—vyk < {(C+ 2 —v)k}T FE
for large k, say k > N (> N2). Substituting into (3.15), we obtain

log Fy(vk)
klog k

k—o0

(3.17) liminf{ } >(C—e—v)—((+e—v)(o7 +e)

for all ¢ > 0. Now let € | 0 to obtain the required lower bound. The proof is
complete. O

Proof of Theorem 4. Using the stationarity of the sequence I', we have that
(3.18) P < M(Fi #Fforl<i< k) = Mg—1-
This provides an upper bound for log pi, of the required order. We note that

(3.19) Pk = Tg—1 — 2T + Tkt1,



12 GEOFFREY GRIMMETT

by using the stationarity of I'; however, we shall not make use of this fact. (Equation
(3.19) is shown as follows. Denote by u0*¥~lv, for u,v = 0,1, the event that

l{plzg} =u, 9o #F, ..., # O, 1{Fk+1:g} = v. Now,
pre = p(1OF11) = (- 057 1) — p(00F 1) — (- 0571 0) 4 (0071 0)

where a dot in position j indicates no constraint on I';. Equation (3.19) follows
using stationarity.)

Turning to lower bounds for pi, we remark first that, when s; = 2, we have that
2 € I'y UT'g41 if £ is odd; therefore pi = 0 in this case. Suppose now that s; > 2
(a similar argument holds if s; = 2 and k is even). Basically we follow the relevant
part of the proof of Theorem 3. First,

(3.20) pp = (L # @ for 1 <i <k|A)pu(A)

where A = {I'y = I'y41 = @}. Now,

san = TSI (- 2) =110 0),

The last quantity is strictly positive since s1 > 2.

We now compute a lower bound for the conditional probability in (3.20). Condi-
tioning on A amounts to conditioning on the event that X, # 1, k+ 1 (mod s,) for
all r. Under A, the X, are conditionally independent with distributions which are
similar to their unconditional distributions. The argument of the previous proof
now goes through, with v = 0, and with Hj replaced by

Hy={j:2<j<k, rel;forsomel<r <R},

and other minor changes arising from the altered distributions of the X,. The
conclusion is, as in (3.17), that

lim inf
k— oo

1 iAo forl<i<k|A
ogu( i = & for <z_k:‘ ) > (o1 - 1).
klogk

This may be combined with (3.21), as required. O
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Appendix 1

We present here a sketch proof of (1.1), which was given in [2] but with the constant
72 /12 unfortunately replaced by 72/6. The proof is elementary, but there is some
value in giving brief details.

Let s; = p?, the square of the ith prime, let ¢; be the ith square-free number,
and write

implying that the numbers s, so, ..., sg divide at least a proportion 1 — ( — € of
integers. Let k be an integer which is larger than P = Hf:l s;. For an integer
m, write T, (1), 2,(2), ..., 2, (M) for the increasing subsequence of m + 1,m +
2,...,m + k containing all integers not divisible by any s; (for 1 < i < R), noting
that

(A1) 0< M- (P|k/P|] <P+¢eP|k/P].
For fixed large k, what is the smallest value of m such that
(A.2) T (1) =0 mod spyy, forl<i< M?

By (A.1) and the Chinese Remainder Theorem, these congruences have a solution
for some m satisfying 1 <m < mn, if n = Hfil s; and

(A.3) N>R+ ((+¢)P|k/P]+ P.
Now
N N
log{H si} = ZZlogpi ~2NlogN as N — oo,
i=1 i=1

by [13, Thm 420]. Therefore, by (A.3), we may take n such that
logn =2(1+40(1))(¢ +€)klogk ask — oo.

With n = n(k) given thus, there exists by (A.2) a square-free number #; satisfying
t; <n and t;41 —t; > k. This implies that

1 logt;

for infinitel )
(C+ e logloglh; or infinitely many 1

(A.4) tiv1 —t; > (1+0(1)) )
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as required for (1.1).
We have a further note, relevant to the appearances in (1.5) and (A.4) of the
respective constants 72/6 and 72/12. The calculation above implies that

(A.5) tiv1 —t; >k for some t; <exp{2(1+€)Cklogk}.

In fact there are many such t;, for the following reason. The congruences (A.2)
may be replaced by

(A.6) Tp(i) =0 mod spy iy, forl1<i< M

where j = (j(1),4(2),...,7(M)) is any given permutation of (1,2,...,M). By
counting the number of such permutations, one finds after a little work that there
are at least exp{(1 — €)(klogk} integers m satisfying m < exp{2(1 + €)Cklogk}
such that the sets {m+1,m+2,...,m+k} are disjoint and contain no square-free
number. If these numbers m were ‘uniformly spread’ over the integers between 1
and exp{2(1+¢€)Cklogk}, then the first would be smaller than exp{(1+€)Cklogk}.
In fact, we do not know how these numbers m are distributed. In the averaging
process of (1.4) however, it is the ‘average’ gap which manifests itself, and this
accounts for the value 72/6 appearing in (1.5) and Theorem 1.

Appendix 2

We take this opportunity to correct two minor omissions in [8]. Firstly, on page 2,
each set G; is the set of all subsets of the label set G. Secondly, in (2.13) on page
6, we assume further that ¢; < %sj. The final display on that page becomes

1 1 n tj
—|Tn {120} <~ > <1+8—j>tj§3zf§3e.

.= ‘ Sj
Jjr 2R >R
5;<2n
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